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Abstract

We develop an exact truthmaker semantics for explicit permission and
obligation. The idea is that with every singular act, we associate a sphere
of permissions and a sphere of requirements: the acts that are rendered
permissible and the acts that are rendered required by the act. We propose
the following clauses for explicit permissions and obligations:

• a singular act is an exact truthmaker of Pϕ iff every exact truth-
maker of ϕ is in the sphere of permissibility of the act, and

• a singular act is an exact truthmaker of Oϕ iff some exact truthmaker
of ϕ is in the sphere of requirements of the act.

We show that this semantics is hyperintensional, and that it can deal with
many of the so-called paradoxes of deontic logic in a natural way. Finally,
we give a sound and complete axiomatization of the semantics.

1 Introduction

The aim of this paper is to develop an exact truthmaker semantics for explicit
permission and obligation.

The basic idea of exact truthmaker semantics is that we can give the semantic
content of a statement by saying what precisely in the world makes the statement
true: by giving its exact truthmakers. Intuitively, an exact truthmaker of a
statement is a state (of affairs) such that whenever the state obtains it is directly
and wholly responsible for the truth of the statement. In particular, an exact
truthmaker of a statement will not contain as a part any other state that is not
wholly responsible for the truth of the statement. So, for example, the state of
the pen being black is an exact truthmaker of the statement “the pen is black.”
But the complex state of the pen being black and full of ink is not an exact
truthmaker of the statement, since it contains as a part the state of the pen
being full of ink, which is irrelevant to the truth of “the pen is black.” This
idea traces back to a paper by Bas van Fraassen [11]. But in recent work, Fine
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uses it to give truth-conditions for: counterfactual conditionals [3], metaphysical
ground [4], permission[5], and partial content and analytic equivalence [6].1

It turns out that the framework of exact truthmaker semantics has a natural
action-theoretic interpretation: we can take an exact truthmakers of a sentence
to be a concrete singular act, such that the performance of the act is is directly
and wholly responsible for the truth of the sentence. For example, on this inter-
pretation, President Obama’s act of refilling the pen on Monday morning at 7
a.m. would be an exact truthmaker of the statement “Obama refills the pen.”
In contrast, Obama’s act of refilling the pen and spilling his coffee would not
be an exact truthmaker of the statement, because it has as a part the irrelevant
act of Obama spilling his coffee. In this paper, we will use this interpretation to
provide a natural semantics for explicit permission and obligation: permissions
and obligations, which are the direct result of normative acts.

Once we interpreted the exact truthmaker framework in this way, there is a
natural way to obtain truth-conditions for explicit permissions and obligations.
For this purpose, let’s assume that we’re given a set of normatively admissible
and a set of normatively required acts. Then we can say:

• a statement of the form Pϕ is true iff every act that is an exact truthmaker
of ϕ is admissible,2 and

• a statement of the form Oϕ is true iff some act that is required is an exact
truthmaker of ϕ.

But this only gives us the truth-conditions for explicit permissions and obli-
gations, and not their exact truthmakers. And from the perspective of exact
truthmaker semantics, this means that these clauses don’t give us the content
of explicit permissions and obligations. To make things worse, the clauses can-
not be applied to iterated permissions and obligations, where a permission or
obligation occurs in the context of another permission or obligation. To see this,
consider a statement of the form OPϕ, for example. According to the above
truth-conditions, we get:

• a statement of the form OPϕ is true iff some act that is required is an
exact truthmaker of Pϕ.

But since we don’t know what an exact truthmaker of Pϕ is, we can’t ascertain
the truth-value of OPϕ. In this paper, we shall propose recursive clauses for the
exact truthmakers of explicit permissions and obligations, which can deal with
these issues.

We propose that with every act there is associated a set of acts that, as a
result of the act being performed are admissible, and a set of acts that, as a
result of the act being performed are required: we associate with every act a
sphere of permissions and a sphere of requirements. For example, if we consider
John’s act of checking in at the airport. This act permits him to proceed to his
gate, but it obligates him to keep his luggage with him at all times. Thus, the
act of John going to the gate is in the sphere of permissions of him checking
in, and the act of John keeping his luggage with him is in the act’s sphere of

1Note that Fine only gives truth-conditions for the concepts in question and not their exact
truthmakers.

