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Abstract

While most mathematicians would probably agree that ‘experi-

mentation’ together with an ‘empirical’ attitude – both understood in

their most general sense – can be important methods of mathematical

discovery, this is often obscured in the final presentation of the results

for the sake of mathematical elegance. In this paper it will be shown

how this “method” has played a significant role in the work of two ma-

jor contributors to the rather abstract discipline called mathematical

logic, namely Alonzo Church and Emil Post.

1 Introduction

In this paper it will be investigated in what way ‘experiment’ and ‘em-

pirical evidence’ played an important role in the work of two mathemati-

cians/logicians – Alonzo Church and Emil Post. Both made significant con-

tributions to computer science, although at the time they wrote down their

results it didn’t even exist yet. In Sec. 2 it will be shown in what way Post
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had to rely on the more ‘experimental’ work of testing out specific cases in

order to get a grip on certain formal systems called tag systems and how this

led him to the at that time innovating idea that the Entscheidungsproblem

might not be solvable. In investigating Church’s work, it will be explained

how the notion of ‘empirical evidence’ played a significant role in the de-

velopment of his ideas leading to his seminal 1936 paper (Sec. 3). From

this perspective it is interesting to confront what is here called Post’s second

thesis with Church’s thesis. This will be discussed in Sec. 4. The general

purpose of this paper is to add strength to the idea that neither ‘experiment’

nor ‘empirical evidence’ are some special kind of method intervening on the

usual methods of mathematics but are simply part of the way mathemati-

cians work when they are confronted with certain problems, each ‘method’

getting its meaning through the specific problems at hand (Sec. 5).1 In-

deed, through the analyses offered here, it will be demonstrated how notions

such as ‘experiment’ and ‘empirical approach’ are simply part of a practice,

arising from and dissipating in new mathematical results and problems. In

this way the author would like to support the idea, stated in Epstein et al.

[1992], “that theory and experiment feed on each other, and that the math-

ematical community stands to benefit from a more complete exposure to the

1This is why ‘experiment’ and ‘empirical evidence’ will be glossed (See Garfinkel and

Sacks [1970]): they will not be given an exact definition, but should be understood as

being defined by the specific context they are used in – “exhibited in telling”. The author

is convinced that this “glossing practice” is the only way to talk about ‘experiment’ and

‘empirical’ in this context. Predefining these concepts would suggest the idea of a special

method intervening on the usual methods of mathematics, contradicting the general ideas

proposed in this paper. In this paper, a glossed term x, will be indicated as ‘x’.

2



experimental process.”

2 From solvability to unsolvability: Emil Post’s

frustrating problem of ‘Tag’

The 1931 incompleteness result from Gödel [1931] and the negative solution of

the decision problem for certain systems of symbolic logic by Church [1936a]

and Turing [1936] are among the most important results of 20th century

mathematics and logic.2 Less well-known is that a young mathematician

was already working on related problems in 1921.3

2.1 Generalizations to forms: solving decision prob-

lems.

Emil Leon Post got his B.S. at City College in New York in 1917 and then

went to Columbia University where he wrote his Ph.D. He followed Cassius

J. Keyser’s seminar on the massive three volume work by Bertrand Russel

and Alfred North Whitehead, Principia Mathematica. As many others, Post

believed that Principia could be the complete formalization of the whole of

mathematics. Moreover, he understood that in order for Principia to be such

a complete formalization, it had to be decidable and complete. Together with

Lewis [1918], Principia was thus the main influence on Post’s dissertation.

2Followed by the negative solution for the Enstcheidungsproblem (See Turing [1936];

Church [1936b], Church [1936c])
3The analysis in this section is mainly based on the results presented in De Mol [2006],

where a more detailed analysis of Post’s early work can be found.
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In order to prove that Principia is complete and decidable, its propositional

part has to fulfill these conditions. This was exactly what Post proved in his

Ph.D.4 He developed the two-valued truth-table method and used it to show

that the propositional calculus is complete, consistent and decidable.5 How-

ever, of more significance here is that Post’s main goal of this dissertation

was to develop a general theory of propositions as is clear from the title of

the published version of his Ph.D. (Post [1921]): Introduction to a general

theory of elementary propositions. He wanted to recover the “generality of

outlook which characterized symbolic logic” which the authors of Principia

had given up.6 Indeed, one could say that to capture logic and mathematics

in its most general form in order to study its most general properties – and

not just one particular system – was and has remained one of the main mo-

tivations in Post’s career.

In his dissertation Post announces what one could interpret as a kind of re-

search project. He sees two possible directions for further research rooted in

the idea of generalization. First of all, understanding Principia as but one

particular development of the theory of elementary propositions, Post wants

4Less well-known is the fact that similar results were already obtained in 1918 by

Hilbert and Bernays. For more information see Zach [1999]
5He proved that his truth-table method could be used as an algorithmic procedure that

determines whether a given formula is yes/no derivable in the system.
6“But owing to the particular purpose the authors had in view they decided not to

burden their work with more than was absolutely necessary for its achievements, and so

gave up the generality of outlook which characterized symbolic logic. [...]we might take

cognizance of the fact that the system of ‘Principia’ is but one particular development of

the theory [...] and so [one] might construct a general theory of such developments.” (Post

[1921], pp. 163–164)
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to construct a far more general theory. To this end he constructed two further

generalizations. The first is the generalization of two-valued to many-valued

logics, the second the construction of what he later called systems in canon-

ical form A7 – two results he regarded as “instruments of generalization” to

“study systems of symbolic logic” and ultimately mathematics.8

A second possible direction for further research Post proposes is the extension

of the decidability and completeness results for the propositional calculus to

other portions of Principia.

After he had finished his Ph.D. Post became a Procter fellow at Prince-

ton University from 1920–1921, where he further explored the developments

sketched in his Ph.D.9 He set himself the (ambitious) goal to find a positive

solution for the decision problem for the restricted functional calculus10 – the

7In his dissertation this was called generalization by postulation. Without going into

the details of how these systems precisely work, it should be mentioned that within such

a system strings can be inferred through finite symbol manipulation. Furthermore it

is important to notice the explicit use of the word “form”. Instead of constructing one

specific system with a specific interpretation, Post constructs a form – a general framework

– which can then be used as a kind of mold into which several systems fit.
8“[...] but we believe that [...] this broadened outlook upon the theory will serve to

prepare us for a similar analysis of that complete system [of Principia Mathematica], and

so ultimately of mathematics.”(Post [1921], p. 164)
9He didn’t directly publish the main results of this research for several reasons. Only

in 1941 he submitted a manuscript called Absolutely unsolvable decision problems and

relatively undecidable propositions. Account of an anticipation. to the American Journal

of Mathematics, discussing these results. The manuscript was not accepted in this form

– although a abbreviated version of it was published as Post [1943] – and was finally

posthumously published by Martin Davis as Post [1965].
10As Martin Davis mentions in the introduction to the collected works of Emil Post

(Davis [1994]): “[since] Principia was intended to formalize all of existing mathematics,
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problem which later became to be known, through Ackerman and Hilbert

[1928], as the Entscheidungsproblem.11 However, instead of trying to find

a direct proof, he wanted to make use of his above mentioned more general

systems in canonical form A, since he believed that finding a solution for

the decision problem for this simpler and more general form might be more

straightforward. Thus in order to solve the decision problem for the func-

tional calculus positively, he first proved that it could be reduced to a system

in canonical form A.12 Finding then a positive solution for systems in canon-

ical form A would lead to an equivalent solution for restricted functional

calculus.13 However, to find such a solution was not that straightforward

and he thus started to work on another related problem, namely the problem

to determine for any two expressions of a given system, what substitutions

would make those expressions identical, i.e., the unification problem. A so-

lution was not immediately at hand though, “[this] general problem proving

intractable”. In order to solve it, he used a technique already familiar to

him: he abstracted from the original problem to find a more simple form for

a solution of the problem. This form Post called the problem of “tag”.

