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Abstract

This Appendix contains in part A the semantic characterization of logics
CDPM.2d and CDPM.2e defined in [3]. Soundness and completeness are
proven. In part B the logical framework presented in [3] is generalized such that
it is able to deal with nested permissible contexts.
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A. Semantics

Although the semantics that I introduce in this Appendix are very similar
to Goble’s semantics of CDPM.2c in [2, 1], they vary from the former in the
following aspects:

• An actual world variant of the semantics is used here in order to model
factual premises in an intuitive way.

• The semantics have to deal with a language enriched by modal operators
Oi and Op, symbols •i and •p, and the additional principles characterizing
them.

• The language is weaker than Goble’s in the sense that nested occurrences
of modal operators are not allowed.

A.1. Language

The language used for the logics defined in [3] is built up by propositional
atoms, denoted by A, the classical connectives, ⊤,⊥, a dyadic modal operator
O, monadic modal operators Oi,Op and symbols •i, •p. We use for (classical)
propositional formulas the letters A,B,C,D,E, F and denote by P the set of
all propositional formulas. Let L′ consist of all formulas of the form O(A |
B),OiA,OpA, •iO(A | B), •pO(A | B) and the set of all propositional letters.
Our set of wffs L is then defined by the 〈¬,∨,∧,⊃〉-closure of L′. We use for
formulas in L lower case greek letters. As usually done, we define P(A | B) =df

¬O(¬A | B).

A.2. Syntactic characterization

First, in order to recapitulate the definitions from [3], we state again the
syntactic rules used to define logics CDPM.2d+ and CDPM.2e+:

If ⊢ A ≡ B, then ⊢ O(C | A) ≡ O(C | B) (RCE)
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If ⊢ A ≡ B, then ⊢ O(A | C) ≡ O(B | C) (CRE)

If ⊢ A ≡ B, then ⊢ OiA ≡ OiB (EOi)

If ⊢ A ≡ B, then ⊢ OpA ≡ OpB (EOp)

If ⊢ A ≡ B, then ⊢ •iO(A | C) ≡ •iO(B | C) (CREi)

If ⊢ A ≡ B, then ⊢ •iO(C | A) ≡ •iO(C | B) (RCEi)

If ⊢ A ≡ B, then ⊢ •pO(A | C) ≡ •pO(B | C) (CREp)

If ⊢ A ≡ B, then ⊢ •pO(C | A) ≡ •pO(C | B) (RCEp)

If ⊢ B ⊃ C, then ⊢ P(B | A) ⊃
(

O(B | A) ⊃ O(C | A)
)

(RCPM)

If ⊢ D ⊃ ¬A, then ⊢
((

P(D | B ∧ C) ∨ O(D | B ∧ C)
)

∧
B ∧ C ∧ P(B ∧ C | B) ∧ O(A | B)) ⊃ •pO(A | B)

(Ep)

If ⊢ A ⊃ ¬C and ⊢ A ⊃ ¬D, then
⊢
(

O(A | B ∧ C) ∧ O(D | B)
)

⊃ •pO(A | B ∧ C)
(CTDR)

If ⊢ D ⊃ ¬A, then ⊢
((

P(D | B ∧ C) ∨ O(D | B ∧ C)
)

∧
B ∧ C ∧ O(A | B)) ⊃ •iO(A | B)

(oV-Ei)

Furthermore, the following axioms are needed:

⊢ P(⊤ | A) (CP)

⊢ O(C | A ∧B) ⊃ O(B ⊃ C | A) (S)

⊢
(

O(A | C) ∧ O(B | C) ∧ P(A ∧B | C)
)

⊃ O(A ∧B | C) (CPAND)

⊢
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(B | A ∧ C) (WRM)

⊢
(

O(A | B ∧ C) ∧ P(A | ¬B ∧ C)
)

⊃ O(B ⊃ A | C) (PS’)

⊢
(

O(A | B) ∧B ∧ ¬ •p O(A | B)
)

⊃ OpA (FDp)

⊢
(

O(A | B) ∧B ∧ ¬ •i O(A | B)
)

⊃ OiA (FDi)

⊢
(

O(A | B) ∧ ¬A ∧B
)

⊃ •iO(A | B) (fV)

Definition A.1. Logic CDPM.2d+ is defined by all the rules stated above
(with exception of (PS’))2, CDPM.2e+ is defined as CDPM.2d+ with excep-
tion of (S), which is replaced by (PS’). Let L+ from now on be any of the two
logics (if not specified beforehand).

A.3. The neighborhood semantics

One of the basic ideas for the neighborhood semantics is that propositions
are interpreted in terms of sets of worlds. For each obligation type (such as
Oi,Op, . . . ) each world has associated with it propositions, i.e. sets of worlds.
The idea is that an obligation OiA is true at a world w, in case A is one of
its associated propositions with respect to Oi. The generalization in terms of
conditional obligations is canonical. In this case worlds are associated with

2This rule follows directly from (S).
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ordered pairs of propositions representing conditional obligations. We are going
to make use of an actual world. The reason is that we are going to work with
premise sets containing propositional formulas representing given facts, which
can be better modelled like that.

Let a dyadic neighborhood frame F be a tuple 〈W,O,N i,N p,Oi,Op〉 where
W is a set of worlds andO :W → ℘(℘(W )×℘(W )), N i :W → ℘(℘(W )×℘(W )),
N p : W → ℘(℘(W )× ℘(W )), Oi : W → ℘(℘(W )), Op : W → ℘(℘(W )). Thus,
O, N i and N p assign to each world w ∈ W a set of ordered propositions, i.e.,
Ow,N

i
w,N

p
w ⊆ ℘(W )×℘(W ),3 andOi and Op assign to each world a proposition,

i.e., Oi
w,O

p
w ⊆ ℘(W ). A model M on frame F is a triple 〈F,@, v〉 where @ ∈W

is the actual world and v : A → ℘(W ). A propositional atom is mapped into the
set of worlds in which it is supposed to hold. We define M |= ϕ iff M,@ |= ϕ,
F |= ϕ iff for all models M defined on the basis of frame F , M |= ϕ, and F |= ϕ
(where F is a set of frames) iff for all F ∈ F , F |= ϕ. Furthermore, where
w ∈W , we have the following requirements for our models:

M,w |= p iff w ∈ v(p), where p ∈ A (M-p)

M,w |= O(A | B) iff 〈|B|M , |A|M 〉 ∈ Ow (M-O)

M,w |= •iO(A | B) iff 〈|B|M , |A|M 〉 ∈ N i
w (M-N i)

M,w |= •pO(A | B) iff 〈|B|M , |A|M 〉 ∈ N p
w (M-N p)

M,w |= OiA iff |A|M ∈ Oi
w (M-Oi)

M,w |= OpA iff |A|M ∈ Op
w (M-Op)

where |ϕ|M =df {w ∈ W | M,w |= ϕ}. For the classical connectives the
definitions are as usual:

M,w |= ¬ϕ iff M,w 2 ϕ (M-¬)

M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ (M-∨)

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ (M-∧)

M,w |= ϕ ⊃ ψ iff M,w |= ¬ϕ ∨ ψ (M-⊃)

M,w |= ⊤ (M-⊤)

M,w 2 ⊥ (M-⊥)

We write W ′ =df W \W ′ where W ′ ⊆W for a given frame F = 〈W , O, N i,
N p, Oi, Op〉. In order to define our CDPM systems we also need the following
conditions on frames. For all X,Y, Z ⊆W and w ∈W we demand:

〈W,W 〉 ∈ Ow (F-CN)

3We follow Goble’s writing convention and write the argument of the mappings that con-
stitute frames as subscripts.
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If Y ⊆ Z; 〈X,Y 〉 ∈ Ow and 〈X,Y 〉 /∈ Ow, then 〈X,Z〉 ∈ Ow (F-RCPM)

If 〈X ∩ Y,Z〉 ∈ Ow, then 〈X,Y ∪ Z〉 ∈ Ow (F-S)

If 〈X,Y 〉 ∈ Ow and 〈X,Y ∩ Z〉 /∈ Ow, then 〈X ∩ Z, Y 〉 ∈ Ow (F-WRM)

If 〈X,Y 〉 ∈ Ow; 〈X,Z〉 ∈ Ow and 〈X,Y ∩ Z〉 /∈ Ow,
then 〈X,Y ∩ Z〉 ∈ Ow

(F-CPAND)

〈X, ∅〉 /∈ Ow (F-CP)

For the e-version of our system we need:

If 〈Y ∩ Z,X〉 ∈ Ow and 〈Y ∩ Z,X〉 /∈ Ow, then 〈Z, Y ∪X〉 ∈ Ow (F-PS’)

In order to model detachment we are in need of the following conditions on
frames:

If 〈Y,X〉 ∈ Ow;w ∈ Y ; and 〈Y,X〉 /∈ N i
w, then X ∈ Oi

w (F-FDi)

If 〈Y,X〉 ∈ Ow;w ∈ Y ; and 〈Y,X〉 /∈ N p
w, then X ∈ Op

w (F-FDp)

If w ∈ Y ∩ Z; 〈Y, Y ∩ Z〉 /∈ Ow; 〈Y,X〉 ∈ Ow;Z
′ ⊆ X; and

(

〈Y ∩ Z,Z ′〉 /∈ Ow or 〈Y ∩ Z,Z ′〉 ∈ Ow

)

, then 〈Y,X〉 ∈ N p
w

(F-Ep)

If 〈Y ∩ Z,X〉, 〈Y,Z ′〉 ∈ Ow;Z
′ ⊆ Z;

and Z ′ ⊆ X, then 〈Y ∩ Z,X〉 ∈ N p
w

(F-CTDR)

If 〈Y,X〉 ∈ Ow;w ∈ Y ; and w /∈ X; then 〈Y,X〉 ∈ N i
w (F-fV)

If w ∈ Y ∩ Z; 〈Y,X〉 ∈ Ow;
(

〈Y ∩ Z,Z ′〉 /∈ Ow or
〈Y ∩ Z,Z ′〉 ∈ Ow

)

; and Z ′ ⊆ X, then 〈Y,X〉 ∈ N i (F-oV-Ei)

A.4. Soundness

Note that for the proofs in the Appendix I sometimes write LHS
X
=RHS if

the equation between LHS and RHS holds due to Lemma X. Obviously most of
the following results and their proofs resemble results proven by Goble for his
CDPM systems.

Lemma A.1. For any modelM = 〈F,@, v〉, where F = 〈W,O,N i,N p,Oi,Op〉,
(i) |ϕ ∧ ψ|M = |ϕ|M ∩ |ψ|M ; (ii) |ϕ ∨ ψ|M = |ϕ|M ∪ |ψ|M ; (iii) |¬ϕ|M = |ϕ|M ;
(iv) |⊤|M =W ; (v) |⊥|M = ∅.

Proof. Ad (i): |ϕ ∧ ψ|M = {w ∈ W | M,w |= ϕ ∧ ψ} = {w ∈ W | M,w |=
ϕ,ψ} = {w ∈ W | M,w |= ϕ} ∩ {w ∈ W | M,w |= ψ} = |ϕ|M ∩ |ψ|M . Ad (ii):
analogous. Ad (iii): |¬ϕ|M = {w ∈ W | M,w |= ¬ϕ} = {w ∈ W | M,w 2 ϕ} =
W \{w ∈W |M,w |= ϕ} = |ϕ|M . Ad (iv): |⊤|M = {w ∈W |M,w |= ⊤} =W .
Ad (v): analogous.

