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Abstract

This paper concerns a goal directed proof procedure for the propo-

sitional fragment of the adaptive logic ACLuN1. The procedure forms

an algorithm for �nal derivability and may easily be generalized for the

propositional fragment of all 
at adaptive logics. The aim is to articulate

a procedure that, if extended to the predicative level, provides criteria for

�nal derivability.

1 Aim of this Paper

Adaptive logics are intended for characterizing inference relations that lack a
positive test.1 The characterization has a speci�c metalinguistic standard for-
mat. This format provides the logic with a semantics and a proof theory and
warrants soundness, completeness, and a set of properties of the logic.2 The �rst
adaptive logics were inconsistency-adaptive. The articulation of other adaptive
logics provided increasing insight in the underlying mechanisms and required
that adaptive logics were systematized in a new way. This systematization is
presented in [8] and will be followed here.3

Inference relations for which there is no positive test abound in both everyday
and scienti�c reasoning processes. The importance of adaptive logics derives
from there. This applies especially to the dynamic proof theory of adaptive
logics. Indeed, this proof theory is intended for explicating actual reasoning, a
task that cannot be accomplished by de�nitions, semantic systems, and other
more abstract characterizations.

�Research for this paper was supported by subventions from Ghent University and from

the Fund for Scienti�c Research { Flanders, and indirectly by the the Flemish Minister re-

sponsible for Science and Technology (contract BIL01/80). I am indebted to Dagmar Provijn

for comments on a former draft.
1In other words, there is no systematic procedure that, for every set of premises � and

for every conclusion A, leads after �nitely many steps to a \yes" if A is a consequence of �.

Remark that the consequence relation de�ned by classical logic is undecidable, but that there

is a positive test for it|see [16] for such matters.
2Only part of these results are written up, viz. in [9].
3Some 
at adaptive logics were described as formula-preferential systems in [17]|see also

[1]. It is not clear whether this may be done for all adaptive logics, but the approach was

a useful challenge for the Ghent group and indirectly led to the research on the generalized

proofs of metatheoretic results.
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The dynamics of the proof theory provides from the absence of a positive test.
For most consequence relations, the dynamics is double. The external dynamics
is well known: as new premises become available, consequences derived from the
earlier premise set may be withdrawn. In other words, the external dynamics
results from the non-monotonic character of the consequence relation|the fact
that, for some �, � and A, � ` A but � [ � 0 A. The internal dynamics
is very di�erent from the external one. Even if the premise set is constant,
certain formulas are considered as derived at some stage of the proof, but are
considered as not derived at a later stage. For any consequence relation, insight
in the premises is only gained by deriving consequences from them. In the
absence of a positive test, this results in the internal dynamics.4

The structure of dynamic proofs di�ers in two main respects from that of
usual proofs. The �rst concerns annotated proofs. Apart from (i) a line number,
(ii) a formula, (iii) the line numbers of the formulas from which the formula
is derived, and (iv) the rule by which the formula is derived (the latter two
are the justi�cation of the line), dynamic proofs also contain (v) a condition.
Intuitively, these are formulas that are supposed to be false, or, to be more
precise, formulas the truth of which is not required by the premises. The second
main di�erence is that, apart from the deduction rules that allow one to add
lines to the proof, there is a marking de�nition. The underlying idea is as
follows. As the proof proceeds, more formulas are derived from the premises. In
view of these formulas, some conditions may turn out not to hold. The lines at
which such conditions occur are marked. Formulas derived on marked lines are
taken not to be derived from the premises. In other words, they are considered
as `out'. One way to understand the procedure is as follows. As the proof
proceeds, one's insight in the premises improves. More particularly, some of the
conditions that were introduced earlier may turn out not to obtain.

As we have seen, the marking de�nition determines the dynamics of the
proof. For any stage of the proof, the de�nition settles which lines are marked
and which lines are unmarked. This leads to a precise de�nition of derivability
at a stage. Notwithstanding the precise character of this notion, we also want
a more stable form of derivability, which is called �nal derivability. The latter
does not depend on the stage of the proof. Nor does it depend on the way in
which a speci�c proof from a set of premises proceeds. It is an abstract and
stable relation between a set of premises and a conclusion. A di�erent way
for putting this is that �nal derivability refers to a stage of the proof at which
the marks have become stable. Final derivability should be sound and strongly
complete with respect to the semantics. For any adaptive logic AL, A should
be �nally derivable from � (� `AL A) if and only if A is a semantic consequence
of � (� �AL A).