Post was proposing no less than to find a single algorithm for all of mathematics.”
11Post thus did not talk about the Entscheidungsproblem, nor of decision problems. He

used the term ‘finiteness problem’ in connection to decision problems.
12In fact this reduction was not direct. He first constructed a second canonical form –

form B – showed its equivalence with systems in canonical form A, and then reduced the

functional calculus to a canonical form B, since this reductions seemed more straightfor-

ward.
13If he would have thought at that time that the Entscheidungsproblem might be un-

solvable, he would have had to reduce systems in canonical form A to the functional

calculus

6



2.2 ‘Experimenting’ with the problem of “tag”

Starting from the idea of finding a positive solution for the Entscheidung-

sproblem, using his methods of generalization and abstraction, Post was led

to his frustrating problem of “tag”. A form of “tag” is defined as follows.

Given a positive integer v, and an alphabet Σ = {0, 1, ..., µ− 1} consisting

of µ symbols. With each of these symbols one associates a word over the

alphabet:

0 → a0,1a0,2.....a0,v0

1 → a1,1a1,2.....a1,v1

... .... ....................

µ− 1→aµ−1,1aµ−1,2.....aµ−1,vµ−1

Now, given an initial string A over the alphabet, “tag” at the right end of

the string the word associated with the leftmost symbol of A, and remove at

the left end the first v symbols. Apply this tagging and removing operations

on the new resulting string A′, which results in a new string A′′,... Post gives

the following very simple example: A = {1, 0}; 1 → 1101; 0 → 00; v = 3.

If the initial string is “10101001110101111001” the first productions lead to

the following strings:

10101001110101111001

010011101011110011101

01110101111001110100

1010111100111010000

011110011101000000
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.................................

Post formulated two forms of the problem of “Tag”. In its first form the prob-

lem is to find for a given tag system a finite process (an algorithm) which

decides for any initial string, whether the iterative tag process terminates

– produces the empty string – yes/no. In its second form, where an initial

string is considered being part of the tag system, the problem for a given

system is to find a finite process for determining for any arbitrary sequence

over the alphabet whether it will yes/no be produced by the system.14

As was already stated, Post obtained the form of “tag” in trying to find a

solution for the unification problem. Moreover, it also popped up in con-

nection with the decision problem for systems in canonical form A involving

functions of more than one argument. The problem thus became a vital

stepping stone in the further development of his program:

The general problem proving intractable, successive simplifica-

tions thereof were considered, one of the last being this problem

of “tag”. Again, after the finiteness problem for systems in canon-

ical form A involving primitive functions of only one argument

was solved, an attempt to solve the problem for systems going,

it seemed, but a little beyond this one argument case, led once

more essentially to the selfsame problem of “tag”. The solution

of this problem thus appeared as a vital stepping stone in any

further progress to be made.Post [1965], p. 361

14As Post remarks it is the problem in its second form which arose in connection with

the decision problem (Post [1965], p. 362).
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In the beginning he was very optimistic about finding a solution for the de-

cision problem through tag systems given their apparent simplicity. As he

had already experienced, generalizing or abstracting from a system to solve

a problem often leads to more “simple” forms i.e. they lend themselves more

easily to find a solution for the problem at hand, because they can be manip-

ulated in a more straightforward way. It was exactly this “simplicity” that

forced Post into a more ‘experimental’ approach of working out specific cases

by varying several parameters in order, amongst other things, to deduce more

general classes from these cases. Indeed, in order to get a mathematically

rigorous grip on these systems, if possible, you first have to find out how

these systems behave under certain conditions. For certain of these condi-

tions, you don’t need to ‘test’ anything on paper. For example, it is trivial to

see why the class of tag systems with v = 1 is solvable, you don’t even have

to write anything down to understand this. But what about the class of tag

systems with v = 2, µ = 2? As Post himself remarks, this case already asked

for considerable effort and he considered the proof of the solvability of this

class as the major result of his work as a Procter fellow.15 But how would

one start with such a proof?16 More generally, how can one start with any

mathematical proof for these systems without having any information about

15[...] the problem of “tag” was made the major project of the writer’s tenure of a

Procter fellowship in mathematics at Princeton during the academic year 1920-1921.[...]

And the major success of that project was the complete solution of the problem for all

bases in which µ and v were both 2.[...] this special case µ = v = 2 involved considerable

labor.” (Post [1965], p. 362.)
16The proof by Post was never published. The author has proven the result by herself:

it consists of several classes of cases, and one part of the proof was based on observations

made using a computer.
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what kind of behaviour several initial conditions can lead to, without know-

ing about the link between the length of the words and v, without having a

clue about what the effect is of varying v and µ,...? Of course, as was already

shown, some of these questions can be answered by pure reasoning, but most

of these questions can only be answered – or even posed – theoretically by

first having gone through several “tests”. Tag systems simply don’t allow for

a direct theoretical intuition due to their abstractness.

Post indeed tested several cases, varying the parameters, and found three

classes of behaviour: termination, periodicity and divergence.17 Divergent

behaviour was further divided into two subclasses: fluctuating behaviour

and strings that keep on growing forever (Post [1965], p. 362):

Where the process does not terminate, it is readily seen that

according as the lengths of the resulting sequences are bounded,

or unbounded, the resulting infinite sequence of the sequences

will, from some point on, become periodic, or the length of the

n-th sequence will increase indefinitely with n. In the first case

the second form of the problem is again immediately solvable,

while in the second case the solution would follow if a method

were also found for determining of any given length of sequence a

point in the process beyond which all derived sequences were of

length greater than that given length.18

17In Post’s example the string “010001011” will result in a NILL, while the string

“10111011101000000” will lead to periodic behaviour – period 6.
18After this description Post added the following footnote: “In this analysis we may have

gone somewhat further than is justified by the notes.” (Post [1965], p. 362), a comment

which further points at the time Post investigated in this kind of ‘experimental’ research.
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As was already stated, Post was able to completely solve the class of systems

where v ≤ 2 and µ ≤ 2. However, for systems where v and/or µ become

greater than 2 Post made the following observations:

While considerable effort was expanded on the case µ = 2, v > 2,

but little progress resulted, such a simple basis as 0 → 00, 1 →

1101, v = 3, proving intractable. For a while the case v = 2, µ >

2, seemed to be more promising, since it seemed to offer a greater

chance of a finely graded series of problems. But when this pos-

sibility was explored in the early summer of 1921, it rather led

to an overwhelming confusion of classes of cases, with the solu-

tion of the corresponding problem depending more and more on

problems of ordinary number theory.

