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ABSTRACT 

Historical studies on the development of mathematical concepts will serve mathematics teachers to relate 
their students’ difficulties in understanding to conceptual problems in the history of mathematics. We argue 
that one popular tool for teaching about numbers, the number line, may not be fit for early teaching of 
operations involving negative numbers. Our arguments are drawn from the many discussions on negative 
numbers during the seventeenth and eighteenth centuries from philosophers and mathematicians as Arnauld, 
Leibniz, Wallis, Euler and d’Alembert. Not only the division by negative numbers poses problems for the 
number line, but also the very idea of quantities smaller than nothing has been challenged. Drawing lessons 
from the history of mathematics we argue for the introduction of negative numbers in education within the 
context of symbolic operations. 

Mon enthousiasme pour les mathématiques avaient peut-être eu pour base principale mon 
horreur pour l’hypocrisie; l’hypocrisie à mes yeux, c’était ma tante Séraphie, Mme Vignon, et 
leurs prêtres. Suivant moi, l’hypocrisie était impossible en mathématiques, et, dans ma 
simplicité juvénile, je pensais qu’il en était ainsi dans toutes les sciences où j’avais ouï dire 
qu’elles s’appliquaient. Que devins-je quand je m’aperçus que personne ne pouvait m’expliquer 
comment il se faisait que: moins par moins donne plus?  

(From The Life of Henry Brulard by Stendhal, 1890) 

1. Against the number line 
The number is line currently one of the important tools for teaching basic arithmetical 
concepts such as natural and real numbers in primary and secondary education. Hans 
Freudenthal (1983, 101) calls this mental object a “device beyond praise” and considers it 
a preferred vehicle to teach negative numbers (ibid, 437). In many countries the ordering 
of negative numbers by means of the number line is taught by the fifth grade (Howson, 
Harries and Sutherland, 1999). Despite its wide acceptance, the use of the number line in 
mathematics education is rather new. It seems to have originated in the 1950’s.2 Max 
Beberman, credited for many innovations in math teaching, used the earlier term ‘number 
scale’: “In teaching subtraction of signed numbers, I first draw a number scale” 
(Beberman and Meserve, 1956). However, not everyone is convinced of the benefits of 
using the number line for teaching negative numbers in primary education. In fact, the 

                                                 

1 Fellow of the Research Foundation Flanders (FWO) Belgium. 
2 Several web sites reconstructed its history: Jeff Miller, http://members.aol.com/jeff570/. and Patt Ballew 

http://www.pballew.net/mathbooks.html are the most useful.  
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very teaching of operations on negative numbers is no longer allowed in basic education in 
Belgium. Negative numbers can only be used in “concrete situations”. The examples 
provided are the floors of a building and the temperature scale. The concept of an isolated 
negative number is an intrinsic difficult concept. Negative numbers emerged in history 
within the context of symbolic algebra. We share the view of the Belgian education 
program that the concept is best taught in secondary education and more specifically 
within an algebraic context. We will develop some arguments from the history of 
mathematics against the use of the number line for teaching about negative numbers. 

But even the question of the historical acceptance of negative numbers is problematic. 
We have argued elsewhere against the interpretation of negative solutions in two accounts 
on the history of the subject by Sesiano (1985) and Gericke (1996) (Heeffer 2007). 
Algebraic practice of solving linear problems has lead repeatedly to situations in which 
one arrives at “a negative value”. Before the sixteenth century, such solutions were 
consistently called ‘absurd’ or ‘impossible’. The abbacus master, convinced of the 
correctness of his algebraic derivations, could interpret the negative value in some 
contexts as a debt. This does not imply that he accepted the solution as a negative value. 
On the contrary, by interpreting the solution as a debt, he removed the negative. Only from 
the beginning of the sixteenth century onwards, we see the first step towards negative 
values, in the form of algebraic terms affected by a negative sign. The fact that negative 
solutions were considered absurd for several centuries of algebraic practice is of 
significance to the teaching of mathematics. When teachers are aware that isolated 
negative quantities formed a conceptual barrier for the Renaissance habit of mind, it 
prepares them for potential difficulties in the student’s understanding of the concept. The 
arguments we will expound below were advanced and discussed by philosophers and 
mathematicians of the seventeenth and eighteenth century. The continuous struggle during 
that period to get a grip on such an elusive concept as that of a negative quantity 
exemplifies the intrinsic epistemic difficulty of some elementary concepts, now taught to 
ten year olds. The historical arguments and discussions are not trivial. They should be 
taken seriously by anyone teaching the subject. Questions arising in classroom practice 
may reflect historical concerns and taken positions which have since then been abandoned. 

