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Abstract 

By the end of the twelfth century in the south of Europe, new methods of calculating with 

Hindu-Arabic numerals developed. This tradition of sub-scientific mathematical practices is 

known as the abbaco period and flourished during 1280-1500. This paper investigates the 

methods of justification for the new calculating procedures and algorithms. It addresses in 

particular graphical schemes for the justification of operations on fractions and the 

multiplication of binomial structures. It is argued that these schemes provided the validation 

of mathematical practices necessary for the development towards symbolic reasoning. It is 

shown how justification schemes compensated for the lack of symbolism in abbaco treatises 

and at the same time facilitated a process of abstraction. 
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1. Scholarly and sub-scientific traditions 

By the end of the fifteenth century there existed two independent traditions of mathematical 

practice. On the one hand there was the Latin tradition as taught at the early universities and 

monastery schools in the quadrivium. Of these four disciplines arithmetic was the dominant 

one with De Institutione Arithmetica of Boethius as the authoritative text. Arithmetic 

developed into a theory of proportions as a kind of qualitative arithmetic rather than being of 

any practical use, which appealed to esthetic and intellectual aspirations. On the other hand, 

the south of Europe also knew a flourishing tradition of what Jens Høyrup (1994) calls “sub-

scientific mathematical practice”. Sons of merchants and artisans, including well-known 

names such as Dante Alighieri and Leonardo da Vinci, were taught the basics of reckoning 

and arithmetic in the so-called abbaco schools in the cities of North Italy, the Provence, and 

Catalonia. The teachers or maestri d’abbaco produced between 1300 and 1500 about 250 

extant treatises on arithmetic, algebra, practical geometry and business problems in the 

vernacular. The mathematical practice of these abbaco schools had clear practical use and 

supported the growing commercialization of European cities (Heeffer 2010c). These two 

traditions, with their own methodological and epistemic principles, existed completely 

separately.  

2. Epistemic justification of sub-scientific practices 

While argumentation, demonstration and proof have been well studied for the scholarly 

traditions in mathematics, forms of epistemic justification have mostly been ignored for the 

sub-scientific mathematical practices. With Van Kerkhove and Van Bendegem (2007) and 

Mancosu (2008) the historical epistemology of mathematical practices has become an 

interesting new domain of study. Such an approach favors a strong contextualization of 

mathematical knowledge, its development and its circulation, by studying material and 

cognitive practices of mathematicians within their social and economical context in history. 
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The abbaco period on which this paper focuses is the one preceding the scientific revolution 

and therefore a grateful subject for research. We characterize the sixteenth century as a 

transition period of the epistemic justification of basic operations and algebraic practices. 

While the abbaco tradition draws the validity of its problem solving practices from correctly 

performing accepted procedures, the humanists of the sixteenth century provided radical new 

foundations for algebra and arithmetic based on rhetoric, argumentation, and common notions 

from ancient Greek mathematics (Cifoletti 1993). Despite the lack of argumentative deductive 

structures in abbaco treatises, epistemic justification is of crucial importance to this tradition. 

We discern three factors that motivated abbaco masters to include schemes of justification for 

the correctness of basic operations of arithmetic and algebra in their treatises: the lack of any 

existing authority to rely on, the preoccupation with education and the absence of symbolism.  

2.1 Lack of traditional authority 

The Boethian tradition depended on scholastic authorities such as the Arithmetica by 

Nichomachus of Gerasa from which much of De Institutione Arithmetica is derived. The 

abbaco tradition could not rely on any accepted authority. Even worse, the Eastern origin of 

calculating with Hindu-Arabic numerals was met with skepticism and resistance from 

authorities.
1
 The gradual replacement of Roman by Hindu-Arabic numerals necessarily 

induced a transformation of material and conceptual means of computation. Counting boards 

and the abacus were replaced by dust boards and pen and paper and new algorithms for 

addition, subtraction, multiplication and division had to be taught and learned. In contrary to 

the popular belief that the printed book was the most important vehicle for the acceptance of 

Hindu-Arabic numerals in Europe, it was the existence of the scuolo d’abbaco and merchant 

practices which lead to an irreversible dissemination of the new methods. Based on the 

archive work of Ulivi (2002, 2006), we know that about twenty abbaco schools were active in 

Florence alone between 1340 and 1510. Around 1343 there were no less than 1200 students 

attending abbaco schools in Florence. Boys between ten and fourteen were sent to abbaco 

schools after they mastered writing at a grammar school. They were taught the essentials of 

calculating with Hindu-Arabic numerals, rules of merchant arithmetic and the basics of units 

of measurement and the value of coins. When they became fourteen they started as 

apprentices in the trade and further learned about double-entry bookkeeping, insurance and 

banking practices. All these activities and the growing importance of mercantilism depended 

on the basic notions of arithmetic taught at abbaco schools.
2
 Precisely because the abbaco 

tradition was missing the argumentative principles, as we know them from Euclidean 

geometry, it had to rely on a strong foundation for its basic operations and practices. Three of 

the earliest extent abbaco treatises, as the Colombia algorism (Columbia X511 AL3, c. 1290; 

Vogel), Jacopa da Firenze‟s Tractatus Algorismi (Vat.Lat. 4826, 1307; Høyrup 2007) and 

Trattato di tutta l'arte dell'abbaco by Paolo dell'Abbaco (1339) spent much attention in 

                                                 
1
 Often cited examples are the edict at Florence from 1299 which forbade bankers to use Hindu-Arabic numerals 

and the dictate by the University of Padua of 1348 that prices of books should be marked “non per cifras sed per 

literas claras” (Rouse Ball, 1960, p. 186). 
2
 Bookkeeping record, ledgers, personal memoranda (ricordi) and debt claims all show evidence of abbaco 

practices. Concerning debt claims alone, Goldtwaithe (2009, xiv) writes that “an astounding number of volumes 

– almost five thousand from the years 1314 to 1600 – survive”. This indicates that calculating practices with 

Hindu-Arabic numerals were much more common than what is testified by Latin scholarly works of that period.  
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introductory chapters to justify the validity of basic operations on Hindu-Arabic numerals. 

Some examples of operations on fractions in these treatises will be discussed below. 