2Such a clause is essentially proposed by Fine [5].
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obligations. We can then give the following clauses for the exact truthmakers of
explicit permissions and obligations:

• an act is an exact truthmaker of Pϕ iff every exact verifier of ϕ is in the
sphere of permission of the act, and

• an act is an exact truthmaker of Oϕ iff some exact verifier of ϕ is in the
sphere of requirements of the act.

In the following, we shall develop this informal idea in formal detail.

2 The Semantics

To develop our semantics, we assume that we’re given a non-empty set A of
atomic singular acts. These acts correspond to the concrete atomic acts an agent
might perform, like Obama’s concrete action of refilling the pen, for example.
We then say that a complex singular act (over A) is a set of atomic acts:

X is a complex singular act iff X ⊆ A.

Complex acts are “aggregates” of atomic acts, which we think of as being per-
formed together, like the concrete act of Obama refilling the pen and spilling
the coffee. 3 We denote the set of complex acts (over A) by A, i.e. A = ℘(A).
A generic action over A is a set of acts over A:

X is a generic action iff X ⊆ A.

A generic action is a collection of complex acts, which we think of as the different
ways of performing the generic action. For example, there are various concrete
ways in which Obama can refill the pen, e.g. he may refill it with blue ink, black
ink, green ink etc. All these concrete acts are realizations of the same generic
action of refilling the pen. A similar phenomenon can be found in metaphysics:
various (concrete) objects can be concrete instances of one and the same (ab-
stract) type. Obviously, the same holds for singular acts and generic actions:
there are numerous (concrete) ways in which Obama can refill the pen, all of
which are instances of the (abstract) type Obama-refills-the-pen. Hence and in
line with the usual terminology, we will occasionally use ‘action token’ to talk
about a singular act (atomic or complex), and ‘action type’ to talk about a
generic action.

We denote the set of generic actions over A by T, i.e. T = ℘(A). Finally,
we assume that some subset Ex ⊆ A of atomic singular acts are executed. We
say that a complex singular act X ∈ A is executed iff all the members of X are
executed:

3Two short comments are in order here. First, whenever we talk about concrete singular
acts (atomic or complex), we do not presuppose that they are actually executed. “concrete
singular acts” rather means “(possible) concrete singular acts”, and we will introduce executed
singular acts later.

Second, how to distinguish between atomic and complex singular acts certainly is an in-
teresting philosophical question. Here we do not deal with this question though, and rather
assume that this distinction is useful. However, nothing hinges on that. To get the theory off
the ground, all we need is that we can individuate concrete acts a1 . . . , an to construct the
set A = {a1, . . . , an} of concrete (atomic) acts. Anyone who deems the distinction between
atomic and complex singular acts to be meaningless, may just take the singletons of A to be
“complex” generic acts, which, in a sense, eliminates the distinction.
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X is executed iff X ⊆ Ex.

We denote the sets of executed complex singular acts by Ex, i.e. Ex = ℘(Ex).
And a generic action X ∈ T is realized iff some member X ∈ X is executed:

X is realized iff X ∩Ex 6= ∅

Thus, we can think of a generic action as a disjunctive list of conjunctive complex
acts. To realize a generic action means to execute (at least) one such complex
act. We will call a structure of the form (A,Ex) an action frame. Structures of
this form are the action theoretic backdrop to our semantics.

If (A,Ex) is an action frame, then we’ll assume that we’re given for every
singular act x ∈ A, both a sphere of permissions Okx ⊆ A and a sphere of
obligations Reqx ⊆ A. Intuitively, the members of Okx for a (singular) act x ∈ A
are exactly those (complex) acts that are rendered normatively admissible by
x: it is a normative consequence of x being executed that all members of Okx
are admissible. Similarly, the members of Reqx are the acts that are rendered
required by the performance of x: it is a normative consequence of x being
executed that all members of Reqx are required.4

Let us consider an example.5 Suppose that Johannes executes the following,
concrete act: he buys a day ticket on March 7, 2016 at 8am for the public
transport in Munich (a1). This renders quite a number of other concrete acts
admissible: He may take the U3 at 8:04am and go to Moosach (a2). He may
take the U6 at 8:08am to go to Marienplatz (a3). Since Johannes bought a day
ticket, he is also entitled to take the S3 after work at 7pm from Marienplatz to
go to Haidhausen (a4). And so on. In our formal framework, this is expressed
by Oka1 = {{a2}, {a3}, {a4}, . . .}.