Now we come to the problem this paper is about. Suppose that one con-
structs a dynamic proof from a set of premises. At any point in time, this proof
will be �nite. It will reveal what is derivable from the premises at that stage
of the proof. But obviously we are interested in �nal derivability. Whence the
question: what does a proof at a stage reveal about �nal derivability?

4The Weak consequence relation from [19] and [20]|see [14] and [15] for an extensive

study of such consequence relations|is monotonic. Nevertheless, its proof theory necessarily

displays an internal dynamics because there is no positive test for it|see [6] and [10]. Some

logics for which there is a positive test, may nevertheless be characterized in a nice way in

terms of a dynamic proof theory|see [7].
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First of all, as there is not even a positive test for the consequence relation,
there is no algorithm for �nal derivability. So, one has at best some criteria

that decide, for speci�c A and �, whether A is �nally derivable from �.
What if no criterion enables one to conclude from the proof whether certain

formulas are or are not �nally derivable from the premise set? The answer or
rather the answers to this question are presented in [3]. Roughly, the answers
go as follows. First, there is a characteristic semantics for derivability at a
stage. Next, it can be shown that, as the dynamic proof proceeds, the insight in
the premises provided by the proof never decreases and may increase. In other
words, derivability at a stage provides an estimate for �nal derivability, and, as
the proof proceeds, this estimate may become better, and never becomes worse.
In view of all this, derivability at a stage gives one exactly what one might
expect, viz. a fallible but sensible estimate of �nal derivability. At any stage of
the proof, one has to decide (obviously on the basis of pragmatic considerations)
whether one will continue the proof or rely on present insights. This is fully in
line with the contemporary view on rationality.5

Nevertheless, one should apply a criterion for �nal derivability whenever one
can. This motivated the search for such criteria|see [3], [11] and [12]. Unfortu-
nately, most of these criteria are complex and only transparent for people that
are well acquainted with dynamic proofs. Recently, we started work in terms of
goal directed proofs. The idea is not to formulate a criterion, but rather to spec-
ify a speci�c proof procedure that functions as a criterion. The proof procedure
is applied to � `AL A. Whenever the proof procedure stops, it is possible to
conclude from the resulting proof whether or not � `AL A. Preparatory work
on the propositional fragment of CL (classical logic) is presented in [13] and
some �rst results on the proof procedure for inconsistency-adaptive logics are
presented in this paper.

The results concern the propositional level only. So, all references to logical
systems concern the propositional fragments only. At this level the proof proce-
dure forms an algorithm for �nal derivability (for �nite premise sets). Indeed, if
the proof procedure is applied to A1; : : : ; An `AL B, it always stops after �nitely
many steps. If, at the last stage of the proof, B is derived on an unmarked line,
then B is �nally derivable from A1; : : : ; An; if B is not derived on an unmarked
line, it is not �nally derivable from A1; : : : ; An. The main interest of the proof
procedure, however, lies in the fact that it may be extended to the predicative
level and there provides a criterion for �nal derivability if it stops.

In Section 2, I brie
y present the inconsistency-adaptive logic ACLuN1

and its dynamic proof theory. In Section 3, I present the goal-directed proof
procedure for CL. This will make the matter easily understood by everyone.
The proof procedure is upgraded to the adaptive logic ACLuN1 in Section 4.

2 The Inconsistency-Adaptive Logic ACLuN1

In proof theoretic terms, the central di�erence between paraconsistent logics
and inconsistency-adaptive logics can be described very easily. In a (monotonic)

5A di�erent matter is whether the proof is carried out in an eÆcient way, that is: eÆcient

with respect to obtaining a reliable (but fallible) estimate of �nal derivability. The goal

directed proofs presented in subsequent sections of this paper o�er means to obtain eÆcient

proofs, but clearly more research on this problem is desirable.
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paraconsistent logic some deduction rules of CL are invalid; in an inconsistency-
adaptive logic, some applications of deduction rules of CL are invalid.

