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Abstract: The main focus of this paper is to develop an adaptive formal apparatus capable

of capturing arguments conducted within a conceptual framework. I first explain one of the

most recent theories of concepts developed by cognitivists, in which a crucial part is played by

the notion of a dynamic frame. Next, I describe how a dynamic frame may be captured by a

finite set of formulas and how a formalized adaptive framework for reasoning within a dynamic

frame can be developed.
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1 Introduction

On the classical theory of concepts to each concept there corresponds a set of necessary and

sufficient conditions for falling under that concept, a set of conditions that can be discovered

by conceptual analysis. Arguably, the classical view is not an adequate picture of how concepts

work in human cognition. It is not my purpose here to argue against the classical theory, but

I will explain in a few words why one might want to reject it.1

First, the alleged definitional conditions of classical concepts are quite intractable: an

average human being is usually unable to produce upon request a correct analysis (in the

classical sense) of concepts that they use, and even philosophers — people who tend to spend

an unusual amount of time on conceptual analysis — “have failed to provide a single generally

agreed analysis of any important concept” (Andersen et al. 2006: 6).

Quite independently, cognitivists gathered psychological evidence to the effect that the

structure of human concepts is graded — objects can fall under a concept to a higher or lower

degree (Rosch 1973a, 1975a,b, 1978, 1983) — a possibility that can’t be easily accounted for by

the classical theory, according to which an object either satisfies the necessary and sufficient

conditions for falling under a concept or it doesn’t and that’s the end of the story.

Also, a different account of how (at least certain) concepts work has been put forward

by Wittgenstein (1953) and has gained some popularity since then. On this view, there are

at least some concepts whose instances have no common features and bear a mere family

resemblance to each other. In such a case any classical conceptual analysis of a concept is

impossible because there are no necessary or sufficient conditions for falling under it.
1As far as the criticism of the classical theory is involved, the locus classicus is (Quine 1951). See however

a more recent attack launched from a slightly different position (Fodor et al. 1999).
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A few alternatives to the classical theory of concepts have been developed. For instance,

the feature list theory, according to which a concept, instead of being associated with a set

of necessary and sufficient conditions, is rather explicated in terms of a list of features that

subjects typically produce for the category (see e.g. Glass and Holyoak 1975).2 Another ex-

ample is the prototype theory of categorization. On this view, a category is constructed around

a quintessential example or a typical member and other members fall under that category to

the degree to which they share attributes with that prototype (Rosch 1973b, 1983).3

One of the major and most recent accounts of concepts, inspired by the work of Rosch,

employs the notion of a dynamic conceptual frame.4 One of the most well-known formula-

tions of the theory has been provided in (Barsalou 1987; Barsalou and Hale 1993; Barsalou

1993; Barsalou and Yeh 2006). Motivated by the work of Kuhn (esp. Kuhn 1974), certain

applications to the history of science have been put forward and it has been argued that dy-

namic frames are a useful tool for accounting for scientific revolutions and conceptual frame

incommensurability (Andersen et al. 2006).

Although very interesting, the cognitivists’ treatment of dynamic frames is fairly informal

and the logical aspects of the issue have not been investigated. The present work is intended as

a step towards filling the gap between interesting but informal insights of cognitive researchers

and the mainstream methodology of formal logicians. I will first explain at length what dynamic

frames are. Having done that, I delimit a rather simple and yet interesting class of dynamic

frames and develop a language which can be used to describe such frames by finite sets of

formulas. Then I introduce a convenient way of capturing a reasoning led within a conceptual

framework. The basic idea is that such a reasoning can be modeled as an adaptive framework

which takes negations of the formulas that describe the frame to be abnormalities.

A few remarks about the structure of this paper are due. Section 2 describes the notion of a

dynamic frame and specifies the class of frames that I will be interested in. Section 3 describes

how a finite set of formulas that captures a given frame is to be constructed. Section 4 provides

us with a first stab at the notion of reasoning within a conceptual frame and points towards

the need for adaptivity in this context. Section 5 is meant as a fairly accessible explanation

of what adaptive logics are. Section 6 explains how an adaptive approach can be developed to

accommodate the notion of reasoning within a conceptual frame.

I hope the reader can forgive me the length of this paper, in the light of the fact that a strong

emphasis is put on the accessibility of the material. Especially, accessibility considerations
2This theory is criticized by Barsalou (1992b: 25-28), who presents what he considers to be evidence against

the feature list approach. For a logician it is hard to assess this criticism, mostly because Barsalou doesn’t

provide any methodological comments and it is sometimes unclear why exactly certain facts should count as

evidence against or for the feature list theory. Getting into details lies beyond the scope of this paper, though.
3See also (MacLaur 1991) for a more recent survey of the prototype theory, and (Thagard 1992: 13-19, 24-36)

for a more historical survey of main existing theories of concepts.
4The psychological evidence for the adequacy of this theory is surveyed by Andersen et al. (2006: 47-52).
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motivated sections 3 and 5. Section 3 is needed because it explains the notion of a dynamic

frame to non-cognitivists (and to those cognitivists who aren’t familiar with the notion), and

section 5 is needed because it describes adaptive logics to non-logicians (and to those logicians

who aren’t familiar with this approach).

2 Frames and their constituents

A frame developed for a single concept only is called a partial frame. In this paper I will be

interested in partial frames only, for at least two reasons: (i) reasoning within partial frames is

complex enough to provide an interesting subject of study, and (ii) in a sense to be specified,

more complex frames result from superimposition of partial frames, and hence if we are to

have a workable formal theory of reasoning within dynamic frames, partial frames seem to be

a good point of departure.

A partial dynamic frame (developed for a single concept A only) is composed of two layers

of concepts: attributes and values. Every object that falls under A is supposed to have all

the attributes. Objects having a certain attribute are divided according to what values of

those attributes they instantiate. Take a fairly primitive example. The concept bird can be

considered in a frame where it has only two subordinate attributes: beak and foot, each

having two values: round, pointed, and webbed, clawed respectively.

Some combinations of values (from among each of the attributes one value is chosen) are

considered to be activated. This, roughly speaking, means that objects that instantiate values

from that combination are taken to constitute a separate taxonomical unit. For instance, in the

exemplary frame there may seem to exist just two activation patterns: {pointed, clawed}
and {round, webbed}, giving raise to the taxonomical units land bird and water bird

respectively. In this sense, a (partial) dynamic frame specifies a taxonomy of the concept under

consideration. The concept Bird in the frame under discussion is divided exhaustively and

exclusively into two separate taxonomical units.

What are the nodes of a conceptual frame? Barsalou (1993: 10) suggests that “frames are

large collections of perceptual symbols,” where perceptual symbols are supposed to be “aspects

of experience stored in memory via selective attention that function symbolically” (Barsalou

1993: 5). Considering the fact that clarifying these notions might be quite difficult, I will

just stick to the notions that I want to end up with anyway: in those contexts which we are

presently interested in we might just treat the root concept as well as the attributes and values

just like predicates whose reference is taken for granted.5

The notions of attributes and values haven’t been very clearly defined by the cognitivists.6

5This does not mean that there is no important distinction between concepts, meanings and predicates, as

Barsalou (1993) insists. My decision is mainly pragmatic.

6For instance, Barsalou says:
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Figure 1: A partial dynamic frame for the concept Bird.

However, when we consider a frame constructed for a single frame, the idea seems fairly simple.

Any object that falls under the root concept is supposed to have one of the values for each of

the attributes. Attributes are just aspects in which objects that fall under the root concept

are classified and values are various relevant features that an object can have with respect to

those aspects. So one of the main constituents of a dynamic frame is a tree-like structure.

This, however, does not exhaust the components of the frame.