For a complex act X ∈ A, we define the set OkX to be
⋃
x∈X Okx and

ReqX to be
⋃
x∈X Reqx. Thus, intuitively the members of OkX for an act

X ∈ A are the acts that are rendered admissible by the performance of all
the members of X and the members of ReqX are the acts that are rendered
required by the performance of all the members of X. We call a structure of
the form (A,Ex, (Okx)x∈A, (Reqx)x∈A), where (A,Ex) is an action frame and
((Okx)x∈A, (Reqx)x∈A) are spheres of permissions and obligations for every act
x ∈ A a deontic action frame. Thus, a deontic action frame consists of a basic
action theoretic structure together with a normative framework on top, which
determines the normative consequences of actions.

Following von Wright [12], we take formulas of our language to represent
action types. More formally, if (A,Ex, (Okx)x∈A, (Reqx)x∈A) is a deontic action
frame, then we assign to every atomic formula p an action type V (p) ∈ T,
where we think of the members of V (p) as all concrete actions that exactly
realize what’s expressed by p under V . We furthermore assign to every atomic
formula p an action type F (p) ∈ T, where we think of the members of F (p) as all
those actions that exactly prevent what’s expressed by p under F . For example,
a (possibly complex) concrete action of Obama signing a particular document
with the pen is a member of F (Obama − refills − the − pen).6 We extend

4Note that not all acts have to be normatively significant, i.e. Okx and Reqx can also be
empty.

5For reasons of simplicity, but without loss of generality, we take all the singular acts in
the example to be atomic.

6He we assume that an exact realization of writing with the pen prevents Obama from
refilling it at the same time, i.e. that it is not possible to do both.
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the verifier and falsifiers to arbitrary propositional formulas by a simultaneous
recursion on the construction of formulas using van Fraassen’s clauses [11]:

• V (¬ϕ) = F (ϕ)

• F (¬ϕ) = V (ϕ)

• V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ)

• F (ϕ ∨ ψ) = {X ∪ Y | X ∈ F (ϕ), Y ∈ F (ψ)}

• V (ϕ ∧ ψ) = {X ∪ Y | X ∈ V (ϕ), Y ∈ V (ψ)}

• F (ϕ ∧ ψ) = F (ϕ) ∪ F (ψ)

If F = (A,Ex, (Okx)x∈A, (Reqx)x∈A) is a deontic action frame and V and F are
truthmaker assignments of the sort just described, then (F , V, F ) is a deontic
action model.

Since the underlying action frame tells us which actions are executed, we can
define what it means for a formula to be true (false) under an interpretation of
the sort just described: it is true iff the action type it expresses (prevents what
it expresses) is executed. More precisely, if M = (F , V, F ) is a deontic action
model, then:

• M � ϕ iff V (ϕ) is realized, i.e. V (ϕ) ∩Ex 6= ∅

ϕ is true in a modelM = (F , V, F ) iff there is an exact realization of ϕ that is ex-
ecuted according to the deontic action frame F = (A,Ex, (Okx)x∈A, (Reqx)x∈A).
This simply means that for at least one exact realization of ϕ, all atomic acts
that constitute an exact realization of ϕ are in Ex.

• M �ϕ iff F (ϕ) is realized, i.e. F (ϕ) ∩Ex 6= ∅

ϕ is false in a modelM = (F , V, F ) iff there is an executed act according to the
deontic action frame F = (A,Ex, (Okx)x∈A, (Reqx)x∈A), such that an execution
of ϕ is prevented. This simply means that for at least one exact falsifier of ϕ,
all atomic acts that constitute such an exact falsifier of ϕ are in Ex.

