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Abstract

This article expands on Curry’s work on how to implement the prob-
lem of inverse interpolation on the ENTAC (1946) and his subsequent work
on developing a theory of program composition (1948-1950). It is shown
that Curry’s hands-on experience with the ENTAC on the one side and
his acquaintance with systems of formal logic on the other, were conduc-
tive to conceive a compact “notation for program construction” which in
turn would be instrumental to a mechanical synthesis of programs. Since
Curry’s systematic programming technique pronounces a critique of the
Goldstine-von Neumann style of coding, his “calculus of program com-
position”not only anticipates automatic programming but also proposes
explicit hardware optimisations largely unperceived by computer history
until Backus famous ACM Turing Award lecture (1977).

This article frames Haskell B. Curry’s development of a general approach
to programming. Curry’s work grew out of his experience with the ENIAC
in 1946, took shape by his background as a logician and finally materialised
into two lengthy reports (1948 and 1949) that describe what Curry called the
‘composition of programs’. Following up to the concise exposition of Curry’s
approach that we gave in [28], we now elaborate on technical details, such as
diagrams, tables and compiler-like procedures described in Curry’s reports. We
also give a more in-depth discussion of the transition from Curry’s concrete,
‘hands-on’ experience with the ENIAC to a general theory of combining pro-
grams in contrast to the Goldstine-von Neumann method of tackling the “coding
and planning of problems” [18] for computers with the help of ‘flow-charts’.

*This paper is a contribution to the ENIAC NOMOI project.
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1 The ENIAC Experience

The ENIAC (Electronic Numerical Integrator and Computer) is one of the first
computers worldwide. It was revealed to the public in 1946 and publicised widely
in the scientific and popular press. In the journal Nature it was described as
“an electronic computing machine” [20], in Popular Science the ENIAC was
announced somewhat catchier as “lightning strikes mathematics” [31]. Until
the mid-fifties, the ENIAC would remain the fountainhead of the new general-
purpose digital electronic devices that we nowadays call computers. It was the
first U.S. electronic, digital and (basically) general-purpose computer. More-
over, ENIAC was a highly parallel machine.

The machine had been financed by the U.S. army during the Second World
War as a calculator for ballistic tables. ENIAC, however, did not have any
programming interface. For each new program, cables had to be plugged in
the right devices, adaptors used on the right connections, dials and switches
set for the right values etc. Thus, it need not surprise that the planning of a
computation, not only the translation of the mathematics into a general scheme
but also the realisation of the scheme as a combination of cables and switch-
settings, could take weeks and had to be done with utmost care. This frequent
and time-consuming re-wiring of the machine—or the so-called ‘local’ or ‘direct-
programming’ of the ENIAC—constituted one of the severe ‘bottlenecks’ of do-
ing things with ‘programmable calculators’, and that this fundamental problem
had to be tackled at some point already sprang to the minds of ENIAC’s in-
ventors and “users” while building and using the machine. Hence the ENIAC
not only flashed upon mathematics but also posed a provocation to the logics
of programming,.

To examine the machine and face these issues, a Computations Committee
was set up at Ballistic Research Laboratory (BRL) at the Aberdeen Proving
Ground in the middle of 1945 [32]. The committee had four members: F.L. Alt,
L.B. Cunningham, H.B. Curry and D.H. Lehmer. Curry and Lehmer prepared
for testing the ENIAC, Cunningham was interested in the standard punch card
section and Alt worked with Bell and IBM relay calculators. Lehmer’s test
program for the ENIAC was already studied in [27] and [3]. Here, we will
deal with Haskell B. Curry’s work on the problem of inverse interpolation, an
important problem in the calculation of ballistic tables, and how this led him
to develop a theory of programming.

Curry is best known as a logician. He is remembered for his work on combina-
tors [9], the verb ‘to curry’ and the Curry-Howard-isomorphism. An important
aspect of Curry’s research on mathematical logic may be summarised by the
following quote from his retiring address as the president of the Association for
Symbolic Logic [9, p. 49]:

[t is evident that one can formalize in various ways and that some
of these ways constitute a more profound analysis than others. Al-
though from some points of view one way of formalization is as good
as any other, yet a certain interest attaches to the problem of simpli-



fication [...] In fact we are concerned with constructing systems of an
extremely rudimentary character, which analyze processes ordinarily
taken for granted.

This guiding principle will be seen at work in Curry’s involvement with the
ENTAC while conducting the way from a specific practice of wiring to a general
theory of programming.

In combining experience with ENTAC, researching for more efficient and
systematic ways to program a machine and developing a simple most compact
symbolism, Curry’s contribution can be regarded as a very early example of the
20th century consilience between logic, computing and engineering.

During the years 1946 to 1950, Curry wrote three reports and one short
paper. The first report [15], in collaboration with Willa Wyatt, describes the
set-up of inverse interpolation for the ENIAC. The second and third report
[10, 11] develop the theory of program composition and apply it to the prob-
lem of inverse interpolation. A summary of these two reports is given in [12].
Despite the fact that the reports [10, 11] were never classified, this work went
almost completely unnoticed in the history of programming as well as in the
actual history and historiography. Only Knuth and Pardo in their history of
programming languages briefly consider Curry’s work [23, pp. 211-213]. Backus
[2] however, makes frequent references to Curry, but equalises his efforts with
those attributed to Church’s lamda calculus or McCarthy’s pure Lisp.

Curry himself does not seem to have ever returned to the topic after 1950. In
1950, Curry received a two-year Fulbright Grant to work together with Robert
Feys from the university of Louvain (Belgium). This resulted in the famous
Combinatory Logic (Vol. 1, 1958) co-authored by Curry and Feys. Although
his reviews for AMS Mathematical Reviews (now MathSciNet) seem to suggest
that Curry tried to keep up with the developments in programming or the use of
logic in computers, he never again published on programming and seems to have
concentrated mainly on his work in combinatory logic and on his philosophical
work.

1.1 Curry and Wyatt: A study of programming on the
ENIAC (1946)

In 1946-1947, Curry together with Willa Wyatt and Max Lotkin, draw up a
series of BRL technical reports preparing to use the ENTAC to compute ballistic
tables. These are A study of inverse interpolation on the ENIAC (1946, Curry
with Willa Wyatt); A study of fourth order interpolation on the ENIAC (1946,
Curry with Max Lotkin) and Inversion on the ENIAC using osculatory interpo-
lation (1947, Max Lotkin alone). The first report is the most interesting, since
“the problem of inverse interpolation is studied with reference to the program-
ming on the ENTAC as a problem in its own right [our italics].” [15, p. 6] The
report is written in collaboration with Willa Wyatt, one of the all-female team
of ENIAC programmers [16, p. 26], who surely provided a lot of the technical
details and variations. The Curry-Wyatt report was declassified in 1999.



The main problem of the report is stated as follows: “Suppose we have
a table giving values of a function z(t) [...] for equally spaced values of the
argument ¢. It is required to tabulate ¢ for equally spaced values of z.” [15, p.6]
Given the coordinates of the target, the tables computed with the method of
the report would allow to find the right angle of departure of a missile as well
as the appropriate fuse time. The general problem of iteration is analysed at
length and Curry finally opts for an algorithm that may not converge extremely
rapidly but instead is more stable and needs less parameters. Card readings
and printings (at the beginning and ending of each calculation cycle) eat up
3000 addition times, while in comparison even the slow convergent calculation
takes only 60 addition times, so that in any case, “the bulk of the time [...] is
taken up by card feeding.” Therefore, a simpler and more stable algorithm has
to take precedence over an optimally fast one —for as a lesson of the ENIAC:
“a far more important consideration than speed of convergence is simplicity of
programming” [15, p. 14].1

The set-up of the computation is detailed with over 40 figures of wirings for
parts of the program and contains various remarks on exploiting the peculiarities
of the ENIAC’s hardware. Although the practical goal was simply to compute
firing tables, Curry and Wyatt aimed at a more general solution and discussed
lots of modifications of the problem. Hence they planned the scheme for a
maximum of functions to be possibly interpolated at once, viz. to compute four
values , x, y, z and w at a time. As a consequence, “the Eniac is jammed full”
[15, p. 7] and a lot of the modifications had to cope with this very ‘classical
ENTAC-problem’ of economising on a part of hardware here, just to be able to
use it there. So there has always been a tradeoff between the sophistication of
computational procedure and the number of values or functions calculated at a
time. The amount of hardware tied up in the realisation of a specific program
thus afforded to make clear choices which put a limit to both, the generality
and effectivity of any one solution. Especially accumulators—being at the same
time the main memory units and local programming controls—were always at
a premium in the ENTAC.

As a result, the analysis of the report distinguishes between stages and
processes of computations, where processes are major, repeatable subprograms
grouping the logical progress within the entire problem solving procedure, whereas
stages represent smaller, ‘primitive’ entities of ever-recurring computations. For
example the inverse interpolation program consists of 6 major processes:

1. Set up
2. Preparation for the primary interpolation
3. Iteration

4. Secondary interpolation for y

I This is completely in tune with Lehmer’s observation that because of its speed, the ENTAC
often calls for an “idiot approach” [3, p. 135-136].



5. Secondary interpolation for z
6. Secondary interpolation for w and closure

The first and second parts of processes 4, 5 and 6 run concurrently with 2 and
3 respectively. The sequencing is thus mainly: 1 — 2 (4a, 5a, 6a) — 3 (4b, 5b,
6b) — 6¢ (closure). The branching points of the main program are in processes
1 and 3. On the ENTAC, branching is done by discriminations on the sign of a
number. In Curry and Wyatt’s program, the master programmer controls the
discriminations (or the conditionals, to use a more modern word).

Further, each process is broken up into stages. Each stage is a program sequence
with an input and one or more outputs. About the analysis into stages Curry
and Wyatt point out one important practical advantage: “The stages can be
programmed as independent units, with a uniform notation as to program lines,
and then put together; and since each stage uses only a relatively small amount
of the equipment the programming can be done on sheets of paper of ordinary
size.” [15, p. 10] Hence, arranging hand-written sheets of previously wired
stages can replace the wiring of a complete process from scratch. The ‘logic
of stages’ thus allows for modifications of the problem to be obtained simply
by reshuffling sheets/stages without having to alter the total structure of the
program. In this sense, the concept of stages forms an integral part to the
generality of their case study on inverse interpolation. Moreover, “when an
operation involves elements which recur more frequently than others, the more
often recurring elements can be grouped into a stage by themselves, which stage
can run concurrently with other stages.” [15, p. 31] Clearly, since basic elements
of a complex computation make up the stages and their frequency, the concept
of stages indicates where computations can be run in parallel (concurrently). In
other words, the technique developed by Curry and Wyatt not just manages but
actually features the parallel hardware-design of the original machine. However,
significant improvements in speed and processing of this sort were disabled from
1948 onwards when a permanent, monolithic wiring, the so-called ‘converter
code’ [6], serialized ENIAC. This code subjected the machine to von Neumann’s
serial philosophy of ‘one operation at a time’—in fact an act of appropriation
which “spoiled the ENTAC” [24].