2.2 Didactical models  

The abbaco masters earned their living from teaching in a bottega. Some were employed by 

their city; others operated on a private basis and lived from student fees and possibly renting 

rooms to students. Earning a reasonable living, they belonged to the middle class. The 

profession often depended on family relations. The Calendri family is known to consist of five 

generations of abbaco masters. With teaching as their core business, their concerns with the 

production of abbaco treatises were primarily didactical. While some subjects that were 

covered in these treatises, such as algebra, most likely transcended the curriculum of an 

abbaco school, the introductory chapters probably reflected very well the material taught. One 

rare manuscript of the fifteenth century explicitly deals with pedagogical procedures of an 

abbaco school and provides some evidence on the material treated (Arrighi 1965-7). A typical 

program consisted of seven mute or courses: 1) numeration, addition, subtraction and the 

librettine, or tables of multiplication, 2) to 4) on division with increasing complexity of 

number of decimals, 5) operations on fractions, 6) the rule of three with business applications 

and 7) the monetary system and problems of exchange. These subjects are also treated in 

almost every extant abbaco treatise and precisely the elementary ones are concerned with the 

epistemic justification of operations. While the schemes of justification somewhat differs 

between the texts, the layout of the different elements all follow the same pattern. So, the 

justification schemes not only acted as validations for the methods of operations, they also 

functioned as didactical models. The schemes were devised for the justification of the 

operations but at the same time acted as a model for the concrete actions that were taught to 

students in abbaco schools. The justification schemes also depended on the tangible aspect of 

carrying out the operations on a drawing board. This agrees with other instances of cognitive 

embodiment of mathematical procedures and rules during that period (Heeffer 2010b). 

2.3 Lack of symbolism 

A third motivation to employ justification schemes is the lack of any form of operational 

symbolism in the thirteenth and fourteenth century. As I will argue below, it was epistemic 

justification of elementary operations which provided an essential condition for the 

development of symbolism in the late abbaco period and the beginning of the sixteenth 

century. Imagine the situation of the thirteenth century in which existing practices of 

calculations and representations of numbers were replaced by methods from India and the 

Arab world which were completely foreign to the Latin Roman tradition. In Fibonacci‟s Liber 

abbaci, there are several instances of these foreign conventions such as writing mixed 

numbers with the fraction at the left as in 
 

 
  or combined or continued fractions from right to 

left as 
     

     
 (for 

 

 
 

 

  
 

 

   
) following the Arabic way of writing. Not only for our modern 

eyes is such notation difficult to understand but there are many instances where scribes clearly 
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did not understood the notation at all.
3
 In the extant abbaco treatises we do not find any traces 

anymore of these Arabic conventions. One of the earliest treatises, the Columbia Algorism 

(Vogel 1977) writes continued fractions from left to right.
4
 So, early abbaco masters devised 

their own representations and justifications. Our modern conception of arithmetic and algebra 

is so much influenced by symbolism that we cannot even think without it. In order to follow 

and check the reasoning of a problem solution from abbaco algebra we have to translate it to 

modern symbolism to see how it is done. Once we have it written in symbolic algebra we 

understand and we can judge the validity of its reasoning steps. Early abbaco masters had no 

such representations at their disposal. In order to understand, explain and teach they devised 

graphical schemes to accompany their discursive explanations. We find them in the margins 

throughout abbaco treatises: on multiplication, on operations on fractions, on the rule of three, 

on the rule of false position, on the multiplication of binomials and so on. I will further 

discuss two types of schemes for the operations on fractions and the crosswise multiplication 

of binomials. These schemes of justifications compensate the lack of symbolism and 

ultimately led to the emergence of symbolism.  

3. Justification schemes for operations on fractions 

3.1 The Roman tradition 

In order to illustrate, for the modern reader, how 

revolutionary the introduction of Hindu-Arabic numerals 

was during the 12
th

 and 13
th

 century, I will first briefly 

sketch the existing practices of operating on fractions 

during the two centuries preceding this turnover.  

By the end of the tenth century, the work on arithmetic by 

Gerbert provided the dominant model for operating on 

fractions.
5
 As Boethian proportion theory used a 

qualitative arithmetic with unique terms for different 

proportions, so did Roman fractions all have specific 

names which were derived from the system of monetary 

units and units of weight. One as was divided into 12 

unciae,
6
 one uncia into 24 scripuli, one scripulus into 6 

siliquae and one siliqua into 3 oboli, alternatively one 

scripulis could also be divided into 8 calci. Fractions of 

12 parts had names such as a dodrans for 9/12 and thus 

equivalent to ¾. Also separate symbols were use for the 

most common fractions. Evidently, the number of 

                                                 
3
 Høyrup (2010) gives the example of a compiler who corrupts Fibonacci‟s continued fractions through a lack of 

understanding. 
4
 Høyrup (2010) assumes an influence from Maghreb way of writing through the Iberian Peninsula, and argues 

that this treatise does not depend at all on Fibonacci.  
5
 The Patrologia Latina contains Gerbert work (c. 996) on arithmetic as well as the follow up by Bernelinus (11

th
 

century). For a modern edition see Friedlein (1869). 
6
 The terms „ounces‟ and „inches‟, being the twelfth parts of pounds and feet respectively, are derived from 

unciae. 

Figure 1: Multiplying fractions on a 

Gerbertian abacus 
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fractions possible in such a system is finite, but combinations of fractions could cover all 

practical needs. Operations on fractions were performed on the Roman abacus, a bronze 

device resembling the Chinese suànpán. However, Gerbert introduced his own abacus in 

which operations were carried out on a table marked with columns (as shown in Figure 1).
7
 

For example, the multiplication of 12 5/6 by 2 ½ is described by Bernelinus as XII dextae 

multiplied by II semis. These two fractions are set out on the abacus in several columns: X for 

the decimals, I for the units and r for the unciae (the columns for scripuli and calci not being 

used in this example). The symbol ∫ represents the semis and ∫∫∫ the dextae. The first step is to 

multiply the 12 5/6 by 2, which is 24 and 10/6 or 24 and 20/12, to be split in 24, 1 and 8/12. 

The remaining fraction 8/12 is equivalent to a bisse, or 2/3, and is written in the unciae 

column as ∫∫. After doing the multiplication of 12 and 5/6 by ½ the unciae column is added 

together, bisse and quincunx making one as and one uncia (2/3 + 5/12 = 1 ½). Clearly, this 

method as well as the terminology is very distant from modern practice and what would 

become the standard in Europe during the next centuries. 

An important aspect of the Gerbertian method for operating on fractions is the transformation 

of a material and tangible method to a semi-symbolic one. The operations were originally 

performed on a Gebert abacus, but from the 11
th

 century onwards they appear in Latin 

manuscripts as calculations by pen and paper. Essential for our further discussion is that these 

illustrations, while describing the tangible operations, did not act as justifications for their 

correctness. Instead, they acted as an illustration of the procedures described in the text. 

3.2 The Latin scholarly tradition 

All knowledge in Europe about operations on fractions of Hindu-Arabic numerals ultimately 

depends on the Arabs and Latin translations from Arabic works were the main line of 

dissemination. Hindu numerals.  