As usual, validity (�) is defined as truth in all deontic action models. We can
then show the following lemma:

Lemma 2.1. If M is deontic action model, then:

i) a) M � ¬ϕ iff M �ϕ

b) M �¬ϕ iff M � ϕ

ii) a) M � ϕ ∧ ψ iff M � ϕ and M � ψ

b) M �ϕ ∧ ψ iff M �ϕ or M �ψ

iii) a) M � ϕ ∨ ψ iff M � ϕ or M � ψ

b) M �ϕ ∨ ψ iff M �ϕ and M �ψ

We might want to put conditions on the verifiers and falsifiers of formulas.
If V and F are verifier and falsifier assignments in a deontic action frame, we
say that:
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• (V, F ) is complete iff for all p, V (p) ∩Ex 6= ∅ or F (p) ∩Ex 6= ∅

(i.e. p is either realized or prevented)

• (V, F ) is consistent iff for no p, V (p) ∩Ex 6= ∅ and F (p) ∩Ex 6= ∅

(i.e. p is not realized and prevented)

• (V, F ) is classical iff for all p, either V (p) ∩Ex 6= ∅ or F (p) ∩Ex 6= ∅

(i.e. p is either realized or prevented, but not both)

It it easily shown, that these conditions extend to all formulas:

Lemma 2.2. IfM = (F , V, F ) is a deontic action model, then for all ϕ without
P or O:

i) if (V, F ) is complete, then for all ϕ,M � ϕ or M �ϕ

ii) if (V, F ) is consistent, then for all ϕ, not both M � ϕ and M �ϕ

iii) if (V, F ) is classical, then for all ϕ, either M � ϕ or M �ϕ

In particular, this means that by imposing conditions on the assignments, we
can ensure that we obtain a certain background logic:7

Lemma 2.3. For all Γ and ϕ without P or O,

i) Γ �FDE ϕ iff for all deontic action models M, if M � Γ, then M � ϕ

ii) Γ �K3 ϕ iff for all deontic action models M such that (V, F ) is consistent,
if M � Γ, then M � ϕ

iii) Γ �LP ϕ iff for all deontic action models M such that (V, F ) is complete,
if M � Γ, then M � ϕ

iv) Γ �CL ϕ iff for all deontic action models M such that (V, F ) is classical, if
M � Γ, then M � ϕ

Proof. This follows from the previous two lemmas.

We could therefore, in principle, use different background logics, but in the
following we shall restrict ourselves to classical logic: we shall assume that all
verifier and falsifier assignments are classical. We shall call a deontic action
model (A,Ex, (Okx)x∈A, (Reqx)x∈A, V, F ) classical iff (V, F ) is classical.

It is now high time to introduce our clauses for the verifiers and falsifiers of
permissions and obligations. The case for the verifiers is relatively straightfor-
ward. If (A,Ex, (Okx)x∈A, (Reqx)x∈A, V, F ) is a classical deontic action model,
we say that:

• V (Pϕ) = {X | V (ϕ) ⊆ OkX}

A complex act exactly realizes that ϕ is permitted iff the execution of that
act renders all exact realizations of ϕ admissible.

7Here we assume that the reader is familiar with the many valued semantics for the logic
of first-degree entailment (FDE), strong Kleene logic (K3), the logic of paradox (LP), and
(of course) classical logic (CL). For the details of these semantics, see e.g. [9, §§ 7–8].
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• V (Oϕ) = {X | V (ϕ) ∩ReqX 6= ∅}

A complex act exactly realizes that ϕ is obligatory iff the execution of that
act renders at least one exact realizations of ϕ required.

In other words, a complex act is a verifier of an explicit permission Pϕ iff every
verifier of ϕ is in the sphere of permissions of the act, and an act is a verifier of
an explicit obligation Pϕ iff some verifier of ϕ is in the sphere of obligations of
the act.