Yet before this incidence of conversion, stages were explicated by the wiring
diagrams themselves which served as markers in the complex set-up and as
departure points for further programming. This can be gathered from the wiring
diagram where each of the 12 controls of an accumulator has an input and an
output that refers to a specific stage. Concerning the management of hardware
resources, Curry and Wyatt note that the wiring diagram shows “the stage
numbers for a particular control” and also “what controls are still available for
further programming” [15, p. 40]. Since every stage is an “autonomous piece
of computation”, any change can still be made to stages, obviously within the
limits of the ENIAC’s hardware not used up already by a given possibly parallel
process.

Curry’s experience with putting the inverse interpolation on the ENTAC was
a point of initiation for a series of further investigations into programming, such
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Figure 1: Curry and Wyatt’s wiring diagram for the first 10 accumulators of
ENTAC. Each column corresponds to an accumulator. Each accumulator has 12
controls (8 transceivers and 4 receivers) where each connects to specific stages.
The twelve lines correspond to the controls.

that he would reuse the interpolation problem as a prototypical example in his
later reports. Curry was convinced that “this [interpolation]| problem is almost
ideal for the study of programming; because, although it is simple enough to
be examined in detail by hand methods; yet it is complex enough to contain
a variety of kinds of program compositions.” [12, p. 102] This claim is amply
illustrated at the end of the 1946-report. Curry and Wyatt list no less than 21
possible modifications of their program [15, p. 54-57]. These modifications can
be grouped roughly in four categories:

1. Adding more parameters to the problem and ‘complexifying’ the mathe-
matical procedure

2. Dropping (a) parameter(s) of the problem and simplifying the mathemat-
ical procedure

3. Alternative ways to wire processes, especially alternatives for doing (com-
plex) discriminations

4. Adding error checking and catching routines

The first and last group of modifications depend on feeding extra information in
the basic scheme through external cards or through the (unused) function tables
and by adding extra wiring while (re)using parts of the hardware not tied up by
the basic scheme. As examples of the first group, one may quote the change of
an interpolation formula requiring extra card information and a different wiring
of controls of the accumulators (pp. 11-12 and 55); or, as another example, the
transformation of a fixed parameter A\ into a variable parameter representing



the range of variation determined by “two transceivers free in [Accumulator N]
and five in [Accumulator M]” (p. 44). The first example mentioned alters a
stage and its set-up whereas the second adds a stage to the general structure.

The important idea of adding routines for internal data-checking and error-
handling is a prominent one, a concept recurring in Curry’s work from 1948-
1950. In order to create an error channel, Curry links up several discriminations
that test whether certain error conditions are met, i.e if some “error signals”
were received [15, p. 23]. These signals arrive at specific positions of a free
stepper located at the master programmer. When the ENTAC stops on error,
the position of that stepper will indicate a certain kind of error significantly
easing the affair of debugging. Also here, a stepper not yet tied up in the main
scheme could be used.

It is worth noting that alternative ways of forking discriminations on the
ENTAC have a non-trivial impact on wiring. While the general structure of
divisions into stages remains unchanged, the consumption of output terminals
and transceivers of accumulators used to perform the typical sign-discrimination
(see above) could be diminished by transferring some of these classical ENTAC-
discriminations to the steppers of the master programmer, thereby economising
the use of working memory.? In traditional ENIAC parlance the, general prin-
ciple applied here is “sav[ing] a dummy at the expense of an addition time” [15,
p. 27]. Since the ENTAC, in fact, outruns its contemporary competitors (the
IBM or BTL relay calculators) by a speed-factor of 100, availability of work-
ing memory precedes over clock cycles, such that the described wiring tricks
and tradeoffs were important and determined largely the usability range of the
machine. This principle, as we have seen, is also at work when adopting and
simplifying sophisticated mathematical procedures, e.g. when sacrificing fast
convergence behaviour for a smaller amount of parameters to compute. Con-
sequentually, the technique of ‘freeing up dummies’ occurs systematically in
the report of 1946 whenever modifications could not be entered into the basic
scheme for lack of memory. However, what appears to be a mere mannerism of
the ENIAC, will prove to be instructive for Curry’s further investigations into
a theory of program composition.

1.2 Goldstine and von Neumann: From ENIAC to ED-
VAC (1946-1950)

Although Haskell Curry was involved with the ENIAC since 1946, it is not
the name ‘Curry’ or ‘Haskell’ that spontaneously comes up if one thinks of a
logician and computers in the years 1946-1950. That would rather be John
von Neumann, ‘Johnny the MANIAC—father of all JHONNIACs. As H.H.
Goldstine recounts, he met von Neumann in a train station in 1944, talked with
him about the ENTAC in progress, and got the famous mathematician interested
[19, p. 182]. Von Neumann'’s later involvement with ENTAC and computers is by

2More details on these two kinds of wiring conditional branching on the Eniac, see [3,
Sec. 2.4]. If a transceiver of an accumulator is used for discrimination, or, in general, for
steering another program, it is called a dummy (program).



now a standard part of the history of computers and of computing (see e.g. [1]).
Yet for a significant comparison, it is mainly von Neumann’s (and Goldstine’s)
study of setting up a process on a computer that is of relevance here.

Soon after the completion of the ENIAC, it became clear that the machine
would not only be used to compute ballistic tables, but also for many other
problems. Setting up a problem on the ENTAC was, unfortunately, not a simple
process and took a lot of time. Therefore, in the years 1947-1948, a rewiring of
the ENTAC was effectuated, changing the machine from a locally programmed,
parallel machine into a centrally programmed, sequential machine [29]. This
‘reconstruction’ of the ENIAC was the outcome of a group process, involving
the team of ENIAC engineers, the team of mathematicians from the Ballistic
Research Laboratory and Los Alamos that wanted to set up programs on the
ENIAC, and the all-female team of programmers of the ENTAC. Through their
cooperation an instruction code for the ENIAC was developed and the ENTAC
was rewired accordingly. The main ideas for this instruction code came from
Adele Goldstine (wife of Herman, programmer of the ENIAC and author of its
technical description), Richard F. Clippinger (of Ballistic Research Laboratory)
and John von Neumann.

A telling anecdote concerning ‘instruction codes’ illustrates the interplay of
practical and theoretical issues, or even more to the matter, of programmers
and mathematicians: For a complete list of instructions that von Neumann had
proposed, a halt order was plainly missing. However, Betty Holberton, one of
the programmers, convinced him of the need to include it. For a certain reason
von Neumann held up the opinion, “you don’t need it”, yet Holberton replied,
“but we are not all Von Neumann’s, we will make mistakes” [33, p. 78]. Indeed,
a halt order is useful for stopping the machine and analysing what was going
wrong. In von Neumann’s view the machine only to stop “naturally” that is
after the program has been executed successfully.

According to von Neumann, once the translation of a problem into mathe-
matics is achieved, the actual coding does not present any real challenge and no
real problems are deemed to arise [18, part I]. Error handling is to be done before
the execution of a program. Thus, this anecdote is not only an illustration of
the impact of practical, everyday experiences with the ENTAC but of more the-
oretical and historical concern: it is characteristic of von Neumann’s approach
to programming. His ethos ultimately led to the above coupe of converting the
ENTAC into a serial machine.

Following the experience with ENIAC, von Neumann and Goldstine quickly
embarked on the conception and usage of a new machine, the EDVAC3, that
would be a sequential, stored-program computer from the start. This materi-
alised into a series of reports describing the architecture of the new machine
(hence the name ‘von Neumann architecture’) and how to set up programs on
this new machine. The reports that interest us here, are the three volumes of
Planning and coding of problems for an electronic computing instrument [18]

3The EDVAC also called IAS (Insitute for Advanced Study) machine when referring to the
actual machine built at Princeton.



which appeared in 1947 (vol. I, general principles and flowcharts; vol. II, coding
examples for numerical and combinatorial problems) and 1948 (vol. III, com-
bining routines) respectively.

Table 1: Table of basic orders [18]

Nr | Symb. Description

1 X Clear A and add number located at x into it

2. X- Clear A and subtract number at position x into it

3. x M Clear A and add the absolute value of the number located at
x into it

4. x -M Clear A and subtract the absolute value of the number at po-
sition x into it

5. xh Add number located at x into the A

6. x h- Subtract number at position x into the A

7. x hM Add the absolute value of the number located at x into the A

8. x h-M Subtract the absolute value of the number at position x into
the A

9. xR Clear R and add number located at position x into it

10. | A Clear the A and shift the number held in the register into it

11. | x X Clear the A and multiply the number located at position x by
the number in the register

12, | x + Clear register and divide the number in the A by the number
located at x leaving the remainder in A and the quotient in R

13. | xC Shift the control to the left of the order pair?l at position x

4. | xC Shift the control to the right of the order pair at position x

15. | x Ce If the number in A > 0 shift the control as in x C

16. | x Cc If the number in A > 0 shift the control as in x C’

17. | xS Transfer the number in A to position x

18. | x Sp Replace the left-hand 12 digits of the left-hand order located
at position = by the 12 digits 9 to 20 in A

19. | x Sp’ Replace the left-hand 12 digits of the right-hand order located
at position z by the 12 digits 29 to 40 in A

20. | R Replace the content egeqes ... e39 of A by epegeres . . . €39

21. | L Replace the content egerey ... €39 and mgnin2 ... N39 of A and

R by €gezes . .. €390 and n1m2ms3 - . - n39€1

In the first volume of Planning and coding, Goldstine and von Neumann give
a table of the machine instructions of the ITAS machine (see Table I). Of special

n volume 1, orders are ordered in pairs in the memory because orders are “less than
half as long as a forty binary digit number, and hence the orders are stored in the Selectron

memory in pairs.”




interest in this table are the Sp and Sp’ orders, called ‘partial substitutions’ by
von Neumann. These orders shift the first half of a word to the second half (or
vice versa). In the case the word contains an order (of length half a word) and
an address (also half a word), these orders can exchange orders for addresses or
vice versa. For von Neumann, the importance of these partial substitutions can
hardly be over-estimated, because they allow a program to change its own code:
“the machine’s ability to modify its own orders [...] is absolutely necessary for
a flexible code” [17, p. 31].> Goldstine and von Neumann then explain how to
transform a problem into a program and how flowcharts can be used to do the
coding;:

Since coding is not a static process of translation, but rather the
technique of providing a dynamic background to control the auto-
matic evolution of a meaning, it has to be viewed as a logical prob-
lem and one that represents a new branch of formal logics [...] this
is not a mere question of translation (of a mathematical text into
a code), but rather a question of providing a control scheme for a
highly dynamical process, all parts of which may undergo repeated
and relevant changes in the course of this process. [...] We therefore
propose to begin the planning of a coded sequence by laying out a
schematic of the course of C through that sequence, i.e. through the
required region of the selectron memory. This schematic is the flow
diagram of C. [18, vol. 2, p. 1 and 4]

The second volume of Planning and coding applies these general principles to
other frequently occurring mathematical problems. The article provides detailed
flowcharts for a variety of concrete problems. For the last and third volume that
appeared in 1948, Goldstine and von Neumann had promised to explain how to
combine several of these routines in one program. Indeed, they wanted to “avoid
the need for recoding [a routine] each time when it occurs” and have a routine
that can “insert [already] coded sequences as wholes” into a new program. In
short, a meta-routine for substituting a subroutine in the main routine [18, vol. 3,
p. 2]. The solution to this task is a “preparatory routine” that allows to copy
a given routine to a given memory location in the main routine, automatically
altering the memory positions of the program. This “preparatory routine” only
works under certain restrictions, in particular, the subroutine may not alter any
of the memory locations of the main routine.