2. Numbers smaller than nothing 
Although not devised as a dispute against the number line, when Arnauld raised the 
discussion about proportions involving negative numbers he provided a strong argument 
against its use. Take any point n on the line of natural numbers, the proportion of its 
neighbors n + 1 to n – 1 is always larger than the proportion of n – 1 to n + 1. This 
property disappears when you add negative numbers to the number line. 

2.1. Antoine Arnauld (1612–1694) 
Antoine Arnauld, who wrote an important philosophical work known as The Logic of 
Port-Royal (Arnauld, 1662) published also his Geometry (Arnauld, 1667). In the book he 
includes an example of symbolic rules that he considers to be against our basic intuitions 
on magnitudes and proportions. His reasoning goes as follows: Suppose we have two 
numbers, a larger and a smaller one. The proportion of the larger to the smaller one should 
evidently be larger than the proportion of the smaller to the larger one. But if we use 1 as 
the larger number and – 1 as the smaller one this would lead to  
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1 1
1 1

−
>

−
    (1.1) 

which is against the rules of algebra. Witnessing the multiple instances in which this 
discussion turns up during the seventeenth century, the clash between symbolic reasoning 
and classic proportion theory, taught within the quadrivium, was experienced as 
problematic. Schrecker (1935) was the first to describe the controversy on the topic 
initiated by Prestet in his Elemens des mathematiques of 1675. Both Mancosu (1996, 88-
91) and Schubring (2005, 52-61) describe the positions taken. Prestet’s response was 
basically that quantities can only be positive and that the signs refer to operations. So it is 
perfectly possible to subtract a larger quantity from a smaller one. The negative result 
means just that: a larger quantity subtracted from a smaller one. And when dealing with 
geometrical ratios one should neglect the signs all together.   

2.2. Gottfried Wilhelm Leibniz (1646 - 1716) 
Also Leibniz found it important enough to respond to Arnauld in an article (Leibniz, 1712, 
167) (see Figure 1).  

 
Figure 1: Leibniz’s response to Arnauld in Acta eruditorum of 1712 

Leibniz acknowledges the problem as a genuine one, but states that the division should 
be performed as a symbolic calculation, the same way as we do with imaginary numbers. 
Indeed, when blindly applying the rules of signs there is no problem at all. When dividing 
a positive number by a negative one, the result is negative, and dividing a negative number 
by a positive one, the result is also negative. Therefore   

1 1
1 1
= −

−
    (1.2) 

2.3. The abbaco tradition (1200-1500) 
It may be surprising when you follow the seventeenth-century discussions but the kind of 
symbolic reasoning proposed by Leibniz was well accepted within the abbaco tradition in 
Italy by the end of the fifteenth century. Although symbols were not used in any consistent 
way within this tradition we find that the maestri d’abbaco had no problems with such 
kind of symbolic operations. We have argued elsewhere that the introduction of symbols 
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such as the minus and plus signs is the result of a process toward symbolic thinking 
(Heeffer 2008). The epistemic validity of operations on negative numbers within the 
abbaco tradition was derived from a believe in the correctness of generally accepted 
practices. Very early within the algebraic practice of the maestri d’abbaco we see ‘proofs’ 
for the rules of sign. That was the kind of explanation Henry Brulard, or more precisely 
Marie-Henri Beyle, who is better known under his pseudonym Stendhal, longed for (see 
quote at the beginning). The first of such proofs in European mathematics appears in a 
treatise of c.1380 by Maestro Dardi titled Aliabraa argibra (f. 5v, Franci 2001, 44). It 
explains why a negative multiplied by a negative makes a positive. It is repeated in various 
other manuscripts dealing with algebra during the fifteenth century. The proof is derived 
from the well-know operations on binomials which often appear in the introductions of 
such manuscripts. The reasoning goes as follows: we know that 8 times 8 makes 64. 
Therefore (10 – 2) times (10 – 2) should also result in 64. One well known multiplication 
procedure is called per casella, (literally by the pigeonhole) meaning cross-wise 
multiplication in which you add all the sub-products (see Swetz 1987, 201-205). You 
multiply 10 by 10, this makes 100, then 10 times – 2 which is – 20 and again 10 times – 2 
or – 20 leaves us with 60. The last product is – 2 times – 2 but as we have to arrive at 64, 
this must necessarily be + 4. Therefore a negative multiplied by a negative always makes a 
positive. In modern terminology we would say that the proof is based on distributive law 
of arithmetic.  

