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Abstract 
 
The selection of problems by Euler in his Vollständige Anleitung zur Algebra 
displays a great familiarity with the typical recreational and practical problems of 
Renaissance and sixteenth-century algebra books. A detailed study into the 
sources of Euler reveals that he copied most of his problems from Christoff 
Rudolff’s Coss which was first published in 1525 and reissued in  1553 by Michael 
Stifel. Why would Euler found his popular textbook on algebra on a book 
published 250 years before? We propose an explanation based on the evolving 
rhetorical function of problems in algebra textbooks since the Renaissance. We 
discern six stages in the evolution from abacus problem solving to algebraic 
theory. The first theory emerged through the extraction of general principles 
from the practice of problem solving. The algebra textbooks of the eighteenth 
century close a circle of continuous rhetorical development by using problems 
for practicing general principles and applying the algebraic language. Euler’s 
Algebra is a prime example of the new rhetoric of problems still prominent in 
today’s textbooks. 
 
 

(Third draft: 10 October 2005) 

                                           
1 This research has been supported by the Flemish fund for scientific research (FWO 
Vlaanderen) under grant G.0139.04. 
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1.2 Introduction 
 

For rhetoric as such is not rooted in any past condition of human society. It is 
rooted in an essential function of language itself, a function that is wholly 
realistic, and is continually born anew; the use of language as a symbolic means 
of inducing cooperation in beings that by nature respond to symbols. 
 

A Rhetoric of Motives, Kenneth Burke (1969, 43). 
 
A history on algebra consist mostly of a historical overview of the subsequent 
achievements in the theory of equations from the Babylonians to the 
fundamental theorem of algebra (van der Waerden 1985; Varadarajan  1998; 
Alten e.a., 2003). More rarely, the history of algebra is approached from the 
conceptual viewpoint, tracing back the basic conceptual changes that led to the 
study of the structure of equations (Klein 1934-6, Mahoney 1980). Virtually 
non existent is the approach in which the algebra textbook is regarded as a text 
with a contemplated structure and rhetoric.2 The lack of interest in this 
approach to a history is surprising because often the rhetoric is very evident in 
mathematical textbooks. The author tries to convince his audience, be it for the 
methods and solutions he presents, the structure and organization of his text or 
the significance and benefits of studying the book. All these aspects are 
prominently present in algebra textbooks since the sixteenth century. Pursuing 
this neglected approach because it is a fruitful one. The rhetoric of algebra is 
closely intertwined with the changing nature of rhetoric as well as with the 
development of mathematical theory.  
 
As defined by Burke, cited above, rhetoric appeals to the symbolic activities of 
man, continuously creating, using, misusing and confusing symbols as part of a 
social process. For Burke, rhetoric consists of using symbols in inducing 
cooperation between people and is inseparably connected with symbolic 
language. Algebra is the symbolic language par excellence. Symbolic algebra 
emerged in the sixteenth century at the same time when the discipline of 
rhetoric was reshaped by the humanist program. Petrus Ramus and Jacques 
Peletier were the forerunners in the reformation of the trivium, breaking up the 
traditional components of the discipline and moving the constructive steps of 
rhetoric, namely inventio and dispositio, to the realm of philosophy. Both these 
scholars published a work on algebra, creating a new tradition of French 
algebraists culminating with Viète and Descartes. Peletier’s ambition to present 

                                           
2 An exception is the doctoral dissertation of Cifoletti (1993). Hallyn (2004) treats the subject 
in natural philosphy. 



 - 4 - 

his algebra as an application of the more pragmatic approach to rhetoric 
becomes apparent from his dedication to Charles de Cossé-Brissac:3 
 

With this book, I have given our country men the knowledge of this excellent 
art. And they will see that what is mine are some parts of the invention and almost 
all of the disposition. 

 
The application of the theory of rhetoric in the construction of a new type of 
algebra textbook has been explored before by Cifoletti (1993, 1995, 1996). We 
will concentrate on the second aspect, how the change in rhetoric steered the 
development of mathematical theory. From the point of view of mathematical 
achievements, the history of algebra between Fibonacci and Viète is usually 
limited to the discussion of the solution to the cubic equation. The successive 
transformations in the rhetoric structure of algebra textbooks during this 
period have been completely neglected. However, the continuous reform of the 
structure, presentation and classification of algebraic problem solving has 
shaped mathematical discourse as we now know it. We here give an overview 
of these transformations and we will primarily concentrate on the role of 
problems. Problems are the key in distinguishing the phases of development, as 
they are central to the practice of algebra itself. Our starting point is Euler’s 
Algebra for the reason that it can be considered the first modern textbook to be 
used for studying and practicing algebra on one’s own. The rhetoric of 
problems in Euler’s Algebra is basically the same as that of current university 
textbooks in elementary algebra. Problems are used to illustrate and practice the 
basics of algebraic equations. However, this has not always been the. The 
function of problems has determined the rhetoric of the textbook. Changes in 
the role of problems have directed the phases in development of the rhetoric of 
algebra. Our overview will be limited to algebra in the Western world and thus 
begins with the Middle Ages. A complete coverage of the textbooks is beyond 
the scope of this article. Only the relevant and most important textbooks are 
treated. 

1.3 Publication history 
Euler’s Vollständige Anleitung zur Algebra was published in two volumes by the 
Academy of Sciences in St-Peterburg in 1770. With the exception of Euclid’s 
Elements it is the most widely printed book on mathematics (Truesdell, 1972). It 
was translated into Russian (1768-9), Dutch (1773), French (1774), Latin 
(1790), English (1797, 1822) and Greek (1800). The popular German edition 
                                           
3 Peletier 1554, f. a8r : ‘j’e donnè a ceus de notre païs la connoessance de cet art excellant, par 
ce mein livre. Auquel iz voerront du mien, quelque partie de l’invancion e presque toute la 
disposicion’ (translation and italics mine). 
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from Reclam Verlag sold no less than 108,000 copies between 1883 and 1943 
(Reich, 1992). The publication history is complex. Euler wrote his algebra 
originally in German. Based on internal evidence, Fellmann dates the 
manuscript at 1765/1766 (Fellmann 1983; 1995, 108), when he returned from 
Berlin to St-Petersburg, some years before he went completely blind. It was 
first published in Russian, translated by his students Peter Inokhodtsev and 
Ivan Yudin.4 The first part on determinate analysis has the Eneström (1910) 
index 387A (Euler, 1768). The second part is on diophantine equations and has 
index number 387B (Euler, 1769). In 1812, a Russian edition in two parts was 
published, translated from a French edition, translated under the auspices of 
d’Alembert, by Johann III Bernoulli, and published in Lyon in 1774.5 This 
translation was appended with a large section by Lagrange on indeterminate 
analysis (vol. 2, pp. 370-662).  Bernoulli changed the order of the original 
version, moving parts of the second volume into the first. This French edition 
was the basis of several other translations such as the English and Latin and the 
additions by Lagrange were also translated into German. The English 
translation follows the French edition very faithful, even translating the 
footnotes added by Bernoulli. Another French edition was published by Jean-
Guillaume Garnier (Euler, 1807) which also was translated into English in 1824 
by Charles Taylor. In the Weber edition of Euler’s Opera Omnia, the Algebra is in 
the first volume of the first series (Euler, 1911). It keeps the original format by 
Euler but adds a German translation of Lagrange’s additions. 

1.4 Christoff Rudolff’s influence 
In his selection of problems in the Algebra, shows himself familiar with the 
typical recreational and practical problems of Renaissance and sixteenth-
century algebra books. Taking up the task of tracing the sources of these 
problems I found a strong similarity with the books by Valentin Mennher de 
Kempten. Originating from Kempten, in the south of Germany, Mennher was 
a reckoning master living in Antwerp. He published several books on 
arithmetic and algebra in French. His Arithmetique seconde, first published in 
1556, has a large section with problems which are very similar to these of 
Euler’s Algebra. A close comparison shows that many problems from Euler 
could be reformulations of the text and values of Mennher’s problems. A 

                                           
4 As the first published edition was Russian, it is sometimes wrongly claimed that Euler 
wrote this algebra in Russian 
5 The French edition does not mention which of the Bernoulli’s was responsible for the 
translation. However, Jean-Marie Bruyset added a note in the second edition of 1795 (f. aiiiv) 
stating that M. Bernoulli was the director of the Berlin observatory, which points at Johann 
III Bernoulli (1744-1807). 
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German translation was published in Antwerp in 1560 for the German market.6 
Possibly it circulated in Berlin where Euler might have been charmed by its 
pedagogical qualities. Still, why would Euler base his examples on a two-
centuries old book from Antwerp, with so many alternatives at his disposal?  
 
Lacking the crucial motive, I looked at later publications for the missing link. 
The eighteenth-century algebra treatise which matches Euler’s Algebra best is 
A Treatise of Algebra by Thomas Simpson (1745). This book was also indented 
as an elementary work in algebra, treating the basic operations on polynomials. 
It also has a large section on the resolution of equations as well as a chapter on 
indeterminate problems. Simpson’s book became highly succesful as ten 
editions were released in the UK from 1745 to 1826 and at least three editions 
in the US from 1809. However, there are only about twenty problems which 
can directly be matched between Simpson’s and Euler’s books. In fact, 
Simpson’s problems show a better correlation with Mennher than with Euler. 
 