The original application context that led to inconsistency-adaptive logics is,
in my view, still one of the most clarifying ones. Suppose that a theory T was
intended to be consistent and hence was formulated with CL as its underlying
logic. Suppose next that T turns out to be inconsistent. Of course, one will
want to replace T by some consistent improvement T 0. Typically, one does not
just trow away T , restarting from scratch. One reasons from T in order to
locate the inconsistency or inconsistencies and in order to locate constraints for
the replacement T 0. Needless to say, logic alone is not suÆcient to �nd the
justi�ed replacement T 0. If T is an empirical theory, one will need at least new
factual data (observations, experiments, and so on). If T is a mathematical
theory, one will need more conceptual analysis. However, logic is able to locate

the inconsistencies in T . What we need is an interpretation of T that is `as
consistently as possible'. Let me phrase this in intuitive terms. At points where
T is inconsistent, some deduction rules of CL cannot apply|if they all do,
one obtains a trivial interpretation of T , an interpretation according to which
every sentence of the language is a theorem of T . But where T is consistent, all
deduction rules of CL should apply.

Consider an extremely simple propositional example. Suppose that the ax-
ioms of T are the set fp;�p_r; q;�q_s;�pg. From these premises, r should not
be derived by Disjunctive Syllogism. Indeed, �p_r is just an obvious weakening
of �p. If one were to derive r from the premises, then, by the same reasoning,
one should derive �r from p and �p _ �r, which also is an obvious weakening
of �p. However, if one interprets the premises as consistently as possible, one
should derive s from them, viz. by Disjunctive Syllogism from q and �q _ s.
Indeed, while the premises require p to behave inconsistently (require p ^ �p

to be true), they do not require q to behave inconsistently (they do not require
q ^�q to be true).

Let me phrase the matter di�erently. T turns out to be inconsistent but, as it
was intended to be consistent, should be interpreted as consistently as possible.
Given that T is inconsistent, one will move `down' to a paraconsistent logic|a
logic that allows for inconsistencies. If a formula turns out to be inconsistent
on the paraconsistent reading of T , one cannot apply certain rules of CL to it.
Thus, even on the paraconsistent interpretation of T , p ^ �p is true. But now
consider p ^ (�p _ r). Given the meaning of conjunction and disjunction, it is
equivalent to (p ^�p) _ r. According to CL, p ^�p cannot be true, and hence
r is true. However, the premises state that p ^ �p is true. So, if one wants to
reason sensibly from these premises, one cannot rely on the CL-presupposition
that p ^�p is bound to be false. However, where the paraconsistent reading of
T does not require some formula to behave inconsistently, one still should apply
all CL-rules because the theory was meant as consistent. Thus the premises
aÆrm q ^ (�q _ s), which is equivalent to (q ^�q) _ s. As the premises do not
require q^�q to be true, it should be taken to be false and one should conclude
to s.

Inconsistency-adaptive logics provide a precise and coherent formulation of
the intuitions behind the two preceding paragraphs.

An adaptive logic is characterized by the following triple:6

6I restrict the discussion to 
at adaptive logics. Apart from these, there are prioritized
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(i) A lower limit logic: a monotonic logic.
(ii) A set of abnormalities : a set of formulas characterized by a logical form.
(iii) An adaptive strategy : this speci�es what it means to interpret the premises

\as normally as possible".
Extending the lower limit logic with the requirement that no abnormality is
logically possible results in a monotonic logic, which is called the upper limit

logic.
Let us at once look at a speci�c inconsistency-adaptive logic, viz. ACLuN1.

In this paper, I shall only consider the propositional part.
The lower limit logic of ACLuN1 is CLuN. This monotonic paraconsistent

logic is just like CL, except in that it allows for gluts with respect to negation|
whence the name CLuN. Axiomatically, CLuN is obtained by extending full
positive propositional logic with the axiom schema A_�A|see [4] for a study of
the full logics CLuN and ACLuN1, including the semantics. CLuN isolates
inconsistencies. Indeed, Double Negation, de Morgan rules, and all similar
negation reducing rules are not validated by CLuN. As a result, complex
contradictions do not reduce to truth functions of simpler contradictions.7 There
are several versions of CLuN. Here I shall suppose that the language contains
?, and that it is characterized by the axiom schema ? � A.

The set of abnormalities, 
, comprises all formulas of the form A ^ �A.
Extending CLuN with the axiom schema (A ^ �A) � B results in the upper
limit logic, which is CL. Below I shall often need to refer to disjunctions of

abnormalities, which I shall call Dab-formulas. From now on an expression of
the form Dab(�) will refer to a disjunction of abnormalities; in other words, �
is a �nite subset of 
 and Dab(�) is the disjunction of the members of �.