Post observed behaviour he had not expected at all. Simple though as they

may seem, tag systems indeed give rise to intractable and complex behaviour.

Even the simple example given above is still not known to be decidable or

universal (despite the availability of the computer). About this example Post

remarks in a footnote (Post [1965], p. 363):

Numerous initial sequences actually tried led in each case to ter-

mination or periodicity, usually the latter. It might be noted that

an easily derived “probability” prognostication suggested that in

this case periodicity was to be expected.19

19It should be remarked here that for small initial conditions, the tag system mentioned

by Post indeed always terminates or becomes periodic. Of course he was not able to test

larger initial conditions, since then one might have to go through millions of iteration steps
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From this quote it is not only clear that Post indeed tested several cases,

e.g. by trying out “numerous initial condition”, but that he even developed

a certain probabilistic method to predict the behaviour of the system.

After nine months of work, Post came to a conclusion he had not expected

at all for mathematics, let alone for such ‘primitive form of mathematics’:

Since it had been our hope that the known difficulties of number

theory would, as it were, be dissolved in the particularities of this

more primitive form of mathematics, the solution of the general

problem of “tag” appeared hopeless, and with it our entire pro-

gram of the solution of finiteness problems. This frustration [my

emphasis], however, was largely based on the assumption that

“tag” was but a minor, if essential, stepping stone in this wider

program.Post [1965], p. 363.

While Post was convinced that Principia and with it the whole of mathe-

matics would be complete and decidable before he started working on tag

systems, he now began to doubt this idea – it even seemed hopeless. Three

months after he had given up working with tag systems he wrote down results

of which the significance cannot be underestimated. He developed systems

in canonical form C 20 and constructed a special class of systems in canonical

form C, called systems in normal form. He proved his normal form theorem

(reduction of systems in canonical form C to a normal form) of which Marvin

before the system becomes periodic or terminates (if it ever does) – a task which is hardly

possible with pencil and paper.
20These are are now known as Post production systems and influenced Chomsky’s

context-free grammars
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Minsky, the person who later proved that the decision problem for tag sys-

tems is recursively unsolvable (see Minsky [1961]), wrote that he regards this

theorem as one of the most beautiful in mathematics Minsky [1961/1962?].21

After having formulated a thesis comparable to that by Church and Turing22,

he furthermore showed that the decision problem for systems in normal form

is unsolvable. After having closed the circle between systems in canonical

form A, B, C and systems in normal form by reducing these last systems to

a form A, the unsolvability of the decision problems for these other systems

naturally followed. He also sketched an informal proof of the incomplete-

ness of systems in normal form.23 Based on his thesis, he conjectured the

generalization of both the unsolvability and the incompleteness of systems

in normal form to any system of symbolic logic. As is argued in Mol [2006],

it was his research on tag systems, together with the theoretical attitude of

finding more and more abstract forms of symbolic logic, that led him to these

important results and finally, through systems in normal form, to the rever-

21“We have long felt that this result is one of the most beautiful in mathematics. The

fact that any formal system can be reduced to Post canonical systems with a single axiom

and productions of [a] restricted form [...] is in itself a remarkable discovery, and even

more so when we learn that this was found in 1921, long before the formalization of

metamathematics became so popular.”(Minsky [1961/1962?], p. 1)
22This is called Post’s thesis by Martin Davis Davis [1982]. While his research on tag

systems was basic to his idea of the Entscheidungsproblem being unsolvable, it was the

proof of his normal form theorem which was fundamental to the statement of his thesis (see

Davis (1994). It should be furthermore remarked that Post understood that his analysis

leading to the thesis was only fragmentary, since for “full generality a complete analysis

would have to be given of all the possible ways in which the human mind could set up

finite processes for generating sequences” (Post [1965], p. 387)
23He indicates how this theorem could be proved, but does not give an explicit proof
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sal of his entire program: from trying to prove the solvability of the decision

problem for Principia he was now convinced that it was unsolvable.24

3 Church and the λ-calculus

At about the same time Post found his revolutionary results, though not

completely worked out in every detail, Church was just starting his career.

He arrived at Princeton as an 18-year old boy after having graduated at a

preparatory school in Connecticut. He would stay there – except for some

short interruptions – until 1967.

3.1 Towards variant systems of logic.

As Church states in an interview with Aspray [1984a], he was already inter-

ested in foundational issues as an undergraduate: his first published paper

was on the Lorentz transformation (Church [1924]), which is at the founda-

tions of (special) relativity. The object of this paper was to find a set of

24However, he did not prove this. In footnote 79 he states: “As to *10 being merely

attached to this circle, [an unpublished note] categorically states that a proof of the re-

ducibility of canonical form A to *10 is “nearly completed,” and as a result even suggests

that the solution of the finiteness problem for *10 would yield the solution of the finite-

ness problem for all of Principia Mathematica”. In footnote 90 he further added: “Less

certain, however, is our having paused at the time to realize that the completion of the

proof of the reducibility of canonical form A to *10 [...] would yield the unsolvability of

the latter’s finiteness problem. It remains uncertain, therefore, to what extent the writer

aticipated [sic] Church’s result on the unsolvability of the deducibility problem for the

restricted functional calculus.”

14



logically independent postulates that uniquely determine the Lorentz trans-

formation for one dimension. One year later he published a more general

paper (Church [1925]) further exploring the concept of independent sets, in

relating it to irredundant sets of postulates.25

After graduating, he started his Ph.D. at Princeton in 1924 under Oswald Ve-

blen, who was interested in the foundations of mathematics and thus sharp-

ened Church’s general interest in the subject, he even urged him to read some

of Hilbert’s work. Veblen was also interested in the independence of the ax-

iom of choice, as Church remarks in Aspray [1984a], and this was precisely

the subject of his dissertation, published as Church [1927]. As is clear from

its title, Alternatives to Zermelo’s assumption:

The object of this paper is to consider the possibility of setting

up a logic in which the axiom of choice is false.

In his Ph.D., Church indeed started from the ‘hypothesis’ that the axiom

of choice could be considered independent from Zermelo-Fraenkel set theory.

In this way he wanted to investigate the possible consequences of several

alternatives to Zermelo’s ‘assumption’. Church was well aware of the fact that

replacing the axiom of choice by contradictory assumptions was not evident

at that time.26 He even had to convince his supervisor Veblen, probably due

to the fact that he wanted to contradict that which seemed intuitively more

natural (Aspray [1984a]):

25It is interesting to note that Church gives a method by which any set of independent

postulates can be made irredundant: he explicitly identifies it as a “mechanical method”

(See Church [1925], p. 321).
26In Davis [1995] it is further discussesed that at the time, Church’s general approach

of exploring variant systems of symbolic logic was indeed far from evident.
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The only thing that might have annoyed some mathematicians

was the presumption of assuming that maybe the axiom of choice

could fail, and that we should look into contrary assumptions.[...]