Recently, a digital version of Stifel’s edition of Rudolff’s Coss has become 
available.7 A fist glance reveal immediately evident that Euler used this book for 
his repository of problems. The original edition was the first German book 
entirely devoted to algebra. It was published in 1525 in Strassburg under the 
title Behend vnnd Hubsch Rechnung durch die kunstreichen regeln Algebre so gemeincklich 
die Coss genennt werden. Stifel used many problems from Rudolff in his own 
Arithematica Integra of 1544 but found the work too important not to publish his 
own annotated edition in 1553, Die Coss Christoffs Rudolffs mit schönen Exempeln der 
Coss. The following three examples of textual evidence leave little doubt about 
Euler’s source: 
 

Rudolff, Coss, 1553 Euler, Opera Omnia I, I: 
Ich hab kaufft etlich eln tuch, und ye 
5 eln fur 7 fl. verkauft wider ye 7 eln 
fur 11 fl. und gewin 100 fl uber das 
haubt gut. Wie vil ist dess tuch 
geweses?  
(f. 209r, problem 50) 

Ich habe gekauft etliche Ellen Tuch und 
für jede 5 Ellen gegeben 7 Rthl. Ich 
habe wieder verkauft je 7 Ellen für 11 
Rthl. und gewonnen 100 Rthl. über das 
Hauptguth: wie viel ist des Tuchs 
gewesen? (p. 224) 

                                           
6 From the foreword (Mennher 1560, f. Aiv): “Dieweil ich nu am zimliche lange zeit der 
hochloblichen kunst der Arithmetick aus angeborner liebe nach gestellt, die selben zu 
durchsuechen, davon ich vor disem zway Buechlen in druck hab auszgeben, aber in 
Frantzesischer sprach, darumb das die in disen Landen etwas merers gebraucht wirt, 
Damit ich aber meinen lieben Landtsmennern den hoch Deutschen (wie geburlich) 
auch gueten willen erzaig, und sie sich meiner zu beklagen nit vrsachen haben solln”. 
7 http://www.ub.uni-bielefeld.de/diglib/rechenbuecher/coss/ at the university of Bielefeld.  
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Ein wechsler hat zweyerley müntz. 
Der ertsen thun 20 stuck ein floren. 
Der andern müntz thun 30 stuck ein 
floren. Nu kompt einer der wil haben 
der zweyerley müntz 27 stuck fü ein 
floren. Ist die frag wie vil er yeder 
müntz nemen soll?  
(f. 246r, problem 97) 
 

Ein Wechsler hat zweyerley Müntze; 
von der ersten gehen a Stück einen 
Rthl. von den zweyten Sorte b Stück. 
Nun kommt einer und will c Stück vor 
einen Rthl. haben. wie muß ihm der 
Wechsler von jeder Sorte geben?  
(p. 224) 

Drei haben ein hauss kaufft fur 100 fl. 
Begert der erst vom andern ½ seyns 
gelts, so hette er das hauss alleyn zu 
bezalen. Der ander begat vom dritten 
1/3 seynes gelts das er das hauss 
alleyn könte bezalen. Der dritt begert 
vom ersten ¼ seyns gelts das er 
mochte das hauss alleyn bezalen. Wie 
vil hat yeder gelt gehabt?  
(f. 216r, problem 123) 

Drey haben ein Haus gekauft für 100 
Rthl. der erste begehrt vom andern ½ 
seines Gelds so könnte er das Haus 
allein bezahlen; der andere begehrt vom 
dritten 1/3 seines Geldes, so könnte er 
das Haus allein bezahlen. Der dritte 
begehrt vom ersten ¼ seines Gelds so 
möchte er das Haus allein bezahlen. 
Wie viel hat jeder Geld gehabt?  
(p. 235) 

 
The correspondence of problems between Euler’s Algebra and Mennher’s 
Arithmetique thus stems from the problems borrowed from Rudollf’s book.  
 
The first volume of Euler’s Algebra on determinate equations contains 59 
numbered problems. Two thirds of these can be directly matched with 
problems from Rudolff. Some are literal reproductions, as the examples given 
above. Other problems are slightly reformulated or presented with altered 
values. The second part on indeterminate equations also has 59 problems and 
here the correlation is manifest less but still many problems originate from 
Rudolff. The second volume deals with, what we now call diophantine analysis. 
However, Euler’s terminology is rooted in the older tradition and he titles the 
second part as “Von den sogenannten regel Coeci”, referring to the regula coecis 
or regula virginum which appears frequently in arithmetic and algebra books of 
the sixteenth century. This terminology was abandoned in later translations. 
Having determined the source for Euler’s problems, the question remains 
about his motive for going back almost 250 years. The motive could be 
sentimental. In the Russian Euler archives at St-Petersburg is preserved a 
manuscript containing a short autobiography dictated by Euler to his son 
Johann Albrecht on the first of December, 1767 (Fellmann 1995, 11). He states 
that his father Paulus Euler taught him the basics of mathematics with the use 
of the Stifel edition of Christoff Rudolff’s Coss (Stifel, 1553). The young Euler 
practiced mathematics for several years using this book, studying over four 
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hundred algebra problems.8 When he decided to write an elementary textbook 
on algebra, he must have had in mind the first mathematics book he owned. 
The book was to be used for self study, in the same way that he had used 
Rudolff’s book. As the many examples from Rudolff had helped Euler to 
practice his algebraic skills, so would he also include many aufgaben related to 
the resolution of equations. So while the motivation to use a sixteenth-century 
book may have been partly sentimental, the recognized educational value of 
algebraic problem solving was an important contributing factor. 

1.5 The problems 
Given that Euler’s Algebra is separated from Rudolff’s Coss by more than two 
centuries of algebraic practice, the structure of both works is rather close. We 
will limit our discussion to the first volume. Euler sets off with operations on 
simple quantities, or what he calls, einfachen Grössen. These includes integers, 
fractions, irrational and imaginary numbers and logarithms. The second section 
deals with compound quantities, which refers to polynomials as well as 
irrational binomials such as 1 a+ . The third section is on proportions and 
progressions, both arithmetical and geometrical. In the second part of the first 
volume, the different types of equations and their resolution methods are 
given.9 Rudolff treats the same subjects but his organization reflects more the 
tradition of medieval algorisms. For each of the different species, whole 
numbers, fractions, etc, he first gives the numeration and then discusses the 
possible operations which he calls algorithms. The rest of Rudolff’s book 
consists of eight sections on the eight rules of algebra. These correspond with 
linear equations, the six Arab types of quadratic equations and the cubic 
equation with only the cube term. A division into eight equations is a 
simplification of the 24 types given by Johannes Widman (Codex Leipzig 1470, 
f. 432). As the subdivision of quadratic equations in separate rules disappeared 
in the early seventeenth century, Euler’s arrangement is different. He has 
separate sections on linear problems in one unknown, linear equations in 
multiple unknowns, the pure quadratic equation, the mixed quadratic, the pure 
cubic and the complete cubic equation. Euler uses the adjective pure for 
equations with only the square of cube term present. While the division 
between determinate and indeterminate problems is common since the 
                                           
8 Fellmann 1995, 11: “vi ich bey Zeiten von meinem Vater den ersten Unterricht erhielt; und 
weil derselbe einer von den Discipeln des weltberühmten Jacobi Bernoulli gewesen, so 
tractete er mir sogleich die erste Gründe der Mathematic beizubringen, und bediente sich zu 
diesem End des Christophs Rudolphs Coss mit Micheals Stiefels Anmerckungen, worinnen 
ich mich einige Jahr mit allem Fleisch übte”. 
9 The organization of the English editions is different. The second part of the German 
edition becomes the fourth section in the English. 
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eighteenth century, the distinction between pure and complete equations is a 
relic of Rudolff’s Coss. The pure quadratic equation is one of the Arab rules and 
the pure cubic was the only cubic known to be solvable by Rudolff.10  We do 
not find this distinction in other eighteenth-century works such as Newton 
(1707), Wolff (1732) or Simpson (1745). 
While the first sections include some examples as an illustration, the problems 
are all contained in the second part on equations, as with Rudolff.  Euler gives 
a total of 59 problems. The third chapter dealing with linear equations in one 
unknown has 21 problems. They clearly show how Euler sequentionally 
selected suitable examples from Rudolff’s book. The problems are practically in 
the same order as in Rudolff (1553).11 They include the well-known legacy 
problems, two cups and a cover, alligation, division and overtaking problems.12 
The fourth chapter deals with linear problems in more than one unknowns, 
including the mule and ass problem, doubling each other’s money and men 
who buy a horse.13 The fifth chapter is on the pure quadratic with five 
problems all taken from Rudolff.14 The sixth has ten problems on the mixed 
quadratic equation, of which nine are taken from Rudolff.15 Chapter eight, on 
the extraction of roots of binomials, has five problems, none from Rudolff. 
Finally, the chapter of the pure cubic has five problems, two from Rudolff and 
on the complete cubic there are six problems, of which four are from Stifel’s 
addition. While Euler also treats logarithms and complex numbers, he included 
no problems on this subject.  
The English edition of John Hewlett adds 51 ‘problems for practice’.16 It is not 
clear where they originate from, as they do not appear in the French edition 
(Euler 1774).17 It seems doubtful that the bible translator Hewlett (1811) added 
the problems himself. In any case, they were not selected by Euler. 
                                           