By the end of the fifteenth century we see the rules of signs expressed in a more formal 
way. Luca Pacioli is the first to formulate them in an abstract form without referring to 
specific types of quantities (see Figure 2). 

 
Figure 2: Pacioli’s rules of sign for division from the Summa (1494, f. 113r) 

Importantly, Pacioli introduced these rules in distinction 8, as a preparation to his 
treatment of algebra. In contrast with the discussion of the basic operations of arithmetic, 
the rules of signs are formulated in the most general way. Except for an illustrating 
example with numbers, the formulation of the rules does not refer to any sort of quantities, 
integers, irrational binomials or cossic numbers. The rules only refer to ‘the negative’ and 
‘the positive’. Despite the absence of any symbolism, we consider this an early instance of 
symbolic reasoning. And as Leibniz said this is the way to deal with the apparent anomaly. 
Forget about the values but apply the rules correctly and you necessarily arrive at (1.2). 
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2.4. Girolamo Cardano (1501 – 1576) 
Cardano made profound contributions to the acceptance of negative numbers that are not 
that well recognized. He was the first to give a satisfactory argumentation for negative 
solutions to linear problems and the first to accept square roots of negative numbers. As 
we have discussed these both before (Heeffer 2007) we will here only sketch how he got 
doubts about the rules of signs during his later writing career. 

Some years before his death Cardano wrote two treatises in which he reflects on his 
earlier treatment of negative and imaginary numbers in the Ars Magna (1545). The first 
one is titled De Aliza Regulae published in 1570 as part of the larger De Propotionibus 

and the second Sermo de plus and minus 
which was published posthumously in his 
collected works (Cardano 1663, IV, 435-
439). Of particular interest is his 
‘refutation’ of the proof for the rules of 
signs as it was generally accepted by the 
abbacists. Using the same example as 
Maestro Dardi he concludes the contrary, 
that minus time minus makes plus has the 
same truth as telling that plus times plus 
makes minus. 

The Aliza in the title of his treatise is 
derived from the Latin word a’izzā 
meaning ‘risky’ or ‘doubtful’ (Tanner 1980, 
162). Therefore the conclusion should not 
be taken too literality. As the same 
argument was repeated in his Sermo we 
will only discuss the first. 

The reasoning goes as follows (see his 
diagram in Figure 3). If we multiply 10 by 
10 we get a square with side ac equal to 10 
and area 100. Given that bc and ag equal 2, 
the square egd thus has an area of 64. To 
get from 100 (square acef) to 64 (square 
egd) we therefore have to subtract the two 
rectangles cg and bf. But by doing so we 
have subtracted the square cd twice, so we 
have to add it one more time. Thus 
arithmetically we have 

100 (10 2) (10 2) (2 2) 64− × − × + × = .  

And this is the expansion of (10 – 
2)(10 – 2) as we have seen it in the proof of Maestro Dardi. But Cardano argues that the + 
4 is not the result of the multiplication of – 2 by – 2 but an area we must add again 

Figure 3: Cardano's refutation of the rules of sign
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because we had subtracted the square twice. He refers to proposition 7 from book II of 
Euclid’s Elements and concludes: “And therefore lies open the error commonly asserted 
that minus times minus produces plus, lest indeed it be more correct that minus times 
minus produces plus than plus times plus would produce minus”.3 