Lemma A.2. For any modelM = 〈F,@, v〉, where F = 〈W,O,N i,N p,Oi,Op〉,
(i), if F |= ϕ ⊃ ψ, then |ϕ|M ⊆ |ψ|M , and, (ii), if F |= ϕ ≡ ψ, then |ϕ|M =
|ψ|M .
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Proof. Ad (i): Suppose there is a w ∈ W for which M,w |= ϕ ∧ ¬ψ. M ′ =
〈F,w, v〉 obviously satisfies the model conditions (M-p), (M-O), (M-N i), (M-N p),
(M-Oi), (M-Op), (M-¬), (M-∨), (M-∧) and (M-⊃) since M satisfies them. But
then F 2 ϕ ⊃ ψ—a contradiction. Ad (ii): This is an immediate consequence
of (i).

Theorem A.1. L+ is sound with respect to the class of frames F that meet
the appropriate frame conditions. In case of CDPM.2d+ the frame conditions
are (F-CN), (F-RCPM), (F-S), (F-WRM), (F-CPAND), (F-CP), (F-FDi),
(F-FDp), (F-Ep), (F-CTDR), (F-fV) and (F-oV-Ei). In case of CDPM.2e+

we replace (F-S) by (F-PS’).

Proof. The proof is very simple: we thus show only for a few rules paradigmat-
ically that they are valid in all models of the respective frames. Let F be our
respective class of frames and let M = 〈F,@, v〉 be an arbitrary model on an
arbitrary frame F ∈ F .

We begin with (RCPM): Let F |= B ⊃ C. Assume that M,@ |= P(B |
A) ∧ O(B | A). Then M,@ |= P(B | A),O(B | A) and thus, M,@ |= ¬O(¬B |
A),O(B | A). Hence, 〈|A|M , |B|M 〉 ∈ O@ and 〈|A|M , |¬B|M 〉 /∈ O@. Thus
by Lemma A.1 (iii), 〈|A|M , |B|M 〉 /∈ O@. Furthermore, by Lemma A.2 (i),
|B|M ⊆ |C|M . Since F validates (F-RCPM), 〈|A|M , |C|M 〉 ∈ O@. Hence,
M,@ |= O(C | A) and thus, M,@ |= (P(B | A)∧O(B | A)) ⊃ O(C | A). Hence,
M |= (P(B | A) ∧ O(B | A)) ⊃ O(C | A). Since M and F were arbitrary,
F |= P(B | A) ⊃

(

O(B | A) ⊃ O(C | A)
)

.
For (WRM): Assume that M,@ |= O(B | A) ∧ P(B ∧C | A). Then M,@ |=

O(B | A),¬O(¬(B∧C) | A). Thus, 〈|A|M , |¬(B∧C)|M 〉
A.1iii
=

〈

|A|M , |B ∧ C|M
〉

A.1i
=

〈

|A|M , |B|M ∩ |C|M
〉

/∈ O@. Thus, since F validates (F-WRM), 〈|A|M ∩

|C|M , |B|M 〉
A.1i
= 〈|A ∧ C|M , |B|M 〉 ∈ O@. Hence, M,@ |= O(B | A ∧ C) and

thus, M,@ |=
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(B | A ∧ C). Hence, M |=
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(B | A ∧ C). Since M and F were arbitrary,

F |=
(

O(B | A) ∧ P(B ∧ C | A)
)

⊃ O(B | A ∧ C).
For (PS’): Assume that M,@ |= O(A | B ∧ C) ∧ P(A | ¬B ∧ C). Thus,

M,@ |= O(A | B ∧ C),P(A | ¬B ∧ C). Thus, M,@ |= O(A | B ∧ C),¬O(¬A |
¬B ∧ C). Hence, 〈|B ∧ C|M , |A|M 〉 ∈ O@ and 〈|¬B ∧ C|M , |¬A|M 〉 /∈ O@.
Hence, by Lemma A.1, 〈|B|M ∩ |C|M , |A|M 〉 ∈ O@ and

〈

|B|M ∩ |C|M , |A|M
〉

/∈

O@. Since F satisfies (F-PS’),
〈

|C|M , |B|M ∪ |A|M
〉

∈ O@. By Lemma A.1,
〈|C|M , |¬B ∨ A|M 〉 ∈ O@. By Lemma A.2 (ii), 〈|C|M , |B ⊃ A|M 〉 ∈ O@ and
thus, M,@ |= O(B ⊃ A | C). Hence, M,@ |=

(

O(A | B∧C)∧P(A | ¬B∧C)
)

⊃

O(B ⊃ A | C). Thus,M
(

O(A | B∧C)∧P(A | ¬B∧C)
)

⊃ O(B ⊃ A | C). Since

F andM were arbitrary, F |=
(

O(A | B∧C)∧P(A | ¬B∧C)
)

⊃ O(B ⊃ A | C).
For (EOi): Let F |= A ≡ B. Assume that M,@ |= OiA. Thus, |A|M ∈ Oi

@.
By Lemma A.2 (ii), |A|M = |B|M . Thus, |B|M ∈ Oi

@. Hence, M,@ |= OiB.
Thus, M,@ |= OiA ⊃ OiB. Hence, M |= OiA ⊃ OiB. Since M and F were
arbitrary, F |= OiA ⊃ OiB. The other direction is analogous.



A framework for factual detachment—Appendix 7

For (FDi): Assume that M,@ |= O(A | B) ∧ B ∧ ¬ •i O(A | B) and thus,
M,@ |= O(A | B), B and M,@ 2 •iO(A | B). Hence, 〈|B|M , |A|M 〉 ∈ O@,
@ ∈ |B|M and 〈|B|M , |A|m〉 /∈ N i

@. Since F satisfies (F-FDi), |A|M ∈ Oi
@ and

thus, M,@ |= OiA. Hence, M,@ |=
(

O(A | B) ∧ B ∧ ¬ •i O(A | B)
)

⊃ OiA.

Hence, M |=
(

O(A | B) ∧ B ∧ ¬ •i O(A | B)
)

⊃ OiA. Since M and F were

arbitrary, we have F |=
(

O(A | B) ∧B ∧ ¬ •i O(A | B)
)

⊃ OiA.
The other cases are shown in a similar way.

A.5. Completeness

Completeness for our logics can be proven in a similar way as Goble proved
completeness of his (C)DPM systems. We proceed in two steps:

1. We prove model-completeness by means of a canonical model Ṁ and ad-
justed model conditions. We show that for each non-theorem ϕ of L+

there is such a Ṁ falsifying ϕ.

2. Using filtration techniques on the canonical model Ṁ we arrive at an

alternative model
⋆

M on a frame
⋆

F that satisfies the respective frame

conditions. For each non-theorem ϕ of L+ we have an
⋆

M which falsifies
ϕ. This suffices to prove completeness and decidability.

A.5.1. Model completeness

First we define a frame for a canonical model for L+. Let Ḟ = 〈Ẇ, Ȯ, Ṅ i,

Ṅ p,Ȯi, Ȯp〉. Ẇ contains all maximal L+-consistent sets of formulas in L. We
have the following assignments for all w ∈ Ẇ :4

Ȯw = {〈X,Y 〉 | X ⊆ Ẇ, Y ⊆ Ẇ, ∃A∃B(X = [A], Y = [B] and O(B | A) ∈ w},

Ṅ i
w = {〈X,Y 〉 | X ⊆ Ẇ, Y ⊆ Ẇ, ∃A∃B(X = [A], Y = [B] and •i O(B | A) ∈ w},

Ṅ p
w = {〈X,Y 〉 | X ⊆ Ẇ, Y ⊆ Ẇ, ∃A∃B(X = [A], Y = [B] and •p O(B | A) ∈ w},

Ȯi
w = {X ⊆ Ẇ | ∃A(X = [A] and OiA ∈ w},

Ȯp
w = {X ⊆ Ẇ | ∃A(X = [A] and OpA ∈ w},

where [ϕ] =df {w ∈ Ẇ | ϕ ∈ w}. Now we can define a canonical model
Ṁ = 〈Ḟ, @̇, v̇〉. Let for every atomic formula p

v̇ : p 7→ {w ∈ Ẇ | p ∈ w}

Lemma A.3. For any ϕ and ψ, (i) [ϕ∧ ψ] = [ϕ]∩ [ψ]; (ii) [ϕ∨ ψ] = [ϕ]∪ [ψ];
(iii) [¬ϕ] = [ϕ]; (iv) [⊤] = Ẇ ; (v) [⊥] = ∅.

4For sake of readability we use from now on “∃” and “∀” in set descriptions in the canonical
reading “there is” and “for all”.
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Proof. Ad (i): [ϕ ∧ ψ] = {w ∈ Ẇ | ϕ ∧ ψ ∈ w}
(1)
={w ∈ Ẇ | ϕ,ψ ∈ w} = {w ∈

Ẇ | ϕ ∈ w} ∩ {w ∈ Ẇ | ψ ∈ w} = [ϕ] ∩ [ψ] where (1) is due to the fact that
w is a maximal consistent extension. The other cases are shown in a similar
way.

Lemma A.4. For any ϕ and ψ, (i) [ϕ] ⊆ [ψ] iff ⊢ ϕ ⊃ ψ, and (ii) [ϕ] = [ψ] iff
⊢ ϕ ≡ ψ.

Proof. This was proven in an analogous way in Goble [2, 1]. For (i), suppose
[ϕ] ⊆ [ψ] but 0 ϕ ⊃ ψ. Then {ϕ,¬ψ} is consistent and so has a maximal
consistent extension, w. ϕ ∈ w so w ∈ [ϕ]. Hence w ∈ [ψ], which is to say
ψ ∈ w, contrary to the consistency of w since ¬ψ ∈ w. Therefore, ⊢ ϕ ⊃ ψ.
Further, if ⊢ ϕ ⊃ ψ, then since maximal consistent extensions are closed under
provable implications, it is automatic that for any w′ ∈ [ϕ], w′ ∈ [ψ], or [ϕ] ⊆ [ψ].
Part (ii) follows immediately from (i).

Lemma A.5. For all ϕ ∈ L and all w ∈ Ẇ, Ṁ, w |= ϕ iff ϕ ∈ w (or, |ϕ|Ṁ =
[ϕ]).

Proof. This is shown by induction over the length of ϕ. The case that ϕ is a
propositional letter is trivial, since Ṁ, w |= ϕ iff w ∈ v̇(ϕ) = {w′ ∈ Ẇ | ϕ ∈ w′}.
Let ϕ now be a propositional formula. Suppose for the subformulas ϕ1 and
ϕ2 of ϕ the equivalence holds. Now let ϕ = ϕ1 ∧ ϕ2. We have Ṁ, w |= ϕ iff
Ṁ, w |= ϕ1 and Ṁ, w |= ϕ2 iff ϕ1, ϕ2 ∈ w iff ϕ1 ∧ ϕ2 ∈ w due to the fact that
w is a maximal consistent extension. The argument is similar for ϕ = ϕ1 ∨ ϕ2,
ϕ = ϕ1 ⊃ ϕ2 and ϕ = ¬ϕ1. Thus the equivalence holds for all propositional
formulas ϕ (⋆).

Now consider the other cases in L′. Let ϕ = O(A | B). “⇒”: In case
Ṁ, w |= O(A | B) we have 〈|B|Ṁ , |A|Ṁ 〉 ∈ Ȯw and thus 〈[B], [A]〉 ∈ Ȯw by (⋆).
Hence there are A′, B′ such that [A′] = [A] and [B′] = [B] and O(A′ | B′) ∈ w.
By Lemma A.4 (ii), ⊢ A′ ≡ A and ⊢ B′ ≡ B. Since w validates (RCE) and
(CRE), O(A | B) ∈ w. “⇐”: Let O(A | B) ∈ w, then 〈[A], [B]〉 ∈ Ȯw. Thus, by
(⋆), 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Hence, Ṁ, w |= O(B | A).