But when it comes to the falsifiers of explicit permissions and obligations,
the issue becomes a bit more complicated. Intuitively, what makes an explicit
permission or obligation false is that no corresponding normative acts have been
executed. But what act is that makes this the case then? We propose that if
indeed no corresponding normative act has been executed, then it is the totality
of the executed acts that jointly makes it the case that something is not explicitly
permitted or obligated:

• F (Pϕ) =

{
{Ex} if V (Pϕ) ∩Ex = ∅
∅ otherwise

• F (Oϕ) =

{
{Ex} if V (Oϕ) ∩Ex = ∅
∅ otherwise

Remember that we confined our semantics to classical deontic action models.
The classicality of deontic action models and the definition of F (Pϕ) and O(Pϕ)
result in a very natural reading of what prevents a permission (an obligation) to
hold in that model. On the one hand, classicality implies completeness: given a
classical deontic action modelM, every ϕ is either realized or prevented (given
the set of executed singular acts Ex of the modelM). As a consequence, either
Pϕ is realized or Pϕ is prevented in a classical deontic action model M. Now
suppose that there is no executed act that allows ϕ, i.e. V (Pϕ)∩Ex = ∅. Since
the model is maximal, there is no further executable act, and the totality of
all executed atomic acts (Ex) is responsible for Pϕ (Oϕ) being prevented. On
the other hand, classicality also implies consistency: if there is an executed act
that allows ϕ, i.e. V (Pϕ) ∩ Ex 6= ∅, then there cannot be an act that exactly
prevents it from being permitted, i.e. F (Pϕ) = ∅ (same for Oϕ).

We shall conclude this section with an observation about how our semantics
relates to the truth-conditions that we sketched in the introduction to this paper.
Remember that we said that once we’ve identified what states are admissible
and required, natural truth conditions for P and O are as follows:

• a statement of the form Pϕ is true iff every act that is an exact truthmaker
of ϕ is admissible, and

• a statement of the form Oϕ is true iff some act that is required is an exact
truthmaker of ϕ.

Indeed, in our semantics above, we can recover these truth-conditions in the
following lemma:

Lemma 2.4. If M is classical deontic action model, then:

i) M � ¬ϕ iff M 6� ϕ
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ii) M � ϕ ∧ ψ iff M � ϕ and M � ψ

iii) M � ϕ ∨ ψ iff M � ϕ or M � ψ

iv) M � Pϕ iff V (ϕ) ⊆
⋃
x∈ExOkx

v) M � Oϕ iff V (ϕ) ∩
⋃
x∈ExReqx 6= ∅

In other words, in a given classical deontic action model, we can identify
the admissible acts in the model with the acts that are rendered admissible by
the executed acts (

⋃
x∈ExOkx) and the required acts with the acts rendered

required by the executed acts (
⋃
x∈ExReqx).

3 The Paradoxes

In this section, we shall show that our semantics deals in a natural way with
some well-known paradoxes of deontic logic.

3.1 The Paradox of Free Choice Permission

Suppose Johannes issues the following permission “Albert, you may have tiramisu
or zabaglione for dessert.” Albert (naturally) concludes that he is free to choose:
that he may have zabaglione, and that he may have tiramisu. In everyday dis-
course, the permission of a disjunction seems to imply the permission of both
disjuncts (cf. [8]):

(FCP ) P (ϕ ∨ ψ)→ Pϕ ∧ Pψ

Put differently, permitting Albert to have tiramisu or zabaglione, but not per-
mitting him to have tiramisu seems to be inconsistent. It is well-known that FCP
is recipe for disaster: already very weak principles, if augmented with FCP, lead
to unacceptable consequences. Take, for instance, the rule RE, that warrants
substitution of logically equivalent formulas:

(RE)

` ϕ↔ ψ

` Pϕ↔ Pψ

According to classical logic, we have ` ϕ↔ (ϕ∧ψ)∨ (ϕ∧¬ψ). This equivalence
and RE+FCP already leads to a disastrous result, i.e. if ϕ is permitted, then ϕ
together with any ψ is permitted, in formal terms:

(IC) Pϕ→ P (ϕ ∧ ψ)

is a theorem of CL+FCP+RE, and it seems to be completely unacceptable as a
theorem of any useful deontic logic. This suggests that it is generally very hard
to find a logic which contains FCP but also avoids problematic consequences
like IC. As Sven Ove Hansson puts it: “It [i.e. the derivation of IC] indicates
that the free choice permission postulate may be faulty in itself, even if not
combined with other deontic principles such as those of SDL.”[7, p.208] This is
the problem of free choice permission.