While Cardano doubts the rules of signs for multiplication (and also for division, see 
Tanner 1980, 167) on this occasion he does not err on their application to algebraic 
problems. So why his fulmination against it? While Tanner believes that Cardano “appears 
unique only in putting into print something of a rebel trend of thought, entertained in 
private by the majority, but soon to be disavowed by silent suppression”, Schubring (2005, 
45) believes in epistemological motives as Cardano experienced the mixture of operations 
of subtraction with those of multiplication as problematic. For us, the curious use of the 
same example from the well known proof of Dardi suggest that Cardano’s motivation 
stems from a lack of epistemic validity for the generally accepted rules of sign. Cardano 
wanted to show he can challenge these all too easily accepted rules and doing so he 
reacted against what Stendhal called hypocrisy in mathematics. 

3. Larger than infinity 
Several historians of mathematics have pointed out that some major mathematicians of the 
sixteenth and seventeenth century believed that negative numbers were larger than infinity. 
From our reading of the original sources we believe that such interpretations are 
unwarranted. Statements about numbers greater than infinity occur in early mathematical 
treatments of infinitesimals and summation of series. They do not refer to negative 
numbers as such but expressions in involving division by negative quantities. We will here 
discuss the two most important ones. 

3.1. John Wallis (1616–1703) 
While he was Savilian professor of geometry at Oxford, John Wallis wrote two of his 
most important works, one on conic sections and the other on infinitesimal quantities. In 
the latter one, titled Arithmetica Infinitorum of 1656 he advanced the idea that dividing a 
positive number by a negative one the result is larger than infinity. The reasoning leading 
to this conclusion is found in proposition 104 (see Figure 4). A series of reciprocals 1/a 
grows to zero when a becomes very large and to infinity when a is becomes zero. Now, as 
you cross zero you get to negative denominators. Extending the reasoning, numbers 
divided by zero become infinite and if you go beyond that, you arrive at values larger than 
infinity. Although we have to understand this surprising conclusion within the context in 
which it appears, the quadrature of curves with equations having negative indices, the 
statement is nevertheless unambiguous: the ratio of a positive number to a negative one is 
a rationem plusquam infinitam, “a ratio greater than infinity”. 

                                                 

3  Cardano 1663, IV, 399: “Et ideo patet communis error dicentium, quod m . in m. producit p. neque enim 
magis m. in m. producit p. quam p. in p. producat m.”, (this and subsequent translations are mine). Later 
Christian Wolff (1732, I, 240) uses the same diagram to prove the rules of sign for multiplication. 
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For some unknown reason several historians of mathematics misunderstood Wallis as if 
he claimed that negative numbers in itself were greater than infinity. William Rouse Ball 
(1912, 293) writes “It is curious to note that Wallis rejected as absurd the now usual idea 
of a negative number as being less than nothing, but accepted the view that it is something 
greater than infinity”. We will see below that Wallis did not reject at all numbers less zero. 
In fact, Wallis can be considered as the inventor of the number line for negative quantities. 
Morris Kline (1972; 1990, 253) possibly inspired by Ball also completely misses the point: 
“Though Wallis was advanced for his times and accepted negative numbers, he thought 
they were larger than infinity but not less than zero”. Some years later in his Loss of 
Certainty he writes (1983, 116): “Though Wallis was advanced for his times and accepted 
negative numbers, he thought they were larger than ∞ as well as less than 0”. Such 
incongruous misrepresentations caution us to always check the original sources. 

 
Figure 4: Wallis arguing that when a number is divided by a negative it becomes larger than 

infinity (from the Arithmetica infinitorum, p. 78) 

3.2. Leonhard Euler (1707-1783) 
About one century later Euler came to the same conclusion as Wallis through reasoning 
with divergent series. The Latin text De seriebus divergentibus [E247] was written in 
1746, but not read to the Academy until 1754, and only published in 1760. Several 
English translations of the text have been published (Barbeau and Leah, 1976, Kline 1983, 
Sandiger 2006).  
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Figure 5: Fragment of Euler’s text discussing division by a negative number 

Euler’s observations are based on the expansion posed by Leibniz in 1713 in which 

2 31 1
(1 )

x x x
x

= + + + +
−

   (1.3) 