Let ϕ = •iO(A | B). “⇒”: In case Ṁ, w |= •iO(A | B) we have 〈|B|Ṁ , |A|Ṁ 〉 ∈

Ṅ i
w and thus 〈[B], [A]〉 ∈ Ṅ i

w by (⋆). Hence there are A′, B′ such that
[A′] = [A] and [B′] = [B] and •iO(A′ | B′) ∈ w. By Lemma A.4 (ii), ⊢ A′ ≡ A
and ⊢ B′ ≡ B. Since w validates (CREi) and (RCEi), •iO(A | B) ∈ w. “⇐”:

Let •iO(A | B) ∈ w, then 〈[A], [B]〉 ∈ Ṅ i
w. Thus, by (⋆), 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ṅ i

w.

Hence, Ṁ, w |= •iO(B | A).
The case ϕ = •pO(A | B) is analogous.

Let ϕ = OiA. “⇒”: In case Ṁ, w |= OiA we have |A|Ṁ ∈ Ȯi
w and thus

[A] ∈ Ȯi
w. Hence there is a A′ such that [A′] = [A] and OiA′ ∈ w. By Lemma

A.4, ⊢ A′ ≡ A. Since w validates (EOi), OiA ∈ w. “⇐”: Let OiA ∈ w, then

[A] ∈ Ȯi
w. Thus, by (⋆), |A|Ṁ ∈ Ȯi

w. Hence, Ṁ, w |= OiA.
The case ϕ = OpA is analogous.
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Now let ϕ = ϕ1∧ϕ2 ∈ L\ (L′∪P). By induction hypothesis we suppose the
equivalence to be valid for ϕ1 and ϕ2. We have Ṁ, w |= ϕ iff Ṁ, w |= ϕ1 and
Ṁ, w |= ϕ2 iff ϕ1, ϕ2 ∈ w iff ϕ1 ∧ ϕ2 ∈ w due to the fact that w is a maximal
consistent extension. The argument is similar for ϕ = ϕ1 ∨ ϕ2, ϕ = ϕ1 ⊃ ϕ2

and ϕ = ¬ϕ1. Thus the equivalence holds for all ϕ ∈ L.

In order to prove model-completeness we need to restrict our sets of worlds
to sets corresponding to expressible propositions on Ṁ . We define,5 where
M = 〈F,@, v〉 and F = 〈W,O,N i,N p,Oi,Op〉

εM =df {X ⊆W | ∃B(X = |B|M )}

Lemma A.6. For all w ∈ Ẇ and X,Y ∈ εṀ there are A and B for which
[A] = X and [B] = Y and we have for all such A and B:

(i) 〈X,Y 〉 ∈ Ȯw iff O(B | A) ∈ w

(ii) 〈X,Y 〉 ∈ Ṅ i
w iff •iO(B | A) ∈ w.

(iii) 〈X,Y 〉 ∈ Ṅ p
w iff •pO(B | A) ∈ w.

(iv) X ∈ Ȯi
w iff OiA ∈ w.

(v) X ∈ Ȯp
w iff OpA ∈ w .

Proof. Let w ∈ Ẇ and X,Y ∈ εṀ By definition of εṀ there are A and B for
which X = |A|Ṁ and Y = |B|Ṁ . By Lemma A.5 we have [A] = |A|Ṁ = X and
[B] = |B|Ṁ = Y .

Ad (i) “⇒”: Let 〈X,Y 〉 ∈ Ȯw. Thus, 〈[A], [B]〉 ∈ Ȯw and thus, 〈|A|Ṁ , |B|Ṁ 〉 ∈

Ȯw. Hence, by Lemma A.5, O(B | A) ∈ w. “⇐”: Let 〈X,Y 〉 /∈ Ȯw. Suppose
O(B | A) ∈ w, then by Lemma A.5, Ṁ, w |= O(B | A), then by (M-O),
〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Hence, 〈[A], [B]〉 ∈ Ȯw and thus, 〈X,Y 〉 ∈ Ȯw—a contra-
diction.

Ad (ii): “⇒”: Let 〈X,Y 〉 ∈ Ṅ i
w. Then 〈[A], [B]〉 ∈ Ṅ i

w and thus, 〈|A|Ṁ , |B|Ṁ 〉 ∈

Ṅ i
w. Thus, by Lemma A.5, •iO(B | A) ∈ w. “⇐”: Now let 〈X,Y 〉 /∈ Ṅ i

w.
Suppose •iO(B | A) ∈ w, then by Lemma A.5, Ṁ, w |= •iO(B | A) and

thus by (M-N i), 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ṅ i
w. Hence, 〈[A], [B]〉 ∈ Ṅ i

w and thus,

〈X,Y 〉 ∈ Ṅ i
w—a contradiction.

Ad (iii): analogous.

Ad (iv): “⇒”: Let X ∈ Ȯi
w and thus [A] ∈ Ȯi

w. Hence, |A|Ṁ ∈ Ȯi
w.

Thus, Ṁ, w |= OiA and thus by Lemma A.5, OiA ∈ w. “⇐”: Now let X /∈ Ȯi
w.

5Note that this definition differs from Goble’s proposal to the extent that in our case B

is a propositional formula, while in Goble’s case it was any wff. The reason is, that we don’t
allow for nested modal operators in this paper.
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Suppose OiA ∈ w. Then by Lemma A.5, Ṁ, w |= OiA and thus by (M-Oi),

|A|Ṁ ∈ Ȯi
w. Hence, [A] ∈ Ȯi

w and thus, X ∈ Ȯi
w—a contradiction.

Ad (v): analogous.

We now modify the frame conditions to form conditions on models. Where
M = 〈F,@, v〉 and F = 〈W,O,N i,N p,Oi,Op〉 we require:

〈W,W 〉 ∈ Ow (M-CN)

For all X,Y, Z ∈ εM , if Y ⊆ Z and 〈X,Y 〉 ∈ Ow

and 〈X,Y 〉 /∈ Ow then 〈X,Z〉 ∈ Ow
(M-RCPM)

For all X,Y, Z ∈ εM , if 〈X ∩ Y,Z〉 ∈ Ow, then 〈X,Y ∪ Z〉 ∈ Ow (M-S)

For all X,Y, Z ∈ εM , if 〈X,Y 〉 ∈ Ow

and 〈X,Y ∩ Z〉 /∈ Ow, then 〈X ∩ Z, Y 〉 ∈ Ow
(M-WRM)

For all X,Y, Z ∈ εM , if 〈X,Y 〉 ∈ Ow, 〈X,Z〉 ∈ Ow and
〈X,Y ∩ Z〉 /∈ Ow, then 〈X,Y ∩ Z〉 ∈ Ow

(M-CPAND)

For all X ∈ εM , 〈X, ∅〉 /∈ Ow (M-CP)

For all X,Y, Z ∈ εM , if 〈Y ∩ Z,X〉 ∈ Ow and
〈Y ∩ Z,X〉 /∈ Ow, then 〈Z, Y ∪X〉 ∈ Ow

(M-PS’)

For all X,Y ∈ εM , if 〈Y,X〉 ∈ Ow;w ∈ Y ;
and 〈Y,X〉 /∈ N i

w, then X ∈ Oi
w

(M-FDi)

For all X,Y ∈ εM , if 〈Y,X〉 ∈ Ow;w ∈ Y ;
and 〈Y,X〉 /∈ N p

w, then X ∈ Op
w

(M-FDp)

For all X,Y, Z, Z ′ ∈ εM , if w ∈ Y ∩ Z; 〈Y, Y ∩ Z〉 /∈ Ow; 〈Y,X〉 ∈ Ow;
Z ′ ⊆ X; and

(

〈Y ∩ Z,Z ′〉 /∈ Ow or 〈Y ∩ Z,Z ′〉 ∈ Ow

)

, then 〈Y,X〉 ∈ N p
w

(M-Ep)

For all X,Y, Z, Z ′ ∈ εM , if 〈Y ∩ Z,X〉, 〈Y,Z ′〉 ∈ Ow;Z
′ ⊆ Z;

and Z ′ ⊆ X, then 〈Y ∩ Z,X〉 ∈ N p
w

(M-CTDR)

For all X,Y ∈ εM , if 〈Y,X〉 ∈ Ow;w ∈ Y ; and w /∈ X; then 〈Y,X〉 ∈ N i
w

(M-fV)

For all X,Y, Z, Z ′ ∈ εM , if w ∈ Y ∩ Z; 〈Y,X〉 ∈ Ow;
(

〈Y ∩ Z,Z ′〉 /∈ Ow

or 〈Y ∩ Z,Z ′〉 ∈ Ow

)

; and Z ′ ⊆ X, then 〈Y,X〉 ∈ N i

(M-oV-Ei)

Theorem A.2. L+ is sound and complete with respect to the class of models
that meet conditions, as appropriate. In case of CDPM.2d+ the appropriate
conditions are (M-CN), (M-RCPM), (M-S), (M-WRM), (M-CPAND), (M-CP),
(M-FDi), (M-FDp), (M-Ep), (M-CTDR), (M-fV), and (M-oV-Ei). In case of
CDPM.2e+ (M-S) is replaced by (M-PS’).

Proof. Soundness is trivial and is shown in a similar way as it was done in
Theorem A.1. Some examples: Let M = 〈F,@, v〉 be a model that satis-
fies the required properties. For (WRM), Let M |= O(B | A) ∧ P(B ∧ C |
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A), then M,@ |= O(B | A),P(B ∧ C | A). Thus, 〈|A|M , |B|M 〉 ∈ O@ and
〈

|A|M , |B ∧ C|M
〉 A.1i

=
〈

|A|M , |B|M ∩ |C|M
〉

/∈ O@. Since M fulfills (M-WRM),

〈|B|M∩|C|M , |A|M 〉
A.1i
= 〈|B∧C|M , |A|M 〉 ∈ O@ and henceM,@ |= O(A | B∧C).

Hence M |= O(A | B ∧ C). For (RCPM) let M |= P(B | A),O(B | A) and
� B ⊃ C. Then M,@ |= P(B | A),O(B | A). Thus, 〈|A|M , |B|M 〉 ∈ O@ and
〈|A|M , |B|M 〉 /∈ O@. Hence, since M satisfies (M-RCPM) and since |B|M ⊆
|C|M , 〈|A|M , |C|M 〉 ∈ O@. Hence, M,@ |= O(A | C) and thus, M |= O(A | C).
The other cases are shown analogously.

In order to show completeness let ϕ be a formula not provable in L+. Then
{¬ϕ} is L+-consistent and there is, hence, a maximal consistent extension of all

L+ theorems, @̇ ∈ Ẇ , which verifies ¬ϕ. Let Ṁ = 〈Ẇ, Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇〉
be defined as above. We show now that Ṁ meets the respective model conditions
via some paradigmatical examples.

For (M-WRM): Let X,Y, Z ∈ εṀ , 〈X,Y 〉 ∈ Ȯw, and 〈X,Y ∩ Z〉 /∈ Ȯw.
There are A,B such that [A] = X, [B] = Y and O(B | A) ∈ w. By Lemma
A.5, M,w |= O(B | A) and thus, 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Furthermore there is a
C such that |C|Ṁ = Z. Suppose, O(¬(B ∧ C) | A) ∈ w. Then, 〈[A], [¬(B ∧

C)]〉 ∈ Ȯw and thus by Lemma A.5, 〈|A|Ṁ , |¬(B ∧ C)|Ṁ 〉 ∈ Ȯw. But then,

since 〈|A|Ṁ , |¬(B ∧ C)|Ṁ 〉
A.1iii
=

〈

|A|Ṁ , |B ∧ C|Ṁ
〉 A.1i

=
〈

|A|Ṁ , |B|Ṁ ∩ |C|Ṁ
〉

=

〈X,Y ∩ Z〉, 〈X,Y ∩ Z〉 ∈ Ȯw—a contradiction. Thus, O(¬(B∧C) | A) /∈ w and
thus P(B∧C | A) ∈ w. Since w validates (WRM), O(B | A∧C) ∈ w. By Lemma

A.5, Ṁ, w |= O(B | A ∧ C). Thus, 〈|A ∧ C|Ṁ , |B|Ṁ 〉
A.1i
= 〈|A|Ṁ ∩ |C|Ṁ , |B|Ṁ 〉 =

〈X ∩ Z, Y 〉 ∈ ȮṀ .