These texts are commonly referred to as algorisms or by „Dixit algorismi‟ (DA) with 

reference to Muhamed ibn Mūsā al-Khwārizmī who wrote the first Arabic work on Hindu 

numerals. Later manuscript copies are further divided into three families: the Liber 

Ysagogarum Alchorismi (LY), Liber Achorismi (LA) and Liber pulveris (LP). There exist 

many modern editions, transcriptions and translations but the most comprehensive work is by 

Allard (1992). A useful addition is the edition by Menso Folkerts (1997) of the oldest 

complete Latin translation of the DA family. To contrast the Latin tradition with the abbaco 

way of handling fractions we look at one example of division of common fractions. Figure 1 

shows an excerpt of the manuscript copy of DA kept by the Hispanic Society of America (HC 

397/726, f.22r).  

The fragment describes how to divide
3

1
3

13

2
20  . Notice how the Hindu-Arabic numerals 

appear in a separated figure, written with the fraction to be divided at the right hand side and 

the divisor at the left hand side, according to Arabic custom. 

                                                 
7
 Taken from Friedlein (1869, 122). The Hindu-Arabic numerals on the abacus are used here for the convenience 

of explanation only. 
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Figure 2: Dividing two common fractions according to an early Latin translation 

The text uses Roman numerals throughout and often expands numerals to words as octoginta 

for XXXIX. The procedure prescribes to bring both fractions to a common form (unius 

generis), meaning to a common denominator, and then divide one by the other. The procedure 

is difficult to follow as the text does not use the terms „numerator‟ and „denominator‟.  These 

terms were only introduced in the LA class of manuscripts. 

Although the text deals with operations on Hindu-Arabic numerals, all of the explanations use 

Roman numerals or words. This raises the question what the purpose and meaning of the 

illustration is. Except for the enunciation of the problem, nothing in the text of the procedure 

corresponds with the figure. The figure therefore cannot even be considered as an elucidation 

of the procedure.
8
 The figures change slightly in fourteenth-century Latin editions of the LA 

class. The text includes an additional figure, which reverses the place of two fractions. They 

also include a cross between 1 and 13 and 2 and 3 and expand on the original figure by 

including intermediate numbers, such as 786 and 130 (Allard 1992, 169-172). While an 

evolution has taken place within generations of manuscripts over two centuries it would be 

wrong to claim that the illustration provides any kind of justification of the procedure. Instead, 

the Latin text describes the procedure of dividing the fractions after setting them out on a dust 

board or writing them down to paper. 

3.3 Fibonacci’s Liber abbaci 

Fibonacci is often quoted as one of the main factors in the distribution of Hindu-Arabic 

numerals but this is very doubtful. The influence of the Liber abbaci is overestimated by 

historians who suffer from the great book syndrome. For a long time, the Liber abbaci was 

the only known comprehensive text on abbaco methods written before books were printed on 

the subject. Historians became aware of abbaco writings only since the many transcriptions by 

                                                 
8
 Charles Burnett (2006) gives the explanation that Indian numerals originally acted as pictorial depictions hors 

de texte. As such, they could be interpreted as non-discursive elements, as dicussed below. 
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Gino Arrighi starting in the 1960‟s and Van Egmonds‟s groundbreaking Catalogue (Van 

Egmond 1980). Jens Høyrup has argued in several publications that the abbaco tradition does 

not depend on Fibonacci‟s Liber abbaci and that Fibonacci himself should be situated within 

this larger abbaco tradition which spread from the Iberian Peninsula over the Provence region 

to Northern Italy (Høyrup 2002). After studying the different approaches to operations on 

fractions we can further support Høyrup‟s view on this. Fibonacci treats operations on 

fractions in chapters 6 and 7 of the Liber abbaci. His approach is very different from the 

earliest abbaco writings and also very different from the Latin translations of Arabic works. 

Chapter 6 deals with multiplication but covers also combined fractions, a subject which is 

absent in the Latin translations, the work by al-Khwārizmī or in other Arab works on Hindu 

reckoning as the Kitāb fī uṣūl ḥisāb al‐hind by Kūshyār ibn Labbān (2
nd

 half of the 10
th

 

century, Levy 1965). In fact, common fractions and combined fractions are treated together 

for each operation. Also, Fibonacci often uses combined fractions when operating on common 

fractions. Chapter 7 concerns the three other operations, addition, subtraction and division of 

common and combined fractions. He also uses schemes to illustrate the operations discussed 

in the text, but here we are not left in doubt on the purpose of the schemes (Sigler 2002, 78):  

If one will wish to multiply 11 and on half by 22 and one third, then he writes the 

greater number beneath the lesser, namely 
 

 
   beneath 

 

 
  , as is shown here; next 

he makes halves of the 
 

 
   because the fraction part with the 11 

is halves, which one makes thus: you will multiply the 11 by the 

2 that is under the fraction line after the 11, and to this product 

you add the 1 which is over the fraction line over the 2; there 

will be 23 halves, or the double of 
 

 
   halves; there will be 23; 

you write the 23 above the 
 

 
  , as is shown in the illustration; 

and for the same reason you multiply the 22 by the fraction part 

under the fraction line, that is the 3 that is under the fraction line after the 22; there 

will be 66 thirds to which you add the 1 which is over the 3; there will be 67 thirds 

that you keep above the 
 

 
  , and the 67 is the triple of 

 

 
  ; and you will multiply 

the 23 halves by the 67 thirds; there will be 1541 sixths which you divide by the 

fraction parts which are under the fraction lines of both numbers, namely the 2 and 

the 3; the division is made thus: you multiply the 2 by the 3; there will be 6 by 

which you divide the 1541; the entire quotient for the sought multiplication will be 
 

 
   , as is demonstrated in the written illustration. 

The illustration is thus the actual result of writing down the fractions and performing the 

calculation, probably on a ghubār or dust board. It also functions as a demonstration of the 

correctness of the procedure (“ut in prescripta descriptione demostratur”, Boncompagni, p. 

47). We have some clues about how Fibonacci learned this procedure. In the dedication of his 

Liber abbaci to Michael Scott he writes that he learned “the art of the nine Indian figures in 

256
6

5

22
3

1

67

11
2

1

23

product
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Bugia”.
9
 We may assume that calculation with fractions was one of the topics he was taught 

there at the end of the twelfth century. The representation of the fractions is different from the 

early Arabic texts as adopted by the Latin translations (as in Figure 1). Fibonacci used the 

fraction as it was introduced in the Maghreb region at that time as in the Kitāb Talkih al-afkār 

fi al-‘amāl bi rushum al-ghubār by Ibn al-Yāsamīn (end of the 12
th

 century, Djebbar 1995, 

Abdeljaouad 2002). The scheme shown in the text therefore functions as a justification of the 

procedure. 