Euler begins the paragraph with stating that those who defend the idea of summing 
divergent series can resolve this paradox in a subtle way by discriminating between 1) 
quantities that become negative, 2) that stay less than zero, and 3) that become more than 
infinity. He then makes a distinction between two kinds of negatives: “Of the first sort is – 
1, which is the difference between a its successor a + 1. Of the second sort is the – 1 that 
arises as 1 + 2 + 4 + 8 + 16 + etc., which is equal to the number one gets by dividing +1 by 
–1. In the first case, the number is less than zero, and in the second case it is greater than 
infinity”. The first is a plain negative number as he later explains in his book on 
elementary algebra (Euler 1770). The second one is when you use x = 2 in (1.3). You then 
arrive at 

1 1 2 4 8
1
= + + + +

−
    (1.4) 

which according to Euler is greater than infinity. He then uses an argument analogous 
to Wallis: “This can be confirmed by the following example of a sequence of fractions: 

1 1 1 1 1 1 1 1, , , , , , , ,
4 3 2 1 0 1 2 3− − −

 

where the first four terms are seen to grow, then grow to infinity, and beyond infinity 
they become negative. Thus the apparent absurdity is resolved in a most ingenious way.” 
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Now again the idea that dividing a number by a negative one leads to something larger 
than infinity has been systematically been misunderstood. Kline writes “Euler, the greatest 
eighteenth-century mathematician believed that negative numbers are greater than 
infinity” (Kline 1981, 52) and later he later repeated “Euler concluded that – 1 is larger 
than infinity” (Kline 1983, 144). Sandiger (2006, 179) “Euler is claiming that numbers 
greater than infinity are the same as numbers smaller than zero” and recently William 
Dunham (2007, 138) Euler “is willing to accept that ‘the same quantities which are less 
than zero can be considered to be greater than infinity’”. Despite the last quote, Wallis or 
Euler never claimed that negative numbers are greater than infinity. The misunderstanding 
becomes apparent from an article by Kline (1983) on Euler. Instead of expression (1.4) 
Kline writes that Euler obtained: 

   1 1 2 4 8− = + + + +  

But that is taken already for granted that 1 1
1
= −

−
, which is precisely the identity 

questioned by Wallis and Euler. In fact, Euler had no problems at all with negative 
numbers. In his book on elementary algebra he writes that “we may say that negative 
numbers are less than nothing” (Euler 1822, 5) and he explains so by enumerating the 
negative numbers from zero “in the opposite direction, by perpetually subtracting unity”, 
de facto endorsing the number line. Concerning the product of two negatives, Euler gives 
an argumentation for its positive result. Based on the proof that minus times plus is minus, 
therefore minus times minus should be different and therefore be plus. A second argument 
using the distributive law of multiplication (as Maestro Dardi), is added by the translator 
in the English edition. The rules for division by a negative are derived from the 
multiplication rules and thus pose no problem for Euler in his Algebra. 

3.3. Jean le Rond d'Alembert (1717-1783) 
The discussion was not closed by Leibniz. Several eighteenth-century authors return to the 
question raised by Arnauld, such as Rolle (1690, 14-22). Maclaurin (1748, 6-7) does not 
refer to Arnauld but seems to be aware of the discussion. He considers – a and + a “equal 
as to quantity” but this does not mean that you can equate them in algebra as + a = – a. 
Their quality is the opposite of each other and “on account of this contrariety a negative 
quantity is said to be less than nothing”.  

Perhaps the most persistent in his struggle against the number line was d’Alembert. On 
several occasions both in the Encyclopédie as well as in his Opuscules he goes on at the 
idea of numbers smaller than nothing. d’Alembert was quite influential. Not only through 
his work as a mathematician but also in his contacts with Royal circles. His contributions 
on mathematics in the Encyclopédie were printed and read long after his death. Under 
‘négatif’ he writes: “negative quantities are those which are affected by the minus sign and 
which are considered by several mathematicians as smaller than zero. This last idea is 
false, as will see in one moment”. 4  His argumentation is somewhat based on the 

                                                 

4 Diderot and d’Alembert, (1761-1790, 22, 289) : “quantités négatives sont celles qui sont affectuées du 
signe – et qui sont regardées par plusieurs mathématiciens comme plus petit que zero. Cette dernière idée 
n’est pas juste, comme le verra dans un moment”. 
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considerations of Wallis and Euler. You cannot just claim that negative numbers are 
smaller than zero because the passage from positive to negative does not always goes over 
zero. In the simple case of y = x – a, y goes from positive to negative over zero. But in the 
case of y = 1/(x – a) you will have y = ∞ when x = a.5 So in contrast with Wallis and Euler, 
d’Alembert accepts that 

 1y
a

=
−

  

will be negative, but it becomes negative while passing ∞. Therefore it is wrong to say 
that negatives numbers are always smaller than zero.  