10 The Stifel edition of 1553 adds a section on the cubic equation with Cardano’s rule. 
11 Starting with Euler’s problem 8, the correspondence is as follows: 8 – 16, 9 – 9, 10 and 11 
are variations on 9, 12 to 21 correspond with Rudolff’s 24, 26, 6, 50, 53, 59, 68, 97, 98 and 
110 respectively. 
12 For an overview and classification of these problems, see Tropfke (1980) and Singmaster 
(2004). 
13 Euler’s problem 3 to 7 correspond with Rudolff’s 132, 112, 122, 123 and 128 respectively. 
14 Euler’s first three are from the fifth rule, problems 2, 4 and 11. The fourth is problem 240 
from the first rule and the last is problem 20 from the second rule. 
15 The first is the seventh problem from the seventh rule. The next are from Rudolff’s fifth 
rule, problems 2, 4, 11, 17, 18, 19, 26 and 33 respectively. 
16 25 linear problems in chapter 3, six quadratic problems in chapter 5, twelve problems on 
binomials in chapter 6, three problems in chapter 15 and five in chapter 16. For some 
unknown reason they were deleted from the 1810 edition, and added again in the third 
edition. 
17 I checked several French edition, except the one from Jean Guillaume Garnier (1807).  
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1.6 Phases in rhetoric development of treatises on algebra 

1.6.1 The medieval tradition 
One of the first Latin problem collections found in the Western world is 
attributed to Alcuin of York under the title Propositiones ad Acuendos Juvenes or 
Problems to Sharpen the Youth. The text dates from around 800 and consist of 53 
numbered problems with their solution. As an example let us look at problem 
16 on Propositio de duobus hominibus boves ducentibus, appearing twice in the 
Patrologia Latina :18 
 

Two men were leading oxen along a road, and one said to the other:  “Give me 
two oxen, and I’ll have as many as you have.”  Then the other said:  “Now you 
give me two oxen, and I’ll have double the number you have.”  How many oxen 
were there, and how many did each have? 

 
Solution.  The one who asked for two oxen to be given him had  4,  and the one 
who was asked had  8.  The latter gave two oxen to the one who requested them, 
and each then had  6.  The one who had first received now gave back two oxen 
to the other who had  6  and so now had  8  which is twice  4,  and the other was 
left with  4  which is half  8. 

 

The rhetorical structure of these problems is that of a dialogue between a 
master and his students and is typical for the function of quaestiones since 
antiquity. Rhyme and cadence in riddles and stories provided mnemonic aids 
and facilitated the oral tradition of problem solving. Many of the older 
problems are put in verse. Some best known examples are “Going to St-Yves” 
using the geometric progression 7 + 72 + 73 + 74, (Tropfke 1980, 629). We 
know also many problems in rhyme from Greek epigrams19 such as 
Archimedes cattle problem (Hillion and Lenstra, 1999), the ass and mule 

                                           
18 Translation from Singmaster, 1992. The declamatory style becomes apparant from the 
original Latin text, Folkerts (1978, p. 53): “Duo homines ducebant boves per viam, e quibus 
unus alteri dixit: Da mihi boves duos, habebo tot boves, quot et tu habes. At ille ait: Da mihi, 
inquit, et tu duos boves, et habebo duplum quam tu habes. Dicat, qui velit, quot boves 
fuerunt, quot unusquisque habuit. Solutio. Prior, qui dari sibi duos rogavit, boves habebat 
IIII. At vero, qui rogabatur, habebat VIII. Dedit quippe rogatus postulanti duos, et 
habuerunt uterque sex. Qui enim prior acceperat, reddidit duos danti priori, qui habebat sex, 
et habuit VIII, quod est duplum a quattuor, et illi remanserunt IIII, quod est simplum ab 
VIII” 
19 The most comprehensive collection of Greek epigram problems is in the second book of 
Mathesis Biceps on algebra by Caramuel (1670). A comment from Jens Høyrup lead me to this 
source. 
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problem from Euclid (Singmaster, 1999) and age problems (Tropfke 1980, 575-
576). During the Middle Ages complete algorisms were written this way, taking 
over 500 verses (Karpinski and Waters, 1928; Waters, 1929).  Even without 
rhyme, problems were cast into a specific cadence to make it easier to learn by 
heart. The 53 problems of Alcuin clearly show a character of declamation, 
specific for the medieval system of learning by rote. Medieval students were 
required to calculate the solution to problems mentally and to memorize rules 
and examples. The solution depends on precepts, easy to remember rules for 
solving similar problems, and adds no explanation. 
The structure of a problem as a dialogue between master and student is also 
explicitly present in early Hindu mathematical writings. These treatises consist 
of long series of verses in which a master challenges a student with problems. 
An example from the Ganitasārasangraha of Mahāvīra is as follows: 
(Padmavathamma and Rangācārya 2000, stanza 80 ½, 257): 
 

Here, (in this problem,) 120 gold pieces are divided among 4 servants in the 
proportional parts of ½ , 1/3 , ¼  and 1/6. O arithmetician, tell me quickly what 
they obtained. 

 
The student is addressed as friend, arithmetician or learned man and is defied 
in solving difficult problems. In one instance, Brāhmagupta states in his 
Brāhmasphutasiddhānta of 628 AD that (Colebrooke 1817, 348): 
 

He, who tells the number of [elapsed] days from the number of days added to 
past revolutions, or to the residue of them, or to the total of these, or from their 
sum, is a person versed in the pulverizer. 

 
Thus someone who is able to solve this problem on lunar revolutions, should 
have memorized the verses describing the Kuttaka or pulverizer method for 
solving indeterminate problems. Literally stated, the memorization of the rules 
formulated in stanzas by the master is a precondition for problem solving. 
Hindu algebra is based on the reformulation of problems to a format for which 
a memorized rule can be applied. The rhetorical function of problems in 
medieval, as well as Hindu texts, is to provide templates for problem solving 
which can be applied in similar circumstances. 

1.6.2 The abacus tradition 
While the medieval tradition of riddles or problems with standard recipes was 
carried through to sixteenth-century arithmetic books, a new tradition of 
algebraic problem solving emerged in Renaissance Italy. The Catalogue by 
Warren van Egmond (1980) provides ample evidence of a continuous thriving 
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of algebraic practice from the fourteenth till the sixteenth century.20 Over two 
hundred manuscripts provides an insight in the practice of teaching the basics 
of arithmetic and algebra to sons of merchants in the abacus schools of major 
towns in Renaissance Italy. The more skilled of these abacus masters drafted 
treatises on algebraic problem solving in the vernacular. These consist typically 
of a short introduction on the basic operations on polynomials and the rules 
for solving problems (resolving equations). The larger part of these treatises is 
devoted to the algebraic solution of problems. We can state that the algebraic 
practice of the abacus tradition is the rhetorical formulation of problems using 
an unknown. The solution typically depends on the reformulation of the 
problems in terms of the hypothetical unknown. The right choice of the 
unknown is half of the solution to the problem. Once the several unknown 
quantities are expressed in the rhetorical unknown, the analytic method consists 
of manipulating the polynomials and applying the rules of algebra (resolution of 
equations) to the point of the resolution of a value for the unknown.   
As an example of the rhetoric of algebraic problem solving let us look at the 
major abacus master of the fourteenth century, Antonio de’ Mazzinghi 
(Problem 9, Arrighi 1967, pp. 28-9): 
 

Find two numbers which, multiplying 
one with the other gives 8, and 
[adding] their squares gives 27. 

Truova 2 numeri che, multiplichato 
l’uno per l’altro, faccino 8 e i loro 
quadrati sieno 27. 

 
After the problem text is given, the solution typically starts with the 
hypothetical definition of an unknown: “Suppose that the first quantity is one 
cosa”. The skill of abacus master and the elegance of the problem-solving 
method depends mostly on the clever choice of the unknown. Maestro 
Antonio not only was skilful in this, he also was the very first to introduce 
multiple unknowns for solving difficult problems in an elegant way. 
 

Ma per aguagliamenti dell’algibra anchora possiamo fare; e questo è che porremo 
che lla prima quantità sia una chosa meno la radice d’alchuna quantità, l’altra sia 
una chosa più la radice d’alchuna quantità. Ora multiplicherai la prima quantità in 
sè et la seconda quantità in sè et agugnerai insieme et araj 2 censi et una quantità 
non chonosciuta, la quale quantità non chonosciuta è quel che è da 2 censj infino 
in 27, che v’è 27 meno 2 censj, dove la multiplichatione di quella quantità è 13 
1/2 meno i censo.  

 

                                           
20 For an excellent overview of the texts and methods within this tradition, see Franci and 
Rigatelli, 1985. 
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Instead of using the cosa for one of the numbers, or two unknowns for the two 
numbers, Maestro Antonio here uses  

 
x y−  and x y+ .  

 
Squaring these two numbers gives  
 

2 2x x y y− +  and 2 2x x y y+ +   
 
respectively. Adding them together results in  

 
22 2x y+ ,  

 

which is equal to 27. The auxiliary unknown thus is 2113
2

x− . 

 
Adunque la minore parte è una chosa meno la radice di 13 1/2 meno uno censo, 
l’altra è una chosa più radice di 13 1/2 meno i censo. E diraj che abbia trovato 2 
quantità e’ quadrati delle qualj insieme agunte sono 27 et l’una è una chosa meno 
radice di 13 1/2 meno uno censo, l’altra è una chosa più radice di 13 1/2 meno 1 
censo. Ora è da vedere se multiplichato l’uno per l’altro fanno 8; dove 
multiplicheraj una chosa meno radice di 13 1/2 meno 1 censo per una chosa più 
radice di 13 1/2 meno uno censo. E quando multiplicheraj prima 1 chosa per 
una chosa, fanno uno censo; e di poj multiplicha i chosa per più radice di 13 1/2 
meno 1 censo e una chosa per meno radice di 13 1/2 meno uno censo, fanno 0; 
e di poj multiplicha meno radice di 13 1/2 meno 1 censo per più radice di 13 1/2 
meno 1 censo, fanno uno censo meno 13 1/2. E agugnj al censo di prima, fanno 
2 censi meno 13 1/2. Et questi sono igualj a 8, dove raguaglieraj le parti et araj a 
ragugnere a ognj parte 13 1/2 e aremo che 2 censi sono igualj a 21 1/2.  