For (M-RCPM) let X,Y, Z ∈ εṀ , Y ⊆ Z, 〈X,Y 〉 ∈ Ȯw, and 〈X,Y 〉 /∈ Ȯw.
There are A,B such that [A] = X, [B] = Y and O(B | A) ∈ w. Furthermore,
there is a C such that |C|M = Z. By Lemma A.5, M,w |= O(B | A) and hence
〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Since, by Lemma A.5, |B|Ṁ = Y , by Lemma A.1 (iii),

|¬B|Ṁ = Y . By Lemma A.6 (i), O(¬B | A) /∈ w since 〈X,Y 〉 /∈ Ȯw, and thus

P(B | A) ∈ w. By Lemma A.4 (i), ⊢ B ⊃ C since [B] ⊆ |C|M
A.5
= [C]. Since w

validates all L+-theorems and (RCPM), O(C | A) ∈ w. Thus, by Lemma A.5,

Ṁ, w |= O(C | A) and thus, 〈|A|Ṁ , |C|Ṁ 〉
A.5
= 〈X,Z〉 ∈ Ȯw.

For (M-FDi): Let X,Y ∈ εṀ . By Lemma A.6 there are A and B such that

[A] = X and [B] = Y . Now let 〈Y,X〉 ∈ Ȯw, w ∈ Y , and 〈Y,X〉 /∈ Ṅ i
w. Since

w ∈ Y we have w ∈ [B] and thus B ∈ w. By Lemma A.6 (i), O(A | B) ∈ w.
By Lemma A.6 (ii), •iO(A | B) /∈ w and thus ¬ •i O(A | B) ∈ w since w is
maximal consistent. Thus, since w validates (FDi), OiA ∈ w. By Lemma A.6

(iv), X ∈ Ȯi
w.

For (M-FDp): the proof is analogous.
For (M-Ep): Let X,Y, Z, Z ′ ∈ εṀ . By Lemma A.6 there are A,B,C and D

for which [A] = X, [B] = Y , [C] = Z and [D] = Z ′. Suppose the antecedent
of (M-Ep) is true. By Lemma A.3 (i) we have [B] ∩ [C] = [B ∧ C]. Thus, since
w ∈ [B∧C], B∧C ∈ w. By Lemma A.3 (iii), [¬(B∧C)] = [B ∧ C] = [B] ∩ [C] =
Y ∩ Z. Thus, by Lemma A.6 (i), O(¬(B ∧ C) | B) /∈ w since by hypothesis
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〈Y, Y ∩ Z〉 /∈ Ȯw. By Lemma A.6 (i), O(A | B) ∈ w since 〈Y,X〉 ∈ Ȯw. Since
Z ′ ⊆ X, [D] ⊆ [A] and thus by Lemma A.3 (iii), [D] ⊆ [¬A]. Thus, by Lemma
A.4 (i), ⊢ D ⊃ ¬A. Now we have by hypotheses, (a) 〈Y ∩ Z,Z ′〉 /∈ Ȯw, or, (b),
〈Y ∩ Z,Z ′〉 ∈ Ȯw. Note that by Lemma A.3 (iii), [D] = [¬D]. Thus in case (a)
we have by Lemma A.6 (i), O(¬D | B ∧C) /∈ w, and thus ¬O(¬D | B ∧C) ∈ w
which is equivalent to P(D | B ∧ C) ∈ w. In case (b) we have by Lemma A.6
(i), O(D | B ∧ C) ∈ w. Since w validates (Ep), •pO(A | B) ∈ w. By Lemma

A.6 (iii), 〈Y,X〉 ∈ Ṅ p
w.

For the remaining conditions the proofs are analogous.
Thus, our model Ṁ satisfies all the model-conditions. By Lemma A.5,

Ṁ, @̇ |= ¬ϕ and thus, Ṁ, @̇ 2 ϕ. Hence, Ṁ 2 ϕ. By contraposition we have
that if ϕ is valid in all models which meet the appropriate conditions, then ϕ is
provable in L+.

A.5.2. Frame completeness and decidability

As shown in [2, 1], the canonical models Ṁ = 〈Ḟ, @̇, v̇〉 do not suffice to
prove frame completeness. The problem is that Ḟ does not in general satisfy
the appropriate frame conditions (as demonstrated by Goble for the monadic
case with the permitted inheritance principle). Let me demonstrate the problem
by means of (F-RCPM): Let X,Y, Z ⊆ Ẇ such that Y ⊆ Z; 〈X,Y 〉 ∈ Ȯw

and 〈X,Y 〉 /∈ Ȯw. There are, by the definition of Ȯw, A and B for which
X = [A], Y = [B] and

O(B | A) ∈ w (1)

Now suppose O(¬B | A) ∈ w. Then 〈[A], [¬B]〉 ∈ Ȯw. However, by Lemma A.3
(iii), 〈[A], [¬B]〉 = 〈[A], [B]〉. Thus, 〈X,Y 〉 ∈ Ȯw—a contradiction. Thus,

O(¬B | A) /∈ w (2)

And hence due to the maximal consistency of w,

P(B | A) ∈ w (3)

Now, in case there would be a C such that [C] = Z it would be easy to prove
frame completeness. Since we have in that case [B] ⊆ [C], we get, by Lemma
A.4 (i),

⊢ B ⊃ C (4)

Since w satisfies (RCPM) we have P(B | A) ⊃ (O(B | A) ⊃ O(C | A)) due
to (4). By (1) and (3) we get via modus ponens, O(C | A) ∈ w. Hence,
〈[A], [C]〉 = 〈X,Z〉 ∈ Ȯw.

However, the problem is that we have no guarantee that there is such a C.

On the basis of a given model Ṁ = 〈Ẇ, Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇〉 we construct

a model
⋆

M = 〈
⋆

F,
⋆

@,
⋆

v〉 on a frame
⋆

F = 〈
⋆

W,
⋆

O,
⋆

N i,
⋆

N p,
⋆

Oi,
⋆

Op〉 by filtration in
the following way.

Let Φ be a finite set of formulas closed under subformulas, i.e., if ϕ ∈ Φ and
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ψ is a subformula of ϕ, then ψ ∈ Φ, and let ⊤,⊥ ∈ Φ. Furthermore, let Φ̂ be
the closure of Φ under truth-functions, i.e., Φ̂ is the smallest set of formulas
such that Φ ⊆ Φ̂ and if ϕ,ψ ∈ Φ̂, then ϕ∧ψ ∈ Φ̂, ϕ∨ψ ∈ Φ̂ and ¬ϕ ∈ Φ̂. Note
that ⊤,⊥ ∈ Φ̂, and that Φ̂ itself is closed under subformulas.

Now let Ψ = Φ ∩ P and Ψ̂ be again the closure of Ψ under truth-functions.

We define an equivalence relation ∼Ṁ
Ψ on Ẇ such that, for all w,w′ ∈ Ẇ :

w ∼Ṁ
Ψ w′ iff ∀ϕ

(

if ϕ ∈ Ψ then (Ṁ, w |= ϕ iff Ṁ, w′ |= ϕ)
)

.

Lemma A.7. For all w,w′ ∈ Ẇ , if w ∼Ṁ
Ψ w′, then for all A ∈ Ψ̂, (Ṁ, w |=

A iff Ṁ, w′ |= A).

Proof. Suppose w ∼Ṁ
Ψ w′. The proof is by induction on the length of A. For

all A ∈ Ψ the statement holds by definition. If A = A1 ∧A2 or A = A1 ∨A2 or
A = ¬A1, for some A1, A2, then the result follows directly from the inductive
hypothesis.

It is important to note that ∼Ṁ
Ψ partitions Ẇ into finitely many equivalence

classes [w] for w ∈ Ẇ , where [w] = {w′ ∈ Ẇ | w′ ∼Ṁ
Ψ w}.

We may now, for each equivalence class, select a member
⋆

w ∈ [w] (not

necessarily w itself) and define
⋆

W as the set of all these selected representants.

Let
[

@̇
]

be represented by
⋆

@ =df @̇. The following fact follows directly from
the definitions.

Lemma A.8. (i)
⋆

W ⊆ Ẇ ; (ii)
⋆

W is finite; (iii) for all w′ ∈ Ẇ there is a
⋆

w ∈
⋆

W such that w′ ∼Ṁ
Ψ

⋆

w; (iv) for all w,w′ ∈
⋆

W , if w 6= w′ then it is not the

case that w ∼Ṁ
Ψ w′.

Some more writing conventions: for X ⊆ Ẇ , let X↓ =df X ∩
⋆

W .

The assignments
⋆

O,
⋆

N i,
⋆

N p,
⋆

Oi,
⋆

Op fullfil the following conditions for each

w ∈
⋆

W :

〈X,Y 〉 ∈
⋆

Ow iff ∃A∃B
(

A,B ∈ Ψ̂ and X = |A|Ṁ↓ and

Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw

) (DO⋆)

〈X,Y 〉 ∈
⋆

N i
w iff ∃A∃B

(

A,B ∈ Ψ̂ and X = |A|Ṁ↓

and Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ṅ i
w

)
(DN i⋆)

〈X,Y 〉 ∈
⋆

N p
w iff ∃A∃B

(

A,B ∈ Ψ̂ and X = |A|Ṁ↓
and Y = |B|Ṁ↓ and 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ṅ p

w

) (DN p⋆)

X ∈
⋆

Oi
w iff ∃A

(

A ∈ Ψ̂ and X = |A|Ṁ↓ and |A|Ṁ ∈ Ȯi
w

)

(DOi⋆)

X ∈
⋆

Op
w iff ∃A

(

A ∈ Ψ̂ and X = |A|Ṁ↓ and |A|Ṁ ∈ Ȯp
w

)

(DOp⋆)

For all atomic formulas p we demand that
⋆

v : p 7→ v̇(p)↓.

Lemma A.9. For all
⋆

w ∈
⋆

W , there is a formula B ∈ Ψ̂ such that |B|Ṁ↓ = {
⋆

w}.
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Proof. The following proof only differs minimally from Goble’s. First we have

for all
⋆

w,
⋆

w′ ∈
⋆

W , if
⋆

w 6=
⋆

w′ then there is a formula A such that A ∈ Ψ̂ and
⋆

w ∈ |A|Ṁ and
⋆

w′ /∈ |A|Ṁ . For suppose otherwise. Suppose
⋆

w 6=
⋆

w′ but for every

A ∈ Ψ̂ if
⋆

w ∈ |A|Ṁ then
⋆

w′ ∈ |A|Ṁ . Then
⋆

w ∼Ṁ
Ψ

⋆

w′, for consider any B ∈ Ψ,

hence B ∈ Ψ̂. If Ṁ,
⋆

w |= B, then
⋆

w ∈ |B|Ṁ , so by supposition
⋆

w′ ∈ |B|Ṁ ,

and thus Ṁ,
⋆

w′ |= B. Suppose then that Ṁ,
⋆

w′ |= B, i.e.,
⋆

w′ ∈ |B|Ṁ , but

that it is not the case that Ṁ,
⋆

w |= B. Then Ṁ,
⋆

w |= ¬B and w ∈ |¬B|Ṁ .