Without naming Arnauld he also comments on the apparent anomaly where we started 
with: “Those who pretend that you cannot relate 1 to – 1 and think that the ratio of 1 to – 1 
is different from – 1 to 1 are making a double error. Firstly, we perform such algebraic 
operations every day and secondly the equality of the product of – 1 with – 1, and of +1 by 
+1, shows that 1 is to – 1 as – 1 is to 1”.6 

4. Conclusion 
Before we get to our conclusion we may ask the question where the idea of a number line 
showing negative numbers originated. We find the answer in Smith’s source book (1956, 
46-7): John Wallis (see Figure 6). Remarkably Wallis introduces the number line for the 
purpose of illustrating addition and subtraction involving negative numbers. When a man 
advances 5 yards from A and he returns 8, how far is he then from his starting point? 
Wallis gives the answer – 3, as it is taught now in primary education. 

 
Figure 6: John Wallis introducing the number line in his Algebra 

                                                 

5  ibid. p. 300 : “Le passage du positif au négatif se fait toujours par zéro ou par l’infini. Soit, par exemple, y 
= x – a on aura y positif tant que x > a, y négatif lorsque x < a et y = 0 lorsque x = 0 ; dans ce cas le 
passage se fait par zéro. Mais si y = 1/(x – a) on aura y positif tant que x est > a, y négatif lorsque x est < a 
et y = ∞ lorsque x = a; le passage se fait alors par infini”. 

6  ibid. p. 299 : “Ceux qui prétendent que 1 n‘est pas comparable à -1, et que le rapport entre 1 et -1 est 
différent du rapport entre -1 et 1 sont dans un double erreur, 1) parce qu’on divise tous les jours dans les 
opérations algébriques, 1 par – 1, 2) l’égalité du produit de – 1 et – 1, et de +1 par +1, fait voir que 1 est à 
– 1 comme – 1 a 1”. 
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So the person responsible for the idea that dividing a number by a negative results is 
something larger than infinity, is also the first one to use the number line in a printed book. 
The idea was followed up by many others including Newton (1707, 3). Newton makes a 
distinction between affirmative quantities and negative quantities. A negative quantity 
arises when a large affirmative quantity is subtracted from a smaller one. And to illustrate 
the point Newton draws a line which amounts to a number line showing negative 
quantities. 

As it was a source of controversy and discussion in the seventeenth and eighteenth 
century, it should come as no surprise that it raises questions and difficulties in the 
classroom. A conceptual history of mathematics can prepare teachers for such difficulties 
and show them that such questions must be taken seriously. It may show also that certain 
didactic approaches have their potential trap falls. The use of the number line in teaching 
negative numbers is in direct conflict with d’Alembert, who argues that most of the 
difficulties with Arnauld’s identity arise from viewing negative numbers as smaller than 
zero. Then how should we teach the subject?  

Barry Mazur in his highly enjoyable and philosophical book Imagining numbers, 
spends a lot of attention to the question why we accept that minus times minus equals plus. 
He concludes (Mazur 2003, 102-3) that “there is, in fact, only one way to extend the 
definition of multiplication to all whole numbers, negative as well as positive, if we wish 
(we do!) 1 times any number N equal N, and if we wish (we do!) the distributive law to 
hold”. So this is an argument if favor of a proof as we know from the abbacists. However, 
d’Alembert’s definition of negative numbers: “those which are affected by the minus sign” 
is for us the most appealing. It captures the way how negative numbers were introduced in 
history and how they fit within symbolic manipulations. We therefore believe that they 
should be taught within the context of early algebra. 
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