Another important constituent of a dynamic frame are activation patterns. These decide

which combinations of values for the attributes that occur in the frame actually occur together

and constitute a separate taxonomical unit. The notion of taxonomical unit isn’t really defined

by the cognitivists, but the basic intuition is that a taxonomical unit is a group of objects

that satisfy certain selection of values not excluded by the conceptual frame and constitutes

(for some purposes) a separate group falling under the root concept. For instance, in the

frame from fig. 1, the combination {round beak,webbed foot} constitutes a taxonomical

unit of water birds and the combination {pointed beak,clawed foot} constitutes the

taxonomical unit of land birds, and the distinction between these two groups is introduced

for instance because there are certain useful generalizations that apply to all land birds but

not to all water birds, and so on. On the other hand, the above frame does not admit an

activation pattern where an object has a pointed beak but webbed feet, or a round beak and

clawed feet.

For any object that falls under the root concept and for any attribute in the frame this

A fundamental task for frame theorists is to provide satisfactory definitions for attribute and value.

I define an attribute as a concept that describes an aspect of at least some category members7

. . . The definition of value follows from the definition of attribute: Values are subordinate concepts

of an attribute. Because values are subordinate concepts, they inherit information from their

respective attribute concepts. (Barsalou 1992b: 30-31)
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object has to instantiate exactly one value for that attribute (it has to have at least one,

because otherwise the attribute wouldn’t be relevant for the classification and it has to have at

most one because for any attribute its values are exclusive).8 Also, the taxonomical units that

arise from the activation patterns are taken to be a division of the domain of objects that fall

under the root concept: no object should belong to two taxonomical units (see Andersen et al.

2006: 56) and every object should belong to a taxonomical unit (see Andersen et al. 2006: 27).

Yet another component of a dynamic frame are the so-called structural invariants, that is,

dependencies between the nodes of a frame.9 Those seem to be of two kinds: (i) between the

attributes and (ii) between values.10

Consider first the dependencies between the attributes that are accepted together with

the whole conceptual framework. For instance, if we extend the above example by adding

an attribute neck having two values: long, short, we could count among our structural

invariants that “anything with a beak must also have a neck, but not everything with a foot

also has a beak” (Andersen et al. 2006: 44). This, however, doesn’t seem very useful, at least as

long as partial frames are involved. Considering that any object falling under the root concept

has to have some values for all attributes it just seems that for every bird, if it has feet, it has

a beak. Indeed, the dependency might seem to fail when we consider a frame within a larger

frame (where there actually are things that can have feet without having a beak). However,

as long as we’re considering a single partial dynamic frame, the relation between attributes

seems fairly trivial: all objects that fall under the root concept have the attributes one way

or another. Hence, I will mostly ignore structural invariants pertaining to attributes in my

considerations.

On the other hand, the dependencies between values in a partial dynamic frame are more

interesting. For instance, it may seem that birds with webbed feet have round beaks and birds

with clawed feet have pointed beak. Andersen et al. (2006: 44) suggest that “these patterns

may be understood as physical constraints imposed by the nature,” whereas Hoyningen-Huene

(1993: 112-118) calls them “knowledge of regularities.” Barsalou (1992b: 37) on the other

hand mentions:

(a) constraints that hold for conceptual reasons,

(b) constraints that are empirical truths, and
8“. . . all of the attribute nodes are activated for every subordinate concept. However, value nodes appear in

mutually exclusive clusters.” (Andersen et al. 2006: 44)
9“Attributes in a frame are not independent slots but are often related correlationally and conceptually.”

(Barsalou 1992b: 35)
10There seem to be no interesting dependencies across the layers, besides those already captured by the

tree-like structure (a value entails its superordinate attribute, the attribute entails the disjunction of its values,

etc.). For (a) an attribute cannot exclude a value (it wouldn’t be a value anymore) and (b) it cannot entail a

specific value (otherwise there wouldn’t be multiple values available for that attribute and hence the attribute

would be redundant for the classification purposes).

5



(c) constraints that represent just statistical patterns or personal preferences.11

For my purpose I will ignore those constraints that aren’t taken to hold universally for all

objects falling under the root concept. The rationale is that if something is just a statistical

pattern it is not a part of our conceptual framework, but rather just an empirical belief that

we happen to hold, which does not enforce activation patterns anyway. I do, however, agree

with Barsalou that the constraints don’t have to be true — for a dynamic frame user it is

enough that they take those constraints to be true.

As for constraints that are either logical or causal, I will ignore the distinction between

them. For the purpose of this paper, the distinction is irrelevant.12 Also, there is no a priori

reason to exclude causal stories from conceptual frames. Sometimes our causal stories are so

entrenched in our conceptual framework that they actually determine our taxonomy and it

is not even clear that they are purely empirical truths. For instance, consider a frame that I

might entertain when I choose whether I should go to work by bike or just walk there (fig. 2).
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Figure 2: A partial dynamic frame for my way to work.

The dotted arrows represent constraints that hold ceteris paribus. That is, I assume that

the sole purpose of the trip is to get to work as soon as I can, that the route is the same no

matter what means of getting there I choose, and that I will be equally successful in getting

there in both cases etc. If I choose to walk, I will get there in 15 minutes, and if my trip takes

15 minutes this means I’m walking (and similarly for the other condition). Now, it is unclear

whether the constraints hold for purely conceptual reasons (my concept of travel at a distance

in this world is that speed has a certain correlation with time) or for causal reasons (they

11“. . . constraints need neither be logical nor empirical truths. . . attribute constraints often represent statis-

tical patterns or personal preferences. . . ” (Barsalou 1992b: 37)
12It might be relevant when we want to revise a conceptual frame, though. We might be more willing to give

up a causal story rather than a logical point.
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depend on some contingent truths of physics). What matters for our purpose, however, is that

they are entrenched deep enough to exclude certain activation patterns (the possibilities that

I walk to work in 5 minutes or that I bike there in 15 minutes under the circumstances).

In the case of fig. 2 the list of available activation patterns is:

{Walk, 15 min.}, {Bike, 5 min.}

and it so happens that all other activation patterns are excluded by the constraints that we

have. Is it always the case that the constraints determine the activation patterns? Barsa-

lou himself says only that “through the representation of increasingly specific subordinates,

taxonomies emerge in frames” (Barsalou 1992b: 51), but he doesn’t say explicitly how they

emerge or that they are determined by the constraints. Andersen et al. (2006: 59-60), on the

other hand, seem to suggest that the constraints determine the class of activation patterns:

. . . the frame determines which potential concepts are possible at the subordinate

level but that constraints exclude some of these . . . the value constraints also de-

termine that only specific activation patterns are possible.

This, however, doesn’t seem very obvious. For instance, on a fairly common view on the

nature of constraints called the Theory-Theory view (Murphy and Medin 1999), the values

in a conceptual framework are not connected just in virtue of co-occurrence. Rather there

either is a logical or causal story to tell, when one wants to explain why certain values are

connected or exclude each other.13 But if that’s the case, if conceptual constraints on values

really determined the activation patterns, it would mean that a conceptual frame user always

has a theory at hand that explains why the taxonomy is the way it is. But this is highly

unlikely: I can believe that a certain taxonomy of birds is adequate and have some explanation

as to why certain combinations of values exclude each other without actually believing a theory

that completely explains why there are those taxonomical units of birds that there are. For

this reason I will just assume that structural invariants pertaining to values only inform us

about the impossibility or necessity of co-occurrence of certain combinations of values without

actually determining the whole taxonomy.