Since ¬B ∈ Ψ̂, by supposition,
⋆

w′ ∈ |¬B|Ṁ , or Ṁ,
⋆

w′ |= ¬B. That means

Ṁ,
⋆

w′
2 B—a contradiction. Hence, if Ṁ,

⋆

w′ |= B, then Ṁ,
⋆

w |= B, and so

Ṁ,
⋆

w |= B iff Ṁ,
⋆

w′ |= B, which suffices for
⋆

w ∼Ṁ
Ψ

⋆

w′. But if
⋆

w 6=
⋆

w′ then it

is not the case that
⋆

w ∼Ṁ
Ψ

⋆

w′, by Lemma A.8 (iv), a contradiction. Therefore,

it must be the case that if
⋆

w 6=
⋆

w′, there is a A ∈ Ψ̂ such that
⋆

w ∈ |A|Ṁ and
⋆

w′ /∈ |A|Ṁ . For each
⋆

w′ such that
⋆

w′ 6=
⋆

w, select one such formula, and call it
A ⋆

w′ . Let Λ = {γi | i ∈ I} be the set of all such formulas A ⋆

w′ for all
⋆

w′ 6=
⋆

w.

Λ is finite since
⋆

W is finite. Let B ⋆

w =
∧

Λ =
∧

I γi be the conjunction of all

the members of Λ. B ⋆

w ∈ Ψ̂ since each conjunct γi ∈ Ψ̂ and Ψ̂ is closed under
truth-functions. We now show that |B ⋆

w|Ṁ↓ = {
⋆

w}.

(i) Suppose x ∈ |B ⋆

w|Ṁ↓. So x ∈ |B ⋆

w|Ṁ and x ∈
⋆

W . Suppose x 6=
⋆

w. Then
there is a formula Ax ∈ Ψ such that

⋆

w ∈ |Ax|Ṁ and x /∈ |Ax|Ṁ . We have

|B ⋆

w|Ṁ = |
∧

I γi|Ṁ
A.1i
=

⋂

I |γi|Ṁ . Hence, |B ⋆

w|Ṁ ⊆ |γi|Ṁ for all i ∈ I. Note that
Ax = γj for a j ∈ I. Since x ∈ |B ⋆

w|Ṁ , x ∈ |Ax|Ṁ—a contradiction. Therefore,
if x ∈ |B ⋆

w|Ṁ , x =
⋆

w and so x ∈ {
⋆

w}. Thus |B ⋆

w|Ṁ↓ ⊆ {
⋆

w}.

(ii) Suppose x ∈ {
⋆

w}, i.e., x =
⋆

w. Thus x ∈
⋆

W . For all γi ∈ Λ, x ∈ |γi|Ṁ .

Hence, Ṁ, x |= γi for all i ∈ I. Consequently, Ṁ, x |=
∧

I γi. But
∧

I γi = B ⋆

w,

hence Ṁ, x |= B ⋆

w. That is to say, x ∈ |B ⋆

w|Ṁ , and therefore x ∈ |B ⋆

w|Ṁ↓. Thus,
{

⋆

w} ⊆ |B ⋆

w|↓. Therefore, by (i) and (ii) together, |B ⋆

w|Ṁ↓ = {
⋆

w}, as required
for the Lemma.

Lemma A.10. For all w ∈
⋆

W we have:
⋆

M,w |= A iff Ṁ, w |= A.

Proof. This is shown by induction. Let A ∈ A, then
⋆

M,w |= A iff w ∈
⋆

v(A) iff w ∈ v̇(A)↓ iff w ∈ v̇(A) ∩
⋆

W iff (since w ∈
⋆

W ) w ∈ v̇(A) iff Ṁ, w |= A.
Now by induction hypothesis let the lemma hold for B and C. Let A = B ∧C.

Then
⋆

M,w |= A iff
⋆

M,w |= B,C iff Ṁ, w |= B,C iff Ṁ, w |= B ∧ C. The
argument is similar for A = B ∨ C, A = B ⊃ C and A = ¬B.

Lemma A.11. |A| ⋆

M
= |A|Ṁ↓.

Proof. |A| ⋆

M
= {w ∈

⋆

W |
⋆

M,w |= A}
(1)
={w ∈

⋆

W | Ṁ, w |= A} = {w ∈ Ẇ |

Ṁ, w |= A} ∩
⋆

W = |A|Ṁ↓, where (1) is due to Lemma A.10.

Lemma A.12. For all X ⊆
⋆

W , there is a formula B such that B ∈ Ψ̂ and
X = |B|Ṁ↓.
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Proof. Let X ⊆
⋆

W . Then X = {x1, . . . , xn} is finite, since
⋆

W is finite. By
Lemma A.9, there is an Ai ∈ Ψ̂ for each xi ∈ X such that |Ai|Ṁ↓ = {xi}. Let

AX = A1 ∨ · · · ∨ An. Since Ψ̂ is closed under classical connectives, AX ∈ Ψ̂.

|AX |Ṁ↓ = |
∨n

i=1Ai|Ṁ↓
A.11
= |

∨n

i=1Ai| ⋆

M
= {w ∈

⋆

W |
⋆

M,w |=
∨n

i=1Ai} = {w ∈
⋆

W |
⋆

M,w |= A1 or . . . or
⋆

M,w |= An} =
⋃n

i=1{w ∈
⋆

W |
⋆

M,w |= Ai} =
⋃n

i=1 |Ai| ⋆

M

A.11
=

⋃n
i=1 |Ai|Ṁ↓ =

⋃n
i=1{xi} = X.

Lemma A.13. For all A,B ∈ Ψ̂, (i) if |A|Ṁ↓ ⊆ |B|Ṁ↓, then |A|Ṁ ⊆ |B|Ṁ ;
(ii) if |A|Ṁ↓ = |B|Ṁ↓, then |A|Ṁ = |B|Ṁ .

Proof. Let A,B ∈ Ψ̂ such that |A|Ṁ↓ ⊆ |B|Ṁ↓. Take any w ∈ |A|Ṁ . By Lemma

A.8 (iii), there is a
⋆

w ∈
⋆

W such that w ∼Ṁ
Ψ

⋆

w. Since Ṁ, w |= A, by Lemma A.7,

Ṁ,
⋆

w |= A. Hence,
⋆

w ∈ |A|Ṁ , and, since
⋆

w ∈
⋆

W ,
⋆

w ∈ |A|Ṁ↓. Thus,
⋆

w ∈ |B|Ṁ↓

and hence,
⋆

w ∈ |B|Ṁ or Ṁ,
⋆

w |= B. Thus, since B ∈ Ψ̂ and w ∼Ṁ
Ψ

⋆

w, Ṁ, w |= B
by Lemma A.7. Thus, w ∈ |B|Ṁ . (ii) follows immediately.

Lemma A.14. (i) |ϕ|Ṁ↓∩|ψ|Ṁ↓ = |ϕ∧ψ|Ṁ↓; (ii) |ϕ|Ṁ↓∪|ψ|Ṁ↓ = |ϕ∨ψ|Ṁ↓;

(iii) |ϕ|Ṁ↓ = |¬ϕ|Ṁ↓ (where the complement is interpreted w.r.t. frame
⋆

F ).

Proof. Ad (i): |ϕ∧ψ|Ṁ↓ = |ϕ∧ψ|Ṁ ∩
⋆

W
(1)
=(|ϕ|Ṁ ∩ |ψ|Ṁ )∩

⋆

W = (|ϕ|Ṁ ∩
⋆

W )∩

(|ψ|Ṁ ∩
⋆

W ) = |ϕ|Ṁ↓ ∩ |ψ|Ṁ↓ where (1) is due to Lemma A.1 (i).

Ad (ii): |ϕ ∨ ψ|Ṁ↓
(2)
=(|ϕ|Ṁ ∪ |ψ|Ṁ )↓ = (|ϕ|Ṁ ∪ |ψ|Ṁ ) ∩

⋆

W = (|ϕ|Ṁ ∩
⋆

W ) ∪

(|ψ|Ṁ ∩
⋆

W ) = |ϕ|Ṁ↓ ∪ |ψ|Ṁ↓ where (2) is due to Lemma A.1 (ii).

Ad (iii): |ϕ|Ṁ↓ = (
⋆

W \ |ϕ|Ṁ↓)∩
⋆

W = (
⋆

W \ (|ϕ|Ṁ ∩
⋆

W ))∩
⋆

W = (
⋆

W \ |ϕ|Ṁ )∩
⋆

W = (Ẇ \ |ϕ|Ṁ ) ∩
⋆

W
(3)
= |¬ϕ|Ṁ ∩

⋆

W = |¬ϕ|Ṁ↓ where (3) is due to Lemma A.1
(iii).

Lemma A.15. If Ṁ = 〈Ẇ, Ȯ, Ṅ i, Ṅ p, Ȯi, Ȯp, @̇, v̇〉, defined as above, satisfies
conditions {M-X | X ∈ X} where X ⊆ {CN, RCPM, S, WRM, CPAND, CP,

PS’, FDi, FDp, Ep, CTDR, fV, oV-Ei}, then
⋆

F satisfies conditions {F-X | X
∈ X}.

Proof. We demonstrate the proof via some paradigmatical rules.

For (F-PS’): Let X,Y, Z ⊆
⋆

W , 〈Y ∩ Z,X〉 ∈
⋆

Ow and 〈Y ∩ Z,X〉 /∈
⋆

Ow. To

show: 〈Z, Y ∪X〉 ∈
⋆

Ow. By (DO⋆), there are E,F ∈ Ψ̂ for which |E|Ṁ↓ = Y ∩Z,

|F |Ṁ↓ = X and 〈|E|Ṁ , |F |Ṁ 〉 ∈ Ȯw. Furthermore, by Lemma A.12, there are

A,B,C ∈ Ψ̂ such that |A|Ṁ↓ = X, |B|Ṁ↓ = Y and |C|Ṁ↓ = Z. By Lemma
A.14 (i), |B|Ṁ↓ ∩ |C|Ṁ↓ = |B ∧ C|Ṁ↓. Thus |E|Ṁ↓ = |B ∧ C|Ṁ↓ and by

Lemma A.13 and since B ∧ C ∈ Ψ̂, |E|Ṁ = |B ∧ C|Ṁ . Also by Lemma A.13,

|F |Ṁ = |A|Ṁ . Thus, 〈|B ∧ C|Ṁ , |A|Ṁ 〉
A.1i
= 〈|B|Ṁ ∩ |C|Ṁ , |A|Ṁ 〉 ∈ Ȯw. Sup-

pose
〈

|B|Ṁ ∩ |C|Ṁ , |A|Ṁ
〉

∈ Ȯw. Note that
〈

|B|Ṁ ∩ |C|Ṁ , |A|Ṁ
〉A.1iii

= 〈|¬B|Ṁ ∩

|C|Ṁ , |¬A|Ṁ 〉
A.1i
= 〈|¬B∧C|Ṁ , |¬A|Ṁ 〉 ∈ Ȯw. Now by (DO⋆), 〈|¬B∧C|Ṁ↓, |¬A|Ṁ↓〉 ∈
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⋆

Ow. Note that 〈|¬B∧C|Ṁ↓, |¬A|Ṁ↓〉
A.14i
= 〈|¬B|Ṁ↓∩|C|Ṁ↓, |¬A|Ṁ↓〉

A.14iii
=

〈

|B|Ṁ↓∩

|C|Ṁ↓, |A|Ṁ↓
〉

∈
⋆

Ow. However, now we have 〈Y ∩Z,X〉 ∈
⋆

Ow—a contradiction.

Hence,
〈

|B|Ṁ ∩ |C|Ṁ , |A|Ṁ
〉

/∈ Ȯw. Since Ṁ satisfies (M-PS’),
〈

|C|Ṁ , |B|Ṁ ∪

|A|Ṁ
〉

∈ Ȯw. By Lemma A.1 (ii) and (iii), 〈|C|Ṁ , |¬B ∨ A|Ṁ 〉 ∈ Ȯw. Thus, by

(DO⋆) and since C,¬B ∨A ∈ Ψ̂, 〈|C|Ṁ↓, |¬B ∨A|Ṁ↓〉 ∈
⋆

Ow. By Lemma A.14

(ii) and (iii),
〈

|C|Ṁ↓, |B|Ṁ↓ ∪ |A|Ṁ↓
〉

∈
⋆

Ow and thus 〈Z, Y ∪X〉 ∈
⋆

Ow.