Estimating Goldstine’s and von Neumann’s work on programming, one should
say that they propose more a set of heuristic tools (such as flowcharts) and a
demo-set of example routines than a theory of programming. The translation
of mathematics is seen as the most important step and its implementation on a
machine is treated as a derived, secondary problem—but never, as Curry states,
“in it’s own right”. Even the “preparatory routine” is not developed in its full
generality and remains rather involved and complicated. Also typical is the

5This is a recurring theme in von Neumann’s writings on computing, especially when
talking about (self-reproducing) automata.
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absence of error routines, most obvious by the missing halt order. All in all,
their strategy sticks close to the machine, not gaining enough abstraction to
arrive at a more general approach worth to be called programming. Although
the impact of the Goldstine-von Neumann reports on the history of computing
and programming was considerably large, if not decisive, one cannot say that
this helped constituting a systematic logical approach. That such an approach
to programming was not impossible at that time, however, is shown by Curry’s
work.

2 On the composition of programs

In 1949 and 1950 Curry wrote two lengthy reports [10, 11] for the Naval Ord-
nance that propose a theory of programming that is very different from the
Goldstine-von Neumann (GvN hereafter) approach [18] (see Sec. 1.2). In fact,
it will be shown that Curry’s approach is much more advanced than the GvN
reports as far as programming is concerned, providing a detailed theory of pro-
gram compositions that is ultimately understood as a calculus of compositions
and thus more akin to Backus’ idea of an algebra of programs [2].

But why did Curry develop his theory of compositions and what was its pur-
pose? This is clearly enunciated in [10, p.5]:

In the present state of development of automatic digital computing
machinery, a principal bottleneck is the planning of the computation
[...] Ways of shortening this process, and of systemizing it, so that
a part of the work can be done by the technically trained personnel
or by machines, are much desired. The present report is an attack
on this problem from the standpoint of composition of computing
schedules [...] This problem is here attacked theoretically by using
techniques similar to those used in some phases of mathematical
logic.

Indeed, Curry considers the preparation of programs for the machine as the
principal bottleneck for the development of computing machines, a concern that
directly relates to Curry’s ENIAC experience with its direct and local program-
ming method. In contrast with GvIN, Curry not only develops a notation for
programs but also a general theory of program composition that can be and is
explicitly intended as one that can be mechanized. He thus made the firsts steps
towards automatic programming, i.e., compiling. As G.W. Patterson stated in a
1957 (1) review on [12]: “automatic programming is anticipated by the author”
[30, p. 103]

The sheer practical necessity to theoretically ‘attack’ the problem of program
compositions is not the only influence of Curry’s ENIAC experience. Also the
‘logical nature’ of the inverse interpolation problem contributed significantly to
Curry’s ‘strategy’ [10, p.7]:

The present attack [goes] back for its fundamental philosophy to the
Aberdeen report [15]. In fact, it was evolved with reference to inverse

11



interpolation. That problem [has] shown itself to be well suited for
the purpose. It is simple enough so that it is scarcely economical for
a big machine; yet it has a structure showing several different kinds
of compositions

In the following we discuss these different kinds of compositions of the two
reports in more detail. As pointed out in [11], Curry considers two different
phases in programminga given problem, in his particular case, the inverse inter-
polation problem [11, p.2]:

The first step [is] to analyze the inverse interpolation problem into
its main constituent parts, and then to study the kinds of compo-
sition necessary to reconstruct the program from these main parts.
[Bleyond this point there is the consideration of how these major
parts [m]ay be compounded from simpler parts. This analysis, and
the corresponding synthesis, occupies the later chapters of [11]

The study of the different kinds of compositions and how they can be synthesised
in general forms the major bulk of [10] and will be discussed in Sec. 2.2. The
application of the theory to the inverse interpolation problem was postponed
to Chapter 1 of [11], even though it was “conceived as a part of [the] first
memorandum” The analysis of the major parts into simpler parts as well as the
corresponding synthesis is addressed in [11] and will be discussed in Sec. 2.3.

2.1 Definitions and assumptions

Unlike a modern design-goal of programming languages to be as machine-independent
as possible, Curry chose to build up his theory with reference to a concrete ma-
chine, viz. the IAS computer with von Neumann architecture as described in [4].
He leaves “the question of ultimate generalization [i.e. machine-independence]
until later”, but does make considerable idealisations of the IAS machine. Curry
introduces several definitions in targeting this idealised IAS machine. Further-
more, he makes certain assumptions that are used to deal with practical prob-
lems of programming.

The target machine has 3 main parts: a memory, an arithmetic unit (consisting
mainly of accumulators A) and a control (keeping track of the active location
in memory). The memory consists of locations and each location can store a
word and is identified by its location number. There are two types of words:
quantities and orders. An order consists of three main parts: an operator and
two location numbers, a datum location and an exit location. There are four
“species” of orders: arithmetical, transfer, control and stop orders. Roughly
speaking, a transfer order moves a word from one position to another, a control
order changes location numbers. A program is an assignment of n 4+ 1 words to
the first n+ 1 locations. A program that exists exclusively of orders resp. quan-
tities is called an order program resp. a quantity program. A normal program
X is a program where the orders and quantities are strictly separated into an
order program A and a quantity program C with X = AC.
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Note that it is impossible to tell from the appearance of a word, if it is a quantity
or an order. Curry considers this as an important problem [10, p.98]:

[...] from the standpoint of practical calculation, there is an abso-

lute separation between [quantities and orders]. Accordingly, the

first stage in a study of programming is to impose restrictions on

programs in order that the words in all the configurations of the re-

sulting calculation can be uniquely classified into orders and quan-

tities.
Curry introduces a classification of the kinds of programs allowed. In this con-
text, the mixed arithmetic order is crucial. This is an arithmetical operation
that involves an order as datum. This corresponds, of course, to von Neumanns
“partial substitutions”. For example, an important use of mixed arithmetic
orders is looking up consecutive data in a table . Here, it is employed to ef-
fectively calculate with location numbers. To enable this, Curry adds the table
condition, i.e. it is allowed to add an integer to a location number to get a
next value, but only within a limited range (the range of the table in which
you look up values). Ultimately, this results in the notion of a regular program,
which is either a primary program or a secondary program that satisfies the
table condition where a primary program has no mixed arithmetic orders, but a
secondary program at least one. In any case, the calculation has to terminate.
This careful categorisation of programs allows Curry to “tame” or at least con-
trol the impact of mixed arithmetic orders (or “partial substitutions”). These
categorisations and restrictions introduced by the help of them contrast strongly
with von Neumann’s enthusiasm about changing the code of a program while
running, and appears more in alliance with the caution the German computer
pioneer Konrad Zuse expressed.’

2.2 Steps of program composition part I

Next we discuss Curry’s “first step” in the programming of a problem, a study
of the different kinds of compositions and the techniques he provides to “recon-
struct” a program from its subprograms. As Curry explains in the introduction
of [10]:

Suppose that we wish to perform a computation which is a complex
of simple processes that have already been planned. Suppose that

6Cf. the following quote from Zuse: “The idea of general calculating or information pro-
cessing, as we say today, induced me to consider that the program, too, is information and
can be processed by itself or by another program.[...] In hardware it means that we not only
have a controlling line going from left to right, but also from right to left. I had the feeling
that this line could influence the whole computer development in a very efficient but also
very dangerous way. Setting up this connection could mean making a contract with the devil.
Therefore, I hesitated to do so, being unable to overlook all the consequences, the good as
well as the bad. [...] My colleagues on the other side had no scruples about the problem I just
mentioned. John von Neumann and others constructed a machine with a storage for all kinds
of information including the program. [...] My own design for future machines on paper were
more structured with instructions stored independently and special units for the handling of
addresses and subroutines nested in several levels.” [34, p. 616]
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for each of these component processes we have a plan recorded in
the form of what is here called a program, by means of a system of
symbolization called a code. It is required to form a program for the
composite computation.

2.2.1 Transformations and replacement

The first step in program composition as discussed by Curry concerns the def-
inition of the different transformations needed in order to attain compositions
on the machine level. Let X = MoMM,...M, and Y = NoNNs...N, be two
regular programs with Ny, My, Lo initiating orders, T'(k) = k' with k < p, k' < ¢
some numerical function. Given a program X then {T}(X) computes the pro-
gram Y such that:

No = My
(T}(X) = N; = My, if there are {ki, ..., ki, ..., k¢ } for which T'(k;) = 4,4 >0 (%)
and if ¢ > 1,3f such that f(ki,...., k) = k;
N, =J if there is no k such that T'(k) is defined

where J is a blank. {T}(X) is called a transformation of the first kind. It boils
down to a reshuffling of the words in X, where it is not necessary that every
word in X reappears in Y. Note that the function f is needed in order for {T'}
to be uniquely defined.

A transformation of the second kind (T)(X) gives the Y such that ¢ = p
and every word IN; € Y is derived from a word M; € X by replacing every
location number k in every order M; of X by T'(k). If M; is a quantity then
N; = M;. This results in changing the datum and exit numbers in the orders
to correspond with the reshuffling from the transformation of the first kind.
Given program X and Y and 6 a set of integers then the transformation %X
called a replacement gives a program Z of length r + 1 where r = p if p > ¢ else
r = q and for each word L; € Z, 0 < i <r:

Myif i1=0

M;ifid6,i<p
N;ifi<qgand (i€ ori>p)
Jifieb,i>q

L=

Thus, a replacement is a program made up from two programs by putting, in
certain locations of one program, words from corresponding locations in the
other program. Curry then gives definitions for transformations of the second
kind with replacement, defined as {g = £({T}(X)) and transformations
of the third kind. This last class concerns transformations that result from
combining transformations of the first and second kind with replacements:

[T](z) = ATHT)(z)

¥ = {f}(T)(x)
[0T)(x) = {#g}(T)(af)
[Fl@) = {FHD)()
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Note that 0 is a void program.

This part of the theory of program composition is in fact heavily inspired
by the theory of combinators on which Curry wrote his PhD in 1930 [7]. In
particular, if one looks at the condition (x) in the definition of {T'}(k), this a
projection function needed to select a value k;. If all k;’s are the same then:

there is a unique normal variator (i.e. combinator corresponding
to a variation of “Umwandlung”) U such that UN1Ny... N, =
MM, . ..M, where = is a reduction in the sense of combinatory
logic, and the words are regarded merely as names for “entities”
which can be manipulated according to the rules of the theory of
combinators. [10, p. 27]

With the help of the language of combinators, Curry then rewrites the function
T(k) as Ba Kb ... B K% B K" here B is the combinator of composition
(Bxyz = Bx(yz)), K kills the argument y (Kxy = x). This T'(k) transforms &
mnkif0<k<a;;ink+bifag<k<ag...ink+b+...+0b,if a, < k.
The transformation T'(k) will accordingly be called K-free if (x) has at least
one solution, W-free if it has no multiple solutions and C-free, if T' is monotone
increasing.”