[Veblen] was really the only man supervising it. I sort of had to

convince him about some aspects of the axiom of choice. To deny

what seems intuitively natural is rather difficult. You tend to slip

back into what informally seems more reasonable. I remember

from time to time having to explain things to him, but I convinced

him that my arguments were sound.

As is noted by Martin Davis, Church (Davis [1995], p. 275):

[Church] was acutely aware of set theory together with logic as a

foundation of mathematics [...] [while] [n]oteworthy contributions

to logic and foundations of mathematics were few and far between

during the twenties.

His research was indeed explicitly embedded in the context of the founda-

tions of mathematics. Before actually starting with his investigation into the

alternatives to Zermelo’s assumption, he discusses the problem of complete-

ness “to prepare the way for the suggestion that there may be one or more

additional independent postulates which can be added to the set of postulates

1-5 [...]”.27

Church considers three main postulates A, B and C wanting to “inquire into

their character, and to derive as many of their consequences28 in order to find

reasonable alternatives for the axiom of choice. Significant now is the fact

27Church [1927], p.186
28Church [1927], p.178
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that Church considers the derivation of as many consequences as possible as

a valuable way to argue for the independence of the axiom of choice. If one of

the postulates would involve a contradiction, this process of deriving as many

consequences as possible, should reveal it at a given time. If not however,

this fact can be regarded as “presumptive evidence” for the independence of

the axiom of choice (Church [1927], p. 187):

If any one of these involve a contradiction it is reasonable to

expect that a systematic examination of its properties will ulti-

mately reveal this contradiction. But if a considerable body of

theory can be developed on the basis of one of these postulates

without obtaining inconsistent results, then this body of theory,

when developed, could be used as presumptive evidence that no

contradiction exists. If there be two of these postulates neither

of which leads to contradiction, then there are corresponding to

them two distinct self-consistent second ordinal classes, just as

euclidian and Lobachevskian geometry are distinct self-consistent

geometries [...]

Indeed, starting from the idea that if a set of postulates is inconsistent, a

systematic examination of its properties should ultimately reveal a contradic-

tion, Church concludes that if one is able to develop a considerable amount

of theory starting from the assumption without finding a contradiction, one

can presumptively conclude that the theory developed might be consistent.

Evidence which in its turn adds strength to the hypothesis of the indepen-

dence of the axiom of choice. In the same paper, this attitude is explicitly

identified as an experimental one. After having deduced many of the conse-
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quences of the three postulates, Church proposes two more postulates F and

G, inconsistent with each other, but “apparently consistent” with postulates

1-5 and C. After the statement of the postulates, Church announces how he

wants to proceed (Church [1927], p. 205):

We shall examine briefly the consequences of each of the postu-

lates just stated when taken in conjunction with Postulates 1-5

and C, taking the same experimental attitude as that which we

took in the case of Postulates A, B and C.

In other words, while Church was working on highly abstract problems,

closely connected with the foundations of mathematics, his method for study-

ing these problems was, from a certain point of view, clearly less abstract.

One year later another paper by Church was published On the law of the

excluded middle (Church [1928]) of which the purpose is clearly in line with

the ideas sketched in his Ph.D.:

[The purpose of this paper is] to discuss the possibility of a system

of logic in which the law of the excluded middle is not assumed

[...] (Church [1928])

Again it is clear that Church was not interested in the study of one ultimate

system of logic. On the contrary, he wanted to consider variant systems of

symbolic logic rooted in the idea that there cannot be one absolute system

of symbolic logic.

Four years later he published the first of two major papers in which the ideas

and methods already present in his earlier work become even more apparent.

It were these papers which led to λ-calculus and ultimately Church’s thesis.
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3.2 An Inconsistent Set of Postulates

In Church [1932] Church developed a system of postulates to serve as a

foundation for logic and mathematics – a system of logic adequate for the

development of mathematics, and thus comparable to the ambitions of the

authors of Principia. This set of postulates however had to be “free of some

of the complications entailed by Bertrand Russel’s theory of types, and [at

the same time had to avoid] the well known paradoxes [...]”29. Unlike the

authors of Principia, Church however did not claim any absoluteness for his

proposed set of postulates, an attitude clearly inspired by his former work:

We do not attach any character of uniqueness or absolute truth

to any particular system of logic.

While he did not give explicit reasons for this kind of attitude towards logic

in his former work, Church now adds strength to his approach by making

statements about the connections between an abstract theory and the reasons

why it is developed – its ‘application’. In this respect he connects, by anal-

ogy, the existence of alternative geometries with the existence of alternative

systems of symbolic logic:

The entities of formal logic are abstractions, invented because

of their use in describing and systematizing facts of experience

or observation, and their properties, determined in rough outline

by this intended use, depend for their exact character on the

arbitrary choice of the inventor. We may draw the analogy of a

three dimensional geometry used in describing physical space [...]

29Church [1933], p. 839
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In building the geometry, the proposed application to physical

space serves as a rough guide in determining what properties the

abstract entities shall have, but does not assign these properties

completely. Consequently there may be, and actually are, more

than one geometry whose use is feasible in describing physical

space. Similarly, there exist, undoubtedly, more than one formal

system whose use as a logic is feasible, and of these systems one

may be more pleasing or more convenient than another, but it

cannot be said that one is right and the other wrong.

Indeed, the fact that any system of formal logic is always developed with a

certain goal in mind, rooted in certain experiences and observations, implies

that there cannot be one ultimate system of logic. This does not mean that

the logic is completely determined by its application. On the contrary, “in

developing this formal structure reference to the proposed application must

be held irrelevant”. 30 Given this rather pragmatic attitude towards variant

systems of logic, there remains only one criterion to reject or accept (be it

on a presumptive basis) a given system of logic: its consistency. Given the

non-existence of a general method to prove consistency the only reasonable

attitude left to apply this criterion to a given system of logic, is an ‘empirical’

one (Church [1932], p. 348):

Whether the system of logic which results from our postulates

is adequate for the development of mathematics, and whether it

is wholly free from contradiction, are questions which we cannot

answer except by conjecture. Our proposal is to seek at least an

30Church [1932], p. 349
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empirical answer to these questions by carrying out in some detail

a derivation of the consequences of our postulates, and it is hoped

either that the system will turn out to satisfy the conditions of

adequacy and freedom from contradiction or that it can be made

to do so by modifications or additions.