It can be shown that � `CL ? i� there is a �nite � � 
 such that
� `CLuN Dab(�). So, each of these expressions may be taken to de�ne that
� is inconsistent. Suppose now that � `CLuN Dab(�), but that no member
of � is CLuN-derivable from �. This means that the premises require some
member of � to be true, but do not specify which member is true. Precisely
this situation requires one to introduce an adaptive strategy. One wants to in-
terpret the premises \as normally as possible" (which for the present 
 means
\as consistently as possible"), but this phrase is ambiguous. As indicated in
(iii), an adaptive strategy disambiguates the phrase.

The oldest known strategy, and the one that is simplest from a proof theoretic
point of view, is the Reliability strategy from [2].8 I shall not consider any other
strategies in this paper. Let Dab(�) be a minimal Dab-consequence of � i�
� `CLuN Dab(�) and there is no �0 � � for which � `CLuN Dab(�0). Let
U(�) = fA j A 2 � for some minimal Dab-consequence Dab(�) of �g be the
set of formulas that are unreliable with respect to �. Below, I shall de�ne
� `ACLuN1 A, which will be read as \A is �nally ACLuN1-derivable from �".
The following Theorem is provable. In plain words it says that A is ACLuN1-
derivable from � i� there is a � such that A_Dab(�) is CLuN-derivable from
� an no member of � is unreliable with respect to �.

adaptive logics, which are de�ned as speci�c combinations of 
at adaptive logics|see [8].
7For example, (p^ q)^�(p^ q) 0CLuN (p^�p)_ (q ^�q) and �p^��p 0CLuN p^�p.

Of course, one still has (p ^ �p) ^ �(p ^�p) `CLuN p ^ �p.
8This is the oldest paper on the matter, but it appeared in a book that took ten years to

come out.
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Theorem 1 � `ACLuN1 A i� there is a � � 
 such that � `CLuN A_Dab(�)
and � \ U(�) = ;.

I now move on to the dynamic proof theory. This is identical for all 
at
adaptive logics, except of course that the rules RU and RC should refer to the
right lower limit logic. Let � be the set of premises as before. The deduction
rules are as follows (in generic format):9

PREM If A 2 �, one may add a line comprising the following elements: (i) an
appropriate line number, (ii) A, (iii) �, (iv) PREM, and (v) ;.

RU If A1; : : : ; An `CLuN B and each of A1, : : :, An occur in the proof on
lines i1, . . . , in that have conditions �1, : : :, �n respectively, one may
add a line comprising the following elements: (i) an appropriate line
number, (ii) B, (iii) i1; : : : ; in, (iv) RU, and (v) �1 [ : : : [�n.

RC If A1; : : : ; An `CLuN B _ Dab(�) and each of A1, : : :, An occur in the
proof on lines i1, . . . , in that have conditions �1, : : :, �n respectively,
one may add a line comprising the following elements: (i) an appropri-
ate line number, (ii) B, (iii) i1; : : : ; in, (iv) RC, and (v) �1[: : :[�n[�.

Where
A �

abbreviates that A occurs in the proof on the condition �, the rules may be
phrased more transparently as follows:

PREM If A 2 �: . . . . . .

A ;

RU If A1; : : : ; An `LLL B: A1 �1

. . . . . .
An �n

B �1 [ : : : [�n

RC If A1; : : : ; An `LLL B _Dab(�) A1 �1

. . . . . .
An �n

B �1 [ : : : [�n [�

Apart from the deduction rules, a dynamic proof theory requires a marking
de�nition that depends on the strategy. First, we need to de�ne the set Us(�)
of formulas that are unreliable at a stage s of a proof. Let Dab(�) be a minimal

Dab-formula at stage s of the proof i�, at that stage, Dab(�) has been derived
on the condition ; and there is no �0 � � for which Dab(�0) has been derived
on the condition ;. Let Us(�) = fA j A 2 � for some minimal Dab-formula
Dab(�) at stage s of the proof g. The marking de�nition for Reliability reads
as follows:

De�nition 1 Line i is marked at stage s i�, where � is the condition of line

i, � \ Us(�) 6= ;.

9The only rule that introduces non-empty conditions is RC. In other words, before RC is

applied in a proof, the condition of every line will be ;.
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Lines that are unmarked at one stage may be marked at the next, and vice
versa.

To complete the picture, I list the de�nitions concerning �nal derivability.
These de�nitions are the same for all adaptive logics.