2.2.2 Compositions

Using these transformations of the first, second and third kind, Curry embarks
on the study of diverse program compositions. He considers the following com-
positions: simple substitution, multiple substitution, reduction to a single quan-
tity program, loop programs and finally complex programs. This means: finding
the right combination of the different transformations and determining the nu-
merical functions T'(k) used in the transformations. Here, we will just discuss
how a simple substitution can be achieved.

Let Y = BC and X = AC be normal programs, with «, 3, the respective
lengths of A, B, C', m is the location number of a word M in A where the program
Y is to be substituted and n the location number of the starting location of B.
The following numerical functions are needed:

k forO<k<m
Ti(k)=¢ m+n—1 fork=m
k+08—1 form<k<a+y

Ty(k) = m+k—n forn<k<n+p
2T a+k—n forn+B8<k<n+p+7

Then with 8 the set of k’s with n < k < m + (3, the simple substitution of Y in

X at M is given by Z = [%](X) Consider that, if M is an output of X, the

"Note that K, W and C are all combinators corresponding respectively to Kzy = z,
Waxy = Wayy and Czyz = xzy.
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simple substitution of Y in X results in the program composition Z, denoted
as:
Z=X-Y

To ‘close’ this formalism and make it into a proper algebraic structure, Curry
introduces a neutral element for composition: In case B is only a stop order,
then Y will be written as 0 and X — 0= X [10, p. 38].

Figure 2: From top to bottom: The T3(X) transformation; the T2(Y") trans-
formation; and finally the substitution [[TC;)]%](X ) that substitutes Y in X at
position m.

Curry now proceeds to the discussion of composition of multiple programs
or multiple substitution. Let X = AygC and Y; = A;C be regular programs than
Z =X - Y&...&Y, is defined as the program obtained by substituting Y7 for
Oq; .. .; Y, for O,, with the O; outputs of X. Curry remarks that, “with a proper
renumbering of outputs” we have Z = (... (X — Y1) = Y2)... = Y},) (or to
put it in modern terms Z can be “curried”!). After multiple substitution (and
the characterisation of the respective T-functions) follows the rather important
treatment of the reduction to a single quantity program. Given X = AyCy and
Y; = A;C;, a quantity program D can constructed where each quantity with
location number k in every C; can be identified with some quantity in D by the
functions S;(k). Taking «; for the length of A;, now one can define a T-function
T;(k) = a; + S;(k — «;), or equivalently in the notation of combinatory logic,
T'; = B* J;. Combining these T"; functions with the respective T";-functions of
multiple substitution of all A;’s on D, Curry arrives at an explicit description of
T;(=T";T’;)-functions that describe the reduction to a single quantity program
Z = BD. This characterisation of Z by the T"’s allows for “a practical procedure
for constructing the program Z” [10, p. 43].

In the first column of a sheet of columnar paper we write the suc-
cessive locations of Z [...] In the second column we write the trans-
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formation Ty by going through X and writing h in the kth row
whenever Ty(h) = k; if h is one of the m;, we put in parentheses.
In the (i + 2)nd column we do the same for T;. It is then easy to
write out Z. Given any k < [begin position of Z] there will be only
one column in which there is an unparenthesized h. That column
shows which program, X or Y;, should be used. We now look up
this order in the given program and make the appropriate transfor-
mation. This can be done by finding A in the appropriate column
and replacing it by the corresponding k.

This manual pencil-and-paper procedure is useful for the construction of pro-
grams as Curry illustrates when he later resynthesises his inverse interpolation
program using composition and basic programs. This tabular procedure is sim-
ilar to our Fig. 1, but rotated over 90 degrees, with the columns representing
programs. An example of the procedure is given in the table on page 32 in the
next section. Of course, if a fully automatic procedure would have been feasible
in 1950, the mere collation and comparison of T' functions would have sufficed
to find the construction of the composed program.

Finally, a last class of important program composition is characterised, the
loop, “programs which double back on themselves” or “a kind of substitution
of part of X in itself” [10, p. 44-45]. To do this, one needs e.g. a T-function
for which T'(m;) = T(n;) = j with n; < m;. At location m; there is a jump
or unconditional control shift to n;. These T-functions are no longer W-free or
C-free (though still K-free), but can, “to boot if we want it” (p. 44), be regarded
as such to start the program.

This part of the report begins with Curry observing that the “same programs
can be constructed in different ways, [ijn other words, there are equivalences
among our programs.” [10, p. 49] Indeed, as his introduction of a neutral
element of composition (cfr. p. 16) made clear, Curry is aware that a calculus
or an algebra of programs under the operation “composition” (or “—”) could be
defined and studied. One such property of the algebra of composition is X —
0 = X but also associativity can be proven: (X —-Y)—->2Z2=X — (Y — 2)
[10, p. 50]. This aspect of Curry’s composition of programs preempts the work
of the Russians I. Ianov [21] and A.A. Markov Jr [25].

Given that Curry is inspired by his combinators (cfr. p. 15) or that he envi-
sions an algebra of program schemes, nowadays inclined to ask: did Curry use
ideas or concepts that stem from Turing’s, Church’s or Post’s analyses of com-
putability?® The answer seems to be a plain No, simply because Curry’s main
occupation was how to synthesise a complex program from basic ones, but not
the determination general characteristics of what could ever be or principally
be calculated by a machine or an idealised version of present computers. Curry
does not discuss the construction of a universal program or prove that some
equivalences are not decidable. Rather, as obvious in the 1949 and 1950 reports
Curry is most interested interested in the fact that a program can be composed
in multiple manners, for the very fact that a mathematical procedure can be

8We are indebted to Peter van Emde Boas for raising this question.
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synthesised in a plurality of ways from basic programs. Nonetheless Curry is
convinced that his problem “contains [such] a wide variety of program compo-
sition [that] it is no unlikely that most of the kind of composition which one is
apt to meet in practice will be exemplified” [11, p.2].

Clearly, Curry’s main example, or main synthesis is not an abstract universal
procedure, but remains a practical, though complex computation: the inverse
interpolation routine. This maybe partly due to the addressee, namely the
Naval Ordnance for which these reports were written. These people were surely
more familiar with mathematical of differential equations than with mathemat-
ical logic, and probably were more interested in what these new machines are
capable of in the field of ballistics or numerical approximations to solutions of
differential equations than in the general question of a possible universality of
computation.

2.3 Steps of program compositions part II

Having established the different types of composition, Curry considers the prob-
lem of how the major constituent parts of a program can be analysed into
simpler programs and how these simpler programs can be synthesised into the
main programs. Here, his experience with the ‘logic of stages’ (see p. 5) when
programming the ENIAC will prove of value in this study.

2.3.1 Basic programs

Since Curry’s “fundamental philosophy” (cf. p. 2 above) aims at an analysis of
programs into their “most rudimentary components” relative to a given machine,
these components are called basic programs [11, p. 3]:

[The] analysis can, in principle at least, be carried clear down until
the ultimate constituents are the simplest possible programs. These
programs, which are here called basic programs, each consist of a
simple order plus the necessary outputs and data. Of course, it
is a platitude that the practical man would not be interested in
composition techniques for programs of such simplicity, but it is
a common experience in mathematics that one can deepen one’s
insight into the most profound and abstract theories by considering
trivially simple examples

As is evident, this approach is inspired by Curry’s interest in systems of symbolic
logic that are of an extremely rudimentary character (see p. 2). Later, in a short
1952 note, Curry shows that this philosophy contrasts with the GvN-approach
[12, p. 100]:

Von Neumann and Goldstine have pointed out that [we] should not
use the technique of program composition to make the simpler sorts
of programs, — these would be programmed directly —, but only to
avoid repetitions in forming programs of some complexity. Never-
theless, there are three reasons for pushing the technique clear back

18



to formation of the simplest possible programs from the basic pro-
grams, viz.: (1) Experience in logic and in mathematics shows that
an insight into principles is often best obtained by a consideration of
cases too simple for practical use [...] (2) It is quite possible that the
technique of program composition can completely replace the elabo-
rate methods of Goldstine and von Neumann [...] (3) The technique
of program composition can be mechanized; if it should prove desir-
able to set up programs [...] by machinery, presumably this may be
done by analyzing them clear down to the basic programs

A basic program consists of a single order plus its necessary outputs and data.
Two important concepts in this context are locatum and term. A locatum is a
variable that designates a word in the machine. It can take different values in
different stages of a computation and in similar computations based on different
data. Unspecified locata are written as A, x4, memory locata as x, v, z, u, v, w.”
A term is a word constructed by the machine from its locata at any stage. The
constants 0, 1 and locata are basic terms, a general, unspecified term will be
written as &,m,(. To be able to represents terms as functions of other terms,
Curry introduces indeterminate terms or variables, denoted by s,t, that can
appear in functions, written as ¢, ¥, w.
If £ is a term and A a locatum, then:

{¢:A} (1)

is a program that calculates the term & and stores it in the locatum A. This is
nowadays, what we would call an assignment. If a number of terms are connected
with logical operators, equalities and inequalities, one obtains a predicate ¢ and
{®} will then designate a discrimination which tests whether ® is true or not.
The fundamental principle for the analysis into basic programs is:

{0(8) : A} ={&: n} — {o(p) - A} (2)

where ¢ is a function which depends on a set L of locata and £ is a term
constructed from locata in L. The equation can be read as a definition of the
left hand side of (2) by its righthand-side. This principle allows for the analysis
of a program into basic programs by recursive definitions that rely on forms of
(2). Note however that this definitional character of (2) is only acceptable if the
locata in L are not changed by {¢ : u}. Because this criterion recurs often, we
will indicate it by (¢). Indeed, if, for instance, ¢p(x) = A+ z, =z, A =p=A
(with A the content of the accumulator) then the left hand side results in A+ x
whereas the right hand side results in 2x. Now, what kind of programs are
basic programs? An obvious choice would be those commands on the GvN list
of basic IAS machine orders (Table 1). So, Curry starts from this list, but
makes important additions to it. There are several reasons for doing so. To
begin, Curry points out that there are certain gaps in he GvN list, viz. some

9Note that words in the accumulator (A) or in the register (R) are usually indicated by A
resp. R.
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orders have no symmetric counterpart. But, the more important reason for
introducing new basic programs is rooted in Curry’s machine-awareness: some
programs should be basic because they are used very frequently and, if they
would be basic, would speed-up the programming process and save memory
during the actual automatized analysis into basic programs (see e.g. Sec. 2.3.2).
Remember that, besides the ‘human bottleneck’ of the programming, memory
was the other principal limiting factor in being “more expensive” than time in
those early machines: “The most important considerations are efficient use of
the memory and efficiency in programming. The size of the memory determines
the kind of problems the machine can handle.” [11, p. 97]

Yet for Curry, it is not only the actual machine architecture which is subject
to a lot of technical contingencies that should determine the choice of basic
programs. The logical analysis and the general problem of synthesising programs
also has a word in the determination of what should be part of the machine’s
architecture or hard-wired into the machine. The relation between the machine
and its programming should not only be a one-way, but a two-way relationship,
where the affordances of programming should have an influence on the design
of the machine.