Some other decisions that I make in order to approach dynamic frames formally pertain to:

(a) the membership relation, because I assume that if a taxonomical unit is determined by a

certain activation pattern an object has to instantiate all the values from that activation

pattern to fit into this unit (be a member of it);

13“Features in categories are not correlated by virtue of random combinations. Rather, correlations arise from

logical and biological necessity . . . It is no accident that animals with wings often fly or that objects with walls

tend to have roofs. Even less obvious correlations . . . usually have clear explanation.” (Murphy and Medin

1999: 439)
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(b) the “grounded-ness” of the whole frame, for I assume that neither are the attributes or

values roots of further dynamic frames, nor are the nodes a frame tree taxonomical units

resulting from other frames. Also,

(c) I provide only a very brief explanation of how the frame theory is supposed to explain the

graded structure of human concepts, without providing a formal framework that would

allow to deal with this issue in detail.

(d) I will assume that any partial frame is finitary : both the number of attributes and the

number of values for each attribute are finite.

(e) I will avoid getting into a discussion pertaining to the question whether the framework

provides a good explanation of the phenomenon of family resemblance.14

Even though the membership in a certain taxonomical unit requires falling under the root

concept and possessing all the values that the activation pattern for that unit contains, it

sometimes seems that we qualify an object to a certain unit even before we check whether it

actually has all the values included in its activation pattern. This, however, can be disregarded

for the formalization purposes, for it can be counted as an epistemic claim about classifying

objects with insufficient evidence, not as a claim about what makes an object a member

of a taxonomical unit. I will still assume that an object has to have all the values from the

activation pattern in order to be a member of a taxonomical unit, even if we sometimes classify

an object without sufficient empirical evidence for the claim that it instantiates all the required

properties, knowing only that it has some of the values that belong to an activation pattern

(and, ideally, that those values belong to only one activation pattern).

On the face of it, it may seem that we haven’t really gotten that far from the classical view.

One might ask, aren’t the attributes just the necessary conditions for an object to fall under the

root concept? Actually, there are some important differences here. First, on the classical theory

there is an objective, subject-independent answer to the question what the necessary conditions

are. A dynamic frame, on the other hand, describes the way a certain person thinks about the

root concept — for all that matters, other language users might use different attributes and

values in their frames for the same root concept and as long as they agree on identification

and classification of external objects those differences won’t matter. Also, on the dynamic

frame view, there is no ultimate level of analysis and there are no primitives, frames are in

this sense called ungrounded. “For any attribute, structural invariant, or constraint, people

can always construct further attributes, structural invariants, and constraints that capture

variability across instances . . . What was once a simple, unitary primitive becomes analyzed

and elaborated, such that it becomes a complex concept.” (Barsalou 1992b: 41)
14Claims that it does can be for instance found in (Andersen et al. 2006: 11). The basic idea is that a root

concept is a family resemblance concept if no two activation patterns in its dynamic frame have a value in

common.
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For example, the division of the attribute Foot into values Webbed and Clawed can be

analyzed in terms of the frame given in fig. 3.
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Figure 3: A partial dynamic frame for the concept Foot.

The concept Bird, on the other hand, may be considered as a taxonomical unit resulting

from the frame presented in fig. 4.15 Hence the slogan: “Human conceptual knowledge appears

to be frames all the way down.”(Barsalou 1992b: 40)

Clearly, partial frames can be superimposed in the manner described above, thus resulting

in larger structures. I, however, will just consider partial and grounded dynamic frames in

which the interpretation of the attributes and values is taken for granted and the root concept

is not considered as a taxonomical unit resulting from another conceptual frame. Besides the

fact that this decision facilitates the formalization that will follow, there are other pragmatic

factors to be considered. In many everyday contexts, when we consider whether we should

classify an object as belonging to a such-and-such taxonomical unit, or when we want to infer

something using the claim that it belongs to a certain taxonomical unit, we actually reason

within a partial and grounded conceptual frame. For example, when we ask ourselves whether a

given bird is a land bird or a water bird we usually do not even think about all those attributes

and values that the frame in fig. 4 is concerned with: they are irrelevant for the purpose at

hand.

Arguably, dynamic conceptual frames can also model typicality and the graded structure of

a concept. The basic idea is that in one’s experience, objects instantiating a specific activation
15Yes, the frame is a huge simplification and it doesn’t get some things right.
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Figure 4: A partial dynamic frame for the concept Animal.

pattern may have occurred more often than objects instantiating other activation patterns.

Those objects are taken to be more typical representatives of the root concept (see Barsalou

1992b: 47). This does not mean that there is a unique taxonomical unit which is universally

typical for the root concept: the choice is fairly subjective and will vary with the user’s

experience.16 In a similar way, an object can be considered more or less a typical instance of

the root concept, depending on how often the frame user has encountered objects instantiating

the activation pattern of its taxonomical unit in their previous experience.

Andersen et al. (2006: 14) insist that “there is no restriction on the number of attributes

linked to a major concept, or values linked to each attribute.” To the contrary, I will assume

that both the numbers of attributes and the number of values have to be finite. To start

with, the frames that we usually come up with are finite. Also, if we had an infinite number

of attributes, in order to classify an object to one of the taxonomical units we would have

to consider it under infinitely many fairly independent aspects, which we, humans, usually

don’t do. Given that the number of attributes is finite, the only way the number of values
16“For Westerners a small bird with a sharp beak, a short neck, and a medium-sized body, like a blackbird,

starling, or an American robin, is a good example of the concept. Those with longer legs, necks or beaks are

less good examples. For Asians, however, the best examples of ‘bird’ are likely to resemble ducks, geese, or

swans.” (Barsalou 1992a: 176)
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can be infinite is if there would be infinitely many values subordinate to one of the attributes.

This however, would mean that we either would have infinitely many taxonomically redundant

values or that there are infinitely many taxonomical units in our frame. But again, we rather

tend to avoid situations like these.17

3 Expressing dynamic frames

In the previous section I provided philosophical motivations and intuitively explained the main

concepts at play. Now it’s time to approach those concepts more formally. Ultimately, I will

want to capture formally the notion of reasoning within a conceptual framework. The basic

idea here is that if we can express a frame using a finite set Γ of sentences of a fairly manageable

language, we can model reasoning within a conceptual framework as reasoning with Γ as the

set of background premises. In order to do that, I have to provide a method of constructing

such a set first. This will be the subject of the present section.

Suppose we have a frame with the tree-like structure given in fig. 5.

The way the frame is represented is slightly different, but it should be self-explanatory. R

is the root concept, A1, A2, . . . Ai are its attributes, and each attribute Ak has nk values falling

under it: V k1 , V
k
2 , . . . , V

k
nk

. The language used for describing the frame is a fairly straightfor-

ward variant of a first-order language. Its alphabet consists of:

(i) a finite assembly of node letters:

R,A1, A2, . . . , Ai, V
1
1 , V

1
2 , . . . , V

1
n1
, V 2

1 , V
2
2 , . . . , V

2
n2
, V i1 , V

i
2 , . . . , V

i
ni

where i is a natural number determined by the number of the attributes of the original frame.

(ii) a finite number type letters (that will be used to represent taxonomical units):

T1, T2, . . . , Tk

(k is finite but it has to be large enough to perform the task the type letters are intended for,

read on for details.)

(iii) classical connectives and brackets:18

¬,∧,∨,→,≡, (, )

(iv) a countable reservoir of individual variables:

x1, x2, . . . ( also abbreviated as x, y, z, . . .)
17As an exception someone may suggest the case where, for instance, we have Size as an attribute and it’s

measured in terms of infinitely many numbers. But even then (at least for taxonomical purposes) we divide

the whole range of sizes into finitely many groups.
18For abbreviations, the ordering of the binding strength is fairly standard: ¬,∧,∨,→,≡. Hence p∧¬q∨r →

q ≡ r ∨ p ∧ s abbreviates (((p ∧ ¬q) ∨ r)→ q) ≡ (r ∨ (p ∧ s)).
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Figure 5: The tree structure of a frame to be expressed.