It probably doesn’t come as a surprise that FCP is highly controversial and
regarded to be implausible by most deontic logicians. Given certain interpreta-
tions of permission, FCP turns out to be valid though. Take, for instance, the
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open reading of permission (cf. [2],[1]) where Pϕ is interpreted as “every way to
ensure ϕ is admissible”.8 Now, given that ϕ→ ϕ ∨ ψ is a theorem (cf. [7]), this
interpretation validates FCP. However, this reading (intuitively and formally)
also validates IC: Since every way to ensure ϕ ∧ ψ is a way to ensure ϕ, the
permission of ϕ implies the permission of ϕ ∧ ψ. However, accepting the (intu-
itively) unacceptable consequence IC in order to make sense of the (intuitively)
acceptable principle FCP is far from an ideal solution to the problem of free
choice permission. This approach just replaces one evil with another.

In our opinion, the semantics developed in the previous section offers a real
solution to the problem of free choice permission. First, note that according to
our reading of permission, FCP turns out to be valid. Suppose that ϕ ∨ ψ is
permitted. This means that there is an executed singular act that renders all
exact realizations of ϕ ∨ ψ admissible. Every exact realization of ϕ ∨ ψ is an
exact realization of ϕ or an exact realization of ψ. This implies that every exact
realization of ϕ is rendered admissible, and that every exact realization of ψ
is rendered admissible. And this means that both, ϕ and ψ are permitted. In
this respect, our semantics is similar to the open reading of permission. In more
formal terms:

Lemma 3.1. � P (ϕ ∨ ψ)→ Pϕ ∧ Pψ.

Proof. Let M = (F , V, F ) be deontic action model and suppose M � P (ϕ ∨ ψ)
i.e. (by Lemma 2.4) V (ϕ∨ψ) ⊆

⋃
x∈ExOkx. Hence, V (ϕ)∪V (ψ) ⊆

⋃
x∈ExOkx,

by the construction of exact realizations of disjunctive generic actions. Basic
set theory now gives us V (ϕ) ⊆

⋃
x∈ExOkx and V (ψ) ⊆

⋃
x∈ExOkx, which

according to Lemma 2.4 means that M � Pϕ ∧ Pψ.

But how do we now avoid the seemingly unavoidable consequence IC? The
reason for this is quite simple: in our semantics RE is not a sound rule. The
semantics we developed in the previous section is hyperintensional: logical (even
necessary) equivalences may not generally be substituted for one another. In
order to see why RE is not a plausible rule in exact truthmaker semantics,
take the problematic equivalence statement ϕ ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ ¬ψ) again.
Although classically equivalent, ϕ and (ϕ∧ ψ)∨ (ϕ∧¬ψ) may have completely
different exact realizations. An exact realization of (ϕ ∧ ψ) must consist of an
exact realization of both ϕ and ψ, and exact realization of (ϕ∧¬ψ) of an exact
realization of ϕ and an exact prevention of ψ. An exact realization of ϕ does
not have to be either, just take an exact realization of ϕ that is neither an exact
realization of ψ nor an exact prevention of ψ. This idea shows us how to find a
countermodel for IC:

Lemma 3.2. 6� Pϕ→ P (ϕ ∧ ψ).

Proof. Let F = (A,Ex, (Okx)x∈A, (Reqx)x∈A) be a deontic action frame with
A = {a1, a2}, Ex = {a1}, Oka1 = {{a1}}. Let M = (F , V, F ) based on F s.t.
V (ϕ) = {{a1}} and V (ψ) = {{a2}}. This gives us M � Pϕ (since V (ϕ) ⊆ Okx
s.t. x ∈ Ex). We also have V (ϕ ∧ ψ) = {{a1, a2}}, but since there is no x with
{{a1, a2}} 6⊆ Okx and x ∈ Ex, we get M 6� P (ϕ ∧ ψ).