This attitude is repeated by Church in a reply to a letter to Gödel, dated

july 27, 1932.31 In answering the question posed by Gödel of whether there is

any other way to prove the consistency of Church’s set of postulates besides

proving it consistent relative to type or set theory, Church answers:32

In fact, the only evidence for the freedom from contradiction of

Principia Mathematica is the empirical evidence arising from the

fact that the system has been in use for some time, many of its

consequences have been drawn, and no one has found a contra-

diction. If my system be really free from contradiction, then an

equal amount of work in deriving its consequences should pro-

31It should be noted here that Church later admitted that he was among those at that

time who believed that “Gödel’s incompleteness theorem might be found to depend on

peculiarities of type theory [...] in a way that would show this results to have less universal

significance than he was claiming for them.” (Church in a letter to John Dawson, dated

July 25, 1983, reprinted in Sieg [1997]). This is already clear from this reply to Gödel,

in which he states amongst other things, that he “has been unable to see, however, that

your conclusions in 4 [Gödel’s second incompleteness theorem] of this paper apply to my

system.”, Gödel [2003a], p. 369
32The exact question posed by Gödel is: “In case the system is consistent, won’t it then

be possible to interpret the fundamental concepts in a system with type theory, or in the

axiom system of set theory, and can one make the consistency plausible at all in any other

way than through such an interpretation?” , 17 June, 1932, Gödel [2003a], p. 367
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vide an equal weight of empirical evidence for its freedom from

contradiction.(Gödel [2003a], p. 368)

This ‘empirical’ attitude was further pursued in Church [1933]. Having

learned in the meantime that some of his postulates lead to a contradic-

tion, the list was revised. Furthermore 42 new theorems were proven to

follow from this new set of postulates and a basis to develop a theory of

positive integers in the set of postulates was added. In this paper Church

beautifully summarizes his ‘empirical’ approach to logic and mathematics as

follows (Church [1933], p. 842):

Our present project is to develop the consequences of the forego-

ing set of postulates, until a contradiction is obtained from them,

or until the development has been carried so far consistently as

to make it empirically probably that no contradiction can be ob-

tained from them. And in this connection it is to be remembered

that just such empirical evidence, although admittedly inconclu-

sive, is the only existing evidence of the freedom from contradic-

tion of any system of mathematical logic which has a claim to

adequacy.

However, soon after the publication of this paper it would be shown by

Kleene and Rosser – Church’s Ph.D. students – that he had not deduced

enough consequences out of the system: they showed that Church’s set of

postulates leads to a contradiction in their Kleene and Rosser [1935]33 – a

result which clearly illustrates the problematic character of Church’s, or any

other, ‘empirical’ attitude.

33The proof itself is from early 1934
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3.3 λ - The Ultimate Operator

In the meantime Kleene’s attention had shifted to a subpart of Church’s

set of postulates, now known as the λ-calculus.34 He was working on his

Ph.D. replying to the program Church proposed at the end of Church [1933]

(Church [1932], p. 864):

Our program is to develop the theory of positive integers on the

basis which we have just been describing, and then, by known

methods or appropriate modifications of them, to proceed to a

theory of rational numbers and a theory of real numbers.

Kleene’s original Ph.D. topic was indeed to develop a theory of positive in-

tegers in Church’s set of postulates.35 It was published in two parts in 1935

(Kleene [1935a] Kleene [1935b]) and contained the development of such a

theory in the λ-calculus.36 Already from the first paragraph it is clear what

Kleene had learned, or at least inherited, from Church (Kleene [1935a], p.

153):

Our object is to demonstrate empirically that the system is ad-

equate for the theory of positive integers, by exhibiting a con-

34The λ-operator was introduced in order to clarify the notation for functions.
35In Aspray [1984b], Kleene says: “Church, in the last paragraph or the last page of his

second paper on the foundation of logic, proposed the problem of developing the theory of

positive integers on the basis of his system. There was a ready-made Ph.D. thesis problem.

With my very limited knowledge of the area at that time, I don’t think I could have dreamed

up a problem for myself. It proved to be a challenging problem, and I did it.”
36After Kleene and Rosser had shown that Church’s set of postulates was inconsistent,

Kleene rewrote his dissertation taking into account this result, although his Ph.D. had

already been accepted in September 1933.
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struction of a significant portion of the theory within the system.

By carrying out the construction on the basis of a certain subset

of Church’s formal axioms, we show that this portion at least of

the theory of positive integers can be deduced from logic without

the use of the notions of negation, class, and description.

While Church’s empirical approach might have been disappointing when his

set of postulates turned out to be inconsistent, it would show very fruitful

during further research on the λ-calculus.

As is stated by Rosser in his Rosser [1984], Church first mentioned the idea of

every effectively calculable function from positive integers being λ-definable

in a conversation in late 1933 (after Rosser had told him about his latest

function in λ-calculus).37 Again according to Rosser, Church was convinced

about the equivalence between λ-definability and effective calculability in

early 1934. This idea however, was not evident at all:

Before research was done, no one guessed the richness of this

subsystem. Who would have guessed that this formulation, gen-

erated as I have described to clarify the notation for functions,

has implicit in it the notion (not known in mathematics in 1931

in a precise version) of all functions on the positive integers (or

on the natural numbers) for which there are algorithms? (Kleene

[1981a], p. 54)

Indeed, Kleene himself had not expected that λ-calculus would have been

so powerful, and it was not he but Church he first came up with this idea

37A more detailed account of the events preceding the first official statement of Church’s

thesis can be found in Sieg [1997]
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of identifying λ-definability with calculability. One important trigger for

Church’s idea was probably given by Kleene’s definition of the predecessor

function in λ-calculus:38

When I brought this result to Church, he told me that he had

just about convinced himself that there is no λ-definition of the

predecessor function. The discovery that the predecessor func-

tion is after all λ-definable excited our interest in what functions

are not just definable in the full system but actually λ-definable.

The exploration of this became a major subproject for my Ph.D.

thesis. Of course, I did develop a great deal of theory of positive

integers in Churchs formalism, using many λ-definitions in the

process. (Kleene [1981a] p. 57)

From that moment on, the search for effectively calculable functions which are

λ-definable became a more explicit research goal. Kleene gradually unravelled

the amazing computational power of the λ-calculus, in being able to show

that each example of an effective calculable function he and Church could

think of, was indeed λ-definable:

We [Church and Kleene] kept thinking of specific such functions,

and of specific operations for proceeding from such functions to

others. I kept establishing the functions to be λ-definable and

the operations to preserve λ-definability. (Kleene [1981a] p. 57)

38In Kleene [1981a] he explains that he got the idea of how to λ-define the predecessor

function at the dentist in late January or early in February in 1932.
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However, as was stated before, it was not Kleene but Church who first

thought about an explicit identification between λ-calculus and effective cal-

culability. In fact, when Church first proposed his ‘thesis’ to Kleene, he:

[...] sat down to disprove it by diagonalizing out of the class of the

λ- definable functions. But, quickly realizing that the diagonal-

ization cannot be done effectively, I became overnight a supporter

of the thesis.(Kleene [1981a], p. 59)

Of more significance here is the fact that it was not “the concept [of the thesis]

itself but rather [the] results established about it” (Kleene [1981b], p. 49) that

led Church to his ‘conjecture’. As is pointed out by Sieg [1997], the reason for

proposing the identification was, what Sieg calls, the ‘quasi-empirical’ fact

expressed by Church in a letter to Bernays, dated January 23, 1935:

The most important results of Kleene’s thesis concern the prob-

lem of finding a formula to represent a given intuitively defined

function of positive integers (it is required that the formula shall

contain no other symbol than λ, variables, and parentheses). The

results of Kleene are so general and the possibilities of extending

them apparently so unlimited that one is led to the conjecture

that a formula can be found to represent any particular construc-

tively defined function of positive integers whatever.(Quoted in

Sieg [1997], p. 155)

In March 1935, the equivalence between λ-definability and general recursive-

ness was established, and on April 19, 1935, Church publicly announced his
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thesis for the first time to the American Mathematical Society,39 however

not in terms of λ-definability, but in terms of general recursiveness.40 On the

basis of this result, he proved that the Entscheidungsproblem is unsolvable

(Church [1936b] and Church [1936c]).