3.4 The abbaco tradition 

The oldest extant abbaco texts are the Livero de l’abbecho (c. 1288-1290, Arrighi 1989) and 

the Columbia algorism of c. 1290. The oldest archival reference to an abbaco master is from 

1265 (Ulivi 2002a). This separates the written evidence of abbaco practices from Fibonacci 

by about sixty years. This may seem short in the history of mathematics but apparently much 

evolved during that time. While Fibonacci‟s treatment of algebra is very close to some Arabic 

texts, in particular those of al-Khwārizmī‟ and Abū Kāmil, the abbaco rules of algebra 

significantly differ from these. Differences in rules, the order of rules and the normalization of 

equations are the main arguments discussed by Høyrup (2004). In all probability, this 

deviation in the way algebra is treated in the abbaco tradition originated not after Fibonacci 

but earlier. As for fractions, the relation is harder to determine. The fact that Fibonacci used 

the fraction bar in a period when no other Latin texts mention it seems to suggest that he was 

responsible for introducing this Maghreb innovation. Høyrup (2010) however, assumes a 

different line of influence, from the Iberian Peninsula over the Provence to the North of Italy. 

As the Columbia algorism treats fractions with a fraction bar and introduces schemes for 

operating on fractions, different from those of Fibonacci, this may well be the case.  

Table 1: The earliest extant abbaco texts 

Date Title Author Fractions Schemes 

1228  Liber abbaci  Fibonacci    

1288  Livero de l’abbecho (Florence, Ricc. 2404)  Unknown    

1290  Columbia algorism  Unknown    

1307  Tractatus algorismi (Vat.Lat.4826)  Jacopo    

1310  Liber habaci (Florence, BNC, Magl.XI, 88)  Unknown    

1328  Libro di ragioni (Florence, BNC, Magl.XI, 87)  Gherardi    

1330  Libro di molte ragioni d’abaco (Lucca 1754)  Unknown    

1339  Trattato di tutta l'arte dell'abbaco (Florence, 

Prin. II, IX, 57)  

Paolo 

dell‟abbaco  

  

1344  Aliabraa Argibra (4 copies)  Dardi of Pisa    

1370  Tractato del’algorisimo (Florence, Plut. 3026) 

[copied from Jacopo]  

De Danti    

 

                                                 
9
 Bugia is the Italian name for Algerian port of Bejaia. Sigler 2002, 15-6: “As my father was a public official 

away from our homeland in the Bugia customshouse established for the Pisan merchants who frequently 

gathered there, he had me in my youth brought to him, looking to find for me a useful and comfortable future; 

there he wanted me to be in the study of mathematics and to be taught for some days. There from a marvelous 

instruction in the art of nine Indian figures, the introduction and knowledge of the art pleased me so much above 

all else, and I learnt from them, whoever was learned it, from nearby Egypt, Syria, Greece, Sicily and Provence, 

and their various methods, to which locations of business I travelled considerably afterwards for much study.” 
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In the following sections I will look at the way fractions are being treated in the earliest extant 

abbaco texts. The Columbia Algorism is the oldest text in which a scheme for the division of 

fractions appears. Jacopo‟s treatise of 1307 contains a more systematic treatment for 

multiplication, addition, excess, division and subtraction. Other texts also treat fractions but 

do not include the justification schemes.  

3.4.1 Discursive and non-discursive elements in abbaco treatises 

Abbaco algebra has been described as a form of 

rhetorical algebra referring to Nesselmann‟s 

threefold phases of algebra as rhetorical, 

syncopated and symbolic algebra (Nesselmann 

1842). As demonstrated by Heeffer (2009) such a 

distinction should be considered a normative one, 

providing a special status to Diophantus‟s 

Arithmetica, i.e. a distinction which cannot be 

considered as phases in a historical development. 

Abbaco algebra, while not being symbolic algebra, 

contains aspects of operational symbolism in 

which operations are applied blindly on abstract 

objects without taking into account their 

arithmetical contents. A good example is the rule 

of signs, discussed below. But looking at a typical 

abbaco text one would see mostly words and 

sentences, with occasional special characters and 

marginal figures. That is why abbaco algebra is 

called rhetorical. We will further use the term 

„rhetorical‟ in this limited sense of „described by 

means of words‟ only. 

However, at closer inspection one finds two 

distinct types of contents. By lack of suitable 

alternatives we call them discursive and non-

discursive contents. Discursive mathematics takes 

up most of an abbaco treatise and consists of descriptions of problems and their solutions. 

Abbaco masters often use the term ragioni for their problem solutions, as in Paolo Gherardi‟s 

Libro di ragioni or as at the end of a problem solution “e così se fanno le simili ragioni”. This 

common phrase can literally be translated as “and thus the similar computations are done” 

(Hoyrup 2007, p. 11-12). However, the term is derived from ragionari, meaning „to reason‟, 

„to discourse‟ or even „to talk‟. The ragioni of abbaco masters are thus by definition 

discursive mathematics. While the problem solutions by abbaco masters are rhetorical and 

discursive, a modern textbook on elementary algebra will contain mostly argumentations 

which are symbolic and discursive. In the rest of this paper I will argue that the justification 

schemes as well as the early symbolism which developed within the abbaco tradition were 

originally non-discursive.  

Figure 2: Justification schemes for operations on 

fractions from Jacopo da Firenze, Tractatus algorismi, 

Vatican Library, Vat. Lat. 4826 f. 14v 
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Let me first explain what I mean by non-discursive elements in abbaco mathematics. The 

distinction goes back to ancient Greek philosophy and is prominent in the works by Proclus. 

Sara Rappe, who devoted a study to the role of non-discursive thinking in neoplatonism 

places it at the center of Proclus‟ idea of imagination in mathematics (Rappe 2000, p. 132): 

[..] Proclus‟ theory of the imagination [..] builds on the Platonic and Aristotelian 

models but again strikes out in a very original direction as evidenced in the Euclid 

commentary and elsewhere. To briefly review the central features of his theory of 

imagination, we find Proclus here suggesting that the imagination is a kind of 

intermediate ground between soul and intellect. [..] Proclus describes this 

intermediary function as a faculty that is capable of reflecting, by means of spatial 

realizations or renderings, the abstract ideas present in the discursive intellect. 

Important here is the intermediary function of the non-discursive between imagination and 

argumentation. The non-discursive complements the level of discourse with abstract ideas by 

means of spatial realizations or renderings. Later use of the distinction within the context of 

mathematics refers to the intuitive aspect of non-recursive elements. In Kant‟s epistemology 

of mathematics, the synthetic a priori is non-discursive, and allows us access to intuition. I 

will further avoid the term „intuition‟ but do appeal to the complementary power of 

explanation by means of non-discursive elements. These elements provide an understanding 

which goes beyond the discursive level. Or even stronger: the non-discursive acts as a 

justification for the discursive argumentation.  