 
The two numbers then can be expressed as  
 

2113
2

x x− −  and 2113
2

x x+ −   

 
effectively eliminating the auxiliary unknown. Multiplying the two together 
gives  
 

2 2113
2

x x⎛ ⎞− −⎜ ⎟
⎝ ⎠
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which is equal to 8, resulting in the equation 2 12 21
2

x = . 

 
Dove arrecha a uno censo et arremo che uno censo sia igualj a 10 3/4. Adunque 
la chosa vale la radiche di 10 3/4 e il censo vale il suo quadrato cioè 10 3/4; onde 
la prima parte, che troviamo ch’era una chosa più radice di 13 1 /2 meno i censo, 
trarraj 10 3/4 di 13 1/2, rimanghono 2 3/4. E dirai che lla prima parte è la radice 
di 10 3/4 più radice di 2 3/4 e l’altra, che fu una chosa meno la radice di 13 1/2 
meno i censo, trarrai 10 3/4 di 13 1/2, rimanghono 2 3/4 e diraj che ll’altra parte 
fusse la radice di 10 3/4 meno la radice di 2 3/4.  

 
The equation can hence be expressed in a format for which a standard rule 
applies, namely 2x a= , one of the six cases of quadratic problems from the 
Arabs. Applying the rule gives a value for the cosa of  
 

310
4

.  

 
This results in the two numbers  
 

3 310 2
4 4
+  and 3 310 2

4 4
−   

 
which is the solution to the problem. The abacus masters have mostly 
abandoned the geometric proofs of Arab algebra and instead demonstrate the 
validity of the solution by a test. Multiplying the two numbers together gives 8 
and adding their squares results in 27: 
 

E chosì abbiamo trovato 2 quantità ch’ e’ loro quadrati sono 27 e la 
multiplichatione dell’una nell’altra è 8, chome volavamo. E l’una quantità è la 
radice di 10 3/4 meno la radice di 2 3/4, cioè la minore, e la maggiore è radice di 
10 3/4 più radice di 2 3/4; chome trovamo prima. 

 
This text fragment from the end of the fourteenth century is exemplary for the 
abacus tradition. Algebraic practice consists of analytical problem solving. The 
rhetorical structure depends on the reformulation of the given problem in 
terms of the cosa and applying the analytical method to arrive at a value for the 
unknown. The unknown quantities can then easily be determined. A test 
subsitituting the values of the quantities in the original problem provides proof 
of the validity of the solution.  
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1.6.3 The beginning of algebraic theory: from Pacioli to Cardano 
By the end of the fifteenth century we observe a change in the rhetorical 
structure of algebra treatises. While the solution to problems still remains the 
major focus of the texts, authors pay more attention to the introductory part. 
While a typical abacus text on algebra was limited to thirty or forty carta,  the 
new treatises easily fill hundred folio’s. Two trends contribute to more 
comprehensive approach: the use of the algorism as a rhetorical basis for an 
introductory theory and the extraction of general principles from practice.   

1.6.3.1 The amalgamation of the algorism with the abacus text 
The algorism, as grown from the first Latin translations of Arab adoptions of 
Hindu reckoning, describes the Hindu-Arabic numerals and the basic 
operations of addition, subtraction, multiplication and division. In later texts we 
also find doubling and root extraction as separate operations. These operations 
are applied to natural numbers, fractions and occasionally also sexadecimal 
numbers. Through the influence of Boetian arithmetic, some algorisms also 
include sections on proportions and progressions. Whereas we find this 
structure also in abacus texts on arithmetic, the treatises on algebra have a 
different character. The introductory part extends on early Arab algebra with 
the six rules for solving quadratic problems, lengthened by some derived rules. 
By the end of the fifteenth century algebraic treatises also incorporate the basic 
operations on arithmetic and broaden the discussion on whole numbers and 
fractions with irrational binomials and cossic numbers. We witness this 
evolution in Italy as well as in Germany. The culmination of this evolution is 
reflected in the Practica Arithmeticae of Cardano (1539). Cardano begins his book 
with the numeration of whole numbers, fractions, and surds (irrational 
numbers) as in the algorisms. He then adds de numeratione denominationum placing 
expressions in an unknown in the same league with other numbers, which is 
completely new. In doing so he shows that the expansion of the number 
concept has progressed to the point of accepting polynomial expressions as 
one of the four basic types of numbers. He further discusses the basic 
operations in separate chapters and applies each operation to the four types. 
Also, he applies root extraction to powers of an unknown in the same way as 
done for whole numbers (chapter 21). He continues by constructing aggregates 
of cossic numbers with whole numbers, fractions or surds (chapter 33 to 36). 
As an example of the aggregation of cossic numbers with surds, he shows how 
  

3 multiplied with 24 5x x+  gives 4 3 248 120 75x x x+ + .  
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Though Cardano was not the first, his Practica Arithmeticae is a prime example of 
the adoption of the algorism for the rhetorical structure of the new text books 
on algebra, and functioned as a model for later authors. Cossic numbers were 
in this way fully integrated with the numeration of the species of number and 
presented as the culmination of the application of the operations of arithmetic. 

1.6.3.2 Extracting general principles from algebraic practice 
For a second trend in the amplification of an introductory theory in algebraic 
treatises we can turn to Pacioli. It has long been suspected that Pacioli based 
his Summa de arithmetica geometria proportioni et proportionalita of 1494 on several 
manuscripts from the abacus tradition. These claims have been substantiated 
during the past decades for large parts of the Geometry. Ettore Picutti has shown 
that  “all the ‘geometria’ of the Summa, from the beginning on page 59v. (119 
folios), is the transcription of the first 241 folios of the Codex Palatino 577”, 
(cited in Simi and Rigatelli 1993, p. 463). Margaret Daly Davis (1977) has 
shown that 27 of the problems on regular bodies in Pacioli’s Summa are 
reproduced from Pierro’s Trattao d’abaco almost literally. Franci and Rigatelli 
(1985) claim that a detailed study of the sources of the Summa would yield many 
surprises. Yet, for the part dealing with algebra, no hard evidence for plagiarism 
has been given. While studying the history of problems involving numbers in 
geometric progression (GP), I found that a complete section of the Summa is 
based on the Trattato di Fioretti of Maestro Antonio.21 Interestingly, this 
provides us with a rare insight in Pacioli’s restructuring of old texts, and as 
such, in the shift in rhetorics of algebra books. We will go into some detail as 
this instance is exemplary for other sixteenth-century works. 
Pacioli discusses thirty problems on numbers in GP (from 35 problems in 
distinction 6, treaty 6, article 14), before he treats algebra itself. Most of these 
problems correspond with problems from Maestro Antonio, often with the 
same values. More importantly, most original problem solving methods are 
reproduced literally by Pacioli, including one rare instance using two unknowns 
and one which Antonio calls “without algebra”. Relevant for our discussion are 
two introductory sections preceding the problems. Pacioli gives some 
theoretical principles on three numbers in GP in the section called De tribus 
quantitatibus continue proportionalium (distinction 6, treaty 6, article 12, f. 88v).22 
Another section on keys, lists theoretical principles on four numbers in GP 
under the heading De clavibus seu evidentiis quantitatum continue proportionalium, 

                                           
21 See my forthcoming “Properties of numbers in geometric progression as generators of 
innovative problems in Renaissance algebra”. 
22 I have used the 1523 edition but the numbering of pages and sections is practically 
identical with the original. 
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(distinction 6, treaty 6, article 11, f. 88r). Pacioli does not explain where these 
principle are derived from. He only gives some numerical examples. However, 
a close comparison with the Trattato di Fioretti shows that several are extracted 
from Maestro Antonio’s solution. Let us look at one example involving three 
numbers in GP with their sum given and an additional condition. 
 

Pacioli, f. 91r Maestro Antonio, (Arrighi 1967, p. 15) 
Famme de 13 tre parti continue 
proportionali che multiplicata la 
prima in laltre dui, la seconda in 
laltre dui, la terça in laltre dui, e 
queste multiplicationi gionti 
asiemi facino 78. 

Fa’ di 19, 3 parti nella proportionalità chontinua 
che, multiplichato la prima chontro all’altre 2 e 
lla sechonda parte multiplichato all’altre 2 e lla 
terza parte multiplichante all’altre 2, e quelle 3 
somme agunte insieme faccino 228. Adimandasi 
qualj sono le dette parti. 

 
In modern notation, the general structure of the problem is as follows : 
 

( ) ( ) ( )

x y
y z
x y z a
x y z y x z z x y b

=

+ + =
+ + + + + =

 

 
Maestro Antonio is the first to treat this problem and uses values a = 19 and b 
= 228. Expanding the products and summing the terms gives  
 

2 2 2 228xy xz yz+ + = , but as 2y xz=   
 
we can write this also as  
 

22 2 2 228xy y yz+ + = , or 2 ( ) 228y x y z+ + = .  
 