4 Church’s thesis vs. Post’s thesis: definition

or hypothesis?

In 1936, Church, Post and Turing 41 tried to formally capture the respective

intuitive notions of effective calculability, solvability and computability in

their respective formalisms: λ-calculus and general recursiveness, formula-

tion 1 and Turing machines.42 While Turing’s proposal is of course at least

as interesting as Post’s and Church’s, it will not be discussed here.43 Of more

significance here is the fact that Post and Church clearly opposed each other

with regard to the interpretation of what is now generally known as a thesis,

having as many forms as there are equivalent formalisms. But back in 1936

Church nor Post were talking of their result as a thesis, it was Kleene who

first talked about Church’s result in terms of a thesis in his Kleene [1952].

39An abstract of this talk is published as Church [1935]
40A discussion on why Church did first publicly announce his thesis in terms of general

recursiveness can be found in‘Sieg [1997]
41While Turing’s and Church’s paper were written independently of each other, Post’s

paper, although written independently of Turing’s, was not independent of Church’s, since

he refers to Church’s paper.
42These were all shown to be equivalent
43In Gandy [1988] and Sieg [1997] a more detailed analysis of Turing’s thesis can be

found.
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Church himself clearly regarded his thesis as a definition. He identified effec-

tive calculability with general recursiveness (and λ-calculus) by definition:44

We now define [m.i.] the notion, already discussed, of an effec-

tively calculable function of positive integers by identifying it with

the notion of a recursive function of positive integers (or of a λ-

definable function of positive integers). This definition [m.i.] is

thought to be justified by the considerations which follow, so far

as a positive justification can ever be obtained for the selection of

a formal definition to correspond to an intuitive notion.(Church

[1936a], p.356)

As Church points out, to give a formal definition for an intuitive notion is

problematical. One can try to give a justification but only insofar as such a

justification is possible for this kind of definition. One can merely try to give

some good reasons, but nothing more should be expected from it. Emil Post,

on the contrary, rejected the idea of calling such identifications definitions.

Post had already formulated a ‘thesis’ similar to that of Church in 1921, in

identifying the notion of a generated set with his systems in normal form.45

In 1936 he came up with another such ‘identification’, in developing his

Formulation 1,46 which will be called Post’s second thesis here.

44In this respect, Sieg [1997], p. 155 uses the term ‘definitional identification’
45This identification of a generated set with a normal set, was first called Post’s thesis

by Martin Davis Davis [1982]. For more information on Post’s first thesis the reader is

referred to Gandy [1988], Davis [1994], Stillwell [2004] and Mol [2006]
46The details of formulation 1 will not be discussed here. It should be noted though

that Post’s formulation 1 and Turing’s machines are quasi-identical. Post however did

not prove the unsolvability of any decision problem, at least not in this paper, nor did he
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As is pointed out in Davis [1994], Post was not satisfied with the analysis of

an algorithmic process in terms of general recursiveness or λ-definability:

Believing that the Herbrand-Gödel notion of general recursiveness

and the Church-Kleene notion of λ- definability were both lacking

in that neither constituted a “fundamental” analysis of the notion

of algorithmic process, Post proposed as suitably “fundamental”

the operations of marking an empty “box” or erasing the mark

in a marked box.

In his Post [1936] however, the notion of an algorithmic process is not de-

scribed in terms of calculability or computability, but in terms of solvability.

Indeed the goal of formulation 1 was to describe mathematically what is

meant with a general method to solve any decision problem which is intu-

itively considered solvable (Post [1936],p. 103):47

We have in mind a general problem consisting of a class of spe-

cific problems. A solution of the general problem will then be

one which furnishes an answer to each specific problem. In the

following formulation of such a solution [...] [i.e. formulation 1].

He furthermore defined a whole set of notions in terms of solvability such

as applicability to a general problem, a 1-solution, a general problem being

provide an explicit description of the equivalent of a Universal Turing machine. This is

probably one of the reasons why this paper is now less well-known.
47He does not mention notions such as “algorithmic procedure”, “calculability” or “com-

putability”. Only once at the end of the paper “effective calculability” is used, with re-

spect to Church’s identification. It is however clear that although Post works in terms of

solvability, he identified this notion with the above mentioned notions of “calculability”,

“computability” and “algorithmic” process.
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1-given,... in identifying the notion of what is intuitively solvable with solv-

ability in formulation 1.

Post expected that formulation 1 would turn out to be equivalent to general

recursiveness, but immediately adds that its purpose is not simply to:

[...] present a system of a certain logical potency but also, in its

restricted field, of psychological fidelity. In the latter sense wider

and wider formulations are contemplated. On the other hand,

our aim will be to show that all such are logically reducible to

formulation 1. We offer this conclusion at the present moment

as a working hypothesis. And to our mind such is Church’s iden-

tification of effective calculability with recursiveness. [...] The

success of the above program would, for us, change this hypoth-

esis not so much to a definition or to an axiom but to a natural

law. Only so, it seems to the writer, can Gödel’s theorem con-

cerning the incompleteness of symbolic logics of a certain general

type and Church’s results on the recursive unsolvability of certain

problems be transformed into conclusions concerning all symbolic

logics and methods of solvability.(Post [1936], p. 105)

Post considered his formulation 1 as a system of psychological fidelity: gener-

alizing Gödel’s incompleteness theorem or Church’s proof of the unsolvability

of certain decision problems to all symbolic logics and methods of solvability

depends on the “faith” one can have in identifications such as that proposed

by Post. In that sense, he suggests to contemplate as wide a variety of

formulations as possible, each of which should be shown to be reducible to

formulation 1. Indeed, at the time Post wrote this paper he considered his
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conclusions concerning the ‘power’ of formulation 1, merely as a working hy-

pothesis. It is only if the program of finding more and more formulations

reducible to formulation 1 has proven its worth that the hypothesis can be

considered as a natural law. It is exactly at this point that Post criticizes

Church’s “definitional identification”. After having noticed in footnote 8 that

Church’s, Kleene’s and Rosser’s work already carries the identification be-

yond the working hypothesis stage, in having shown that λ-definability and

general recursiveness are equivalent, Post continues:

But to mask this identification under a definition hides the fact

that a fundamental discovery in the limitations of the mathemati-

cizing power of Homo Sapiens has been made and blinds us to

the need of its continual verification.(Post [1936], p. 105)

Indeed Post does not accept Church’s definitional identification as the correct

interpretation of such an identification. Rather it should be regarded as a

hypothesis or law of nature, to be continually verified, and is thus subject to

inductive reasoning. In a letter to Gödel, dated October 30, 1938 Post again

emphasizes the significance of the hypothetical character of e.g. Church’s

thesis (Gödel [2003b], p. 171):

the absolute unsolvability of [a] problem has but a basis in the

nature of physical induction at least in my work and I still think

in any work.