(v) quantifiers binding individual variables:

∀,∃

Both node and type letters are taken to be one-place predicates. The formation rules are

standard formation rules for a first order language.

It will be convenient to use generalized conjunctions and disjunctions.∨n
i P (x) stands for:

Pn1 (x) ∨ Pn2 (x) ∨ · · · ∨ Pni (x)

and
∧n
i P (x) abbreviates:

Pn1 (x) ∧ Pn2 (x) ∧ · · · ∧ Pni (x)

where n is an optional superscript, P a predicate and x an individual variable. Also, if Γ is a

finite set of formulas,
∨

Γ (
∧

Γ) is just a disjunction (conjunction) of all elements of Γ.

To express the tree structure we first have to say that all objects that fall under the root
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concept possess all its attributes. That is, we need n formulas of the form:

∀x(R(x)→ Ak(x)) (1)

Let’s call the set of formulas falling under this schema R.

Next, for any 1 ≤ k ≤ i we need the formula:

∀x[R(x)→ (Ak(x)→
k∨
nk

V knk
(x))] (2)

which says that any object that has an attribute Ak instantiates at least one value for that

attribute. Let’s call the set of all needed instances of (2) A.

We also need to say that values falling under each of the attributes are exclusive, that is,

that no object can simultaneously possess two different values for one and the same attribute.

If we were allowed to quantify over indices, we could just express this claim by:

∀k∀m, l (m 6= l ∧m ≤ nk ∧ l ≤ nk → ∀x(Ak(x)→ ¬(V km(x) ∧ V kl (x))))

Since, however, we want to keep the language as simple as possible, we have to use a slightly

different way around this issue. Take any 1 ≤ k ≤ i and consider the values V k1 , V
k
2 , . . . , V

k
nk

.

For each k, we extend our set of formulas that describe the frame by all formulas of the form:

¬∃x(Ak(x) ∧ V km(x) ∧ V kl (x)) (3)

where m 6= l, 1 ≤ m ≤ nk, 1 ≤ l ≤ nk. Let’s call the set of formulas falling under this schema

V.

The next item on our list is value constraints. It might seem that it is enough to say that

a value constraint is of the form:

∀xφ(x)

where x is the only variable that occurs (free or bound) in φ(x) and φ(x) is a truth-functional

combination of atomic formulas constructed from V -predicates and its arguments only. This,

however, would be too wide: for instance, it would turn out that formulas entailing instances

of (3) would qualify as value constraints. Besides, determining a more specific form of value

constraints might be useful when we discuss possible ways of revising a dynamic frame.19

More importantly, if the definition of constraints is such that there are finitely many possible

constraints for a frame, this will impact the effective decidability of the consistency of arbitrary

sets of constraints and of the set of formulas representing a frame itself. Hence, I will try to

specify the form of value constraints in more detail.

The intuition here is that the constraints relate values of different attributes to each other,

thus excluding or enforcing certain combinations of values. We want to be able to say that the
19Alas, revisions of a conceptual frame lie beyond the scope of this (already long) paper.
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presence (or lack) of certain combinations of values (or a certain value) for some attributes (or

for a single attribute) entails the presence (or lack) of a certain value (or certain combinations

of values) for another attribute (other attributes). A few definitions first.

A set of predicates Π is a choice set of the tree if and only if:

(a) Every predicate in Π is a V lm, that is, Π is a set of value predicates,

(b) For every k there is an m such that V km is in Π,

(c) For no k there are m, l, m 6= l such that V km and V kl are both in Π.

The set of all choice sets of the tree will be called γ. Similarly, a set of predicates Π is a partial

choice set of the tree if it satisfies the conditions (a) and (c) (condition (b) is dropped).

If a set of predicates Π is non-empty and finite, and P1, P2, . . . , Pk are all the members of

Π, by
∧

Π(x) (
∨

Π(x)) I abbreviate P1(x) ∧ P2(x) ∧ · · · ∧ Pk(x) (P1(x) ∨ P2(x) ∨ · · · ∨ Pk(x)).

I allow the degenerate case when k = 1. In this case both
∧

Π and
∨

Π are the same as the

sole member of Π.

A set of (possibly complex) predicates Π with members of the form:

φ( )

is a constraint set iff:

(a) Every φ( ) ∈ Π is either an atomic predicate or a negated atomic predicate.

(b) The set Π+ obtained from Π by removing all negation symbols is a partial choice set.

Now, the general form of a value constraint is:

∀x(
∧

Π1(x)→
∨

Π2(x)) (4)

where Π1,Π2 are constraint sets and Π+
1 ∩ Π+

2 = ∅ (the sets are exclusive because we don’t

want to have constraints that values put on themselves, in a way). Formulas of this form will

be called C-formulas.

Remarks. Observe the following:

(a) Given the definition of C-formulas, for any dynamic frame there are finitely many possible

different value constraints.

(b) We don’t need formulas of the form φ∨ψ → χ because they are equivalent to {φ→ χ, ψ →
χ}.

(c) We don’t need formulas of the form φ→ ψ ∧χ because they are equivalent to {φ→ ψ, φ→
χ}.20

20I say that a formula is equivalent to a set of formulas when all formulas from that set can be classically

derived from that formula and the other way round (possibly with background premises if they’re explicitly

mentioned).
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(d) We don’t need (well, we even don’t want) to have formulas with
∧

Π(x) in the antecedent

where Π contains V k
l , V

k
m, where m 6= l.

(e) It might seem we also need formulas of the form (4) where Π2 contains both V k
m and V k

l

(m 6= l) in order to express the fact that a certain value combination restricts a selection of

values for Ak, but doesn’t determine the value for this attribute completely. For instance,

we may want to state:

∀x(V 1
1 (x)→ V 2

1 (x) ∨ V 2
2 (x)) (5)

There is, however, a way around it. Let V 2
1 , V

2
2 , V

2
3 , V

2
4 , . . . , V

2
m be all value predicates for

Ak. Then, because we’ve already included all needed formulas of the form (2) and (3), (5)

is equivalent to the set of formulas:

∀x(V 1
1 (x) → ¬V 2

3 (x))

∀x(V 1
1 (x) → ¬V 2

4 (x))

...

∀x(V 1
1 (x) → ¬V 2

m(x))

which are all C-formulas.

(f) If one feels more comfortable with a restricted version of the constraint, (4) should be

replaced by a restricted formula:

∀x[R(x)→ (
∧

Π1(x)→
∨

Π2(x))]

The set describing the frame is now supposed to be extended by a consistent set of C-

formulas of one’s choice (notice that the consistency of such a set is effectively decidable: every

such set is finite and the language is monadic first-order). Let’s call this set .

I now have to explain how the activation patters are to be described and how the taxonom-

ical types are to be introduced. The set of activation patterns is a subset α of γ. It has to

satisfy the following condition:

¬∃Π∈α[R ∪ A ∪ V ∪ C |= ¬∃x
∧

Π(x)] (6)

That is, the activation patterns cannot contain patterns already excluded by the tree structure

together with the value constraints.

However, it doesn’t have to be the case that:

∀Π∈γ [R ∪ A ∪ V ∪ C 6|= ¬∃x
∧

Π(x)→ Π ∈ α]

which means, a choice set doesn’t have to be an activation pattern just because it’s not excluded

by the structure and value constraints. Clearly, α will be finite.