Given the sum of 19 for the three terms, this results in 6 for the middle term. 
Antonio then proceeds to find the other terms with the procedure of dividing a 
number into two extremes such that their product is equal to the square of the 
middle term. Pacioli solves the problem in exactly the same way. However, the 
rhetorical structure is quite different. Maestro Antonio performs an algebraic 
derivation on a particular case. Instead, Pacioli justifies the same step as an 
application of a more general principle, defined as a general key (Pacioli 1494, f. 
91r): 
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Questa solverai per la 14a chiave. Laqual dice che stu partirai la summa de ditte 
multiplicationi, cioe 78 per lo doppio de 13. El qual 13 sera la summa de ditte 
quantita ne virra la seconda parte.  

 
The fourteenth key he is referring to, is previously formulated as follows 
(Pacioli 1494, f. 89v): 
 

On three quantities in continuous 
proportion, when multiplying each with the 
sum of the other two and adding these 
products together. Then divide this by 
double the sum of these three quantities 
and this always gives the second quantity. 

De 3 quantita continue proportionali che 
multiplicata ciascuna in laltre doi e quelli 
multiplicationi gionti insiemi. E poi 
questo partito nel doppio de la summa 
de ditte 3 quantita e sempre laverimento 
sera la 2a quantita. 

 
This particular key is one of several variations on the algebraic derivation of 
Maestro Antonio, each presented as a general principle. In modern notation: 

 
( ) ( ) ( )

2( )
x y z y x z z x y y

x y z
+ + + + +

=
+ +

 (1.1) 

 

Pacioli also lists  ( ) ( ) ( )
2

x y z y x z z x y x y z
y

+ + + + +
= + + , 

 
( ) ( ) ( ) 2 ( )x y z y x z z x y y x y z+ + + + + = + + , and 

 
( ) ( ) ( ) 2( )x y z y x z z x y xy yz xz+ + + + + = + +  (Key 13) 

 
These ‘general principles’ are presented without any argumentation except for a 
numerical example as test. Pacioli continues to solve Antonio’s problem by 
again applying a general rule for the division of a number into two parts 
proportional to the mean term. This rule is also extracted from previous 
algebraic practice. We can be certain that Pacioli mined Antonio’s treatise for 
general principles such as this, because they are used nowhere else than for 
solving the problems taken from Antonio. The only sense we can give to the 
definition of a general principle, which is used only one time, is precisely 
rhetorical. Pacioli has chosen to present some typical derivations as general 
rules which are later applied to solve problems in a clear and concise way. Even 
with the body of evidence against him, we should be careful in accusing Pacioli 
of plagiarism. At best, we observe here an appropriation of problems and 
methods. The restructuring of material and the shift in rhetoric is in itself an 
important aspect in the development of sixteenth-century textbooks on algebra. 
Pacioli raised the testimonies of algebraic problem solving from the abacus 
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masters to the next level of scientific discourse, the textbook. When composing 
the Summa, Pacioli had almost twenty years of experience in teaching 
mathematics at universities all over Italy. His restructuring of abacus problem 
solving methods is undoubtedly inspired by this teaching experience.23 
Cardano’s Practica Arithmeticae continues to build on this evolution and the two 
works together will shape the structure of future treatises on algebra. 

1.6.4 Algebra as a model for method and demonstration 
The two decades following Cardano’s Practica Arithmeticae were the most 
productive in the development towards a symbolic algebra. Cardano (1545) 
himself secured his fame by publishing the rules for solving the cubic equation 
in his Ars Magna and introduced operations with two equations. In Germany, 
Michael Stifel (1544) produce his Arithmetica Integra which serves as a model of 
clarity and method for many authors during the following two centuries. Stifel 
also provided significant improvements in algebraic symbolism, which have 
been essential during the sixteenth century. He was followed by a Johannes 
Scheubel (1550) who included an influential introduction to algebra in his 
edition of the first six books on Euclid’s Elements. This introduction was 
published separately in the subsequent year in Paris as the Algebrae compendiosa 
(Scheubel, 1551) and reissued two more times. In France, Jacques Peletier 
(1554) published the first French work entirely devoted to algebra, heralding a 
new wave of French algebraists after the neglected Chuquet (1484) and de la 
Roche (1520). Johannes Buteo (1559) built further on Cardano, Stifel and 
Peletier to develop a method for solving simultaneous linear equations, later 
perfected by Guillaume Gosselin (1577). In 1560, an anonymous short Latin 
work on algebra was published in Paris. It appeared to be of the hand of Petrus 
Ramus and was later edited and republished by Schöner (1586, 1592). The 
work depended on Scheubel’s book to such a measure that Ramus refrained 
from publishing it under his own name. In Flanders, Valentin Mennher 
published a series of books between 1550 and 1565, showing great skill in the 
application of algebra for solving practical problems. England saw the 
publication of the first book treating algebra by Robert Recorde (1557). This 
Whetstone of witte was based on the German books of Stifel and more 
importantly Scheubel. It introduced the equation sign as a result of the 
completion of the concept of an equation. It would take too long to review all 

                                           
23 Pacioli is often wrongly considered an abacist (e.g. Biagioli, 1989). In fact, he enjoyed the 
social status of a well-paid university professor. Between 1477 and 1514, he taught 
mathematics at the universities of Perugia, Zadar (Croatia), Florence, Pisa, Naples and Rome 
(Taylor, 1942). 
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these books. Only some general trends and changes in the rhetorical structure 
of the sixteenth-century algebra textbook will be discussed.  
 
Giovanna Cifoletti (1993) is one of the few who wrote on the rhetoric of 
algebra and specifically on this period. She attributes a high importance to 
Peletier’s restructuring of the algebra textbook. However, we have shown that 
the merger of the algorism with the practical treatises of the abacus tradition 
was initiated by the end of the fifteenth century, culminating in Cardano (1539). 
This trend cannot be attributed to Peletier, as proposed by Cifoletti. On the 
other hand, Peletier was an active participant in the humanist reform program 
which aimed not only at language and literature but also at science publications. 
His works on arithmetic (1549), algebra (1554) and geometry (1557) make 
explicit references to this program and reflections on the rhetoric of 
mathematics teaching. Cifoletti (1993, 225) demonstrates how Peletier 
intentionally evokes the context of the author as the classical Orator in order to 
approach a textbook from the point of view of rhetoric. He rebukes on the 
demonstration of mathematical facts by his predecessors, explicitly referring to 
Stifel and Cardano. His ideal model for mathematical demonstration is 
exemplified by the rules of logic represented under the form of a syllogism. In 
his introduction to Euclid’s Elements he considers the application of syllogisms 
in mathematical proof as analogous with that of an lawyer at the court house, 
applying the rules of rhetoric:24 
 

Que si quelqu’un recherche curieusement, pourquoi en la démonstration des 
propositions ne se fait voir la forme du syllogisme, mais seulement y apparoissent 
quelques membres concis du syllogisme, que celui là sache, que ce seroit contre la 
dignité de la science, si quand on la traite à bon escient, il falloit suivre ric à ric les 
formules observées aux écoles. Car l’advocat, quand il va au barreau, il ne met 
pas sur ses doigts ce que le Professeur en rhétorique lui a dicté: mais il s’étudie 
tant qu’il peut, encore qu’il soit fort bien recours des preceptes de rhétorique, de 
faire entendre qu’il ne pense rien moins qu’à la rhétorique. 

 
So, how did Peletier apply his understanding of rhetoric in his Algebre? Cifoletti 
(1993, 239) points at the contamination of the rhetorical notion of quaestio and 
the algebraic notion of problems, initiated by Ramus and Peletier, and fully 
apparent in the Regulae of Descartes. She goes as far as to identify the algebraic 
equation with the rhetorical quaestio (Cifoletti 1993, 245): 
 

But I also think that from the point of view of the history of algebra, so crucial 
for later theoreticians of Method, quaestio has played a fundamental role because 

                                           
24 Peletier 1557, introduction, also cited by Cifoletti (1993, 227-8). 
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it has allowed consideration of the process of putting mathematical matters into 
the form of equations in a rhetorical mode.  

 
In Cicero’s writings, the quaestio is an important part of rhetorical theory. He 
distinguishes between the quaestio finita, related to time and people, and the 
quaestio infinita, as a question which is not constrained. The quaestio finita is also 
called causa, and the alternative name for quaestio infinita is propositum, related to the 
aristotelian notion of thesis. Cicero discerns the two types of propositum, the first 
of which is propositum cognitionis, theoretical, and the second is propositum actions, 
practical. Both these types of quaestio infinita have their role in algebra as the art 
addresses both theoretical and practical problems.  
 