Curry is acutely aware that this is an important issue. Already in his preface
to the 1950-report, he strongly advised that “considerations affecting the design
of the machine are likely to arise, so that it is advantageous that such studies [as
Curry’s] be prosecuted before the designs are completely frozen.” [11, p. 5]. In
his factual analysis, Curry takes into account practical, machine-bound proper-
ties of speed and memory. Intriguingly, this is achieved by a theory that takes
distance from the actual machine, thereby not only indroducing abstractions
and possible generalisations but also optimisations.

Grounded in this philosophy, Curry comes up with a new list of basic pro-
grams (Table 2). As a result, the most important difference between Curry’s
and GvN’s list of basic orders are the receptive programs. Roughly speaking, re-
ceptive programs are programs in which the accumulator is a “passive” receiver
of some value. These values are the outcomes of the functions 7;(t):

Wo(t) =+ 7T1(t) = —

ma(t) = +|¢t| m3(t) = —|t|

7T4(t) —A+t 7T5(t) =A-—t
(t) (t)

Clearly, all m;(t) with ¢ > 3 can be rewritten as A + m;(¢) with 0 < ¢ < 4.
Consider now receptive programs of the form

{mi(§) - A} (3)

with £ a definite basic term. Thus, if ¢ < 4 then (3) comes down to replacing
the content of A by that of £, if ¢ > 3 then (3) amounts to adding or subtracting
some number from the content of A. If £ is simply a locatum in the memory,
then (3) with 0 < ¢ < 8 are the first 8 basic orders in the Table 1. Going beyond
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this table, Curry also considers the following cases of (3) where:

(a) =R (b) =4
(€ &=0 (d)&=1

Curry discusses each of these cases (a)-(d) separately in order to see whether
they suggest orders for inclusion as basic orders.

Case (a) & = R. The program with ¢ = 0 (put R in A) is included in Table 1,
viz. number 10 of the list. Curry sees no reason not to include the other possible
programs for this case with ¢ > 0 (i.e. put —R, |R| or —|R| in A), they appear
as numbers 8, 9 and 10 in his list of basic orders (Table 2).

Case (b) ¢ = A. For ¢ > 3 this comes down to clearing or doubling the
content of the accumulator. For m9(A) nothing is done to A. Conclusion: only
the programs for m;=1 2 3(A) have to be retained (4, 5 and 6 in Curry’s list).

Case (c) & = 0. For {m>3(0) : A} nothing changes to the content of A,
for {mi<3(0) : A} the accumulator is cleared. One order suffices to do that,
{mp(0) : A}, order 1 in Curry’s list, absent in GvN’s Table 1. The inclusion of
this order makes it possible to clear the accumulator without the need of an
extra memory position which stores 0.

Case (d) & = 1. The cases {m=0,1(1) : A} are retained as orders 2 and 3 in
Curry’s list of basic programs. Although absent in the GvN-list, Curry points
out that these orders will occur very frequently, e.g. as a counter for keeping
track in iterations. Again, if it would be hardwired into the machine, it could
save memory and time needed to access the memory.

This analysis motivates Curry to add no less than 14 basic programs to the
GvN list (Table 1. Two more basic receptive programs are included that allow
for the logical “freak situation” [10, p. 17] as he phrased the very violation
of “type determinations”, that is, when an order is manipulated as a datum.
These programs are written as d(*) and e(x) respectively. The order d(x) reads
the location number of its own datum and thus makes available the location
number of the order in the control. It is this kind of operation that allows to e.g.
“scroll” through a series of values in the memory. The table condition for regular
programs that involve mixed arithmetic orders (see p. 13) limits the possibilities
for this order, it can only be used for i = 0,4: {m=0.4(*) : A}. The order e(x)
reads the location number of its own exit number into the accumulator. One
last important basic program included by Curry and absent in GvN Table 1, is
the stop order.

Table 2 shows the complete list of Curry’s basic orders. The second column
gives the symbol for the program, the third the details of the program, i.e., the
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order, the datum and exit location. The last column makes the comparison with
the GvN list (Table 1). The orders that are not included in the GvN list are
indicated by a. Note that here, m;(c) stands for functions m;(¢) with ¢ < 3. Ie,,
the contents of A is first cleared before adding a new number to it. Similarly,
m;(h) stands for functions m;(¢),¢ > 3 where a number is added to the content
of A. The symbol U (unity) stands £ = 1, Z (zero) for £ = 0.

Table 2: Table of Curry’s basic programs

Nr. for i = Symbol Program effects GvN for i =
o 1 2 3 0 d e A R X| 0 1 2 3
1 {0: A} c Z 2 0 - - a
2 3 {mi(1) : A} mi(e) U 2 mi(1) - -] a a
4 5 6 {mi(A) : A} mi(e) A 2 i (A) - - a a a
7T 8 9 10 {pi;(R) : A} mi(e) R 2 i (R) R -|A a a a
11 12 13 14 {mi(x) : A} mi(c) 3 2 i (x) - x| x x xM xM
15 {d(x)}: A} Ge 3 2 d(x) x| a
16 17 {A4+m(1): A} | m(h) U 2] A+m(l) - -] a a
18 19 20 21 |{A+m(R): A} | mh) R 2| A4+m(R) R -] a a a a
22 23 24 25| {A+m(x): A} | m((h) 3 2| A+m(z) - 2| h -h Mh -Mh
26 {A+d(x): A} Gh 3 2| A+d(x) - x| a
27 {r} r - 2 r(A) - | R
28 {1 Lo— 2] 14 L
29 {zR: A} X 3 2 2 2 x| X
30 {A:R) R A 2 A A -|a
31 {z: R} R 3 2 A - A | xR
32 {A/z : R} = 3 2 A A x| =
33 {A:z} S 3 2 A - A| S
34 {A:d(x)} Sd 3 2 A - 3| Sp
35 {4 :e(x)} Se 3 2 A - 3] a
36 (K} Ke 2 - - . -]
37 {A <0} Kh 3 2 - - - | Cec
38 stop 0 - - - - - a

Curry’s theoretical and logical thinking about programming not only results
in an extended and more complete list of basic programs, it also results in
two automatable methods for reducing the class of all receptive basic programs
to only five and four basic receptive programs respectively, i.e., methods that
allow to program certain basic receptive programs in terms of others. As Curry
remarks [11, p.29]:

2 After multiplication A and R hold different digits of product. We assume here product is
in A
3In these orders x has its datum or exit number changed. The order Se is not used hereafter.
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the set of basic receptive programs is redundant in the sense that
some of them have the same effect as composite programs made up
from the others.

The two methods of reduction rely on the principle (2) (p. 19), a principle that
also plays a key role in Curry’s method for automating the analysis of a program
into its basic programs (See 2.3.2). And what’s even more, his reductions have
an impact on the use of memory. Classifications act as prerequisites for optimi-
sation, as far as they discern, if extra (temporal) memory—so-called ‘auxiliary
memory’—is necessary to carry out a basic program, or not. Accordingly, the
first method does not use auxiliary memory, the second does.'® We will only
discuss the first method here, reducing all basic receptive programs 1-14 and
1625 from Table 2 to only five basic receptive programs.

In what follows, ¢(t) is a function independent from A and & is either 1 or
locatum in the memory or the register R. The fact that two programs X and
Y have the same output with the same effect is written as X = V.11
Now using (2) we can rewrite (3) as:

{0(¢) : A} ={0: A} = {A+¢(¢) : A}

According to the criterion (x), this can only be true if ¢(t) = m;(t), i < 3 (else,
{0 : A} changes the locata on which ¢(¢) depends, i.e., the accumulator. We
also have:

{A—¢: Ay 2{-A: A} - {A+¢: A} - {—-A: A}

This reduces cases i = 5,7 to i = 4, 6.
Using these two formulae for reduction, 25 basic programs can now be synthe-
sised from the following 5 “primitive” ones.

{0: A}

{-A: A}
{A+m(t): A}
{A+m(R): A}
{A+1: A}

i=0,2
i=0,2

)

Curry sees his method of reduction the set of basic programs as an alternative
in case it is for some reason not possible to hard-wire his complete list of basic
programs into the machine. This will be discussed in more details in the next
section.

10This suggests a relation between the minimum number of basic programs needed and the
amount of auxiliary memory.

HNote that this is the standard notation from recursive function theory to indicate that
two functions f and g either are both defined and have the same values or are either both
undefined. This notation was introduced by Stephen C. Kleene [22] and was most probably
known to Curry.
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2.3.2 An arithmetic compiler

The task Curry sets out to complete here, is the analysis and synthesis of arith-
metic programs, viz. how to analyze an expression such as (x +1)(y+1)(z + 1)
into its basic programs and synthesize it into a program of compositions of basic
programs? The basic formula {¢(§) : A} = {£ : p} — {¢d(n) : A\} once more
provides the basis, but now as the starting point of an inductive scheme. Curry
gives a “more or less complete theory for the construction of an arbitrary [arith-
metic] program” [11], where an arithmetic program is a program that does not
involve discriminations or mixed arithmetic orders (i.e., orders d(x)).

An arithmetic term ( is defined by induction as follows. Let L be a class of
locata and let t1,...,t, be indeterminate terms. Then ( is an arithmetic term
if, either,  is an initial term viz.:

i 7;:1,2,...,77,
=\ where Aisin L

or, with ¢ and 7 arithmetic terms:

C=m(&) i=1,2,3

¢=¢&+n
¢=¢£n
=&/
An arithmetic function ¢(t1,...,t,) is defined by:
¢(t17 cee 7tn) = C

with ¢ an arithmetic term.

Similarly, Curry defines the class of elementary terms by induction on a class
L of locata and indeterminates t1, ..., t,. A term ( is elementary if,  is an initial
term, or, given an elementary term ¢ and a location x in the memory from the

locata L:
¢=mi(§) i=1,2,3
(=&+m(x) i=0,1,2,3
(=¢+m(l) i=0,1
(=<
(=¢/z
An elementary function based on L is a function ¢(t1,...,t,) defined by:
¢(t17"'7tn) = C

with ¢ an elementary term. The order of a term is defined as the number of
times the inductive process needs to be applied. E.g., if £ is of order n then
7; (&) will be of order n + 1.
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What exactly is the difference between arithmetic and elementary terms?
The definition of elementary terms involves the basic operations of addition,
multiplication and division between an elementary term and a memory location
(or, in case of addition, unity). For arithmetic terms these operations are be-
tween two arithmetic terms. As will be explained, this has an impact on the
need for auxiliary memory locations when applying the principle (2) to define
any arithmetic term (elementary or not) as a composition of basic programs.
Remember that the right-handside ({§ : u} — {¢(u) : A}) can only function as
a proper definition of the left-handside ({¢(€) : A}, if {£ : u} does not change
the locata on which {¢(§) depends, cf. condition (¢). For elementary terms,
this is guaranteed by the inductive definition Curry provides. For the arithmetic
terms, auxiliary memory is sometimes needed. Intuitively speaking, this is the
case when one is confronted with the situation when it is required to use a given
location (for example, the accumulator A) whereas its content is needed at some
later time. To understand this problematics better, think of the classical prob-
lem of switching values in variables. If z = a and y = b, to arrive at x = b and
y = a you need an extra memory location.