Now take α¬ to be the set of all those choice sets that are not in α. Suppose Π′1,Π
′
2, . . . ,Π

′
n

are all the members of α¬. We need to say that no object that falls under the root concept

falls under one of the Π′i’s. That is, we need n formulas of the form:

¬∃x[R(x) ∧
∧

Π′i(x)] (7)

The set of all needed formulas falling under (7) will be called P.
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Remark. Some cognitivists insist also that the frame embraces what they call “ontological

knowledge,” that is, the claim that every activation pattern is instantiated. I’m not sure whether

this is what we need. For instance, we still think that the taxonomical unit ‘tyrannosaurus rex’

makes sense, even though, to the best of my knowledge, there are no exemplars alive walking

around. Of course, one could say that quantification is not restricted to the present moment

etc. Just to avoid issues like that, I’ll say: nothing logically relevant for the further discussion

hangs on which option you choose (although, if you incorporate ontological knowledge into your

framework, it is hard to think of it as a purely conceptual framework and that’s why I don’t do

that). If you feel like using the requirement, it will require us to include n formulas of the form:

∃x

∧
Πi(x) (8)

for each 1 ≤ i ≤ n.

Given that α has n members: Π1, . . . ,Πn, we will need n type letters T1, . . . , Tn in our

language.21 We introduce n definitions of the form:

∀x[Ti(x) ≡
∧

Πi(x)] (9)

for 1 ≤ i ≤ n. Call the set of all formulas of this form T.22

This ends our description of the frame. The set of formulas F that expresses the frame is

now defined by:

F = R ∪ A ∪ V ∪ C ∪ P ∪ T (10)

So, a partial dynamic frame can be expressed by a finite set of first-order formulas.

4 Reasoning with frames - the need for adaptivity

A first stab at capturing the notion of reasoning from the set of premises Γ within a dynamic

frame represented by F might be: Γ proves (or entails) a formula φ within the framework F
iff Γ ∪ F (classically) proves φ. A proof of φ from Γ within F, on this view, would be just a

proof of φ whose ultimate premises all belong to Γ∪F. I start with an unproblematic example

in which this strategy is employed. Next, I give an example that raises some difficulties and I

argue that a different strategy might be needed if we want also to capture the idea of reasoning

within a frame even when faced with an anomaly.

Suppose we are reasoning using classical logic within the frame given in fig. 4 (p. 10).

Suppose, further, that we introduced one additional constant a for an object, and we know

that a is an animal, has lungs and reproduces by laying eggs. We also know that for any
21Recall the remark about a finite but sufficiently large set of type letters.
22Or we can take the conditional version, if we prefer it:

∀x[R(x)→ (Ti(x) ≡
∧

Πi(x))]

Given the sane presumption that we’d rather not use the same type predicates for different things depending

on whether they fall under the root or not, (9) is enough.
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object, this object either isn’t a bird or has wings. The first thing we infer is that according to

our frame, anything that is an animal, has lungs and reproduces by laying eggs, is a bird, and

then we apply universal instantiation to infer that a either isn’t a bird or has wings. Then, by

disjunctive syllogism, we infer that a has wings.

If we represent the frame by a set of formulas F according to the instructions already given,

this reasoning can be easily emulated in the formalism as a classical proof of Wings(a) from

the set:

Prem1 = F ∪ {Animal(a),Lungs(a),Egg(a),∀x(¬Bird(x) ∨Wings(x))}

First we use appropriate formulas from F together with our knowledge that Animal(x),

Lungs(a) and Egg(a) to infer that a instantiates the activation pattern {Air, Lungs, Egg}.
Then we use an appropriate T-formula to infer Bird(a) and employ:

∀x(¬Bird(x) ∨Wings(x))

together with universal instantiation and the disjunctive syllogism to infer finally that Wings(a).

So far, so good.

In our free time, however, we watch ‘Free Willy,’ a movie about an orca named Willy (w,

for short).23 Orcas turn out to reproduce by giving birth to live young and yet they live in

water. No need to say, as far as our conceptual framework is involved, this movie will change

our life.

Now, our premise set is:

Prem2 = Prem1 ∪ {Animal(w),Water(w),Live young(w)}

Clearly, Prem2 is classically inconsistent (even though Prem2 \ F isn’t). Our frame tells

us that no animal can inhabit the water environment and yet reproduce by giving birth to

live young. Now the problem is, at least temporarily, that before we revise our conceptual

framework we would like to be able to reason from our premises without being able to derive

just anything. How can we do that?

One strategy to use when we hit an inconsistency is to go paraconsistent. That is, we can

just replace classical logic with a weaker, non-explosive consequence operation with a fairly

manageable proof theory (say, a monotonic logic that can be given a Hilbert-style axiomatiza-

tion) and use it in our arguments based on Prem2. For instance, we may want to use CLuN

as the weaker, non-explosive logic.24

23Interestingly, it seems that the first scientific description of orcas can be found in a treatise Systema Naturae

published by Carolus Linnaeus in 1735 in the Netherlands.
24CLuN, roughly speaking, is what remains from the CLassical logic when we drop the consistency require-

ment and allow glUts with respect to Negation. Axiomatically, it is the full positive CL extended with the

excluded middle. The negation in CLuN is obviously non-classical (it doesn’t have quite a few classical prop-
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The difficulty with this proposal is that intuitively speaking, the problem that we have

pertains only to a “part” of our framework and even though we want to be careful when we

reason about mammals or about Willy, we have no reason so far to believe that something’s

wrong with how we classify an object as a bird or with our inference about a which convinced

us that a has wings. Alas, the unproblematic argument that led us to this conclusion relies on

the disjunctive syllogism which happens to fail in CLuN and thus, our conclusion that a has

wings is no longer legitimate if we think that CLuN is the logic we need to use. In this sense, if

we decide to switch to CLuN we not only avoid the contradiction that we wanted to avoid, but

we also lose those conclusions and arguments that we had no reasons to suspect.25 A certain

group of formal systems devised to deal with difficulties of this sort are adaptive logics. I

will now describe the standard format of adaptive logics and then move on to explaining how

an adaptive framework suitable for reasoning within a dynamic frame may be constructed.

5 A gentle introduction to adaptive logics

An adaptive logic adapts itself to the premises it is applied to: the correctness of some rules

or steps depends on the choice of premises.26 The basic idea is that while reasoning using an

adaptive logic we “swing between” two simpler logics (called the ‘lower limit logic,’ LLL, and

the ‘upper limit logic,’ ULL), ULL being a strengthening of LLL, so that when no problematic

formula (details to follow) is derived from a set of premises, we apply ULL, and once some

premises turn out to lead to difficulties, we restrict ourselves only to those conclusions that we

can derive from the problematic premises using LLL, even though we may still apply ULL

to those steps which don’t rely on the normal behavior (= falsehood) of those abnormalities

that we know follow from the premises. This approach results in adaptive proofs being doubly

dynamic.

They are externally dynamic because most of them are nonmonotonic: once our premise

set is extended by new input, we might have to cancel some of our previous conclusions if

the new information makes the premises unreliable (say, if it depends on the falsehood of

some abnormalities which now the new set of premises can derive). They are also internally

dynamic because even if we keep the premise set the same, it may turn out that a conclusion

that we ULL-derived from it using certain premises is no longer reliable once we discover at

erties of negation). To obtain a version of CLuN that’s nice to work with it is useful to extend the language

of CLuN by introducing the classical negation as well, thus running CLuN on a language with two negations.

For more details, see (Batens 1999).
25There are, of course, other variants of this claim, depending on what paraconsistent logic we talk about

and on what types of inferences fail in it. The main point stands, though.
26Some basic papers about adaptive logics are (Batens 1995, 2004, 2007b). For more refer-

ences, see the website of the Centre for Logic and Philosophy of Science at Ghent University,

http://logica.ugent.be/centrum/writings/.
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some later point that those premises also LLL-derive a problematic formula and hence those

rules that are specific for ULL cannot be reliably applied in certain cases.