I believe the rhetorical function of algebra recognized by the authors cited above, 
is contained more in the development of algebraic symbolism, than in the 
changing role of quaestio. I have argued elsewhere that the period between 
Cardano (1539) and Buteo (1559) has been crucial for the development of the 
concept of the symbolic equation.25 The improved symbolism of Viète, and 
symbols in general, are the result, rather than the start, of symbolic reasoning. It 
is precisely Cardano, Stifel, Peletier and Buteo who shaped the concept of the 
symbolic equation by defining the combinatorial operations which are possible 
on an equation. The process of representing a problem in a symbolic mode and 
applying the rules of algebra to arrive at a certain solution, have reinforced the 
belief in a mathesis universalis. Such a universal mathesis allows us not only to 
address numerical problems but possibly to solve all problems which we can 
formulate. The thought originates within the Ramist tradition as part of a 
broader philosophical discussion on the function and method of mathematics, 
but the term turns up first in the writings of Adriaan Van Roomen (1597). The 
idea will flourish in the seventeenth century with Descartes and Leibniz. A 
mathesis universalis is inseparably connected with the newly invented symbolism. 
As Archimedes only needed the right lever to be able to lift the world, so did 
the new algebraist only need to formulate a problem in the right symbolism to 
solve it. Nullum non problema solvere, or “leave no problem unsolved” as Viète 
would zealously write at the end of the century. Much has been written on the 
precise interpretation of Descartes’ use of the term. The changing rhetoric of 
algebra textbooks at the second half of the sixteenth century gives support to 
the interpretation of Chikara Sasaki, in which mathesis universalis can be 
considered as algebra applied as a model for the normative discipline of arriving 

                                           
25 Heeffer (2005), “The emergence of symbolic algebra as a shift in predominant models”, 
forthcoming.  
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at certain knowledge.26 This is the function Descartes describes in Rule IV of his 
Regulae. Later, Wallis (1657) uses Mathesis Universalis as the title for his treatise on 
algebra and includes a large historical section discussing the uses of symbols in 
different languages and cultures. As a consequence, the study of algebra delivers 
us also a tool for reasoning in general.   

1.6.5 The generalization of problems to propositions 
For the modern reader of sixteenth-century algebras, it is difficult to 
understand why it took so long before algebraic problems became formulated 
in more general terms. Many of the textbooks of mid-sixteenth century 
contained hundreds of problems often of similar types intentionally dispersed 
over the pages. It is evident that someone who can solve the general case, can 
solve all individual problems belonging to that case. What is more, the need for 
generality was duly recognized. For example Cardano (1545) writes “We have 
used this variety of examples so that you may understand that the same can be 
done in other cases” (Witmer 1968, 37).  
 
There is a specific historical reason for the lack of generality. By 1560, the 
algebraic symbolism was developed to a point where multiple equations of 
higher degree could be simultaneously formulated without ambiguities. One 
crucial aspect was missing: the tools for the generalization of the values of the 
coefficients. This required the generalization of the concept of an equation to a 
general structure which can be approached under different circumstances. It 
was Viète who initiated the shift from the solution of problems to the study of 
the structure of equations and transformations of equations. Let us look at one 
example as an illustration of the importance of the new symbolism for 
coefficients. In the In Artem Analyticem Isagoge, Viète (1591) studies several 
problems with numbers in GP, as did Cardano and Stifel before him. The latter 
two construct equations in order to solve specific instances of problems with 
numbers in GP. On the other hand, Viète is interested in the relationship 
between the properties of numbers in GP and the structure of the quadratic 
and cubic equation. He investigates the circumstances in which one can be 
transformed into the other. Take three numbers in GP: 
 

a b
b c
=  

 

                                           
26 For a discussion of this interpretation and an overview of other positions taken, see Sasaki 
2003, pp. 189-203.  
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Now, suppose that the two extremes are not known but that they differ by a 
known number. Using the unknown x this can be represented as: 
 

 a x b
b x
+

=  

 
Multiplying the terms creates the quadratic equation  
 

2 2x ax b+ = .  
 
The important aspect of the transformation of proportions in the equation is 
that 2x ax+  equals a square. Before Viète this crucial property of this quadratic 
equation could not be represented. Viète therefore introduced the use of the 
vowels A, E, I, O and U to represent unknowns, and the use of consonants for 
the constants and coefficients of an equation. Thus the specific property of this 
equation is preserved using his symbolism in the expression 
 

2 2A AB B+ = .  
 
The equation represents a class of problems which now can be formulated in 
general terms as: 
 

Given the mean of three magnitudes in continuous proportion and the 
difference between the extremes, find the extremes. 27 

 
I have intentionally reversed the line of reasoning from the text, as written by 
Viète,  because this is the most likely path the generalization was established. 
Viète formulated the general problem from the transformation of properties of 
numbers in GP into the structure of the quadratic equation. Although the 
problem in the individual case does appear in previous writings, Viète did not 
generalize the problem from such instances.28   
 
However, others after Viète show the inclination to reformulate classic 
problems in more general terms. Christopher Clavius, the great reformer of 
                                           
27 Viète 1591, p. 233: “Data media trium proportionalium et differentia extremorum, invenire 
extremas”.  
28 As this is a very easy problem in arithmetic, it does not appear in Cardano or Stifel. 
However, Jean de Murs treats it algebraically in his Quadripartitum, (f. 48r, L’Huillier 1990). de 
Billy (1643, 101) gives de construction as well as the algebraic derivation. A version with the 
sum of the extremes appears in the first vernacular treatise on algebra by Jacobus de 
Florentia, problem 32 (Høyrup, 2000). 
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mathematics teaching, published his own Algebra in Rome in 1608. 
Unexpectedly, he ignores most of the achievements and improvements in 
symbolism of the second half of the sixteenth century and goes back to Stifel’s 
Arithmetica Integra as a model for structure and for most of his large problem 
collection. In doing so, he takes less care in mentioning his sources than Stifel 
did. A problem from Stifel on three numbers in GP given their sum and the 
mean term is formulated by Clavius, without acknowledgment, as follows: 
 

Stifel, 1544, f. 280v Clavius, 1608, p. 292 
Divide 283 in tres terminos 
continue proportionales, 
quorum medius faciat 78. 

Datum numerum in tres numeros continuae 
proportionales partiri, quorum medius 
datus sit, cuius tamen quadratus maior non 
sit quadrato semissis illius numeri, qui 
relinquitur, detracto dato medio ex numero. 

 
Stifel gives a specific problem, Clavius defines the general one. Stifel uses the 
unknown for the first term. The third is thus 283 – x – 78. As the product of 
the two extremes equals the square of the middle term, Stifel arrives at the 
equation  
 

2205 6084x x− = .  
 
Remarkably for the time (1545) Stifel recognizes that this quadratic equation 
has two positive roots, namely 169 and 36, the values of the two extremes. 
After the general formulation, Clavius starts from exactly the same problem 
(“Sit numerus 283 dividendus in tres continuae proportionales quorum medius 
sit 78”) to arrive at the same equation. As the general solution for the roots of 
the equation 
 

 2x bx c= −   is  
2

2 2
b bx c⎛ ⎞= ± −⎜ ⎟

⎝ ⎠
, 

 
Clavius gives this as a general rule. He thus generalizes by formulating specific 
problems from Stifel in general terms and by rephrasing the solution to the 
equation as a general recipe for solution.  
 
This method of generalization is completed by Jacques de Billy (1643) who 
treats no less than 270 problems on numbers in GP in his Nova Geometriae Clavis 
Algebra. For each problem, he gives a general formulation, a construction 
method, an algebraic derivation and a general canon. de Billy abandons the 
terms ‘problem’ and quaestio and instead uses propositio. The general formulation 
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of problems thus allows him to dispose of problems altogether and move to 
general propositions which constitute a new body of mathematical theory. The 
general recipes of Clavius, formulated as canons by de Billy, become 
propositions and lemata which themselves are used as justifications of steps in 
further propositions. A reasoning built on references to previous proven 
propositions and lemata changes the rhetoric of problem solving to that of 
concise rhetoric of justification based on the logic of syllogisms, previously 
aimed for by Peletier. The generalization of problems thus achieved more than 
one had hoped for. Not only did it provide a solution method to all problems 
of that type. Also it constituted a body of mathematical knowledge that could 
be referred to in a rhetorical exposition, strengthening its persuasive power.  
 

Author Year Examples Problems Proofs 
Pacioli 1494 Exemplis Quaestioni mostrare 
de la Roche 1520  questions 

application de regle 
(none) 

Rudolff 1525  Exempla der Coss 
oder enigmata 

 

Ghaligai   (not named)  
Vanden 
Houcke 

1537  (not named) (none) 

Cardano 1539  Questionis  
Stifel 1543 exempla exemplum pictura exempli 
Scheubel 1551    
Peletier 1554 exemple   
Mennher 1556 examples exemples sur la 

premier equation 
demonstration 
geometrique 

Buteo 1559  Problema 
Quaestio 

 

Ramus 1560 exempla Exempla (none) 
Bombelli 1572 Essempio Problema Dimonstratione 
Gosselin 1577  Problema Demonstratio 
Petri 1583  Exempelen op die 

eerste vergelijckinge 
 

Stevin 1586  Question Construction 
Demonstration 

Clavius 1608  Aenigmata  
Henrion 1620  Question  
de Billy   Propositio - Canon Construction 
Descartes 1639  Quaestio sive aequatio  
Wallis 1657  Theoremata – 

problemata 
 

Caramuel   Quaestiones  
Kersey 1673  Question - resolution Composition 
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Proposition - Canon 
Newton 1707 Example Problem  

 

1.6.6 An attempt at an axiomatic theory 
The method of de Billy, of generalizing problems and turning their solution 
into canons which are universally applicable and to be used in the derivation of 
other propositions, was taken over by a new wave of algebraists in England. 
Despite of the fact that he published only a concise introduction to algebra in 
French (1637) and the Latin treatise on numbers in GP (1643), de Billy was 
well appreciated in England.29 The books were not issued again in France. In 
England however, William Leybourn (1660) added a translation of de Billy’s 
Abrégé des préceptes d'algèbre as the fourth part of his Arithmetic, first published in 
1657. This popular work was reprinted several times up to the eighteenth 
century. But it is de Billy’s other work which influenced the rhetoric of English 
algebra textbooks in the later half of the seventeenth century. In England, the 
need for rigor in the demonstration of algebraic reasoning was felt more 
directly. The prime model for truthful reasoning was, without doubt, Euclidian 
geometry, constructing theorems which follow from axioms by deductive 
reasoning. Before the seventeenth century, algebra was considered a practice, 
performed by those skilled in the art. It required experience and knowledge of 
many rules, which had their own name such as the regula alligationis.30 The idea 
of a universal mathesis rendered knowledge of such rules superfluous. Algebra 
was basically not different from geometry or arithmetic (Wallis 1657, 85). 
Algebra starts from simple facts which can be formulated as axioms. All other 
knowledge about algebraic theorems can be derived from these axioms by 
deduction. John Wallis introduced the term axioms in relation to algebra in an 
early work, called Mathesis Universalis, included in his Operum mathematicorum 
(1657, 85). With specific reference to Euclid’s Elements, he gives nine Axiomata, 
also called communes notationes, referring to the function of symbolic rewriting. 
 