An arithmetic program is the assignment of an arithmetic terms ¢ to some
locatum A, viz.

{C:A}

The method for defining any arithmetic program as a composition of basic
programs relies on the associativity properties of — discussed in Sec. 2.2.2 as
well as on the following four special cases of principle (2):

(1) {C:A}={C: A} —={A: )}
(a2) {C: A} ={C: R} —{R: A}
(B1) {(§) : Ay ={¢: A} —{8(A) : A}
(B2) {d() : R} = {&: R} — {¢(R) : R}

The condition (¢) on memory is “vacuous” in the case of a; and ag, since
no functions are involved. In the case of §; and (2, one has to be careful that
{¢: A} and {¢ : R} do not disturb any memory locata, viz. ¢ should not involve
A or R as a parameter.!? Using the instances a; — (2 of (2) it is now possible
to proceed by induction to define any elementary function with ¢ an elementary
term without disturbing any locations in the memory, except, possibly, A itself.
However, this is only possible if Curry’s additional basic programs from Sec.
2.3.1 are hard-wired into the machine. Else, even the simple program {A : R}
would disturb the memory locata and would thus require auxiliary memory
locations. Again, Curry shows his sensitivity to and awareness of machine issues,

851

12This is the case if:
t+mi(x) ¢
o) ={ t+m(l) i
tx
t/x

1,2,3
7172
1

0,1,2,3
07

I+

Hence, when ( is an elementary term.
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by taking into account the limitations of machine memory, even recommending
to include the basic programs for internalisation into the machine [11, 38-39]:

[T]he possibility of making such [arithmetic] programs without using
auxiliary memory is a great advantage to the programmer. There-
fore, it is recommended that, if it is not practical to design the ma-
chine so as to allow these additional orders, then a position in the
memory should be permanently set aside for making the reductions
contemplated [at the end of Sec. 2.3.1]

Elementary Arithmetic Programs Curry’s inductive definition of any arith-
metic program {¢ : A} differentiates between several cases of ¢ (being an ele-
mentary term):

a. If ¢ is a basic term:

1. The program P is basic if either (1) A=A, (2) (=4, 3) (=2, A=
R.

2. Else, reduce by «a; to case where ( = A, A = A.
b. ¢ = Wi(f)a i=1,2,3

1. The program is basic if A\ = A,§ = A, R, x, or 1.
2. If A= A and P is not basic, reduce to £ = A by (3).
3. If A # A reduce to A by (aq)

C. C:é-"_ﬂ—z(x) Or<:£+7ri(1)v (7’:0’172a3)
1. The program is basic if A =& = A.
2. Ut A=A, £+ A, reduce to £ = A by (1)
3. If A# A, reduce to A = A by (1)

d. { =2a¢
1. The program is basicif A=A, £ = R
2. T A=A, # R, reduce to £ = R by (52)
3. If A# A, reduce to A = A by (aq)

e. C=¢fs
1. The program is basicif A= R,{ = A
2. f A= R,£ # A reduce to £ = A by (61)
3. If A 2 R reduce to A = R by («a2)
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Clearly, the principles «;—02 are the main principles for breaking up an arith-
metic program {¢ : A} into smaller programs, by reducing the elementary term
¢ of order n into elementary terms of a lower order, ultimately resulting of the
analysis of {¢ : A\} into basic programs. Note that for each of the cases (a)-(d),
the first step is always to check whether or not A = A. If this is not the case,
then «; is used to set A = A. Similarly for case (e), division, if A # R then «ay
is used to set A\ = R.13

Curry remarks that for any arithmetic program {¢ : A}, with ¢ elementary,
then, if “all missing parentheses in the algebraic notation for ¢ are supplied,
so that it is clear in what order the operations are to be performed, then it is
uniquely determined which of the cases a-e applies.” [11, p. 40] If one adds to
this method a specification of the order in which operations x + y and zy need
to be performed (*“say, the first one occurring in such cases”), then his method
is a [12, p. 101]:

[...] systematic method of defining a program ¢ : A the writing
out of the program, although somewhat involved , is none the less
completely automatic

In order to illustrate his method, Curry applies it to the following example of
an elementary term:

¢ =yo+zi1(y1 + z2(y2 + x3y3))

Define:
N2 = Y2 + T3ys
N = Y1+ Tan2
then:
(=yo+z1m

Clearly, ¢ falls under case (c) of the inductive definition, hence by (c.3) we get:
{¢:A={¢: A} = {A: )}
By c¢.2, we get:
{¢: A} ={azim : A} = {A+yo: A}
By d.2 we get:
{z1m : A} ={m : R} - {z1R: A}
Combining the last three equations we get the following definition for {¢ : A}:
{C: A} ={m R} = {ziR: A} - {A+yo: A} — {A: A}
Similarly with R for A:

{m:R}={m: R} = {x2R: A} - {A+y1: A} - {A: R}
{ne:R}={ys: R} = {asR: A} - {A+y2: A} — {A: R}

13Note that the fact that one needs aso instead of oy for case (e) is explained by the fact
that the basic program for division from Table 2 is {A/z : R} and thus an assignment to the
register.
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Thus:
{yo +21(y1 + 22(y2 + 23y3)) : A}

is defined as the following composition of basic programs:

{ys : R} = {z3R: A} > {A+y2: A} - {A: R} - {z3R: A}
—{A4+y:A} - {A:R} > {mqnR: A} - {A+yo: A} = {A: A}

By using the theory of composition explained in Sec. 2.2.2, it is possible to
transform this composition into an actual program executable by the machine,
including among other things, the actual datum location numbers for each of
the basic programs and the like. Because of this is possible (and ‘automatic’ in
its literal sense ) “it would be pedantic to go through the details” [11, p. 51].

General Arithmetic Programs As explained in the previous section, the
fundamental difference between elementary arithmetic programs and general
arithmetic programs is that elementary programs, after analysis into basic pro-
grams, do not need auxiliary memory positions for their synthesis. General
arithmetic programs that are assignments of an non-elementary arithmetic term
¢ to a locatum A do need auxiliary memory. Thus, the method developed for ele-
mentary programs has to be modified for non-elementary arithmetic programs.
Hence, Curry introduces the notion of a degree m of an arithmetic program.
The degree m of an arithmetic program is the number m of auxiliary memory
positions needed for the program to work properly. The term ( assigned to A is
then called a term of degree m.

In order to define general arithmetic programs as compositions of basic pro-
grams, Curry again proceeds by induction. If ¢ in {¢ : A} is elementary, then
¢ has degree m = 0. For terms ¢ not elementary, Curry provides techniques to
reduce a program of degree m # 0 to a composition of programs of degree 0,
i.e. elementary programs, which in their turn can be reduced to a composition
of basic programs. Given a non-elementary arithmetic program, the first step,
if necessary, is to set A = A (using «y) for those arithmetic terms ¢ of the form
7i(€), € +n or &n (note that this is the same for elementary terms).!* Tt is
assumed that the arithmetic term ¢ = ¢(£) and that, initially, ¢(¢) is a function
independent from A and R. We already have that {¢ : A} is reduced to {¢ : A}
by aq.

There are two cases to be considered: either £ # A or £ = A. If £ # A then
we can use (1, thus:

{0() - A} ={¢: A} — {o(4) : A} (4)

Assume now that the two components on the right have degree m and n re-
spectively. Curry points out that then the m auxiliary memory locations of the

14 Curry does not consider arithmetic non-elementary terms of the form & /7, but the method
for defining arithmetic terms that involve division can be easily constructed on the basis of
the method for the other cases. Thus, if ( = £/n then the first step is to set A = R. In what
follows we will only consider the arithmetic terms ¢ that do not involve a division.
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first component can be chosen such that ¢(t) is independent of them and the n
memory locations of the second component can be chosen such that as many of
them as possible are among the first m. Then it easily follows that the analysis
into components by (3 results in two components neither of which has a higher
degree than the degree of the program analyzed.

The second case to be considered (and which occurs in the second component
of (4) is the case where £ = A in ¢(§). If the program is not elementary then:

P(§) = (&m)

In this case, we need to clear the accumulator to perform the calculation and thus
need to use an auxiliary memory location w to temporarily store the contents
of A. To this end, Curry introduces the following equation:

{o(A): A} = {A:w} — {o(w) : A} (5)

It easily follows from this equation that if {¢(w) : A} is a program of degree m
then {¢(A) : A}.
The reductions (4) and (5) give a process that allows to express an arithmetic
program {¢ : A} in terms of simpler programs, similar to {¢ : A} but of a lower
degree. By lowering the “complexity” of the structure of the program, one
ultimately arrives at a composition of basic programs. Curry is aware that the
method does not uniquely determine a definition in terms of basic program for
a given arithmetic expression, since a given algebraic form for some arithmetic
expression can often be worked out in different ways. As a consequence, the
number and order auxiliary locata may be different.

To illustrate this point, let us consider the following example of an non-

elementary aritmetic program:'®

(=@+DE+1)

Let:
L=xz4+1 m=y+1

Then:
¢=&m
Then, as the first step, if A #% A we use a3 to get A = A:
{¢:A={¢: A} = {A: )}
Then, applying (4) we get:
{¢: A} ={&: A} — {Am - A}
Clearly, {&; : A} is an elementary program so we easily have:

{&G:A}={z: A} > {z+1: A}

15Curry considers the slightly more complicated example (z + 1)(y + 1)(z + 1).
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The program {An; : A} however is not elementary se we need (5):
{Am : A} = {4 w} — {wn : A}

Now, {wn; : A} is elementary. By applying Curry’s definition for elementary
programs we ultimately get:

{wm : A} ={y: A} - {A+1: A4} - {A: R} - {Rw: A}

Combining all these compositions we get:

{C: A ={2x:A}—-{a+1: A} - {A:w} - {y: A} - {A+1: A} - {A: R}

—{Rw: A} - {A: )}

However, this is not the shortest program of basic programs for (2.3.2). Indeed,
we could also have used the fact that:

(z+Dy+1)=ay+z+y+1

Thus, the following program is also a composition of basic programs for (2.3.2):

{¢: A} ={2:R} = {yR: A} - {A+z: A} - {A+y: A} - {A+1: A} - {A:

Thus, in the first case,  is a non-elementary term, in the second, ( is in fact
elementary; and depending on the way (z+1)(y+1) is worked out, two different
programs result, the one shorter than the other. This observation leads one to
considerations concerning the uniqueness of program for a given term. As Curry
points out, a term should be [11, p.46]:

thought of as the result of a process of construction from the locata.
Different processes of construction should be thought of as different
terms, even though the results are algebraically equal.