There is a general form that various adaptive logics instantiate, called the standard format.

An adaptive logic AL is characterized by a choice of:

(a) a lower limit logic LLL,

(b) a set of abnormalities Ω, and

(c) a strategy.

LLL is the logic which is taken to hold unconditionally and whose rules are correct even

in the case of problematic premises. LLL is monotonic and the language contains the classical

connectives.27 For instance, in an inconsistency-adaptive logic the LLL will be a non-explosive

logic of some sort (say, CLuN).

Ω is a set of those formulas which are assumed to be false unless proven otherwise. Batens

(2007a: 130-131) requires that Ω should be a set of formulas of a certain logical form, so that “it

enables one to consider adaptive logics as formal logics.”28 For instance, in an inconsistency-

adaptive logic one might take the abnormalities to be formulas of the form φ∧¬φ (or existential

closures of those, if the language is first-order rather than purely sentential). LLL together

with Ω determine ULL. The upper limit logic is just the lower limit logic plus the assumption

that the elements of Ω are false. Let Γ be a set of formulas. If we define:

Γ¬ = {¬φ | φ ∈ Γ} (11)

and we represent the provability relations of various logics by the subscripted ‘`’ symbol, we

can put this point concisely:

Γ `ULL φ iff Γ ∪ Ω¬ `LLL φ (12)

A strategy, basically, is a set of instructions that tell us when we have to cancel a conclusion

that we obtained previously or when to remove the cancelation symbol from a line (technically,

the activity is called marking). In order to be able to explain one of the simplest strategies,

however, I have to say a few words about dynamic proofs.

A dynamic proof is a sequence of lines, which can be taken to consist of four main compo-

nents: a line number, a formula, a justification for that formula, and a set of conditions upon

which the formula is derived. Besides, each line can be marked (marks can come and go as

27Even though the logic doesn’t have to be classical itself.
28When I will be constructing an adaptive framework for arguments given within a dynamic frame, I will drop

this assumption and require only that Ω should be effectively decidable: there should be a decision procedure

which for any formula in a finite number of steps gives an answer as to whether the formula belongs to Ω or

not. I will elaborate on the rationale for this move once we get to that stage.
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the proof progresses). If a line is at some point marked, it means that the formula in this line

is not considered derived at that stage. The first three components are fairly self-explanatory.

Conditions and marking require some more attention.

Recall that our task in a proof is not only to derive formulas from premises but also to

recognize those steps that can’t be trusted and to cancel those conclusions which rely on the

normal behavior of abnormalities which we have reasons to believe not to behave normally.

Now, what do we mean when we say that a step can’t be trusted? At the first stab, one

might try to say that a step is unreliable if it depends on the falsehood of an abnormality

which as it turns out follows from the premises. This is quite close. There’s one minor

complication, though. A premise set may prove a disjunction of abnormalities without proving

any of its disjuncts separately, thus, in a sense, implying that at least one of them has to behave

erratically, but not telling us that there is a single disjunct that we can blame. To keep track

of these things, in the conditions column we put sets of those abnormalities on whose normal

behavior (=falsehood) the present step relies. And (on one of the simplest strategies) we mark

a line as unreliable if it depends on (the normal behavior of) a set of abnormalities ∆, and

some member of ∆ is a disjunct in a (minimal)29 disjunction of abnormalities LLL-derived

from the premises. Let’s take a look at dynamic proofs in a bit more detail.

There are three rules for AL-proving formulas from Γ. The first rule, Prem allows one to

introduce any premise φ ∈ Γ with the empty set in the conditions column. That is, if φ ∈ Γ,

infer:

φ Prem ∅

where the first, empty column normally contains an appropriate line number.

The second rule, Ru says that if we have proven φ1 on the assumption that ∆1 behaves

normally, φ2 on the assumption that ∆2 behaves normally, . . . , and φn on the assumption that

∆n behaves normally, and if ψ can be LLL-derived from φ1, . . . , φn, we can introduce ψ as

relying on the normal behavior of ∆1 ∪∆2 ∪ · · · ∪∆n. That is, if:

{φ1, . . . , φn} `LLL ψ

then from:

φ1 ∆1

φ2 ∆2

...

φn ∆n

we can derive:
29This notion and the rationale for its introduction will be explained below.
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φ Ru ∆1 ∪∆2 · · · ∪∆n

That is, we can add LLL-consequences relying on nothing more and nothing less than the

union of those sets on which the premises depended.

The third rule, Rc is based on the following idea. If from Γ we can LLL-derive that either

ψ is true or one of the abnormalities in a set ∆ occurs, we can conclude that ψ AL-follows

from Γ on the assumption that ∆ behaves normally. If ∆ is a finite set of abnormalities, let

us call the classical disjunction of the members of ∆ ‘Dab(∆).’ Just like before, assume we

have proven φ1 on ∆1 (that’s an obvious piece of jargon that I’ll use instead of saying ‘we have

proven φ1 on the assumption that the set of abnormalities ∆1 behaves normally’), φ2 on ∆2,

. . . , and φn on ∆n:

φ1 ∆1

φ2 ∆2

...

φn ∆n

Rc now tells us that if for some finite Θ ⊆ Ω:

{φ1, . . . , φn} `LLL ψ ∨Dab(Θ)

we can infer:

φ Rc ∆1 ∪∆2 · · · ∪∆n ∪Θ

Now the most tricky part: marking for the reliability strategy.30 A proof, as we conduct it,

can be considered as proceeding in stages. Every application of a rule carries us to the next

stage. A formula Dab(∆) (i.e., a classical disjunction of abnormalities) is a minimal Dab

formula of a proof at a stage s iff Dab(∆) occurs in the proof at a line with the condition ∅
and for no ∆′ ⊂ ∆ (that is, for no ∆′ which is a proper subset of ∆) the proof contains at s a

line with Dab(∆′) which has ∅ as the condition.31

The intuitive reason why we are interested in minimal Dab-formulas of a proof instead of

just any proven Dab-formulas whatsoever is this. We want Dab-formulas to help us discover

those abnormalities on whose normal behavior we can’t rely. The fact that Dab(∆) has been

proven tells us only that at least one member of ∆ has to be true if the premises are to be

true (at least as long as LLL is truth-preserving). However, we want to assume that as many

30The reliability strategy is a fairly simple strategy of marking. There are others. For the sake of this paper,

I will however stick to it.
31Containing a line at stage s doesn’t mean that this line was introduced at stage s. It only means that when

we take the proof as it is in stage s, this line is one of the lines of the proof at that stage.
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abnormalities are false as possible and we take any abnormality to be false unless really forced

to do otherwise. Thus, if we know that both Dab(∆) and Dab(∆′) are LLL-derived from our

premises, but also ∆′ ⊂ ∆, we know that we don’t really have to blame any member of ∆ \∆′

for this fact. If we want to deal with as few abnormalities being LLL-derived as possible, it’s

enough to assume that it is the members of ∆′ that we can’t rely on.

Hence, we first define Us(Γ) to be the union of all ∆’s that are constituents of those minimal

Dab-formulas that have been derived so far from Γ at stage s. Then, we mark a line in a proof

as canceled (or unreliable) if it depends on the normal behavior of Θ, and yet at least one

member of Θ is a member of Us(Γ). That is, if a certain line relies on the falsehood of all

abnormalities from a certain set, and yet at least one member of this set is among those

abnormalities on whose normal behavior we can’t rely, the formula in the line itself turns out

to be unjustified.