For (F-RCPM): Let X,Y, Z ⊆
⋆

W , Y ⊆ Z, 〈X,Y 〉 ∈
⋆

Ow, and 〈X,Y 〉 /∈
⋆

Ow. By (DO⋆), there are A,B ∈ Ψ̂ such that |A|Ṁ↓ = X, |B|Ṁ↓ = Y

and 〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Furthermore, by Lemma A.12, there is a C ∈ Ψ̂

for which Z = |C|Ṁ↓. Suppose, 〈|A|Ṁ , |¬B|Ṁ 〉 ∈ Ȯw. Then by (DO⋆),

〈|A|Ṁ↓, |¬B|Ṁ↓〉
A.14iii
=

〈

|A|Ṁ↓, |B|Ṁ↓
〉

= 〈X,Y 〉 ∈
⋆

Ow—a contradiction. Thus,

〈|A|Ṁ , |¬B|Ṁ 〉
A.1iii
=

〈

|A|Ṁ , |B|Ṁ
〉

/∈ Ȯw. By Lemma A.13, |B|Ṁ ⊆ |C|Ṁ , since

|B|Ṁ↓ ⊆ |C|Ṁ↓. Since Ṁ satisfies (M-RCPM), 〈|A|Ṁ , |C|Ṁ 〉 ∈ Ȯw. Thus, by

(DO⋆), 〈|A|Ṁ↓, |C|Ṁ↓〉 = 〈X,Z〉 ∈
⋆

Ow.

For (F-Ep): Let X,Y, Z, Z ′ ∈
⋆

W such that, (a), w ∈ Y ∩Z, (b), 〈Y, Y ∩ Z〉 /∈
⋆

Ow, (c), 〈Y,X〉 ∈
⋆

Ow, (d), Z ′ ⊆ X, and either, (e), 〈Y ∩ Z,Z ′〉 /∈
⋆

Ow,

or, (f), 〈Y ∩ Z,Z ′〉 ∈
⋆

Ow. To show: 〈Y,X〉 ∈
⋆

N p
w. By (DO⋆) and (c)

there are A,B ∈ Ψ̂ for which |A|Ṁ↓ = X, |B|Ṁ↓ = Y and 〈|B|Ṁ , |A|Ṁ 〉 ∈

Ȯw. By Lemma A.12 there is a C ∈ Ψ̂ such that |C|Ṁ↓ = Z. Suppose
〈

|B|Ṁ , |B ∧ C|Ṁ
〉

∈ Ȯw, then by Lemma A.1 (iii), 〈|B|Ṁ , |¬(B ∧ C)|Ṁ 〉 ∈

Ȯw. Now by (DO⋆) and since B,¬(B ∧ C) ∈ Ψ̂, 〈|B|Ṁ↓, |¬(B ∧ C)|Ṁ↓〉 ∈
⋆

Ow. Then by Lemma A.14, 〈|B|Ṁ↓, |¬(B ∧ C)|Ṁ↓〉 =
〈

|B|Ṁ↓, |B ∧ C|Ṁ↓
〉

=
〈

|B|Ṁ↓, |B|Ṁ↓ ∩ |C|Ṁ↓
〉

= 〈Y, Y ∩ Z〉 ∈
⋆

Ow—a contradiction with (b). Thus,
〈

|B|Ṁ , |B ∧ C|Ṁ
〉A.1i

=
〈

|B|Ṁ , |B|Ṁ ∩ |C|Ṁ
〉

/∈ Ȯw. By Lemma A.12 there is a

D ∈ Ψ̂ for which |D|Ṁ↓ = Z ′. Thus |D|Ṁ↓ ⊆ |A|Ṁ↓ and thus by Lemma

A.14 (iii), |D|Ṁ↓ ⊆ |¬A|Ṁ↓. By Lemma A.13 and since D,¬A ∈ Ψ̂, |D|Ṁ ⊆

|¬A|Ṁ
A.1iii
= |A|Ṁ . Case (e): Suppose

〈

|B|Ṁ ∩ |C|Ṁ , |D|Ṁ
〉

∈ Ȯw, then by

Lemma A.1 (i) and (iii), 〈|B ∧ C|Ṁ , |¬D|Ṁ 〉 ∈ Ȯw. By (DO⋆) and since

B ∧ C,¬D ∈ Ψ̂, 〈|B ∧ C|Ṁ↓, |¬D|Ṁ↓〉 ∈
⋆

Ow. By Lemma A.14 (i) and (iii),
〈

|B|Ṁ↓ ∩ |C|Ṁ↓, |D|Ṁ↓
〉

= 〈Y ∩ Z,Z ′〉 ∈
⋆

Ow—a contradiction with (e). Thus,
〈

|B|Ṁ ∩ |C|Ṁ , |D|Ṁ
〉

/∈ Ȯw. Case (f): By (DO⋆) there are E,F ∈ Ψ̂ such

that |E|Ṁ↓ = Y ∩ Z, |F |Ṁ↓ = Z ′ and 〈|E|Ṁ , |F |Ṁ 〉 ∈ Ȯw. We have |E|Ṁ↓ =

|B|Ṁ↓ ∩ |C|Ṁ↓
A.14i
= |B ∧ C|Ṁ↓. Thus, by Lemma A.13 and since E,B ∧ C ∈

Ψ̂, |E|Ṁ = |B ∧ C|Ṁ
A.1i
= |B|Ṁ ∩ |C|Ṁ . Thus, 〈|B|Ṁ ∩ |C|Ṁ , |F |Ṁ 〉 ∈ Ȯw.

Also by Lemma A.13, since |F |Ṁ↓ = Z ′ = |D|Ṁ↓, |F |Ṁ = |D|Ṁ . Thus,

〈|B ∧ C|Ṁ , |D|Ṁ 〉 ∈ Ȯw.

Since Ṁ satisfies (M-Ep), 〈|B|Ṁ , |A|Ṁ 〉 ∈ Ṅ p
w. Hence, by (DN p⋆), 〈Y,X〉 ∈

⋆

N p
w.
For (F-WRM): Consider X,Y, Z ∈

⋆

W . Let 〈X,Y 〉 ∈
⋆

Ow and 〈X,Y ∩ Z〉 /∈
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⋆

Ow. By (DO⋆), there are A,B ∈ Ψ̂ such that |A|Ṁ↓ = X, |B|Ṁ↓ = Y and

〈|A|Ṁ , |B|Ṁ 〉 ∈ Ȯw. By Lemma A.12, there is a C ∈ Ψ̂ such that |C|Ṁ↓ = Z.

Suppose that
〈

|A|Ṁ , |B|Ṁ ∩ |C|Ṁ
〉

∈ Ȯw. Due to the fact that
〈

|A|Ṁ , |B|Ṁ ∩ |C|Ṁ
〉

A.1i
=

〈

|A|Ṁ , |B ∧ C|Ṁ
〉 A.1iii

= 〈|A|Ṁ , |¬(B∧C)|Ṁ 〉, we have, 〈|A|Ṁ , |¬(B∧C)|Ṁ 〉 ∈

Ȯw. By (DO⋆), 〈|A|Ṁ↓, |¬(B∧C)|Ṁ↓〉 ∈
⋆

Ow. However, 〈|A|Ṁ↓, |¬(B∧C)|Ṁ↓〉
A.14iii
=

〈

|A|Ṁ↓, |B ∧ C|Ṁ↓
〉 A.14i

=
〈

|A|Ṁ↓, |B|Ṁ↓ ∩ |C|Ṁ↓
〉

= 〈X,Y ∩ Z〉. Thus,

〈X,Y ∩ Z〉 ∈
⋆

Ow—a contradiction. Thus,
〈

|A|Ṁ , |B|Ṁ ∩ |C|Ṁ
〉

/∈ Ȯw. Since

Ṁ satisfies (M-WRM), 〈|A|Ṁ ∩ |C|Ṁ , |B|Ṁ 〉
A.1i
= 〈|A ∧ C|Ṁ , |B|Ṁ 〉 ∈ Ȯw. Since

A ∧ C ∈ Ψ̂ (since Ψ̂ is closed under the classical connectives and A,C ∈ Ψ̂)

and B ∈ Ψ̂, by (DO⋆), 〈|A ∧ C|Ṁ↓, |B|Ṁ↓〉
A.14i
= 〈|A|Ṁ↓ ∩ |C|Ṁ↓, |B|Ṁ↓〉 =

〈X ∩ Z, Y 〉 ∈
⋆

Ow.
The other cases are shown in a similar way and are left to the reader.

Now we show that Ṁ and
⋆

M are equivalent modulo Φ̂.

Lemma A.16. For all ψ ∈ Φ̂ and all w ∈
⋆

W , Ṁ, w |= ψ iff
⋆

M,w |= ψ.

Proof. We show the equivalence by induction on the length of ψ. The equiva-
lence holds for all propositional formulas ψ by Lemma A.10.

Let now ψ = O(A | B). Note thatA,B ∈ Ψ̂.
⋆

M,w |= O(A | B) iff 〈|B| ⋆

M
, |A| ⋆

M
〉 ∈

⋆

Ow iff (by Lemma A.11) 〈|B|Ṁ↓, |A|Ṁ↓〉 ∈
⋆

Ow. By (DO⋆), there are A′, B′ ∈ Ψ̂

such that |A′|Ṁ↓ = |A|Ṁ↓, |B′|Ṁ↓ = |B|Ṁ↓ and 〈|B′|Ṁ , |A
′|Ṁ 〉 ∈ Ȯw. Since

A,A′, B,B′ ∈ Ψ̂, by Lemma A.13, |A|Ṁ = |A′|Ṁ and |B|Ṁ = |B′|Ṁ . Thus,

〈|B|Ṁ , |A|Ṁ 〉 ∈ Ȯw and thus, Ṁ, w |= O(A | B). Let now Ṁ, w |= O(A | B).

Then 〈|B|Ṁ , |A|Ṁ 〉 ∈ Ȯw and thus by (DO⋆), 〈|B|Ṁ↓, |A|Ṁ↓〉 ∈
⋆

Ow. By Lemma

A.11, 〈|B| ⋆

M
, |A| ⋆

M
〉 ∈

⋆

Ow and thus,
⋆

M,w |= O(A | B).

Let ψ = •iO(A | B). Note thatA,B ∈ Ψ̂.
⋆

M,w |= •iO(A | B) iff 〈|B| ⋆

M
, |A| ⋆

M
〉 ∈

⋆

N i
w iff (by Lemma A.11) 〈|B|Ṁ↓, |A|Ṁ↓〉 ∈

⋆

N i
w. By (DN i⋆), there are A′, B′ ∈

Ψ̂ such that |A′|Ṁ↓ = |A|Ṁ↓, |B′|Ṁ↓ = |B|Ṁ↓ and 〈|B′|Ṁ , |A
′|Ṁ 〉 ∈ Ṅ i

w. Since

A,A′, B,B′ ∈ Ψ̂, by Lemma A.13, |A|Ṁ = |A′|Ṁ and |B|Ṁ = |B′|Ṁ . Thus,

〈|B|Ṁ , |A|Ṁ 〉 ∈ Ṅ i
w and thus, Ṁ, w |= •iO(A | B). Let now Ṁ, w |= •iO(A |

B). Then 〈|B|Ṁ , |A|Ṁ 〉 ∈ Ṅ i
w and thus by (DO⋆), 〈|B|Ṁ↓, |A|Ṁ↓〉 ∈

⋆

N i
w. By

Lemma A.11, 〈|B| ⋆

M
, |A| ⋆

M
〉 ∈

⋆

N i
w and thus,

⋆

M,w |= •iO(A | B).