De�nition 2 A is �nally derived from � on line i of a proof at stage s i� A is

derived on line i, line i is not marked at stage s, and any extension of the proof

in which line i is marked may be further extended in such a way that line i is

unmarked.

De�nition 3 � `AL A (A is �nally AL-derivable from �) i� A is �nally

derived on a line of a proof from �.

Here is a very simple dynamic proof from � = f(p ^ q) ^ t; �p _ r; �q _

s; �p _ �q; t � �pg.

1 (p ^ q) ^ t PREM ;

2 �p _ r PREM ;

3 �q _ s PREM ;

4 �p _ �q PREM ;

5 t � �p PREM ;

6 r 1, 2 RC fp ^ �pg

7 s 1, 3 RC fq ^ �qg

8 (p ^�p) _ (q ^ �q) 1, 4 RU ;

9 p ^ �p 1, 5 RU ;

Up to stage 7 of the proof, all lines are unmarked. At stage 8, lines 6 and 7
are marked because U8(�) = fp^�p; q ^�qg. At stage 9, only line 6 is marked
because U9(�) = fp ^ �pg. It is easily seen that, if 1{5 are the only premises,
then the marks will remain unchanged in all extensions of the proof. So, r is
not a �nal consequence of � where as for example s is a �nal consequence of �.

Important remark I have supposed before that the language contains ?.
This means that classical negation can be de�ned within the language, viz. by
:A =df A � ?. In other words, CLuN is an extension of CL. It contains CL,
: functioning as the CL-negation, and moreover contains the paraconsistent
negation �. In the original application context mentioned in the second para-
graph of this section, the premises belong to the ?-free and :-free fragment of
the language|of course, there are di�erent application contexts as well. Even
in the original application context, the presence of : is useful in that it greatly
simpli�es metatheoretic proofs and technical matters in general, and does not
in any way hamper the limitations imposed by the application context.10 The
presence of : also greatly simpli�es the goal directed proof procedure that will
serve as a criterion for �nal derivability and will be presented in Section 4.

10Some �ve years ago, the Ghent logic group became convinced that it is harmless as well

as useful, for all adaptive logics, to extend the language and the lower limit logic in such a

way that all classical connectives belong to the lower limit logic. This holds even if these

connectives do not occur in the premises or in the conclusions a user is interested in|see [5]

for an example.
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3 Goal Directed Proofs for Classical Logic

The `defeasible' conditions that occur in dynamic proofs of adaptive logics sug-
gest that one might try to obtain a kind of dynamic proofs with `prospective'
conditions. This led to a speci�c form of goal directed proofs, which later turned
out to be useful for devising criteria for �nal derivability. However, let us start
with goal directed proofs for CL.

The general idea is that one constructs a proof for A1; : : : An `CL B. Let us
consider an example: a goal directed proof for p � (q ^ s);:(q _ r) `CL :p.11

As a �rst step, one introduces the main goal:

1 :p GOAL f:pg

In other words, one writes down the truism that one would have :p on the
condition f:pg, that is: if one had :p. This �rst step is meant to remind one
that one is looking for the formula that occurs in the condition, viz :p. In view
of this formula, one introduces a premise from which it may be obtained, and
next analyses the premise:

2 p � (q ^ s) PREM ;

3 :p 2 �E f:(q ^ s)g

Line 3 says that, in view of 2, one has :p on the condition that one has :(q^s).
As :(q ^ s) cannot be obtained by analysing a premise, one analyses :(q ^ s)
and proceeds thus:

4 :p 3 C:^E f:qg

5 :(q _ r) PREM ;

6 :q 5 :_E ;

7 :p 4, 6 Trans ;

At line 7, the main goal was obtained on the empty condition, which means
that the proof is completed.

Two remarks are useful before I list the rules. First, there are algorithms to
transform goal directed proofs to other kinds of proofs, for example axiomatic
proofs or Fitch-style proofs. Next, it is easily seen that a formula A is derivable
on the condition � just in case

V
(�) � A is CL-derivable from the premises,

where \
V

(�) �" is the empty string if � = ;.
In order to keep the rules as readable as possible, I shall write A� to indicate

that A occurs in the proof (or may be added to the proof) on the condition �.
The rules for constructing a goal directed proof for � `CL G are as follows.
First, there are rules for introducing the main goal and the premises:

Goal Introduce GfGg.

Prem If A 2 �, then A; may be introduced.