8Or “every execution of ϕ leads to an Ok-state”, depending on your preferred framework,
cf. [2]
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The lesson to be drawn from this is that material equivalence does not ade-
quately express identity of exact realizations. This is how we solve the problem
of free choice permission in our semantics.

3.2 The Good Samaritan Paradox

Another, paradox of deontic logic that has a natural solution in our semantics
is Prior’s Good Samaritan paradox [10]. This paradox arises in systems where
obligation is closed under logical consequence, i.e. systems which validate the
following rule:

(CL)

` ϕ→ ψ

` Oϕ→ Oψ

This rule is validated by many systems of deontic logic, such as the system SDL
of standard deontic logic, but it leads to counterintuitive results in certain cases.
Consider the case of Smith who has been robbed. Intuitively, it is obligatory that
Jones helps smith. Thus, it is obligatory that John helps Smith who has been
robbed. According to Prior, we can formalize this by the formula O(p∧q), where
p stands for John helps Smith and q stands for Smith has been robbed. But since
in classical logic we have ` p ∧ q → p, it follows by CL that Oq, which means
that its obligatory that Smith has been robbed and is absurd.

Prior’s concrete example may be more or less convincing, but there are
many examples of the same logical structure and lead to the same result: CL
is intuitively flawed. For example, it is intuitively obligatory for the nurse to
give his patient the medicine A and medicine B, if together they heal him, but
medicine A alone might kill the patient, so it is not obligatory for the nurse to
give his patient medicine A. Intuitively, the problem is that certain acts, such as
the nurse giving the patient medicine A and the nurse giving him medicine B,
are only required in conjunction and not by themselves. And in our semantics,
we can faithfully represent this intuitive claim.

To see this, let’s model this situation in our semantics. Consider an ac-
tion frame (A,Ex) with two atomic acts A = {a, b, c} and one executed action
{a}. Intuitively, a is the act of the doctor telling the nurse that he should give
medicine A and B to the patient, b is the act of the nurse giving medicine A to
the patient, and c is the act of the nurse giving medicine B to the patient. Since
a the act of the doctor telling the nurse that he should give medicine A and
B to the patient, we can plausibly assume that Reqa = Req{a} = {{b, c}}, and
for simplicity we can assume that the spheres of permissions and obligations for
all the other acts are empty. LetM be the corresponding deontic action frame.
Now let p stand for the nurse gives the patient medicine A and q for the nurse
gives the patient medicine B, we will have V (p) = {{b}}, V (q) = {{c}}, and
thus V (p ∧ q) = {{b, c}}. Moreover, we’ll have V (P (p ∧ q)) = {{a}} and hence
that M � P (p ∧ q). But we’ll neither have M � Pp nor M � Pq, exactly as we
want. More generally, this model shows that CL is not sound with respect to
our semantics:

Lemma 3.3. 6� O(ϕ ∧ ψ)→ Oϕ

In this consists our solution to the Good Samaritan paradox.
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4 Axioms

In this section, we give a sound and complete axiomatization of our semantics.
However, we shall use a slightly non-standard technique to obtain such an ax-
iomatization, which is nevertheless adequate to the hyperintensional spirit of
our semantics.

In a recent paper, Fine sketches how to obtain an axiomatization of sameness
of exact truthmakers according to van Fraassen’s clauses, which we’ve used in
our above semantics [6]. The axiomatization consists of the following axioms
and rules:

ϕ� ϕ
ϕ� ¬¬ϕ ϕ ∧ (ψ ∨ θ) � (ϕ ∧ ψ) ∨ (ϕ ∨ θ)
ϕ ∨ ϕ� ϕ ϕ ∧ ϕ� ϕ
ϕ ∨ ψ � ψ ∨ ϕ ϕ ∧ ψ � ψ ∧ ϕ
ϕ ∨ (ψ ∨ θ) � (ϕ ∨ ψ) ∨ θ ϕ ∧ (ψ ∧ θ) � (ϕ ∧ ψ) ∧ θ
¬(ϕ ∨ ϕ) � ¬ϕ ∧ ¬ψ ¬(ϕ ∧ ϕ) � ¬ϕ ∨ ¬ψ

(Replacement) θ(ϕ), ϕ� ψ/θ(ψ)

Let’s denote derivability in this system by `E . Then we get the following
theorem:

Theorem 4.1 (Fine). For all ϕ and ψ without P or O, we have: `E ϕ� ψ iff
for all deontic action models (F , V, F ), we have V (ϕ) = V (ψ).