 
 

1 Due eidem sunt aequalia, sunt et inter se 
aequalia 

if A = C and B = C then A = C 
 

2 Si aequalibus aequalia addantur, tota sunt if A = B then A + C = B + C 
                                           
29 Apparent from the citations in English works, e.g. Kersey 1673, f. b3r. 
30 Widman (1489) list more than twenty rules. Also Pacioli (1494) used many names, which 
was ridiculed by Cardano (1539, Opera IV, 79), who showed that you can turn any 
generalized derivation into a rule and give a name to it. He called the method Regula de 
Modo.  
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aequalia 
3 Si ab aequalibus aequalia subducantur, reliqua 

sunt aequalia 
if A = B then A – C = B – C 

4 Si inequalibus aequalia addantur tota sunt 
inequalia 

if A ≠ B then A + C ≠ B + C 

5 Si inaequalibus aequalia auserantur, reliqua 
sunt inaequalia 

if A ≠ B then A – C ≠ B – C 

6 Quae eiusdem sunt dupliciae sunt inter se 
aequalia 

2A = A + A 

7 Quae eiusdem sunt dimidia, sunt aequalia 
inter se 

A/2 = A – A/2 

8 Totum est maius sua parte  
9 Totum aequatur partibus suis omnibus simul 

sumptis 
The total equals the sum of its parts. 

 
Some years later, John Kersey (1673, Book IV, 179) expanded on this and 
formulated 29 axioms “or common notions, upon which the force of 
inferences or conclusions, about the equality, majority and minority of 
quantities compared to one another, doth chiefly depend”. Although using 
many more axioms, he basically reformulates those from Wallis. The method of 
constructing theorems or canons and the belief in the infallibility of the chain 
of reasoning becomes apparent from Kersey’s explication of the difference 
between the analytic and the synthetic approach in the introduction (Kersey 
1673, f. B2v): 
 

Algebra which first assumes the quantity sought, whether it be a number or a line 
in a question, as if it were known, and then, with the help of one or more 
quantities given, proceeds by undeniable consequences, until that quantity which 
at first was but assumed or supposed to be known, is found to some quantity 
certainly known, and is therefore known also. 
Which analytical way of reasoning produceth in conclusion, either a theorem 
declaring some property, proportion or equality, justly inferred from things given 
or granted in a proposition, or else a canon directing infallibly how that may be 
found out or done which is desired; and discovers demonstrations of the 
certainty of the resulting theorem or canon, in the synthetical method, or way of 
composition, by steps of the analysis, or resolution. 
 

The quote is an excellent example to illustrate how the rhetoric of the algebra 
textbooks in the second half of the seventeenth century adopts of the Euclidian 
style of demonstration. An illustrative example is Wallis’s conclusion of the 
chapter on numbers in GP with a very terse synopsis. The idea may have been 
taken from a book published some years before by Richard Balam (1653). The 
last chapter of this book is devoted to problems in GP and its aim is clearly to 
construct a body of algebraic knowledge from a general formulation of this 
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type of problems. From eight ‘special rules’ he constructs 28 cases for 
combinations of the given elements and concludes: “By this work thus 
performed, 164 new equations are found, which are so many theorem” (Balam 
1653, 152). Wallis expands on the scope of Balam’s 8 rules and from the 
following definitions, he formulates 15 theoremata and 57 problemata: 
 

A : smaller extreme  
V : larger extreme 
Z: reciprocal 
T: number of terms (t when used as power) 
R: common ratio 
D: distance of the first term (d when used as power), D = T - 1 
S: sum of the terms 

 
The theorems include the classic sum of all the terms as  
 

1

tAR AS
R

−
=

−
 (theorem 5)  

 
as well as the less expected  
 

S AR
S V
−

=
−

 (theorem 9).  

 
The problems are formulated in a general form and thus correspond with the 
propositions of de Billy. They all are formulated by considering some of the 
elements given, and asking for the other ones. For example problem 57 
considers  
 

, ,V T Z
A

  

 
known and asks for , , , ,R A V VA Z (Wallis 1657, 315). For each of these elements, 
Wallis lists the problem numbers where it can be derived from, in this case (10, 
50, 4, 1, 12). Thus  
 

R follows from problem 10, which stated that dV R
A
= ,  

 

A follows from problem 50 as 1
1t

RA S
R
−

=
−

,  
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which in turn follows from 4, 1 and 12,  
 

V follows from problem 4 or VV A
A

= ,  

 
VA follows from problem 1, namely .VA V A= , and finally Z follows from 
problem 12, which is Z TVA= . Thus, nothing is taken for granted, not even 

.VA V A= , which is formulated as a derived proposition. Whenever it is used, 
Wallis refers to the proposition. Everything is linked into a chain of derivations, 
soundly, rigid, without compromises, as in Euclidean geometry.  
 
The attempt to grasp the foundations of algebraic reasoning in basic axioms, 
was pursued until the early eighteenth century. Before Euler in Germany, the 
most influential writer of textbooks on mathematics was Christian Wolff (1713-
5). His Elementa matheseos universae was originally issued in two volumes. The first 
one treats the traditional disciplines arithmetic, algebra, geometry and 
trigonometry. A later addition added a wide variety of practical mathematics, 
from optics and astronomy to fortification and pyrotechnics. With the Basel 
edition this standard textbook was enlarged to five volumes, reprinted and 
adapted several times in the eighteenth century (Wolff, 1732). Immanuel Kant 
owned a copy of the first edition and was intimitaly acquainted with Wolff’s 
work (Warda 1922, 07026). The book had an important influence on Kant’s 
conception of the synthetic a priori in his Critique of Pure Reason (Shabel, 2003). 
Especially Kant’s view on the role of algebra in symbolic construction, as based 
on the manipulation of geometrically constructible objects, is strongly 
influenced by the way Wolff conceived algebra. The part on algebra in the 
Elementa was also published separately in a Compendium (Wolff, 1742) and 
translated into English (Wolff, 1739) and German. Wolff starts his Compendium 
with an introduction to the methodo mathematica describing the axiomatic 
method. In the introduction to arithmetic, preceding the algebra, he gives eight 
axioms “on which the general way of calculation is founded”, corresponding 
with these of Wallis (1657).31 He adds (Wolff, 1739, 3): 
 

The delivering of these may seem superfluous, but it will be found that they are 
of great help to the understanding of Algebra, giving a clear idea of the way of 
reasoning that is used therein. 

 

                                           
31 Wolff 1742, pp. 6-9, in the 1774 Vienna edition, I used. The English translation gives 
seven axioms.   
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While the axioms define the basic properties of quantities and, as such, belong 
to the realm of arithmetic, they are considered functional for the study of 
algebra. Wolff deals with many problems, always formulated in the general way, 
leading to a general solution and illustrated by a numerical example. The 
solution is often presented as a theorem. For example, problem 61 asks for 
three numbers in GP, being given the ratio m and a as the product of the first 
with the square of the third (Wolff 1739, 130). Using x for the first term, the 
second will be mx and the third m2x. Therefore: 
 

 4 3a m x=   and thus 3
4

ax
m

=  

 
The theorem is formulated as: 
 

The cube of the 1st term in a continued geometric progression, is to the product 
of the square of the first, in a quadruplicate ratio of the first of the second. 