Formula analysing rules (two formulas below the horizontal line indicate
variants of the rule):

�E
(A � B)�

B�[fAg :A�[f:Bg

11In order to simplify Section 4, I write the classical negation as : even in the context of

CL.
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_E
(A _B)�

A�[f:Bg B�[f:Ag

^E
(A ^ B)�
A� B�

�E
(A � B)�

(A � B)� (B � A)�

::E
::A�

A�

:�E
:(A � B)�
A� :B�

:_E
:(A _B)�
:A� :B�

:^E
:(A ^ B)�

(:A _ :B)�

:�E
:(A � B)�

(A _ B)� (:A _ :B)�

Condition analysing rules:

C�E
A�[fB�Cg

A�[f:Bg A�[fCg

C_E
A�[fB_Cg

A�[fBg A�[fCg

C^E
A�[fB^Cg

A�[fB;Cg

C�E
A�[fB�Cg

A�[fB;Cg A�[f:B;:Cg

C::E
A�[f::Bg

A�[fBg

C:�E
A�[f:(B�C)g

A�[fB;:Cg

C:_E
A�[f:(B_C)g

A�[f:B;:Cg

C:^E
A�[f:(B^C)g

A�[f:Bg A�[f:Cg

C:�E
A�[f:(B�C)g

A�[f:B;Cg A�[fB;:Cg

We need three further rules to warrant that the system is complete:12

Trans

A�[fBg

B�0

A�[�0

12See [13] for the proof that G is derivable from A1; : : : ; An by the present rules i�

A1; : : : ; An `CL G. That paper also deals with the case of an in�nite premise set.
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EM

A�[fBg

A�0[f:Bg

A�[�0

EFQ If A 2 �, G may be introduced on the condition f:Ag.

The last rule is a somewhat unusual version of Ex Falso Quodlibet: one
obtains the main goal if one is able to obtain the negation of a premise. A
useful derivable rule is

EM0
A�[f:Ag

A�

There is no room to discuss the proof heuristics in the present paper. How-
ever, I need to say at least a few things about it. First, if A is derived on the
condition � at some line and � � �, then A should not be derived on the con-
dition � at any subsequent line. This is essential for warranting that the proofs
stop. Next, any line added to the proof should be added in order to derive a
member of some condition in the proof. This is essential for the goal directed
character of the proofs. Where one proceeds in order to derive a member A of
some condition, one may introduce a premise B i� A is a positive part of B, and
one may derive B from some C by a formula analysing rule i� A is a positive
part of B. That A is a positive part of B is de�ned as follows:

(i) A is a positive part of each of the following: A, A ^ B, B ^ A, A _ B,
B _ A, B � A, A � B, and B � A;

(ii) A is a negative part of :A, A � B, A � B, and B � A;
(iii) if A is a negative part of B, then :A is a positive part of B;
(iv) if A is a positive part of B and B is a positive part of C, then A is a

positive part of C;
(v) if A is a positive part of B and B is a negative part of C, then A is a

negative part of C;
(vi) if A is a negative part of B and B is a positive part of C, then A is a

negative part of C;
(vii) if A is a negative part of B and B is a negative part of C, then A is a

positive part of C.

Finally, some lines in the proofs will be marked, indicating that one should
not try to derive the formulas that occur in the condition of the line. A �rst
reason to mark a line is that its condition is redundant.

M1 Where A is derived on the condition � at line i, line i is D-marked if A 2 �
or there is a line at which A is derived on the condition �0 and �0 � �.

A set of formulas � will be called 
atly inconsistent i� A;:A 2 � for some
A. The second reason to mark lines is that they lead us to unwanted applications
of ex falso quodlibet.13

13The underlying idea is that one �rst tries to obtain the goal in a strictly goal directed way,

applying formula analysing rules and condition analysing rules and applying Trans provided it

results in marking one of the lines to which it is applied. If this does not succeed, one attempts

to obtain the goal by applying EM and Trans. If this does not succeed, one attempts to obtain

the goal by EFQ. Further marking rules are extremely useful to speed up the strictly goal

directed search.
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M2 Where A is derived on the condition � at line i, and no application of
EFQ occurs in the proof, line i is D-marked if � is 
atly inconsistent or,
for some B 2 �, :B is derived on the empty condition.