Our goal is to use this system to obtain an axiomatization for our semantics
of permission and obligation. The first step along the way is to get a grip of the
truthmakers of explicit permissions and obligations. We get this in the following
lemma:

Lemma 4.2. For all deontic action models (F , V, F ), we have for all ϕ and ψ:

i) V (P (ϕ ∨ ψ)) = V (Pϕ ∧ Pψ).

ii) V (O(ϕ ∨ ψ)) = V (Oϕ ∨Oψ).

Proof. Note that since on our semantics we have that OkX =
⋃
x∈X Okx and

ReqX =
⋃
x∈X Reqx, we get:

• Ok⋃
iXi

=
⋃
iOkXi

• Req⋃
iXi

=
⋃
iReqXi

Using these identities, we get:

i) {X | V (ϕ) ∪ V (ψ) ⊆ OkX}︸ ︷︷ ︸
=V (P (ϕ∨ψ))

= {X ∪ Y | V (ϕ) ⊆ OkX , V (ψ) ⊆ OkY }︸ ︷︷ ︸
=V (Pϕ∧Pψ)

ii) {X | (V (ϕ) ∪ V (ψ)) ∩ReqX 6= ∅}︸ ︷︷ ︸
=V (O(ϕ∨ψ))

= {X| V (ϕ) ∩ReqX 6= ∅} ∪ {X| V (ψ) ∩ReqX 6= ∅}︸ ︷︷ ︸
=V (Oϕ∨Oψ)
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It turns out that these two identities are enough to obtain a sound and
complete axiomatization of our semantics. The system consists of the above
axioms and rules plus all axioms (over the full language including P and O) and
rules of classical propositional logic and:

P (ϕ ∨ ψ) � Pϕ ∧ Pψ

O(ϕ ∨ ψ) � Oϕ ∨Oψ

We shall denote derivability in this system by `EDL.

Theorem 4.3. For all ϕ and Γ without �, Γ `EDL ϕ iff Γ � ϕ.

Let’s conclude with a few sample derivations to show how the system works:

1. `EDL P (ϕ ∨ ψ)↔ Pϕ ∧ Pψ

(a) P (ϕ ∨ ψ)↔ P (ϕ ∨ ψ) (Tautology)

(b) P (ϕ ∨ ψ) � Pϕ ∧ Pψ (Axiom)

(c) P (ϕ ∨ ψ)↔ Pϕ ∧ Pψ (a,b, Replacement)

2. `EDL O¬(ϕ ∧ ψ)↔ O¬ϕ ∨O¬ψ

(a) O¬(ϕ ∧ ψ)↔ O¬(ϕ ∧ ψ) (Tautology)

(b) ¬(ϕ ∧ ψ) � ¬ϕ ∨ ¬ψ (Axiom)

(c) O¬(ϕ ∧ ψ)↔ O(¬ϕ ∨ ¬ψ) (a,b, Replacement)

(d) O(¬ϕ ∨ ¬ψ) � O¬ϕ ∨O¬ψ (Axiom)

(e) ¬(ϕ ∧ ψ)↔ O¬ϕ ∨O¬ψ (c,d, Replacement)

3. P¬¬(ϕ ∨ ψ) `EDL Pϕ

(a) P¬¬(ϕ ∨ ψ) (Assumption)

(b) ¬¬(ϕ ∨ ψ) � ϕ ∨ ψ (Axiom)

(c) P (ϕ ∨ ψ) (a,b,Replacement)

(d) P (ϕ ∨ ψ)↔ Pϕ ∧ Pψ (1.)

(e) Pϕ ∧ Pψ (c,d, Logic)

(f) Pϕ (e, Logic)
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