Let us look at a concrete example in relation to our subject of operations on fractions. Jacopa 

da Firenze explains in one of the earliest abbaco treatises how to add two unit fractions 

(Høyrup 2007, 230): 

And we shall say thus, say me, how much is joined together 1/2 and 1/3. Do thus, 

and say thus, 1/2 and 1/3 one finds in six, since 2 times 3 makes 6. And seize the 

half and the third of 6, which joined together make 5, and divide 5 in 6, from 

which results 5/6, and as much makes ½ and 1/3 joined together.  And in this way 

all the similar computations are made with whatever fraction it were.  

As usual in abbaco treatises, a general method is not provided. Instead, a problem is solved in 

a particular way and it is indicated that this method applies to all similar cases (“Et in questo 

modo se fanno tucte le simile ragioni”). This clearly is the discursive level which describes 

how to look first for the least common multiple of the two denominators. Then one takes the 

fractional part of this common multiple and adds the two together. The final step is to divide 

this sum by the common multiple. The result is the sum of the two unit fractions. In his 

introductory commentary Høyrup writes “This chapter explains in words the methods that 

were set out in diagrams in Chapter 9” (Høyrup 2007, 58). If this would be true, the diagram 

would only be an illustration of the discursive procedure. But is this really the case? If we 

look in detail at the diagrams in Figure 3, we do not find a diagram which corresponds with 
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any of the problems on adding fractions. Only one diagram describes how to “join together a 

broken number to a broken number” (see Figure 4):
10

 

 

This non-discursive scheme not only allows for multiple interpretations, curiously, it can also 

be applied to other operations on fractions. This will be discussed in the next section. What 

can be concluded now is that abbaco treatises contain non-discursive elements which support 

the discursive description of arithmetical procedures. They appear as schemes which do not 

exactly represent the discursive procedure but appeal to a more general spatial understanding 

of the relations between the arithmetical elements involved. While the schemes use concrete 

numerical values it is clear that the spatial arrangement is invariant with respect to all possible 

operations of additions on fractions.  

If we compare the abbaco schemes with the marginal illustration used by Fibonacci when 

treating fractions, it is clear that that abbaco schemes depend more on the spatial organization 

of the elements. Fibonacci‟s schemes remain discursive. They should read from top to bottom 

and correspond with the order of operations in the text. The abbaco schemes do not preserve 

the order of the operations of the problems solutions. Neither does the problem solution in 

abbaco texts refer to the schemes during the calculation. While Fibonacci‟s schemes are 

discursive and justificatory the abbaco schemes are non-discursive and serve the purpose of 

justification.  

3.4.2 Generalizing justification schemes 

In modern mathematics, the operations of arithmetic are defined by axiomatization. Basic 

operations of arithmetic, such as addition, have a clear and unambiguous meaning. This has 

not always been the case. Jens Høyrup pioneered the method of close analysis of linguistic 

and syntactic features in the study of mathematical sources for Old-Babylonian tablets 

(Høyrup 2007). General arithmetical operations such as addition, subtraction, multiplication 

and division were subdivided by Høyrup in distinctive syllabic and logographic versions, each 

covering a different shade of meaning of the arithmetical operation in modern sense. The 

subtraction operation for example is subdivided into eight different linguistic classes (Høyrup 

2009). Some of them refer to concrete operations such as `cutting off', being part of the `cut-

and-paste' geometrical model; others refer to the comparison of concrete magnitudes. In some 

cases the terminological peculiarities of these operations could be applied to groups of tablets 

from different periods or different areas in Mesopotamia. 

                                                 
10

 The actual scheme in the manuscript uses a curved line instead of connected two line segments at the bottom. 

As there seems to be no conceptual difference I have used line segments for all the schemes. 
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Also in abbaco arithmetic we find different shades of meaning for common operations. The 

schemes from Jacopo‟s treatise make the differentiation explicit between subtracting a 

fraction from another and calculating the excess; how much one fraction is more than another. 

As also the problems treat these cases separately, it becomes clear that early abbaco arithmetic 

considered subtraction and excess as two different operations. However, they are covered by 

the same scheme. Subtraction is shown in Figure 5: 

 

In the case of excess, the smaller fraction is shown at the right hand side and subtracted from 

the fraction on the left hand side (Figure 6). The text in the center shows „o‟ because the 

solution procedure prescribes to first determine which one is larger 12/13 „or‟ ¾.  

 

Not only are the schemes for subtraction and excess the same, they are also identical with the 

justification scheme for joining (addition).  This can be understood because of the symmetry 

between the two operations. However, more surprising is that the same scheme is also used 

for division (Figure 7): 

 

The scheme shows how to divide  the fractions ¾ and 2/3, but there is no problem in Jacopo‟s 

text which deals with division. The fact that one common scheme is used for the operations of 

joining, subtraction, excess and division is quite interesting. It shows the generalizing power 

of such schemes. One single scheme provides a justification for the basic operations on 

fractions. Because of the non-discursive character of these schemes there is no preferred left-
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to-right or right-to-left order. The schemes do not preserve the order of operations as does a 

discursive description.  

A justification scheme is not only silent about the order of operations but also on the precise 

operations that lead to numeric results. The diagram shown in Figure 4 is basically stating that 

172/96  is what makes 7/8 and 11/12 joined together. The actual meaning, conveyed by the 

operations involved in the discursive part of the treatise, is that 7/8 parts and 11/12 parts of 

the product of the denominators make the result. This precise meaning is not preserved in the 

justification scheme. We see the intermediate results 96, 84 and 88 and lines which connect 

these with the fractions but the diagram remains a non-discursive spatial organization of 

relevant elements open to interpretation. If we match the diagram with the procedure in the 

text and use an anachronistic symbolic rendering of the numbers we would arrive at 

something as in Figure 8: 

 

While this may seem to be a satisfactory representation of the discursive procedure, other 

representations are equally valid. Instead of interpreting 84 as the a/b part of the product bd, 

we can also consider it to be the product ad. This would lead to a representation as in Figure 9 

 

The generalizing power of justification schemes therefore allow for new interpretations and 

ultimately led to new schemes. The scheme in Figure 6 provides a new interpretation of ad + 

bc the sum of cross-wise multiplied numerators and denominators. Indeed, schemes in later 

abbaco treatises use a cross for addition and division operations. Figure 10 shows and 

example from Luca Pacioli‟s Perugia manuscript (Vat.Lat. 3129, w. 1478, f.12v): 
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The spatial organization of the elements, the numerators and denominators and the 

combinatorial operations possible on these two, appeals to an intuitive understanding of the 

operations involved. This is further supported by a curious quote by Jacopo in the Vatican 

manuscript: “We have said enough about fractions, because of the similar computations with 

fractions all are done in one and the same way and by one and the same rule. And therefore 

we shall say no more about them here” (f. 17r, Høyrup 2007, 236). Evidently, the rules for 

adding, subtracting, multiplying and dividing fractions are different. Jacopo therefore must 

refer here to the general scheme for validating operations.  