4 Goal Directed Proofs for ACLuN1

In order to tackle our problem in terms of goal directed proofs, we need proofs
whose lines contain two conditions:

i A . . . . . . � �

The �rst condition, �, will be called the D-condition. It contains the formulas
that one needs to derive in order to unconditionally obtain A. The second
condition, �, will be called the I-condition. It contains abnormalities that should
not belong to U(�) in order for A to be derivable from the premises. Put
di�erently, the occurrence of the above line i in a proof from � warrants that

� [� `CLuN A _ Dab(�) :

In order to show that
� `ACLuN1 G

one needs to show that
� `CLuN G _ Dab(�) :

In other words, one needs a line like the displayed line i at which A = G, � = ;,
and � \ U(�) = ;.

I now extend the goal directed system described in Section 3 to a system for
ACLuN1.

The rules First we need to upgrade the rules from Section 3 for the new
proof format. This is simply done by adding a second condition: for GOAL and
PREM, the second condition is ;. For all other rules, if they have one (local)
premise line, one adds � as the second condition on the premise line as well as
on the conclusion line; if they have two premise lines, one adds as the second
condition: � on the �rst premise line, �0 on the second premise line, and �[�0

on the conclusion line. Here are two examples:

�E
(A � B)�;�

B�[fAg;� :A�[f:Bg;�

Trans

A�[fBg;�

B�0;�0

A�[�0;�[�0

Next we need rules for the paraconsistent negation. Two of them have no
e�ect on the I-condition; the other two have.

�E
�A�;�

:A�;�[fA^�Ag

:�E
:�A�;�

A�;�

11



C�E
A�[f�Bg;�

A�[f:Bg;�

C:�E
A�[f:�Bg;�

A�[fBg;�[fB^�Bg

It is instructive to check what these rules precisely mean, and why they are
correct. We shall soon see the use of two further rules (they have di�erent
names because they serve a di�erent purpose|see below):

I-GOAL Where � � 
, Dab(�)Dab(�);; may be introduced

X-GOAL Where � � 
, Dab(�)Dab(�);; may be introduced

The following rule is permissible. Making it obligatory greatly simpli�es the
required proof procedure

IC
Dab(� [ �0)�;�[�0

Dab(� [ �0)�;�

The procedure In order to decide whether A1; : : : ; An `ACLuN1 G, one has
to �nd out whether there is a goal directed proof in which G is derived on an
empty D-condition and on an I-condition � for which � \ U(�) = ;. The
proof procedure for � `ACLuN1 G will consist of three phases|I shall restrict
attention to �nite �. I shall �rst describe the three phases, and next present
an informal proof for the correctness of the procedure. The procedure starts in
phase 1, may move to phases 2 and 3, and returns to phase 1. During phases
2 and 3, some line may be I-marked (marked in view of its I-condition). A
phase stops if no lines can be added in view of conditions introduced during
that phase.

Phase 1. One attempts to derive G;;� for some �. Three cases have to be
considered.
(1.1) G;;; is derived. Then � `ACLuN1 G.
(1.2) G;;� is derived, say at line i. The procedure moves to phase 2 and later

returns to phase 1. Then
(1.2.1) if line i is not I-marked, � `ACLuN1 G.
(1.2.2) if line i is I-marked, one attempts to derive G;;�0 for some �0 +

�.
(1.3) The procedure stops and G;;� is not derived on an unmarked line for any

�. Then � 0ACLuN1 G.

Phase 2. G;;� was derived in phase 1 for some �, say at line i. Phase
2 starts by applying the I-Goal rule in order to add Dab(�)fDab(�)g;; to the
proof. One attempts to obtain Dab(�);;� for some � (� 
). Three cases have
to be considered.
(2.1) Dab(�);;; is derived: line i is I-marked and the procedure returns to

phase 1.
(2.2) Dab(�);;� is derived for some �, say at line j. The procedure moves to

phase 3 and later returns to phase 2. Then
(2.2.1) if line j is I-marked, one attempts to derive Dab(�);;�0 for some

�0 + �.

12



(2.2.2) if line j is not I-marked, line i is I-marked and the procedure
returns to phase 1.

(2.3) Dab(�);;� is not derived for any � when phase 2 stops. Line i is not
I-marked and the procedure returns to phase 1.

Phase 3. G;;� was derived in phase 1 for some �, say at line i, and Dab(�);;�
was derived in phase 2 for some �, say at line j. Phase 3 starts by an application
of the rule X-GOAL in order to add Dab(�)fDab(�)g;; to the proof. The aim is to
derive Dab(�);;;. All lines added in phase 3 should have an empty I-condition.
There are two cases to consider.
(3.1) Dab(�);;; is derived: line j is I-marked and the procedure returns to

phase 2.
(3.2) Phase 3 stops without Dab(�);;; being derived: line j is not I-marked

and the procedure returns to phase 2.