One last notion that we need: final derivability. Since we are sometimes allowed to cancel

a line that we derived before, the fact that a line is derived does not mean that it actually

AL-follows from the premises. Hence we also introduce the notion of final derivability. A

formula φ is finally derived in a proof if it is derived in an unmarked line of that proof and also

no way we can continue the proof will force us to finally mark that line (that is, any extension

of the proof which would force us to mark the line can always be itself extended into a proof

where this line is unmarked). There are two ways this can happen:

(a) φ follows from our premises by LLL, in which case it is derived on ∅ and then it is

vacuously true that we cannot prove any abnormality on whose normal behavior it relies

(just because it doesn’t relies on the normal behavior of any abnormality), and

(b) For some non-empty set of abnormalities Θ, our derivation of φ depends on the normal

behavior of all the members of Θ, but no member of Θ is a member of a minimal Dab-

formula LLL-derivable from the premises.

Here’s an example that might help to see how the machinery works. Let’s take LLL to be

CLuN. We can construct an adaptive logic where all substitution instances of (∃)(φ∧¬φ) are

the constituents of Ω,32 and we quite naturally obtain CL (classical logic) as the upper limit

logic. Take the adaptive logic thus obtained and consider the example where our premise set

is:

Prem3 = {¬p, p ∨ q, r,¬r, r ∨ s}

Before we get to our adaptive proof, observe three facts:

{p ∨ q,¬p} `CLuN q ∨ (p ∧ ¬p) (13)

32That is, if φ is purely propositional we just take φ ∧ ¬φ and if it is first-order we take φ ∧ ¬φ and bind all

free variables by existential quantifiers.
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{p ∨ q,¬p, r,¬r, r ∨ s} 6`CLuN p ∧ ¬p (14)

{r,¬r} `CLuN r ∧ ¬r (15)

In the proof we first write down the premises:

1. p ∨ q Prem ∅

2. ¬p Prem ∅

3. r Prem ∅

4. ¬r Prem ∅

5. r ∨ s Prem ∅

Since p ∧ ¬p is an abnormality and q ∨ (p ∧ ¬p) LLL-follows from lines 1 and 2, we can apply

Rc to lines 1 and 2 and conclude q, relying on the normal behavior of p ∧ ¬p:

6. q Rc: 1, 2 {p ∧ ¬p}

Similarly, s ∨ (r ∧ ¬r) is LLL-derivable from lines 4 and 5, and hence:

7. s Rc: 4, 5 {r ∧ ¬r}

However, we are faced with the following difficulty: Prem3 is clearly problematic. Our input

data inform us that r doesn’t behave normally. In fact, according to our premises, both r and

¬r are true. But then, should we really conclude that s is true just because r ∨ s is true? The

usual rationale behind the disjunctive syllogism (φ ∨ ψ,¬φ ` ψ) is this: φ ∨ ψ tells us that at

least one of the involved sentences is true; ¬φ, however, tells us that φ is false and hence it

cannot be true. Therefore, the only option is that it is ψ that is true and its truth accounts

for the truth of φ ∨ ψ. On the paraconsistent approach, however, a formula and its negation

can be both true: the claim that ¬φ is true doesn’t entail the claim that φ is false. For this

reason, when both r and ¬r are true the disjunctive syllogism applied to ¬r and r ∨ s might

fail. For even if s is still (only) false, r ∨ s will come out true in virtue of r being true. Hence,

our premise set LLL-proves an abnormality: r ∧ ¬r:

8. r ∧ ¬r RU: 3, 4 ∅

This also shows that r ∧ ¬r is not an abnormality on whose falsehood we can rely: it is

actually derivable from our premises. But this, according to our marking regulations requires

us to cancel any conclusion that relied on the normal behavior of r ∧ ¬r, which (in our case)

means that we have to withdraw line 8 (which I mark by putting ‘g’ besides a line):

7. s Rc: 4, 5 {r ∧ ¬r} g

8. r ∧ ¬r RU: 3, 4 ∅
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So, as things stand, the only line with s as its formula has been canceled. It might be the

case, however, that a formula actually is AL-derivable from a set of premises even though it

is a formula of a marked line. The fact that φ is a formula in a marked line only means that

the way it is introduced in that line is unreliable. This doesn’t have to mean that φ is not

AL-derivable from the premises in general. Is it the case with s? A moment of consideration

should convince us that it isn’t. From these premises, there is no other sensible way we could

introduce s without relying on the normal behavior of r ∧ ¬r.
If we were simply reasoning in CLuN we also wouldn’t be allowed to introduce line 7 either,

because we wouldn’t be allowed to use disjunctive syllogism in general. In our AL, however,

we can still keep line 7 as long as the abnormality on which it depends is not CLuN-derived

from our premises. That is, q is finally derivable if no possible extension of our proof derives

on ∅ a minimal Dab-formula Dab(∆) with (p∧¬p) ∈ ∆ such that for no ∆′ ⊆ ∆, (p∧¬p) 6∈ ∆′

Dab(∆′) is LLL-derivable from the premises. Luckily, the question whether these formulas

are CLuN-derivable from Prem3 is decidable (as long as we stay on the level of propositional

logic). Hence we can consider q to be finally derived, even though s is not derivable.

6 Adaptivity and dynamic frames

A strategy of dealing with problems like those raised in section 4 seems to emerge now: take

an inconsistency-adaptive logic of your choice and model reasoning from Γ within a frame F
as reasoning by this logic from Γ ∪ F. This is the approach that I will not take.

First off, going inconsistency-adaptive would require some serious philosophical heavy lift-

ing. I would have to choose a paraconsistent lower limit logic and this would require a jus-

tification. There are quite a few paraconsistent logics and justifying the claim that this one

and not another is more suitable for the purpose of reasoning within a dynamic frame would

require some effort. I’m not saying it’s undoable: it’s just an arduous and, as it will turn

out, unnecessary task. We will be able to handle examples like those described in section 4

without using any paraconsistent logic, and hence, I will not employ the inconsistency-adaptive

approach. If it ain’t broken, don’t fix it.

Secondly, blending Γ (in the intended interpretation: our empirical data and laws) and F
together this way hides the fact that the epistemic status of our conceptual framework is quite

different from the status of the members of Γ. It’s better to keep them apart. For instance,

there is an essential difference between the case when Γ ∪ F is inconsistent even though Γ is

consistent and the case when Γ ∪ F is inconsistent because Γ is. We usually don’t want to say

that something’s wrong with our conceptual framework because our data in Γ are inconsistent.

Rather, before we go on to criticize and revise our framework we try to convince ourselves that

we really have to do that: that it is not a problem with our data. This is also the reason why

I will only need to consider cases where Γ is a consistent set, and pretty much the only way
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problems may arise is when we use Γ with the conceptual frame that we have.

To encode adaptive reasoning within a dynamic frame it’ll be useful to use a close relative

of an adaptive logic, which I will call an adaptive framework. The difference is that in the

definition of an adaptive logic, Ω has to be determined by a (possibly restricted) logical form,

whereas in an adaptive framework I only require that Ω be effectively decidable. That is, there

should be a procedure which for any formula will tell us in a finite number of mechanical steps

whether this formula belongs to Ω or not. There are two questions that come to mind: why

do I drop Batens’ requirement that Ω should be formally uniform? Why do I require that Ω

should be effectively decidable?

Batens requires that the set of abnormalities Ω be formally uniform, if the system is to be

counted as a formal logic at all, and I completely agree. This, however, doesn’t mean that

dropping the requirement can’t give us a workable theory. Adaptive frameworks are not logics

sensu stricto. As will be clear in a moment, I will use Ω to encode our conceptual framework.