The case ψ = •pO(A | B) is shown analogously.

Let ψ = OiA. Note that A ∈ Ψ̂.
⋆

M,w |= OiA iff |A| ⋆

M
∈

⋆

Oi
w iff (by Lemma

A.11) |A|Ṁ↓ ∈
⋆

Oi
w. By (DOi⋆), there is a A′ ∈ Ψ̂ such that |A′|Ṁ↓ = |A|Ṁ↓,

and |A′|Ṁ ∈ Ȯi
w. Since A,A′ ∈ Ψ̂, by Lemma A.13, |A|Ṁ = |A′|Ṁ . Thus,

|A|Ṁ ∈ Ȯi
w and thus, Ṁ, w |= OiA. Let now Ṁ, w |= OiA. Then |A|Ṁ ∈ Ȯi

w

and thus by (DOi⋆), |A|Ṁ↓ ∈
⋆

Oi
w. By Lemma A.11, |A| ⋆

M
∈

⋆

Oi
w and thus,

⋆

M,w |= OiA.
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The case ψ = OpA is shown analogously.
We still have to show that our statement holds for ϕ ∈ (L ∩ Ψ̂) \ (P ∪ L′).

As induction hypothesis, suppose that the equivalence holds for ψ1, ψ2 ∈ Φ̂.

Let ψ = ψ1 ∧ ψ2. Then
⋆

M,w |= ψ1 ∧ ψ2 iff
⋆

M,w |= ψ1, ψ2 tiff (by induction
hypothesis) Ṁ, w |= ψ1, ψ2 iff Ṁ, w |= ψ1 ∧ ψ2. The cases ψ = ψ1 ∨ ψ2, ψ =
ψ1 ⊃ ψ2 and ψ = ¬ψ1 are shown similarly. Thus, the equivalence holds for all
formulas ψ ∈ Φ̂.

Corollary A.1. For all ψ ∈ Φ̂, Ṁ |= ψ iff
⋆

M |= ψ.

Proof. Ṁ |= ψ iff Ṁ, @̇ |= ψ iff (by Lemma A.16 and since
⋆

@ = @̇)
⋆

M,
⋆

@ |= ψ

iff
⋆

M |= ψ.

Theorem A.3. L+ is complete with respect to the class of frames that satisfy
the appropriate conditions.

Proof. The proof is similar to the proof of Theorem A.2. Take again a formula
ψ such that 0L+ ψ. The model Ṁ = 〈Ḟ, @̇, v̇〉 constructed for Theorem A.2
meeting the respective model conditions was such that Ṁ, @̇ 2 ψ and thus

Ṁ 2 ψ. We choose now Φ to be the set of subformulas of ψ. We construct
⋆

M

on basis of Ṁ as above. By Corollary A.1,
⋆

M 2 ψ. By Lemma A.15,
⋆

F satisfies
the respective frame conditions. Therefore, there is a model in the respective
class of frames that meets the respective frame conditions. By contraposition
and generalization, if a formula ψ is valid with respect to that class, it must be
provable in L+.

The following two corollary follow immediately.

Corollary A.2. L+ is sound and complete with respect to the class of all finite
frames that meet the appropriate frame conditions.

Corollary A.3. L+ has the finite model property.

Corollary A.4. L+ is decidable.

A.6. Dealing with (finite) premise sets

In order to work with (finite) premise sets Γ ⊂ L we define:

Γ |=F ϕ iff for all F ∈ F : Γ |=F ϕ

Γ |=F ϕ iff for all M = 〈F ,@, v〉 : if M |= Γ, then M |= ϕ

Γ ⊢L+ ϕ iff ⊢L+(Γ) ϕ,

where L+(Γ) is L+ enriched by axioms γ for all γ ∈ Γ.
Let Γ ⊂ L and ϕ ∈ L.

Lemma A.17. ⊢L+(Γ) ϕ iff ⊢L+

∧

Γ ⊃ ϕ.
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Proof. “⇒”: Since ⊢L+(Γ) ϕ, for all L+(Γ)-extensions w′, ϕ ∈ w′. Suppose
0L+

∧

Γ ⊃ ϕ. Thus {
∧

Γ,¬ϕ} is L+-consistent and hence there is a maximal
consistent L+-extension w for which

∧

Γ,¬ϕ ∈ w. Obviously, due to the maxi-
mal consistency, γ ∈ w for all γ ∈ Γ. But then w is also a maximal consistent
L+(Γ)-extension—a contradiction.

“⇐”: Suppose 0L+(Γ) ϕ. Thus, there is a maximal consistent L+(Γ)-
extension w such that ¬ϕ ∈ w. Furthermore, γ ∈ w for all Γ and hence, due to
the maximal consistency,

∧

Γ ∈ w. Obviously, w is also an L+-extension. But,
due to the consistency of w,

∧

Γ ⊃ ϕ /∈ w—a contradiction.

Lemma A.18. M |=
∧

Γ ⊃ ϕ iff (if M |= Γ, then M |= ϕ).

Proof. “⇒”: M |=
∧

Γ ⊃ ϕ iff M |= ¬(
∧

Γ) ∨ ϕ iff (M |= ¬(
∧

Γ) or M |= ϕ).
Also, M |= Γ iff M |=

∧

Γ (due to (M-∧)). Thus, if M |= Γ, then M |= ϕ.
“⇐”: Suppose M 2

∧

Γ ⊃ ϕ, then M 2 ¬(
∧

Γ) ∨ ϕ. Then, by (M-∨), it is
not the case that (M |= ¬(

∧

Γ) or M |= ϕ). Thus, M 2 ¬(
∧

Γ) and M 2 ϕ,
and hence, M |=

∧

Γ and M 2 ϕ—a contradiction.

Theorem A.4. Where L+ ∈ {CDPM.2d+,CDPM.2e+} and F is the ap-
propriate class of frames, Γ |=F ϕ iff Γ ⊢L+ ϕ.

Proof. Γ |=F ϕ iff for all F ∈ F : Γ |=F ϕ iff for all F ∈ F and for all
M = 〈F,@, v〉 : if M |= Γ, then M |= ϕ iff (Lemma A.18) for all F ∈ F and for
all M = 〈F,@, v〉 : M |=

∧

Γ ⊃ ϕ iff (Theorem A.3) ⊢L+

∧

Γ ⊃ ϕ iff (Lemma
A.17) Γ ⊢L+ ϕ.

A.7. Deontic detachment

⊢
(

O(A | C) ∧ P(A ∧B | C) ∧ O(B | A ∧ C)
)

⊃ O(B | C) (DDP1)

⊢
(

O(A | ⊤) ∧ P(A ∧B | ⊤) ∧ O(B | A)
)

⊃ O(B | ⊤) (DDP⊤1)

⊢
(

O(A | C) ∧ P(A ∧B | C) ∧ P(B | ¬A ∧ C) ∧ O(B | A ∧ C)
)

⊃ O(B | C)
(DDP2)

⊢
(

O(A | ⊤) ∧ P(A ∧B | ⊤) ∧ P(B | ¬A) ∧ O(B | A)
)

⊃ O(B | ⊤) (DDP⊤2)

Theorem A.5. In CDPM.2d+ (DDP1) and (DDP⊤1) are valid.

Proof. By (S) and O(B | A∧C) we get O(A ⊃ B | C). P(A∧ (A ⊃ B) | C) is a
consequence of (CRE) and P(A∧B | C). By (CPAND), O(A | C), P(A∧ (A ⊃
B) | C) and O(A ⊃ B | C) we have O(A ∧ (A ⊃ B) | C). Thus, by (CRE),
O(A ∧B | C). By this, (RCPM) and P(A ∧B | C) we get O(B | C). (DDP⊤1)
follows immediately.

Theorem A.6. In CDPM.2e+ (DDP2) and (DDP⊤2) are valid.

Proof. The proof is similar to the one above. Since we don’t have (S), but
instead the weaker (PS’), we need the additional hypothesis P(B | ¬A ∧ C) in
order to derive O(A ⊃ B | C) from O(B | A ∧ C). The rest of the proof is
identical to the proof of Theorem A.5.
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B. Modeling nested permissible contexts

As pointed out in the main paper, the generic enhancement L+ for deontic
logics presented in Section 3 is not able to model nested permissible contexts.
These are cases in which we have a permissible context C to B but not P(C | B).
The idea was there to focus on the explication of the adaptive handling of
detachment and hence not to introduce additional complications. However, as
will be demonstrated in this section, the logical framework can be enhanced
with this ability by introducing some additional techniques.

Recall that 〈C1, . . . , Cn〉 is a permissive sequence from C1 to Cn iff, for all
i < n (a) ⊢ Ci+1 ⊃ Ci and (b) P(Ci+1 | Ci). Moreover, C is a permissible
context to B iff there is a permissive sequence from B to C.

We have already noticed that the permissive sequences characterizing per-
missible contexts have indeed sometimes a length of more than 1. An instance
was given by the asparagus example where we have O(¬f | ⊤), P(a | ⊤) and
P(f ∧ a | a), but not P(f ∧ a | ⊤). Evidently f ∧ a describes a permissible
context to ⊤.

B.1. Generalizing L+ for nested permissible contexts

How can permissible sequences be formally modeled? The idea is to make
use of an additional permission operator P(A | B) that expresses that A is a
permissible context to B. It is axiomatized as follows:

If ⊢ A ⊃ B, then P(A | B) ⊃ P(A | B) (P-Ps)

⊢
(

P(B | A) ∧ P(C | B)
)

⊃ P(C | A) (Ps-T)

By these axioms we can derive P(f ∧ a | ⊤) from P(a | ⊤) and P(f ∧ a | a), as
desired. More generally, we are able to derive P(Cn | C1) from P(C2 | C1), . . . ,
P(Cn | Cn−1) (where for all i < n, ⊢ Ci+1 ⊃ Ci) by multiple applications of
(P-Ps) and (Ps-T).

Now we can adjust the axiomatization of our generic enhancement L+ of
the base logic L from Section 3 so that it can model precisely the more general
notions from Section 2.

If ⊢ D ⊃ ¬A and ⊢ C ⊃ B, then
((

P(D | C) ∨ O(D | C)
)

∧ C∧
P(C | B) ∧ O(A | B)

)

⊃ •pO(A | B)
(Ep-g)

If ⊢ A ⊃ ¬D,⊢ A ⊃ ¬C, and ⊢ C ⊃ B, then
(

O(D | C) ∧ O(A | B) ∧ ¬P(C | B)
)

⊃ •pO(D | C)
(CTDR-g)

The idea behind (Ep-g) is that if O(A | B) is excepted in C, then the proper
obligation to bring about A should not be detached from O(A | B). Hence, in
this case •pO(A | B) is derived. Rule (CTDR-g) concerns strong CTD obliga-
tions. Given that O(D | C) is a strong CTD obligation to O(A | B), the proper
obligation to bring about D should not be detachable from O(D | C). Hence,
•pO(D | C) is derived.
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The rules (fV) resp. (oV-ei) that manage the blocking of instrumental de-
tachment in case an obligation is factually violated resp. in case there is a more
specific obligation incompatible with it can remain as they were defined in Sec-
tion 3, since permissible contexts do not play a role for them.

Definition B.1. Given a base logic L we define L+
P
to be L enriched by the ax-

ioms (P-Ps), (Ps-T), (Ep-g), (CTDR-g), (fV), (oV-ei), (CREi), (RCEi), (CREp),
(RCEp), (EOi), (EOp), (FDp), and (FDi).

The underlying logic for the following examples is again an enrichedCDPM.2α
where α ∈ {d, e}, i.e., CDPM.2α+

P
.