3.4.3 Circulation of knowledge about fractions 

So far we have discussed the schemes of a single manuscript only, Jacopa da Firenze‟s 

Tractatus Algorismi (written 1307). Was this an ideocracy of the author or do these schemes 

systematically occur in abbaco treatises? With only 10% of the about 250 extant abbaco 

manuscripts transcribed, published or translated, it is difficult to provide a definitive opinion. 

From a survey of published and some unpublished manuscripts it appears that the schemes for 

operating on fractions are not that common. They are found mostly in the early period of 1290 

to 1370. This makes sense, as argued, since operating on fractions with Hindu-Arabic 

numerals was very different from the prevailing practices during the centuries preceding the 

abbaco period. Therefore, the need for justification was most pertinent when the first treatises 

were being written. The earliest extant treatise Livero de l’abbecho (1288, Florence, Ricc. 

2404) does not contain any schemes for the simple reason that operations on fraction are not 

treated in this text. The Columbia Algorism (Columbia X511, AL3; Vogel 1977), now dated 

at about 1290, does contain a single scheme for the division of fractions (Figure 11):
11

 

 

While the layout of the elements is slightly different from Jacopo‟s we find in here all the 

characteristics of a non-discursive justification scheme. 

                                                 
11

 In fact, there are some other schemes, corrupted from an earlier version of the text. One dubious scheme for 

the multiplication of fractions makes Kurt Vogel (1977, 43) wonder: “Was soll das Dollarzeichen bedeuten”. 
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Three other texts treat operations on fractions but do not contain the 

justification schemes : Liber habaci (1310, Florence, BNC, Magl.XI, 

88; Arrighi 1987), the Libro di ragioni (1328, Florence, BNC, 

Magl.XI, 87) and the Libro di molto ragioni d’abaco (1330, Lucca 

1754; Arrighi 1973). However, the Trattato di tutta l'arte 

dell'abbaco (c.1334, Florence, Prin. II, IX, 57) attributed to Paolo 

dell‟abbaco (Van Egmond 1977, 19) but contested by others 

(Hoyrup 2007, 54-5, note 144), contains many schemes. Figure 12, 

taken from f.39v shows how to join 29/37 and 3/7. While the 

schemes do not contain the connecting lines as in the previously 

discussed ones, the spatial arrangement of fractions, intermediary and final results are 

identical. Finally, the Tractato del’algorisimo (1370, Florence, Plut. 3026; Arrighi 1985) by 

Giovanni de‟Danti d‟Arezzo copies the whole introduction from Jacopo and contains 

therefore also the schemes. An interesting deviation from Jacopo‟s text is de „Danti‟s explicit 

reference to the schemes: “i rocti anno i‟lloro per se regola cioe di multipricare, dividere, 

giongnere et soctrare e dire quanto e piu o meno ‟uno che l‟altro vedendoli figurati” (Arrighi 

1985, 10), the last part of the sentence referring to “seeing the rules in figures”. The fact that 

the author used this part from Jacopo‟s treatise must mean that he considered it to be a suited 

didactical treatment of operations on fractions. 

In summary we can state with some confidence that justification schemes for operations on 

fractions played a considerable function in demonstrating the validity of procedures of early 

abbaco practices. The schemes play a less prominent role in later abbaco treatises when 

operations on fractions became well established and became a part of the abbaco school 

curriculum. Later writing also contained justification schemes but applied to more advanced 

topics such as the rules of signs, the rule of false position and the multiplication of binomials.  

4. Justification schemes and symbolic reasoning 

4.1 The parallel between schemes and early symbolism 

Previously, schemes for operating on fractions have been characterized as non-discursive. 

They serve the purpose to provide a justification for the correctness of procedures applied in 

the discursive parts of a treatise. In this section it will be argued that the early symbolism in 

abbaco treatises serves the same purpose.  

It would carry us too far to go into the subtle differences between abbreviations, ligatures, 

mathematical notations and symbols. For the current intention, let us take a liberal stance, like 

Florian Cajori in his book on of mathematical notations (Cajori 1928-9) who throws all these 

together to write one global history. Interpreted this way, „symbols‟ appear already in the 

earliest abbaco treatises and continue to play a more prominent role during almost three 

centuries of abbaco practice. The fraction bar would be a good example. It is a notation we 

still use today. It is very well accepted in all abbaco texts and we see it evolving from a use in 

numeric fractions only to its adoption as fractions of surds or fractions of polynomial 

expressions. It is most likely that the fraction bar originated in the Mahreb region and spread 

to Europe during the late 12
th

 century, not only through Fibonacci‟s writings but also through 
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merchant practices over the Iberian Peninsula and the South of France. It is significant that 

our justification schemes very much depend on the fraction bars. The two fractions are placed 

prominently in the scheme, the resulting fraction usually in the middle, intermediary results 

related to the numerator above and those related to the denominator below the fraction bars. 

So, it is fair to state that there is already interplay between „symbols‟ and justification 

schemes.  

A second parallel is the way the discursive part of a treatise refers to the non-discursive 

schemes and to the use of symbolism. De‟Danti makes the difference between the discursive 

treatment of operations on fractions and the non-discursive schemes of Jacopo explicit: “ .. 

and for each of these [operations] demonstrating them by normal writing (per scritura) and 

then doing the demonstration in the form of figures (in forma figurata)”.
12

 There exists an 

unpublished family of 15
th

-century manuscripts in which a similar distinction is made with 

regard to rhetorical (per scritura) and „symbolic‟ (figuratamente) demonstrations.
13

 While the 

„symbols‟ used in the symbolic part are not new − some of them also appear in previous 

manuscripts − the explicit distinction between the two methods is rather unique. I do not 

know of any other abbaco text in which this is made so explicit.  

The second problem of chapter 33 asks to find two numbers given certain conditions. In 

modern symbolism the problem amounts to the equation 1)3( xx  (Florence, BNF, Magl. 

Cl. XI. 119, f. 58v). After the problem enunciation the author asks to solve this by algebra 

(“Farenlo per la cosa”) and also to show it „symbolically‟ (figuratemente). 
14

 First, the 

symbolic version is given (see Figure 13). 