Considering identifications such as those offered by Post as a hypothesis in-

deed implies that an unsolvable decision problem can only presumptively be
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considered absolute: it is true only in supposing the validity of the identifica-

tion. In the quote Post also underlines the fact that this is not only true for

his but also for the work of others. But why did he add this small comment?

It might be the case that this is a further reaction on Church. Indeed, after

Post’s paper had been published criticizing the definitional interpretation,

Church replied by one, among many, of his sharp reviews:48

[Post] does not, however, regard his formulation as certainly to

be identified with effectiveness in the ordinary sense, but takes

this identification as a “working hypothesis” in need of continual

verification. To this the reviewer would object that effective-

ness in the ordinary sense has not been given an exact definition,

and hence the working hypothesis in question has not an exact

meaning. To define effectiveness as computability by an arbitrary

machine, subject to restrictions of finiteness, would seem to be an

adequate representation of the ordinary notion, and if this is done

the need for a working hypothesis disappears.(Church [1937a])

Church explicitly opposes the possibility of regarding his ‘definition’ as a ‘hy-

pothesis’ and gives two objections. Firstly he finds that Post has not given

an exact definition of the ordinary notion of effectiveness so that the ‘working

hypothesis’ is ambiguous. Secondly, if one does provide an adequate repre-

sentation for the notion of effectiveness it should simply not be regarded as a

working hypothesis but as a definition. The first critique is partly true, since

48Gandy gives a short discussion of this review in Gandy [1988]. A general paper on

Church and his work as a reviewer for the Bulletin of Symbolic Logic can be found in

Enderton [1998].
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Post indeed never makes an explicit identification between his formulation 1

and effectiveness. However, as was argued before, Post understood formu-

lation 1 as the formal equivalent of the intuitive notion of solvability by a

general method, and not directly as an identification with effectiveness. Only

after having developed this formalism he compares this ‘hypothetical identi-

fication’ with Church’s definitional one. The second objection, that there is

no need for a ‘working hypothesis’ when one has given an exact definition of

effectiveness only seems to mean that Church preferred definition to further

argument as is stated in Gandy [1988].49

This small “quarrel” between Church and Post becomes the more remarkable

in the light of Church’s reluctance to publicly announce his “definition”. It

was only after the establishment of the equivalence between general recur-

siveness and λ-calculus that Church made his thesis available to the public

in 1935. As is argued by Sieg:

I claim [...] that Church was reluctant to put forward the thesis in

writing – until the equivalence of λ-definability and general recur-

siveness had been established. The fact that the thesis was formu-

lated in terms of recursiveness indicates also that λ-definability

49It should be furthermore noted that Church’s opinion here is contradicted by what

happened after 1936. Until now, hundreds of people are still doing research on the continual

verification of what is generally called the Church-Turing thesis: not everyone wants to

accept it as is clear from the literature, often due to certain misinterpretations. Many

counter-examples have been suggested, especially in relation to the physical version of the

thesis, although it seems to be the case that none of them has lead to a falsification. A

good overview of the proposed counter-examples, together with a well-argued rejection of

these “falsifications” is given by Cotogno [2003].
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was at first, even by Church, not viewed as one among equally

natural definitions of effective calculability [...] (Sieg [1997], p.

157)50

Gandy adds further strength to the idea that this equivalence proof played

an important role in Church’s formulation of the thesis. In discussing the

‘argument by confluence’, the significance of equivalence proofs to strengthen

the theses, he points out a footnote in Church [1936a]. Here Church states

that this kind of argument adds strength to his further justifications for his

definitional identification, “so far as a positive justification can ever be ob-

tained for the selection of a formal definition to correspond to an intuitive

notion.” It was exactly this kind of argument Post had in mind in order to get

the identification beyond the working hypothesis stage, this argument being

understood as ‘presumptive evidence’, to use Church’s words, for the valid-

ity of the identification. Did Church indeed interpret the evidence offered

by the equivalence proof in the sense Post understood it (and in the sense

he used such evidence in his earlier work), or was it merely a theoretically

convincing fact, used to state a more naturally convincing definition, having

no link whatsoever with his needing more evidence for λ-calculus’ computa-

tional powers? Whatever the right answer might be, Church’s rather strong

50The author would like to add one small comment here. It is indeed true that λ-

definability is not a natural definition of effective calculability. However, it still remains

the case that it was through λ-calculus and not general recursiveness that Church first

had this idea. Furthermore, as is pointed out in Kleene [1981b], general recursiveness is

as unnatural a definition for effective calculability as is λ-calculus. The author is thus

not completely convinced by the reason given by Sieg here for Church’s reluctance. As to

what other possible reasons Church might have had, one can only guess.
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reaction against Post’s critique remains rather strange in the light of the

work preceding the public announcement. As was argued here, more than

once Church seems to have relied on what was called here an ‘empirical’ at-

titude. The significance the equivalence between general recursiveness and

λ-definability has played in the first public announcement of Church’s the-

sis, only seems to be in line with this kind of attitude, although it is partly

contradicted by his critique on Post.

5 Discussion

As was shown, already in his Ph.D. thesis Post set himself the goal of finding

the most general form of systems of symbolic logic in order to be able to

study their most fundamental and general properties. One of his basic meth-

ods was thus to develop more abstract forms, because he did not want to be

preoccupied with specific logical concepts but rather with the outward form

of symbolic logic.51 Because of their more abstract and simple character,

he hoped that finding a positive solution for the decision problem for Prin-

cipia might be more straightforward. In the course of this research he ended

up with his form of “tag”. The only way to get a grip on these systems is

51As he states at the beginning of his Post [1965], p. 343, one of the chief differences in

method between his work and that done by Gödel, Church and Turing: “is its preoccu-

pation with the outward forms of symbolic expressions, and possible operations thereon,

rather than with logical concepts as clothed in, or reflected by, correspondingly particu-

larized symbolic expressions, and operations thereon. [...] it also allows a greater freedom

of method and technique.”
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the above discussed ‘experimental’ approach. With such systems one can no

longer rely on an analysis based on the logical concepts involved, since one is

left with pure string manipulating systems. This together with the inherent

intractability of tag systems made such an approach necessary.52 Of course,

this does not exclude other methods. On the contrary, based on the observa-

tions one can further develop the theory. One can e.g. define classes of tag

systems and classes of problems.53 In Post’s case this approach even led to

fundamental theoretical results, as was shown in Sec. 2.2. In constructing

more and more abstract and simple forms, in order to get a grip on a hard

theoretical problem, ‘experimentation’ became necessary, which then led to

a reversal of the ideas put forward by the theoretical assumptions.