In other words, the terms ( in the two examples are not the same and thus we
have two unique programs since we have two different terms. But, Curry goes
on, if one takes on this point of view, it follows from his definition of arithmetic
term that ¢ in the second example can actually not be regarded as an arithmetic
term at all, since its method of construction does not follow his method for con-
structing an arithmetic term. It is interesting to relate this to the remarks made
on page 4: again Curry prefers a method that, although it would not be the one
used by a human mathematician, it is very suitable to be used by a machine.
Curry shortly discusses some further problems with respect to arithmetic pro-
grams, like the necessity to specify the actual auxiliary locata needed when com-
bining arithmetic programs with others. Worth mentioning here is hat Curry
considers the possibility of assigning a term simultaneously to different locata
written as:

{C:)\lv)\Qa"'v)\n}

This is indeed a very useful operation in the context of parallel programming
and most probably stems directly from Curry’s ENIAC experience.
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2.3.3 Discrimination and secondary programs

The analysis and synthesis of discrimination and secondary programs (the lat-
ter ones involve mixed arithmetic orders) is not treated with full generality in
Curry’s report. Contrary to the arithmetic program, no “compiler” is described.
Yet, a partial treatment is laid out that mainly focuses on those compositions
needed to complete the specific inverse interpolation program.

The basic discrimination program is represented by: {A < 0}, if written in
full length it is the program consisting of the order K'h and two outputs O;
and Os, where O and Oy are the two possible outcomes or branches of the
conditional tested by the value in the accumulator. O; is A < 0, Os if A > 0.
Normally, the output O; is consecutive to the Kh order and O is another
location in the program to which the discrimination can jump. To generalise
this basic discrimination, Curry begins to set out compositional definitions of
four principal kinds of discriminations

{¢<0}= {¢: A} >{a<0}
{¢>0}= {-£<0}
{E<nt= {{-n<0}
{€>n0}= {n—-£<0}

Then Curry proceeds to show how to analyse and synthesise simple propositional
functions. Consider the logical combinations ®; A @2 and &1 V &4 (logical AND
and OR) and the logical negation {~ ®}. The corresponding discrimination
programs may be defined as [11, p. 49]:

{(1)1 A\ (I)Q} = {(I)l} — ({(1)2} — 01 & 02) & Oy
{(1)1 \Y (I)Q} = {(I)l} — 01 & ({(1)2} — 01 & 02)
{~ @} ={2} = ({Kc} = 02) & O1

Here, {A} — {B} & Oz means if A true then do B else go to output Oz. With
these three equations it is now possible to synthesise a large class of logical
propositions whose truth values could be used in a discrimination.

The remainder on discrimination programs mainly focusses on “practical”
programs, needed for the synthesis of the inverse interpolation. This includes
iteration control and tests for “betweenness”, or “bracket tests” that check
whether a given numbers falls within a certain interval. An example of one side
of a bracket test, {x < y}, is given in Table 3. As far as the iteration controls
are considered, it is said that “any collection of programs will have standard
procedures for controlling iterations.” [11, p. 59] Iteration control programs
involve three programs: A working program Y to be iterated and with an output
that will increase a quantity 4, a preliminary program X and a terminal program
Z to be initiated after the last iteration. Now, there are two possibilities, an
iteration control can receive a signal from X, make a discrimination and then
proceed to Y, or, the iteration control receives its signal from Y and then makes
a discrimination. The increase of the quantity ¢ is always after Y. These two
cases are called initial and final iteration control, or, to put it in more modern
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{z:A} |{A—-y:A} | {A<0}
1{+c 3 |-h 3 Kh 3
210 0 0

X X 0

{x <y} | {z: A} {A-y:A} | {A<0}
1{+c 6 |1
2ln 7 | (2 1
3| Kh 5 2) 1
410 2
510 3
6 | x 3
Ty 3

Table 3: The example is {z < y} = {# — y < 0} which is the result of the
composition {z : A} - {A—y : A} — {A < 0}. In the first four lines,
the instructions for the basic programs are given. The remaining lines list the
program formed by the multiple composition. The ‘compiling’ tabular procedure
to construct a program resulting from multiple composition is used. (Cfr. [11,

p. 66])

terms, a for-loop and a while-loop. An iteration with initial control can thus be
synthesised as follows: {A:i} - {A-m: A} - {A<0} - ({i: A} - {A+1:
A} — {Kc}) & O,. The Kc order jumps back to the beginning ({A : i}) and
m is the number of iterations.

Secondary programs do not fall under the theory developed in the 1949-
report [10], but some instances of them are often needed. With an eye on the
synthesis of the inverse interpolation program, Curry develops three types of
secondary programs: remote control programs, tabulation/read-out programs
and preparatory programs. Caution is demanded, since “the locata being sub-
stituted are likely to occur in such a variety of locations in the interiors of
programs that [...] this would make our notation break down.” [11, p. 7§]
However, the combination Curry presents “can be handled by the present tech-
nique, and [...] at least in the cases considered here, they will do what they are
supposed to do.”

A remote control program might be best understood as a kind of exception
handling. It was already useful back on the ENTAC, e.g. when an “irregular cal-
culation” would normally “lead to an error signal” but “is not pathological”.[11,
p. 74] Instead of stopping the program in such a case, a signal can trigger a so
called ‘remote control’ that will modify the normal calculation program. In
general, one will need two nested simple remote control programs, that can be
combined with other subprograms. A simple remote control is the following:
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1 Ge={d(+):A} 5
2 Sd={A:d(x)} 4
3 0,
14 0,
5 O3

Here, O; is the normal output, Os and Og are secondary outputs. Given two
such controls Y7 and Ys, with Y5 nested in Y7, Y7 will “program” the normal
situation (give the normal order of commands), but if it comes upon Y5 in this
regular situation, Ys will “reprogram” the normal calculation to provide for the
irregular situation (change order of commands).

Another classic situation where a secondary program is required, occurs
when using tables. In order to go to a next value, or jump to another value
in the table, it is necessary to “calculate” with the address numbers. However,
this sort of ‘pointer-arithmetic’ is only allowed within a certain range and finds
its modern parallel in automatic memory protection schemes. To provide for
this, Curry defines:

1 Gh={A+d(x): A} 5
2 Sd={A:d(x)} 4
3 0

1 0,

5 -

The dash at 5 indicates that it is irrelevant what its contents is and, amus-
ingly, is called a dummy named F,,,. In the case when only quantities are
involved, Curry introduces a new notation: with « location number, L(«) gives
the word at location a.. This exactly corresponds to the modern notion of point-
ers.

Finally, in respect to the preparatory programs, Curry refers to Goldstine
and von Neumann’s routine as “a device for picking out a certain segment of
the memory and increasing all the datum numbers of the orders in that segment
by a fixed amount.” [11, p. 90] Curry, in fact, translates the GvN-routine into
his system of symbols, but instead of using this routine to synthesise the seven
parts of his inverse interpolation, he chooses another solution [11, p. 95]:

[A]lthough [GvN’s preparatory routine] has some automatic features
to recommend it, it seems more complicated than is really necessary.
A substitution program could be constructed along the lines of Sec-
tions B and C [tabulation routines] which would be simpler.

2.4 Role of Notation and System of Symbolisation

The transition in Curry’s thinking from his encounter with the ENIAC towards
a theory of program composition is reflected by successive stages that would
“transmute” this experience into a system of symbolisation. Symbolisation acts
as a mediator between the case study of inverse interpolation on the ENTAC
in 1946 and the later, fully developed program composition technique of 1950.
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In his laboratory memorandum of 1949 Curry is pretty aware that ‘the fact
that the illustrations are postponed to this later paper [of 1950] may make the
present theory seem somewhat abstruse” [10], but nonetheless feels confident
that ‘by means of a system of symbolization” [10] his ‘attack’ of the given
problem will be far more systematic and delivers, “in fact, a notation for program
construction which is more compact than the “flow charts” [10] of Goldstine and
van Neumann.”

In lack of a physical machine that would actually implement Curry’s pro-
gramming technique, notation is the very medium that can transform the ‘logic
of stages’ drawn on paper (cf. Fig. 1) into a virtual procedure of symbol substi-
tutions and thus beyond any visual control flow still drawn on paper by GvN.
Indeed: “The present theory develops in fact a notation for program construc-
tion” [10, p.7]. Consequentially, already prior to a final mechanisation of his
‘abstruse’ technique, the bare practicability of such a notation raises the ques-
tion for a suitable code. Since this meets “a somewhat similar situation which
has arisen in combinatoric logic.” [49.27], as Curry refers to his backgrounds,
one may say that the German notion of “Umwandlung” —imported to allow for
logical reductions, or for symbol sequences to “be manipulated according to the
rules of the theory of combinators [49.27, cf. sec. 2.2.1]—has been ‘curried’ to
its essential meaning, namely for “transmuting” into an algorithm of symbol
substitutions that we nowadays call a compiler.

This connects to Curry’s acute sensitivity to notation he cultivated within
the field of logics. As gets obvious in [8], Curry had worked on the perfection
of Peano’s notation on the use of dots instead of brackets. In particular, he
developed a notation that allowed for a deep nesting of terms, while keeping the
structure of iterative formulae most transparent. Curry’s key concept to achieve
a transparent notation is “significance” such that in principle any nested formula
is an entity in itself. When some ten years later Curry developed his notation
for a theory of compositions, the ‘logic of stages’ suggested by the hardware
architecture of ENTAC would match up with stages of symbolisation in logics.
Since each component of a program requires a certain ‘significance’, that justifies
to be considered a proper program term at all, the “conditions of significance”
[8, p. 28] are reflected in the notation of composition.

The elementary notations used by Curry are X — Y for composition, {4 :
B} for assignment, and X — Y & Z for a conditional, meaning that X is either
followed by Y or Z depending on the output of X. For a multiple substitution
and complex composition, Curry finally comes up with the following notation,
X - - (Z—-0,& <X > & < Z >)) for a program that is the
composition of X with Y with Z that can lead to three outputs, to Output 1,
back to X or back to Z (< X > shows that X has already occurred).

For more complex compositions, while holding up “to keep the notation
straight”, Curry gives a historical account of contemplable forms to notate log-
ical expressions — quite unusual to encounter in a technical military report [10,
45-49]. To avoid that a “large number of parentheses” may ruin the perspicuous-
ness of the formula, Curry reviews Peanese dot notation, Polish prefix operator
notation (where “parentheses can be inserted in only one way”), a Frege-like no-
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tation (“perspicuous”, but “it must be remembered, Frege’s notation died with
him”), and finally flow charts (“a quasi-graphical representation of the flow of
the control”). In practice, Curry switches between notations, mainly using his
original notation with &’s and brackets, sometimes, for very complex programs,
the Peano-Curry notation, and for clearly indicating the discriminations, a vari-
ant of Frege’s notation. For instance:

X=>Y—-Z-01& <X>&<Z>& <X>& <0, >
is written in Peano-Curry notation (with the % showing previous occurrence):
X—=Y - 7-0&X*x &Zx.& Xx: & O1%

In the Frege-variant this same program looks like:

X Y Z O

— O1% — X% — X«

— x

3 Discussion

At first sight, it may seem a remarkable coincidence that many of the pioneers
of computer science started work on a programming language, often after a
concrete experience with a machine, but while having no actual machine at
their disposal. Konrad Zuse developed his Plankalkiul in 1946 when his Z3
machine was incapacitated after the war. John McCarthy developed Lisp in
1958 without having a machine to put it on, and it would finally take four more
years before the Lisp compiler would be up and running on a PDP-1. Edsger W.
Dijkstra developed his first thoughts on programming in 1952-1953 when there
was no computer available in Amsterdam. And of course, after his ENIAC
experience, Curry developed his composition of programs without access to an
actual machine. This incidences suggest that the lack of an actual machine
helped them to make abstraction from the machine and start tackling more
general problems of programming instead of having to deal with petty details
of the machine.