But our conceptual frameworks go beyond logic and the whole point of having them is that

they allow us to treat certain predicates differently than certain other predicates.

However, Ω has to be effectively decidable, otherwise our definition of marking would go

astray. Recall that the marking of a line depends on whether a certain minimal Dab-formula

has been derived. If there were no procedure for finding out whether a formula is in Ω, there

would be no procedure for finding if a formula is a Dab formula and it could happen that we

actually derived a Dab formula but don’t know that it is one. This is the situation that we

want to avoid.33

So here is the trick. Take a (possibly) monadic first order language which contains all the

predicates needed to construct F. To model reasoning from consistent data within a dynamic

frame expressed by F, take CL to be the lower limit logic, use, say, the reliability strategy for

marking, and take Ω to be F¬, which is a set obtained from F by (i) preceding all formulas in

F with a negation, and then (ii) deleting all double negations that occur in front of a formula.

Here is where our lengthy construction of F pays off: since F is finite, F¬ is an effectively

decidable set, so it can serve as the set of abnormalities.

The intuition is that once we have a consistent set of data that we want to reason from,

our conceptual framework allows us to go beyond what we can infer using CL, it strengthens

our inferential powers. Given that we assume that the data set is consistent, we take our

conceptual framework for granted unless proven otherwise. An interesting twist here is that

the knowledge provided by a dynamic frame is not, in a sense, analytic. New empirical data

may force us to reject our conceptual framework and rearrange our predicates so that they
33However, I have to note that it is possible to massage the adaptive frameworks into the standard format.

On one hand, this requires a translation that uses modalities and the proofs are slightly less perspicuous. One

the other hand, if we get a system in the standard format we get lots of metatheory practically for free (see

Batens 2007b). The issue lies beyond the scope of this already long paper, though.
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agree better with what we know (this is not to say that certain constituents of a dynamic

frame cannot be more entrenched than others). The adaptive framework obtained from F will

be called ALF.

To see how this approach handles situations like those described in section 4, consider how

we now can deal with that situation. First, I list those abnormalities in the adaptive framework

generated by the frame from fig. 4 that we’ll need for our proof. First, negating two formulas

from R gives us:

¬∀x(Animal(x)→ Inhabits(x)) (16)

¬∀x(Animal(x)→ Resp. Org.(x)) (17)

Next, (the negations of) two of the A-formulas will yield:

¬∀x(Inhabits(x)→ Air(x) ∨ Land(x) ∨Water(x)) (18)

¬∀x(Resp. Org.(x)→ Lungs(x) ∨Gill(x)) (19)

Abnormalities resulting from four of our P-formulas will be:

∃x(Animal(x) ∧ Lungs(x) ∧Egg(x) ∧ Land(x)) (20)

∃x(Animal(x) ∧ Lungs(x) ∧Egg(x) ∧Water(x)) (21)

∃x(Animal(x) ∧Water(x) ∧ Live Young(x) ∧ Lungs(x)) (22)

∃x(Animal(x) ∧Water(x) ∧ Live Young(x) ∧Gill(x)) (23)

And we need one abnormality resulting from one of our T-formulas:

¬∀x(Animal(x)→ (Bird(x) ≡ Air(x) ∧ Lungs(x) ∧Egg(x))) (24)

We start with writing down the premises:

1. Animal(w) Prem ∅

2. Water(w) Prem ∅

3. Live Young(w) Prem ∅

4. Animal(a) Prem ∅

5. Lungs(a) Prem ∅

6. Egg(a) Prem ∅

7. ∀x(¬Bird(x) ∨Wings(x)) Prem ∅

Now, let’s focus on proving Wings(a) first. Since the negation of (16) together with our

premises CL-proves Inhabits(a), we have:
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8. Inhabits(a) Rc: 4 {(16)}

which together with the negation of (18) CL-proves Air(a) ∨ Land(a) ∨Water(a), so:

9. Air(a) ∨ Land(a) ∨Water(a) Rc: 4 {(16), (18)}

But lines 4, 5, 6 and 9, if we assume the negations of (20) and (21) derive Air(a):

10. Air(a) Rc: 4, 5, 6, 9 {(16), (18), (20), (21)}

and thanks to a definition whose negation is (24) we obtain:

11. Bird(a) Rc: 4, 5, 6, 10 {(16), (18), (20), (21), (24)}

We now apply universal instantiation to line 7:

12. ¬Bird(a) ∨Wings(a) Ru: 7 ∅

And clearly, lines 11 and 12 CL-derive Wings(a):

13. Wings(a) Ru: 11, 12 {(16), (18), (20), (21), (24)}

Now comes the problematic part: it seems that we can equally well prove that Willy the

orca has wings. First we rely on (17) to obtain Resp. Org.(w), then we use (19) to get

Lungs(w) ∨ Gill(w), which together with lines 1, 2, 3, thanks to (22) and (23) generate a

contradiction, and hence, by our LLL, any conclusion whatsoever, Wings(w) included:

14. Resp. Org.(w) Rc: 1 {(17)}

15. Lungs(w) ∨Gill(w) Rc: 14 {(17), (19)}

16. Wings(w) Rc: 1, 2, 3, 15 {(17), (19), (22), (23)}

So, is there any essential difference between lines 11 and 16? As it turns out, yes, there is.

Line 11 relies on the normal behavior of {(16), (18), (20), (21), (24)} and for any Dab-formula in

which one of those sentences occur, which is provable from our premises, there is a Dab-formula

provable from these premises which is a subformula of this formula in which none of those

sentences occurs. On the other hand the disjunction of {(17), (19), (22), (23)} is CL-provable

from the premises. This, however, means that on the normal behavior of these abnormalities

we can’t rely and hence, we have to mark line 16 once we learn that this disjunction follows:

16. Wings(w) Rc: 1, 2, 3, 15 {(17), (19), (22), (23)} g

17. (17) ∨ (19) ∨ (22) ∨ (23) Ru: 1, 2, 3 ∅
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Observe that our ability to ‘isolate’ the problematic parts of our framework and reason

normally with those parts that don’t raise any difficulties is highly sensitive to the way F is

constructed. For instance, if instead of n R-formulas, one for each Ai, we had only one formula

of the form:

∀x(R(x)→
∧
n

An(x))

we wouldn’t be able to separate the two conclusions from the above example, in the sense

that both would depend on the sole R formula which would occur in a minimal Dab formula

derived from the premises, and therefore we would have to cancel them both. This fact

indicates that logically equivalent descriptions of a frame don’t have to be equally useful. The

way we describe a frame is also important — it mirrors our convictions about what parts of

the frame are ‘separable’ and immune to difficulties that other parts are susceptible to. Also,

it is important to notice that the construction method I described isn’t the only possible way a

finite set of formulas capturing a frame may be constructed. Different constructions, mirroring

different assumptions about the independence of various aspects of a frame are possible.

7 Summary

After briefly mentioning the motivations for our interest in dynamic frames: the rejection

of the classical theory of concepts and the psychological evidence for the adequacy of the

theory of dynamic frames, I explained the dynamic frame account of concepts, thus setting

the background for the formal development. Next, I provided one of quite a few possible ways

of representing a partial, grounded and finitary dynamic frame by means of a finite set of

formulas of a monadic first-order language. Having done that, I intuitively explained why the

first attempt to model reasoning within a frame as reasoning with the set of premises extended

by the set that describes that frame might be unsatisfactory if we encounter an anomaly,

and thus I provided motivation for developing an adaptive approach to arguments given in

such circumstances. Then I spent some time explaining what adaptive logics are and how the

machinery is supposed to work in general. Then, I defined an adaptive approach to dynamic

frames and showed how it can handle the problematic examples elaborated on in this paper.
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