While the notion of ‘experimentation’ does not seem to have played any sig-

nificant role, the notion of ‘empirical evidence’ cannot be ignored in Church’s

earlier work. It is clear that Church’s ‘empirical’ attitude was closely con-

nected with a rather pragmatic and relativistic position towards logic, as

was shown in sec. 3.2. In exploring several systems of symbolic logic, he re-

jected the idea of one absolute logic. In the end, there is no absolute reason

whatsoever to prefer one system above the other.54 This attitude was partly

52Indeed, because of the later proven unsolvability of the decision problem for tag sys-

tems, there are (infinitely) many tag systems for which the final behaviour cannot be

predicted, since there simply is no general method to predict their behaviour.
53For example, Post as well Maslov [1964] and Wang [1963] proved that there are certain

conditions which, if satisfied by a certain tag system, imply decidability.
54This is e.g. explicitly stated in the following quote from Church [1928], p. 76: “In

connection with geometry and other branches of mathematics it is commonly recognized

that it is meaningless to ask about the absolute truth of a postulate and that the choice

between one of two contrary postulates must be made on the basis of simplicity and
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motivated by the possibility of the existence of undecidable propositions: the

possible independence of the axiom of choice is a theoretical reason for study-

ing its possible alternatives. In rejecting the idea of an absolute logic, the

only reason left for Church to accept or reject a system of symbolic logic is its

consistency. However, as long as one does not have a consistency proof, the

only reasonable argument to ‘trust’ a given system is an empirical one: the

longer one has worked on it, and the more theorems one has deduced from

it, without finding any contradiction, the more probable it becomes that the

system is indeed consistent (although one can never be sure). This ‘empirical’

attitude is necessitated by the fact that there is no general method to prove

the consistency of any system. As long as one does not find a proof, one

has to rely on what has already been found. In other words, this ‘empirical’

approach is (again) rooted in a certain mathematical fact about logical and

mathematical systems.

When Church’s set of postulates was shown to be inconsistent, he had every

reason to be more careful with regard to this empirical method, being faced

with its possible failure. As was shown in Sec. 3.3., this did not stop him to

again draw conclusions on he basis of ‘empirical’ evidence: after Kleene had

λ-defined several functions of positive integers, he became convinced that λ-

calculus could be used to define any calculable function. This evidence was

fundamental to Church’s formulation of the thesis. Research on λ-calculus

was not motivated by the concept of the thesis itself, it was not developed as

serviceability. It seems reasonable to recognize the same thing with regard to the postulates

of logic, in particular the law of excluded middle, and to say on this basis that it is

meaningless to ask about the truth of the law of excluded middle.”
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an instrument of an analysis of the notion of a computation, as was clearly

the case with Turing’s and Post’s second thesis. Rather it was, again, the

system itself, and the results established about it that led to the thesis.

But in how far is it really grounded to talk about concepts such as ‘exper-

imental’ and ‘empirical evidence’ in the work of Church and Post? More

generally how far can one go with such notions in relation to logic and math-

ematics? With the rise of the computer it has become rather convenient to

talk about experimental mathematics. Many research groups make intensive

use of the computer in the establishment of their results. Typical examples

are fractal geometry and chaos theory, branches of mathematics that could

not have progressed the way they have without the computer. Many of the

results are based on observations and analysis of visual or other output. But

what is it exactly that makes it ‘normal’ to talk about experimental mathe-

matics when the computer is involved, while it is less evident to do this for

mathematics in the pre-computer era?

As was already stated at the beginning of this paper, the author is not con-

vinced at all that ‘experimentation’ or the use of ‘empirical evidence’ should

be considered as some kind of special method, intervening on the usual meth-

ods of mathematics. The abstractness and intractability of tag systems made

it for Post impossible to proceed in a purely theoretical manner. Instead he

had to try out specific cases and particular methods in order to build up

an intuition of the systems he was working in. Through this ‘experimental’

approach it then became possible for Post to draw certain theoretical con-

clusions and even prove some results concerning tag systems. In calling this

approach ‘experimental’ one should be very careful though. It can only be
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valuable in this context if one understands that it cannot be isolated from the

practice it is used in, and the specific problems Post was confronted with. If

one really wants to talk about the notion of an ‘experiment’ in mathematics

one should always start from a specific practice, never forgetting that it is

only through a combination and interaction of ‘theory’ and ‘experiment’ that

results are reached

A similar reasoning can be applied to Church’s empirical approach in his

earlier work. As was shown Church himself explicitly used terms such as

‘presumptive evidence’ or ‘empirical evidence’. Does this mean that Church’s

general approach to mathematics should be identified as an empirical one?

Not at all. The simple fact of his reaction against Post’s calling his defini-

tion a working hypothesis shows that this kind of conclusion would not do

right to Church’s position. Rather one should conclude that given Church’s

theoretical ideas, his interest in foundational issues and his awareness of

the non-absoluteness of any system of symbolic logic, an empirical approach

seemed to be the most reasonable. While he was clearly well-aware about the

necessity of this approach in this context, motivated as it was by theoretical

considerations, this was clearly not the case in first conjecturing his thesis.

The concept of λ-definability was not preceded nor developed in function of

the theoretical idea that λ-definability is a good formal definition for effective

calculability through proving the λ-definability of as many integer functions

one can think of. It was only after the ‘empirical evidence’ became – against

all odds – more and more convincing that Church formulated his thesis.

Also in Church’s case one cannot but conclude that an ‘empirical’ approach

can only be meaningful here in connection to the problems and practice it
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becomes apparent with. Indeed talking about the notion of ‘experiment’ or

‘empirical evidence’ without back-linking it to the specific context it appears

in, might lead to purely theoretical discussions, losing its link with the real-

ity of the mathematical practice it appears in and thus losing the connection

with its own reality. Looking at the practice they are used in one sees that

one cannot simply separate ‘experiment’ from ‘theory’, they feed on each

other.

6 Conclusion

As was already stated, with the rise of the computer the significance of ‘ex-

periments’ and ‘empirical evidence’ for mathematics has become more and

more clear. Important new results in and even new branches of mathematics

originated in the possibility of performing ‘experiments’ on computers. In

1992 even a new journal was founded, devoted solely to the subject of ex-

perimental mathematics. In the statement of the general philosophy behind

the journal however, it is explicitly stated that the notion of an ‘experiment’

should not be confined to computer experiments – “[since some experiments]

are still the result of pencil-and-paper work”.

While it seems rather obvious to talk about ‘experiments’ and ‘empirical ev-

idence’ in connection to computers, this is often not the case for other parts

of mathematics. This is partly due to the fact that the more ‘experimental’

parts of research in mathematics are concealed in the final presentation of

the results for the sake of elegance and mathematical rigor. While these are
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of course important features of mathematics which should not be abandoned

by the mathematicians themselves, they can obscure the interaction between

‘experiment’ and ‘theory’ in mathematics. It is thus significant to look at

the more “ugly” work preceding the elegance of the publication, especially

in those more abstract branches of mathematics. This is not only important

from a philosophical point of view, but maybe even more from a pedagogical

point of view since it might help to relativize the idea, believed to be true

by a majority of people, of mathematics being a kind of abstract totality of

eternal truths. To end with a quote from Experimental Mathematics :

Experiment has always been, and increasingly is, an important

method of mathematical discovery. [...] Yet this tends to be con-

cealed by the tradition of presenting only elegant, well-rounded,

and rigorous results. [...] we consider it anomalous that an impor-

tant component of the process of mathematical creation is hidden

from public discussion. It is to our loss that most of us in the

mathematical community are almost always unaware of how new

results have been discovered. It is especially deplorable that this

knowledge is not made part of the training of graduate students,

who are left to find their own way through the wilderness. [...]

There is value not only in the discovery itself, but also in the road

that leads to it.
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