Example B.1. Let us again have a look at the asparagus example (PA). One of
the counter-intuitive consequences of CDPM.2α+ is •pO(f | f ∧ a) which is
derivable by (CTDR). It is easy to see that this is not anymore derivable by
CDPM.2α+

P
. The reason is that P(f ∧ a | ⊤) is derivable (given P(a | ⊤)

and P(f ∧ a | a)) and hence (CTDR-g) is not applicable in such a way that
•pO(f | f ∧ a) is derivable.

There is still a drawback to the idea as it was presented so far. Take for
instance the premises of the Forrester paradox: O(¬k | ⊤) and O(g | k). Note
that there are models6 in which k is a permissible context to ⊤, that is to say,
models in which P(k | ⊤) is verified. Take for instance the model that validates
P(k ∨ x | ⊤) and P(k | k ∨ x). Moreover, there is a model that validates
P(k | ⊤) even if there is no permissive sequence from ⊤ to k. As a consequence,
¬P(k | ⊤) is not derivable and hence (CTDR-g) is not applicable in order to
derive •pO(g | k).

The reason for this is that all that is guaranteed by (P-Ps) and (Ps-T) is
that if there is a permissive sequence from some A to some B then P(B | A).
However, the other direction is not ensured. Moreover, there seem to be no
simple axiomatic way of doing so. What would have to be expressed is that
whenever we have P(B | A) then there is a natural number n such that there
is a permissive sequence 〈C1, . . . , Cn〉 where A = C1 and B = Cn. However,
without means to quantify over propositions and numbers this seems a hopeless
enterprise.

Here is where ALs help us out another time. The idea is to interpret a
premise set in such a way that B is a permissible context to A, i.e., P(B | A), iff
there is an explicit permissive sequence from A to B. Our axioms (P-Ps) and
(Ps-T) ensure the right-left direction. Hence, it is the task of the AL to ensure
the left-right direction. In order to achieve this, we define the abnormalities
ΩP = {P(B | A) | A,B ∈ P} and the adaptive logic PL+

P
by the triple 〈L+

P
,ΩP,

reliability〉.
The reason why this realizes both directions is easy to see. If there is a

permission sequence from A to B, then by (P-Ps) and (Ps-T), P(B | A). If

6The semantics of CDPM.2α
+

P
is defined by means of neighborhood frames similar as the

semantics of CDPM.2α+ in Part A. I will give a more precise account of this in Section B.3.
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there is no permissive sequence, then P(B | A) is not derivable by (P-Ps) and
(Ps-T) and the AL will take care of deriving ¬P(B | A), since P(B | A) is an
abnormality. Obviously ⊢

L
+

P

P(B | A)∨¬P(B | A) (presupposing ¬ is a classical

negation) and hence ¬P(B | A) is adaptively derivable on the condition {P(B |
A)}. In the remainder we indicate such conditional derivations by “RCP” in
the adaptive proofs. The following examples are formulated for PCDPM.2α+

P

where α ∈ {d, e}.

Example B.2. Let us take another look at the Gentle Murderer.

1 O(¬k | ⊤) PREM ∅
2 O(g | k) PREM ∅
3 ¬P(k | ⊤) RCP

{

P(k | ⊤)
}

4 •pO(g | k) 1,2,3; CTDR-g
{

P(k | ⊤)
}

It is easy to see that there is no way of extending the proof in such a way
that lines 3 and 4 get marked. Hence, as desired, •pO(g | k) is a finally derivable
in PCDPM.2α+

P
.

The following example features nested permissible contexts.

Example B.3. Let ai+1 ⊢ ai where 1 ≤ i < 3.

1 O(b | a1) PREM ∅
2 P(a2 | a1) PREM ∅
3 ¬P(a3 | a1) PREM ∅
4 O(b | a2) PREM ∅
5 P(a3 | a2) PREM ∅
6 O(¬b | a3) PREM ∅
7 ¬P(a3 | a1) PREM ∅
8 a3 PREM ∅
9 O(¬a3 | a1) 7; Def ∅

10 P(a2 | a1) 2; P-Ps ∅
11 P(a3 | a2) 5; P-Ps ∅
12 P(a3 | a1) 10,11; Ps-T ∅
13 a2 8; CL ∅
14 •pO(¬a3 | a1) 5,9,10,13; Ep-g ∅
15 •iO(¬a3 | a1) 8,9; fV ∅
16 •pO(b | a1) 1,6,12,8; Ep-g ∅
17 •pO(b | a2) 4,6,11,13; Ep-g ∅
18 •iO(b | a1) 1,6,8; oV-Ei ∅
19 •iO(b | a2) 4,6,8; oV-Ei ∅

Note that P(a3 | a1) although ¬P(a3 | a1). The two permissions P(a2 | a1)
and P(a3 | a2) give rise to the nested permissible context a3 to a2 where a2
is a permissible context to a1. See for an illustration Figure 1a. Note that
•pO(b | a1) is not derivable by CDPM.2α+. Evidently it is desired, since
O(b | a1) and O(b | a2) are excepted in a3 due to O(¬b | a3) and P(a3 | a1)
(resp. P(a3 | a2)).
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O(b | a1)

O(b | a2)

O(¬b | a3)

(a)

O(b | a1)

O(b | a2)

O(¬b | a3)

O(b | a4)

(b)

Figure 1: The dashed line indicates an inconsistency between b and ¬b. The
solid arrow indicates that e.g. a2 is a permissible context to a1.

Example B.4. Let us extend the example from above. The reader may wonder
what happens if the primary obligation to bring about b in the context a1
gets reinstated at an even more specific level (see Figure 1b). Suppose for the
following that a4 ⊢ a3.

20 O(b | a4) PREM ∅
21 a4 PREM ∅
22 P(a4 | a3) PREM ∅
23 P(a4 | a3) 22; P-Ps ∅
24 •pO(¬b | a3) 6,20,21,23; Ep-g ∅
25 •iO(¬b | a3) 6,20,21; oV-Ei ∅

As desired, due to the second element of lines 24 and 25, proper and instru-
mental detachment is blocked from O(¬b | a3) since it is excepted in a4 since
we have O(b | a4) and P(a4 | a3).

B.2. Adaptively Applying Detachment

In order to apply deontic detachment adaptively we can now proceed anal-
ogously to Section 4. Given a premise set Γ we first apply PL+

P
and then DL+

P

(as defined in Section 4.2). This is realized by a sequential adaptive logic. DPL

is characterized by the consequence relation

CnDPL(Γ) = Cn
DL

+

P

(Cn
PL

+

P

(Γ))

The marking for abnormalities in ΩP is analogous to Definition 2 in the main
paper (see Definition B.2 below). We only need to slightly alter the marking
for abnormalities in Ωd. Since in the sequential case DL+

P
operates on the

consequence set of PL+
P
, Dab-formulas over abnormalities in Ωd that are derived

at unmarked lines on conditions that are subsets of ΩP have to be taken into
account for the marking. Let me give an example.
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Example (continues Example B.2). We extend the proof above by the following
lines:

5 k PREM ∅
‡(4)6 Opg 2,5; cFDp

{

•pO(g | k)
}

7 Op¬k 1; cFDp
{

•pO(¬k | ⊤)
}

8 •iO(¬k | ⊤) 1,5; fV ∅
9 Oig 2,5; cFDi

{

•iO(g | k)
}

Note that the Dab-formula that is responsible for the marking of line 6
has been derived on the condition {P(k | ⊤)} at line 4. It is derivable in
PCDPM.2α+

P
that k is not a permissible context to ⊤ (line 3). Given this, it

follows further that O(g | k) is a strong CTD obligation to O(¬k | ⊤) and hence
•pO(g | k) is derived at line 4. This, however, blocks the detachment at line 6.

Where Dab(∆1), . . . ,Dab(∆m) are all minimal disjunctions of abnormali-
ties in ΩP derived on the empty condition at stage s, we define UP

s (Γ) =
{∆1, . . . ,∆m}. The marking for PL+

P
is defined as usual for the reliability

strategy.

Definition B.2. Line i is †-marked at stage s iff, where ∆ ⊆ ΩP is its condition,
∆ ∩ UP

s (Γ) 6= ∅.

Where Dab(∆′
1), . . . ,Dab(∆

′
n) are the minimal disjunctions of abnormalities

in Ωd derived at unmarked lines on conditions Θ ⊆ ΩP at stage s, we define
Ud
s (Γ) = {∆′

1, . . . ,∆
′
n}.

Definition B.3. Line i is ‡-marked at stage s iff, where ∆ is its condition,
∆ ∩ Ud

s (Γ) 6= ∅.

Example (continues Example B.3). Prolonging the proof above nicely demon-
strates the conditional applications of detachment for the case with nested ex-
ceptional contexts.

20 a1 8; CL ∅
‡(16)21 Opb 1,20; cFDp

{

•pO(b | a1)
}

‡(17)22 Opb 4,13; cFDp
{

•pO(b | a2)
}

23 Op¬b 6,8; cFDp
{

•pO(¬b | a3)
}

24 Oi¬b 6,8; cFDi
{

•iO(¬b | a3)
}

As expected, factual detachment is neither applicable to O(b | a1) nor to
O(b | a2). Both are excepted in a3. Hence, O

p¬b is derived at line 23 and Oi¬b
at line 24.

Example (continues Example B.4). The situation is different if we proceed with
the enhanced premise set from Example B.4.

‡(24)26 Op¬b 6,8; cFDp
{

•pO(¬b | a3)
}

27 Opb 20,21; cFDp
{

•pO(b | a4)
}
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‡(25)28 Oi¬b 6,8; cFDi
{

•iO(¬b | a3)
}

29 Oib 20,21; cFDi
{

•iO(b | a4)
}

In this case we are able to derive the proper and instrumental obligation to
bring about b. This is intuitive since O(¬b | a3) is excepted in a4.

B.3. The Semantics

The semantics for our enhanced new lower limit logic CDPM.2α+
P
is defined

in a similar way as the semantics ofCDPM.2α+. Neighborhood frames are now
tuples 〈W,O,N i,N p,Oi,Op,P⋆〉 where W,O,N i,N p,Oi, and Op are defined
as before and P⋆ :W → (℘(W )×℘(W )) is used to characterize our new operator
P. We add the following requirement for all w ∈W :

M,w |= P(A | B) iff 〈|B|M , |A|M 〉 ∈ P⋆
w (M-P⋆)

We have to add two more frame conditions corresponding to the new rules
(P-Ps) and (Ps-T), namely

For all X,Y ⊆W, if X ⊆ Y and 〈Y,X〉 /∈ Ow, then 〈Y,X〉 ∈ P⋆
w (F-P-Ps)

For all X,Y, Z ⊆W, if 〈X,Y 〉, 〈Y,Z〉 ∈ P⋆
w, then 〈X,Z〉 ∈ P⋆

w (F-Ps-T)

Moreover, the frame-conditions for the altered rules (Ep-g) and (CTDR-g)
have to be adjusted.

For all X,Y, Z, Z ′ ⊆W, if X ⊆ Z ′, Z ⊆ Y,
(

〈Z,Z ′〉 /∈ Ow or 〈Z,Z ′〉 ∈ Ow

)

,
w ∈ Z, 〈Y,Z〉 ∈ P⋆

w, and 〈Y,X〉 ∈ Ow, then 〈Y,X〉 ∈ N p
w

(F-Ep-g)

For all X,Y, Z, Z ′ ⊆W, if X ⊆ Z ′, X ⊆ Z,Z ⊆ Y,
〈Z,Z ′〉, 〈Y,X〉 ∈ Ow and 〈Y,Z〉 /∈ P⋆

w, then 〈Z,Z ′〉 ∈ N p
w

(F-CTDR-g)

The soundness and completeness proofs offered for CDPM.2α+ in Part
A can be easily adjusted for the altered and additional frame conditions for
CDPM.2α+

P
.
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