 

Figure 13: The 'symbolic' solution to a problem (from BL, Add. 10363, f. 60r) 
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 f. 10r, Arrighi 22). “e di ciascuno d'essi dimostraremo ordinatamente per scrictura (sic) l‟ordine loro e poi ve 

dimostraremo in forma figurata”  
13

 Florence, BNF, Magl. Cl. XI. 119 (c.1433), Florence, Biblioteca Mediceo-Laurenziana, Ash. 608 (c1440), 

London, BL, Add. 10363 (c1440), Paris, Bibliothèque Nationale, It. 463 (c1440), London, BL, Add. 8784 (1442),  

Biblioteca Mediceo-Laurenziana, Ash. 343 (c1444). See Heeffer (2008) for a description of the manuscripts and 

a partial transcription with English translation. While most of the copies are written around 1440, it can be 

established from internal evidence that the archetype must have written around 1417.  
14

 The terminology differs somewhat between the manuscripts, which shows that the exact meaning of the term 

was not yet established. Others manuscripts use „per figura‟, „in fighura‟ or „figurativemente‟ 
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Several remarks are appropriate here. Firstly, for the modern reader, this may seem to be only 

a very timid attempt to algebraic symbolism. However, we should consider this fragment 

within its specific context. The main text of this treatise (or at least this chapter on algebra) 

does not use abbreviations or ligatures for the unknown (cosa), the square of the unknown 

(censo), the addition and subtraction operations, and the roots. All these mathematical terms 

for which „symbols‟ are used with increasing frequency during the 15
th

 century, are here 

written in full words. The author therefore wants to make a clear distinction between a 

rhetorical solution – still the standard practice in abbaco algebra – and a „symbolic‟ version of 

the solution – which occasionally unsystematically crops up in such texts. It is a formal way 

to make the distinction clear between two ways of solving an algebraic problem. So, even if 

the „symbolic‟ solutions still look a lot like rhetorical algebra to us, for the author at least 

there is a principle difference between the two.  

A second observation, which can be drawn from comparing the different manuscript copies, is 

that the „symbolic‟ solution differs greatly between the copies. The BL copy shown in Figure 

13 is rather conservative. We know that it is at least two generations away from the lost 

archetype. The operations „più‟ and „meno‟ are not abbreviated as in other copies and most 

likely expanded from a previous copy by the scribe. Professional scribes did not always 

understand the contents and meaning of abbaco manuscripts and especially the „symbolic‟ 

parts are not faithful reproductions. One scribe (Florence, Biblioteca Mediceo-Laurenziana, 

Ash. 343) even omits these parts. This scribe did not understand the sense of writing down the 

same solution twice. He did not understand the principle distinction our author wanted to 

make. 

This brings us to our main point: what was the purpose of solving a problem in two ways, per 

scritura and figuratamente? I would like to make the parallel with the non-discursive 

character of the justification schemes. The author considers the „symbolic‟ solution as an 

additional non-discursive justification of the algebraic solution in the text. This belief is 

supported by a remark between the „symbolic‟ and rhetorical solution:  “I showed this 

symbolically as you can understand from the above, not to make things harder but rather for 

you to understand it better. I intend to give it to you by means of writing as you will see 

soon”.
15

 If the author would consider the „symbolic‟ solution discursive, it would make no 

sense to go through the trouble of solving all the problems in this chapter twice discursively. 

The „symbolic‟ solution adds to the discursive explanation in the text. The author appeals to 

some intuitive kind of understanding in the same way as the justification schemes were being 

used for the operations on fractions.  

The first steps towards symbolization of algebra were being taken by the use of non-

discursive representations of algebraic operations. In the manuscripts here discussed the 

author makes an explicit distinction between rhetorical and symbolic solutions. In later 

abbaco writings and early 16
th

 century textbooks – such as Pacioli‟s Summa or Cardano‟s 

Practica Arirthmeticae – the distinction is also being made. Here, the non-discursive elements 

                                                 
15

 BNF, Magl. Cl. XI. 119, f. 58r: “Ora io telo mostrata figurativamente come puoi comprendere di sopra bene 

ch‟è lla ti sia malagievole ma per che tulla intenda meglio. Io intende di dartela a intendere per scrittura come 

apresso vedrai” 
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appear in separate boxes or in marginal notations. They all serve the same function: to use 

non-discursive elements as an additional justification for the correctness of a problem solution 

described in the text.  

4.2 From justification schemes to operational symbolism 

The final step of our argumentation is to demonstrate that justification schemes facilitated the 

transition from rhetorical to symbolic algebra, or from arithmetical reasoning to abstract 

operational symbolism. Symbolic reasoning is therefore not so much concerned with the use 

of symbols – these are usually introduced in the later phases of the process towards 

symbolization. Symbolic reasoning is model-based reasoning in which problems are solved 

using a symbolic model. Such a model obeys the rules of arithmetic but allows applying the 

rules without accounting for its arithmetical contents. An example of algebra in which 

operations are limited by their arithmetical contents is the Arithmetica of Diophantus.  

Throughout the book, indeterminate problems are solved by considering some choices for the 

indeterminate quantities of the problem. Often, the initial choice runs into problems, arriving 

at irrational (e.g. problem IV.10) or negative solutions (problem IV.27). Such solutions or 

intermediary results are not compatible with Diophantus‟ number concept. In these cases the 

initial choices are reformulated precisely to avoid irrational and negative values. The 

resolution of indeterminism in the Arithmetica often depends on this mechanism. Because of 

the limitations of the number concept this kind of algebra remains pre-symbolic.  

The next sections will show how abbaco algebra succeeded in the process of abstracting the 

solution process from the arithmetical contents of the objects being operated upon. The 

validation and justification of basic operations hereby functioned as a precondition for this 

gradual process of symbolization. Accepted operations and procedures for problem solving 

could be applied blindly only because there was a strong epistemic foundation for their 

correctness. The justification schemes, here discussed, played a major role in providing 

epistemic validation. The development towards a symbolic algebra during the sixteenth 

century can thus be seen as a consequence of this process of justification and abstraction. The 

belief in the validity of standard operations and practices ultimately lead to the acceptance of 

negative and imaginary solutions and the expansion of the number concept during the 

sixteenth century. 