This observation might help to explain part of the differences between von
Neumann’s and Curry’s approach to programming after their outset at the
ENTAC. Indeed, contrary to Curry, von Neumann was confronted with com-
puters on a daily basis. He was involved with the construction of the TAS
machine and he still paid frequent visits to ENIAC. As is clear from Sec. 2.2
and 2.3, the differences between GvN and Curry are legion. Whereas GvN’s [18]
rather propose a set of heuristic tools (such as flowcharts) and a demo-set of
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example routines, Curry starts from a singular “prototype”-problem to develop
a complete theory of program compositions. Curry’s list of basic programs is an
extension of that given by GvN, driven by Curry’s logical thinking and rendered
concrete by his sensitivity to the machine’s limited memory.

Originally, Curry feared that the third part of the GvN reports [18, Part
ITII] Combining routines might overlap with his own work on composition of
programs [10, p. 6]. Yet by 1950, Curry had seen this report and promptly
concluded that his approach differed significantly from GvN’s [11, pp.3-4]. One
might even say Curry was rather disappointed by the content of this final part
of GvN, for he remarks that they only give “a preparatory program for carrying
out on the main machine a rather complicated kind of program composition.“

Curry continues his critique in a telling manner that underlines a still valid
distinction between a proper programmer and a quick hacker:

But one comment seems to be in order in regard to this arrangement.
The scheme allows certain data to be inserted directly into the ma-
chine by means of a typewriter-like device. Such an arrangement is
very desirable for trouble-shooting and computations of a tentative
sort, but for final computations of major importance it would seem
preferable to proceed entirely from a program or programs recorded
in permanent form, not subject to erasure, such that the computa-
tion can be repeated automatically [...] on the basis of the record.’
[11, p. 4]

To this Curry adds the following footnote in order to strengthen his point: “It is
said that during the war an error in one of the firing tables was caused by using
the wrong lead screw in the differential analyser. Such an error would have been
impossible if the calculation had been completely programmed.” Clearly, this
comment indicates that Curry was not only highly aware of the significance of a
digital approach but also of the possible merits of higher-level programming and
the prospects of automated program optimisation. Exactly these features are
absent in GvN and seem to have been systematically underestimated by them.
Another important point made by Curry concerns the fact that he knew his
notation may appear “less formidable”, but is nonetheless adequate for auto-
matic programming, whereas the flow chart notation of the GvN approach is
not. Therefore, “it will be found that another form of program composition will
be necessary”[11, p.3] and, indeed, “it is quite possible that the technique of
program composition can completely replace the elaborate methods of Golds-
tine and von Neumann”[12, p.100]. Consequentially, at least in his case, “flow
charts will be used [...] primarily as an expository device”[10, p.7], since:

“several persons have noticed that the technique in reference (g)[GvN
1947] involves a lot of more fuss then is really necessary [but] the
procedures suggested by the theory of program composition [...] ap-
pear to lead to a less formidable technique, even when the problems
are planned in detail from scratch.”[10, p.50]
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In a certain sense, Curry’s approach allows for a larger distance between the
programmer and the machine and hence a less machine-dependent “system of
symbolization”. However, this does not mean that Curry’s theory “takes dis-
tance” from the machine. In effect, one might formulate the alleged oxymoron
that because the applied logician makes abstraction from the machine he is more
machine-aware than GvN. In emphasising the significance of logics for any field
of human ventures, Curry notes:

The objective was to create a programming technique based on a
systematic logical theory. Such a theory has the same advantages
here that it has in other fields of human endeavor. Toward that
objective a beginning has been made. [Clonsiderations affecting the
design of the machine are likely to arise, so that is advantageous
that such studies [as Curry’s] be prosecuted before the designs are
completely frozen [m.i.]. Efficiency in the management of an eventual
computing enterprise can no doubt be furthered by such a study as
this, but if it is to have that effect it must be pursued while the
plans are still in the formative stage, and it must be carried beyond
the stage of preliminary analysis to the point where it can be tried
on practical problems.

Certainly, even knowing “that the actual formation of the composite program
can be carried out by a suitable machine” [10, p.7] does not conjure one into
existence. As far as practicability is concerned, it seems as if Curry’s foray
towards automatic programming shared the same fate as McCarthy’s Lisp com-
piler, namely in waiting for an appropriate machine with enough memory. Curry
was pretty aware that if ever his replacement and synthesis “process could be
carried out with a suitable machine; considerable memory might be involved,
but not extensive calculation” [10, p. 43-44]. This contingency, of course, is not
without a certain irony, because contrary to Lisp, Curry’s proposed substitution
process of symbols was particularly concerned to optimise the waste of memory
recourses.

Seen historically, it appears that advanced and far reaching ideas in the field
of programming antedated the progressiveness of machine development. Indeed,
by making abstraction from the machine it becomes possible to think about con-
crete improvements of the machine. This at least, is significant for Curry’s work
on program composition and his concept of an economising calculus. However,
these prosperous options in the springtime of computer languages were shock-
frozen by a mono-culture of the von Neumann architecture as Backus’ alert
Turing Award Lecture of 1977 raised the issue:

“For twenty years programming languages have been steadily pro-
gressing toward their present condition of obesity; as a result, the
study and invention of programming languages has lost much of its
excitement.”[2, p. 614]

When 27 years after Curry’s work on programming, Backus looks out for a
new functional “algebra of programs”, he rediscovers one of Curry’s dearest
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insights that if once “given a certain memory capacity, the principle bottleneck
for efficient performance is the preparation of problems for the machine” [11, p.
97]. Tellingly enough, the addressee still has not changed and Backus reapplies
the same, by now winged-word to denounce the “von Neumann bottleneck” |2,
p. 614] for being the culprit of the current misery. Backus, in fact, does refer to
Curry’s well-known work on combinators [14] but subsumes him under the same
category of “applicative models” together with Church’s lambda calculus [5]
and pure Lisp [26].” [2, p.615] Obviously unaware of Curry’s eager for practical
simplicity and the logician’s explicit concernment with a still unsealed hardware-
design, he concludes that “applicative computing systems [...] have not provided
a foundation for computer design”[2, p.616] and, as a consequence, assesses
Curry’s approach alongside with lambda calculus, or Lisp:

“Moreover, most applicative systems employ the substitution opera-
tion of the lambda calculus as their basic operation. This operation
is one of virtually unlimited power, but its complete and efficient
realization presents great difficulties [...] for example, pure Lisp is
often buried in large extensions with many von Neumann features.
The resuiting complex systems offer little guidance to the machine
designer.” [2, p.616]

Yet, after our detailed tracing of Curry’s “attack” of the matter and prove of his
“fundamental philosophy” to be directly motivated by his ENIAC experience,
one feels kind of obliged to modify this picture and to point out Curry’s warning
at the end of his last report on programming that “features of machine design
which will cause an improvement in programming technique should be very
seriously considered.”[11, p. 97]

In this respect, it seems appropriate to mention at least a few of these ‘Curry-
features’ and their relation to hardware modifications undertaken to widen the
von Neumann bottleneck. Outstanding and first of all, there is Curry’s in-depth
classification of basic programs with regard to the demand of auxiliary memory
2.3.1. Though for Haskell today laziness seems to prevail over eagerness for
simplicity, the avoidance of side-effects, meaning programs that would “not dis-
turb any locations in the memory”, as Haskell Brooks Curry used to say, surely
counts as one of the most important features of the functional programming
paradigm and is a manifest design-goal,'® when Haskell states:

“Now the possibility of making such [arithmetic] programs without
using auxiliary memory is a great advantage to the programmer.
Therefore, it is recommended that, if it is not practical to design the
machine so as to allow these additional orders, then a position in the

16 Astonishingly, the Haskell community does not seem to provide any explicit motivation
for their own name-giving and, with regard to their logo, even stumble into the same felicity as
Backus by equalising Church’s lambda calculus and Haskell’s theory of program composition:
“The language is named for Haskell Brooks Curry, whose work in mathematical logic serves
as a foundation for functional languages. Haskell is based on the lambda calculus, hence the
lambda we use as a logo.” Cf. http://www.haskell.org/haskellwiki/Introduction
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memory should be permanently set aside for making the reductions
contemplated” [11, 38-39].

Compliance with Curry’s emphasised request for an extended set of orders and
reserved memory locations right inside the ALU, would certainly have helped
to circumvent the chronic stack-overflow issues associated with the functional
paradigm, or would have even accelerated the inventions of back-side caches
(like L2/L3 memory) attached straight to the CPU. Furthermore, the rather
early effort to provide for index registers, can be seen in relation to Curry’s
table condition and as means to avoid the “freak-condition” of self-manipulating
orders while indirectly paging through memory locata. Also modern memory
management units, designed to prevent out-of-context access of data (or stored
orders) in RAM, can be regarded as devices to fulfil some of Curry’s logical
restrictions, now imprinting them directly in hardware. Not in the least Curry’s
idea of assigning a term simultaneously to different locata (p. 30), might have
allowed for a parallelisation of processes much earlier. Telling in respect thereof
is the interesting fact that today’s on-chip parallelism schemes depend—much
like Curry’s theoretical synthesis—on a strict discrimination of instructions and
data in order to drive their pipelines and in addition, and most exciting perhaps,
that Curry’s practical solution of the inverse interpolation problem back on the
ENTAC was actually achieved by ‘pipelining’ different processes concurrently
through the accumulators of the machine (cf. p. 5).

Generally speaking, accounts of the history of computing most often tend
to overemphasise either the engineering or the logical side of computing, result-
ing in the neglect of one of both, and thus forgetting about the computer as a
meeting point rather than a divide between the two. If one looks at ENTAC as
a bifurcation point in the history of sciences, where things begin and develop
fast and often in different ways, one must recognise, indeed, that an encounter
with the ENIAC helped to beget the classic framework of a von Neumann ma-
chine and the associated von Neumann style of programming, but also inspired
a different approach in Curry’s contributions. By following Curry’s steps of
program composition, starting from the concrete meeting between an advanced
logician and the archaic “behemoth” ENIAC, it is clear that a confrontation
between the physical machine and abstract symbolic logic can result in a theory
of programming that functions as an interface between both sides. This inter-
face is not a visual display of program schemes like the GvN flowchart but is
mounted on a system of symbolisation that acquires “significance” as the details
of the composition are sketched and put together. As a result, automatisation
of programming becomes envisionable and this engaged a reciprocal permeation
of architectural hardware design and logical software schemes. Reading Backus’
text [2], filtered back and through Curry’s work, it nearly seems that Curry
might have liberated us from the von Neumann style, well before it was estab-
lished.

Constructive suggestions have been made by Curry: “say by removing the
tube A-43 on the drawing PX 8-304, [since] the stepping of the stepper can then
be controlled by the counters”. [15, p. 57] How much of Curry, or engagement of
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symbolic logic with electronic circuits would have been necessary to significantly
change the historical course of things, and whether currying would have been
transmuted into engineering, remains an open question.

This matter cannot, however, be looked into further. [11, p. 96]
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