In [13] it is proved that the rules from Section 3 are sound and complete
with respect to CL. That proof can easily be transformed to show that the
rules from the present section are sound and complete with respect to CLuN

in the following sense (for �nite �):
(1) If � `CLuN G, then G;;; is derived in the dynamic proof for � `CLuN G.

If � 0CLuN G, then the dynamic proof for � `CLuN G stops.
(2) A;;� is derivable in the dynamic proof for � `CLuN G i� � `CLuN A _

Dab(�) .
Relying on this, I extend the result to ACLuN1. An essential point concerns

phase 2. Suppose that G;;� is derived at line i for some �, and that Dab(�);;� is
derived for some � at line j. It follows that � `ACLuN1 Dab(�[�). If Dab(�);;;
is derived in phase 3, then � `ACLuN1 Dab(�), and hence Dab(� [ �) is not a
minimal Dab-consequence of �. So, �\U(�) = ; i� the following holds for all �:
if � `ACLuN1 Dab(� [ �), then � `ACLuN1 Dab(�). This condition comes to:
if Dab(�);;� is derivable, then Dab(�);;; is derivable. Precisely this is checked
in phase 2: the procedure returns to phase 1 with line i not I-marked i� it holds
for all � that Dab(�);;; is derivable whenever Dab(�);;� is derivable. So, if the
procedure returns to phase 1 with line i not I-marked, then � \ U(�) = ; and
hence G is �nally derived at line i.

It is easily seen that line i is marked i� � \ U(�) 6= ;. If, for some �,
Dab(�);;� is derivable whereas Dab(�);;; is not derivable, then � `ACLuN1
Dab(� [ �) whereas � 0ACLuN1 Dab(�). But then � \ U(�) 6= ;.14

Positive parts To complete the description of the procedure, I still need to
adjust the de�nition of \positive part of". Two situations have to be distin-
guished. For steps in phase 3, the de�nition of \positive part of" from Section
3 is modi�ed by adding that A is a positive part of :�A.15 For phases 1 and
2, the de�nition of \positive part of" from Section 3 is modi�ed by replacing
clauses (ii) and (iii) as follows:

(ii) A is a negative part of :A, �A, A � B, A � B, and B � A;
(iii) if A is a negative part of B, then :A and �A are positive parts of B.

14Indeed, if � `ACLuN1 Dab(�[�) and � 0ACLuN1 Dab(�), there is a non-empty �0 � �

and a (possibly empty) �0 � � such that Dab(�0 [ �0) is a minimal Dab-consequence of �.
15In view of C�E, there is no need to stipulate that �A is a positive part of :A.
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Examples Goal directed proof for p;�p _ s; r � t;�p _ q;�q `ACLuN1 s.

1 s GOAL fsg ;

2 �p _ s PREM ; ;

3 s 2 _E f:�pg ;

4 s 3 C:�E fpg fp ^ �pg

5 p PREM ; ;

6 s 4, 5 TRANS ; fp ^ �pg

7 p ^ �p I-GOAL fp ^�pg ;

8 p ^ �p 7 C^E fp;�pg ;

9 p ^ �p 8, 5 TRANS f�pg ;

10 �p 2 _E f:sg ;

11 �p _ q PREM ; ;

12 �p 11 _E f:qg ;

13 �q PREM ; ;

14 :q 13 �E ; fq ^ �qg

15 �p 12, 14 TRANS ; fq ^ �qg

16 p ^ �p 9, 15 TRANS ; fq ^ �qg

17 q ^ �q X-GOAL fq ^ �qg ;

18 q ^ �q 17 C^E fq;�qg ;

19 q ^ �q 13, 18 TRANS fqg ;

20 q 11 _E f:�pg ;

At this point, phase 3 stops|:�p is not CLuN-derivable from the premises.
So, line 16 is not I-marked and the procedure returns to phase 2. As line 16
is not I-marked, line 6 is I-marked and the procedure returns to phase 1. The
procedure then attempts to derive s;;� in phase 1 for some � + fp^�pg, which
fails|this includes applications of EFQ which fail because the premises are not
:-inconsistent.

A computer programme that implements the procedure is available. It will
be used for presenting examples during the lecture and will soon be on the
internet.16
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