4.2.1 Another strong justification scheme 

The simple scheme for crosswise multiplication of binomials is the most common justification 

scheme in abbaco texts. It captures the idea bdbcadacdcba  ))(( . Lacking the 

symbolism which we here use, abbaco texts often show a simple cross and refer to the scheme 

as “multiplicare in croce”. The symbols a, b, c, d, as shown here, stand for any number object, 

natural, rational, negative, surd, cossic or with Cardano even imaginary numbers. The rule is 

valid by its scheme of adding the four products together, irrespective of its contents. As far as 

we could establish, the scheme first appears under term „croce‟ and an illustration of a cross in 

Gherardi‟s Libro di ragioni of 1328. The earlier texts we have discussed above do not contain 

such explicit references.  
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Now, Gherardi‟s application of crosswise multiplication is rather surprising. He employs the 

scheme for multiplying common fractions. Instead of bringing 12 ½ and 15 ¼ to a common 

denominator, he considers the two fractions as binomials (12 + ½) and (15 + ¼), each the sum 

of a whole number (numero sano) and a broken number (rocti): 

Se noi avessimo a multipricare numero sano e rocto contra numero sano e rocto, sì 

dovemo multipricare l‟uno numero sano contra l‟altro e possa li rocti in croce. 

Asempro a la decta regola. 12 ½  via 15 ¼ quanto fa? Però diremo: 12 via 15 fa 

180. Or diremo: 12 via ¼ fa [3], echo 183. Or prendi il ½ di 15 ¼ ch‟è  7 5/8 , 

agiustalo sopra 183 e sono 190 5/8 e tanto fa 12 ½  via 15 ¼. Ed è facta. 

In the pseudo-dell‟abbaco text, Trattato di tutta l'arte dell'abbaco, originally written in 1339, 

the author explicitly refers to the two methods, one by multiplication of binomials and the 

other by direct multiplication of two fractions (Arrighi 1965, 28). Both methods are thus 

covered by a justification scheme. 

The method of crosswise multiplication, the reference to croce and the non-discursive use of a 

configuration of elements in a cross, appears frequently in abbaco texts for the following two 

centuries. Maestro Dardi is the first to devise a more elaborate scheme in which the four 

products are indicated by individual line segments. His comprehensive text on algebra, the 

Aliabra argibra, is preceded by a separate treatise dealing with operations on surds “Trattato 

dele regulele quale appartiene a le multiplicatione, a le divitione, a le agiuntione e a le 

sottratione dele radice”. The multiplication )54)(53(  is illustrated by the scheme 

shown in Figure 14:
16

  

 

Figure 14: Dardi scheme for multiplying surd binomials (Chigi, M.VIII.170, f. 4v) 

The scheme for binomial multiplication shares all the characteristics of the schemes for 

operations on fractions and serves the same function of epistemic justification of the 

discursive explanations.  

Interestingly, in the same introduction Dardi also uses the scheme for a very different purpose, 

to “proof” the rules of sign (see Figure 15): 
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 The transcription is by Franci (2001, 43) based on the Siena manuscript I.VII.17. However, this manuscript 

omits this scheme and simplifies other schemes. They do appear in Chigi M,VIII.170 and according to Høyrup 

(2010) also in a later copy held at Arizona State Temple University.  
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Figure 15: Dardi's use of a justifications scheme for proving the rules of sign 

The reasoning is as follows: we know that 8 times 8 makes 64. Therefore (10 – 2) times (10 – 

2) should also result in 64. You multiply 10 by 10, this makes 100, then 10 times – 2 which is 

– 20 and again 10 times – 2 or – 20 leaves us with 60. The last product is (– 2)( –2) but as we 

have to arrive at 64, this must necessarily be +4. Therefore a negative multiplied by a negative 

always makes a positive.
17

  

The use of a general justification scheme for something as crucial as the laws of signs in 

arithmetic is quite significant. Firstly, it again shows the unifying power of such schemes. The 

crosswise multiplication of binomials is applied to sums and differences of natural numbers, 

as well as rational numbers and surd numbers. Operations on different kinds of numbers can 

be justified by one single scheme. Secondly, precisely because of the belief that the operations 

represented by such a scheme must be correct, it becomes possible to “prove” something as 

essential as the laws of signs. A negative multiplied by a negative must be a positive because 

of the validity of this scheme for multiplying binomials. Thirdly, a “proof” like this one of 

Dardi may seem trivial, but it is not. The reasons for the suitability of this scheme for 

“proving” the rules of sign go deep. If one wants to go from an arithmetic which is limited to 

natural numbers  –  as is basically the Arithmetica of Diophantus – to an arithmetic which 

includes the integers, you have to preserve the law of distribution and the law of identity for 

multiplication. Precisely these two laws are at play in the multiplication of binomials.  

The justificationary power of this scheme is so strong that it not only allows to “proof” the 

rules of signs but also leads to emergence of new concepts. While negative numbers 

occasionally appear in abbaco mathematics they were not accepted as isolated negative 

quantities. Mostly an interpretation could be given as a debt. But by considering negative 

solutions to algebraic problems as a debt, abbaco masters denied the possibility of a negative 

quantity rather than accepting it. This attitude changed by the end of the 15
th

 century. In 

Pacioli‟s Perugia manuscript (Calzoni, Giuseppe and Cavazzoni 1996) several negative 

solutions appear in which he accepts negative quantities without any reservations (Sesiano 

1985, Heeffer 2010b). The acceptance of these “anomalies” was made possible by a strong 

belief in the correctness of abbaco practices. The solutions one arrived at had to be accepted – 

however strange the results may have been at that time – because of the validity of the 

procedures. The epistemic confidence of abbaco masters depended to a great extent on 

justification schemes.  

Half a century later, Cardano (1545, 219), who was well acquainted with abbaco practices, 

would take the scheme for multiplication of binomials one step further to include 

  155155  . According to schemes of crosswise multiplication this leads to the sum 
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 For the original text see Franci (2001, 44). 
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of four products. The first three products pose no problems. The first one is 25 and the second 

and third, whatever they may be, are cancelled out by their signs. The innovation lies in the 

fourth     151515  . How did Cardano arrive at this result? The chapter heading 

of the Ars Magnae in which imaginary numbers first appear is called “Rules for posing a 

negative”. Cardano finds here an elegant solution which fits nicely within the rhetoric of 

abbaco practices. He first poses a negative, meaning he takes the cosa to be a negative 

quantity. This amounts to )())(( xxx   which is generally accepted. Therefore the 

fourth product of the binomial multiplication must be 15.  

5. Conclusion 

The abbaco tradition was concerned with teaching methods for calculating with Hindu-Arabic 

numerals. Not able to rely on authoritative texts, abbaco masters devised schemes for the 

justification of the correctness of procedures and algorithms. Such schemes appear as non-

discursive elements in the texts and provide justification of discursive descriptions of the 

operations. Some schemes, as for the multiplication of binomials, facilitated the abstraction of 

the objects on which one operated. This process of abstraction is an essential condition for 

operational symbolism. The appearance of early symbolic solutions, or the figuratamente 

method, can also be considered as non-discursive elements, providing a justification for 

rhetorically described algebraic procedures.  
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