 
While the axiomatic approach was abandoned in the most common textbooks 
after Euler, the attempts by Wallis, Kersey and Wolff extented into the 
nineteenth century through some lesser-know works. Perkins (1842, 60)  lists 
‘four axioms used in solving equations’. Ingrid Hupp (1998) studied a tradition 
of three university professors teaching mathematics at the university of 
Würzburg. Franz Huberti (1762), Franz Trentel (1774) and Andreas Metz 
(1804) all continued Wolff’s approach to express the essentials of algebra and 
arithmetic by axioms. Their motivation may have been more didactical than in 
pursuance of a mathesis universalis. The axiomatic method brings rigor, clarity 
and brevity to the mathematical discipline, all too much inundated by 
numerous individual rules and recipes. Metz uses these properties of the 
axiomatic structure of algebra explictly as an argument to include it in an 
elementary textbook on arithmetic (Metz 1804, 159-60, cited by Hupp 1998, 
60-1): 
 

Die schönsten und kürzesten Beweise der wichtigen Lehrsätze sowohl als die 
leichtesten Auflösungen der Aufgaben in der Mathematik (besonders, wie ich 
hinzu setze, in der Lehre von Proportionen, Progressionen und Logaritmen, wo 
sogar manche Aufgaben ohne Algebra nicht lösbar sind) [gründen] sich auf eine, 
wenigstens etwas genauere Kenntnis der Gleichungen … Dieser Vortheile nicht 
verlustig zu werden, soll also hier von der ersten Anfangsgründen dieser materie 
nur so viel gesagt werden als Kürze, Gründlichkeit und Deutlichkeit in der Folge 
verlangen. 
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Huberti is the most complete, listing 14 axioms. Six include the earlier axioms 
from Wolff, but Huberti (1762,  5) adds axioms which express the basic 
operations on an equation, such as: equal quantities can be multiplied or 
divided by the same factor (“Si aequalia per eandem quantitatem multiplices, 
producta sunt aequalia”), equal quantities can be given a power (“quantitates 
aequales, elevatae ad eundum potentiae gradum, sunt aequales”), and a term 
can be moved to the other side while changing the sign (“Si duae quantitates 
efficiant aliquam summam, major terminus est aequalis summae mulctatae 
termino minore, et minor terminus est aequalis summae mulctatae termino 
majore”). While Wolff defined axioms but never used them in his Algebra, 
Huberti and to a larger extent Trentel and Metz, occasionally apply the axioms 
in derivations (Hupp 1998, 87-93).  
 
Though the axiomatic method, found in algebra textbooks until the early 
nineteenth century does not match the standards of mathematical logic 
emerging in the late nineteenth century, the axiomatic model of Euclidian 
geometry is used rhetorically to arrive at “undeniable consequences”. The 
purpose of algebra moves from the solution of numerical problems to the 
construction of a body of certain mathematical knowledge formulated by means 
of theorems and derived by rigorous deduction. Importantly, problems are the 
main instrument in this rhetorical transition. The whole body of knowledge, in 
the form of theorems, is derived from generalized problems. The changing role 
of problems has facilitated the rhetorical transition of algebra textbooks.   

1.7 Practicing the algebraic language 
Taking the body of algebraic knowledge for granted, the rhetoric of problems 
in algebra textbooks shifts again during the eighteenth century. Newton’s 
Arithmetica universalis is a good example. From the inventory of his library we 
know which books he owned on algebra and arithmetic (Harrisson 1978). The 
two copies of Oughtred’s Clavis (1652, 1667) and the standard work of Kersey 
(1673) appear to be the most influential on the Arithmetica universalis. Helena 
Pycior describes how John Collins persistently tried to find and publish an 
algebra textbook in English suitable for use at universities (Pycior 1997, 
chapters 3 and 7). The only existing algebra in 1660 was Oughtred (1652) and 
this abstruse Latin work was not considered appropriate to expound on the 
algebraic achievements of the seventeenth century. Looking at foreign 
textbooks Collins found the Algebra of Gerard Kinckhuysen (1661) best suited 
for the task. He had the book translated into Latin and asked Newton in 1669 
to write a commentary.32 Although Newton was very critical of Kinckhuysen, 
                                           
32 Observations on the Algebra of Gerard Kinckhuysen, (Whiteside 1968, II, 364-447). 
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especially on the lack of generality in problem solutions, he would use several 
of his problems in his own Arithmetica universalis published three decades later.33  
Newton’s introduction on the difference between the synthetic and analytic 
method echoes that from Kersey, cited above. He also follows Oughtred’s 
Clavis in the view of algebra as leading to universal thruth. Everything derived 
through algebra can be considered a theorem.34 Although Newton recognizes 
the universality of the method, he does not use axioms with respect to algebra, 
as done by Kersey. Also, problems have a very different role in Newton’s 
Arithmetica. In Kersey’s Algebra the theorems are formulated as the result of 
problem solving. Newton uses far less problems than in algebra textbooks 
before him and they serve no function in the construction of a body of theory. 
The sixteen numbered problems on arithmetic are given as an illustration and 
for practicing the algebraic language:35 
 

Let the learner proceed to exercise or put in practice these operations, by bringing 
problems to aequations and lastly, let him learn or contemplate the nature and 
resolution of aequations. 

 
The function of problems in Newton’s textbook is thus a complete shift from 
previous works on algebra. Also, the nature of the problems is different. 
Newton includes problems which were not seen again since the first half of the 
sixteenth century. Take for example the following simple arithmetical problem 
(Newton 1720, 71): 

 
Problem IV: A person being willing to distribute some money among some 
beggars, wanted eight Pence to give three Pence a piece to them; he therefore 
gave to each two Pence, and had three Pence remaining over and above. To find 
the number of beggars. 

 
Using x for the number of beggars, the sum of money equals 3x – 8 when 
giving three each or 2x + 3 when giving two each. Both these expression are 

                                           
33 Pycior (1993, 179) cites a letter to Collins in which Newton complains that Kinckhuysen 
does not solve his problems “by any general analytic method”, “proper to instruct a learner” 
and that his examples are as valuable as “Acrostick’s & such kind of artificiall poetry” is in 
learning Ovid’s poetry. However, Newton reproduces problems 13 and 14 from 
Kinckhuysen’s third and fourth, and generalized problem 15 (Newton 1720, 81-3). 
34 Newton 1707, p. 1: “Arithmetica quidem definite et particulariter, algebraica autem 
indefinitè et universaliter; ita et enuntiata serè omnia quae in haec computatione habentur, et 
praesertim conclusiones”. 
35 Ibid., p. 2: “ Deinde has operationes, reducendo problemata ad aequationes, exerceat, et 
ultimo naturam et resolutionem aequationum contempletur”, (translation from Newton 
1720, p. 2; italics mine). 
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equal, so x = 11. The generalization of this problem to a theorem would be 
trivial and is not the function of problems in Newton’s Arithmetica. These 
problems only serve the purpose of practicing the art of “translating out of the 
English, or any other tongue it is proposed in, into the algebraical language, 
that is, into characters fit to denote our conceptions of the relations of 
quantities” (Newton 1720, 69-70). In fact, the changing function of problems 
allowed Newton to incorporate this problem again in a textbook.36 This 
problem, better known in the formulation of handing out figs to children, was 
popular during the Middle Ages and the Renaissance. It probably originated 
from Hindu sources and was traditionally solved by a recipe, as formulated in 
the Bīja-Ganita of Bhāskarācārya (c. 1150, Colebrook 1817, p. 188). With the 
general form  
 

ax b cx d y+ = − =   
 
it can be solved as  
 

ad bcy
a c
+

=
−

, as well as by b dx
c a
+

=
−

.  

 
Both solutions appear as separate recipes in Medieval sources. These problems 
functioned as vehicles for the transmission of arithmetical recipes before the 
advent of algebra. It is one of Widman’s many rules called regula augmenti et 
decrementi (Widman 1489, f. 117).37 The problems appeared in the sixteenth 
century for the last time in Mennher (1550, f. Cviiir; 1565, f. Tviiiv). After that, 
such simple problems were not interesting enough to be included in the 
program of the French algebraists of constructing a body of mathematical 
theory from algebraic problem solving. With the changing rhetoric of problems 
in the eighteenth century, simple problems reaffirm their function, now for 
exercising and practicing the new symbolism. Formulating simple problems in 
algebraic equations is a required deftness for eighteenth-century men of 
science. Algebra has turned into a language which learned men cannot afford to 
neglect. Problems happen to be the primary tools in textbooks to acquire the 
necessary skills in symbolic algebra. 
 

                                           
36 For a more extensive discussion of the following argument see my “How Algebra Spoiled 
Renaissance Recreation Problems”, forthcoming. 
37 Kaunzner 1969, p. 77, not to be confused with the rule of false position which is 
sometimes also named as such. 
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The changed role of problems became the new standard in eighteenth-century 
textbooks. Thomas Simpson adopted the rhetoric of problems as practice in his 
popular Treatise of Algebra. He included a large number of recreational and 
practical problems popular during the Renaissance. The purpose of the many 
word problems is to practice the process of abstraction and to identify the 
essential algebraic structure of problems (Simpson 1809, 75): 
 

This being done, and the several quantities therein concerned being denoted by 
proper symbols, let the true sense and meaning of the question be translated 
from the verbal to a symbolic form of expression; and the conditions, thus 
expressed in algebraic terms, will, if it be properly limited, give as many equations 
as are necessary to its solution.  

 
Simpson gives 75 determinate problems in the section The Application of Algebra 
to the Resolution of Numerical Problems. Several of these were not seen anymore in 
algebra textbooks of the previous century. An example is the lazy worker 
problem, which was very popular during the fifteenth century (“Der faule 
Arbeiter”, Tropfke 1980, 603). A man receives a pence for every day he works 
and has to return b pence for every day he fails to turn up. At the end of a 
period of c days he is left with value d. How many days did he work? This 
simple problem leads to two linear equations in two unknowns: 
 

x y c
ax by d
+ =
− =

  with solutions bc dx
a b
+

=
+

 and ac dy
a b
−

=
+

 

 
The early formulations of the problem often had d = 0 and applied the recipe 
of dividing the product bc by the sum a + b, without any explanation, let alone 
an algebraic derivation (e.g. Borghi 1484, Ff. 111v-112r). It disappeared from 
algebra books by 1560 because it did not function within the rhetoric of that 
time.  
 
While books on algebra in the sixteenth and seventeenth century were the 
testimonies of mathematical scholarship, new algebraic methods, from the late 
seventeenth century onwards, were more and more divulged in scientific 
periodicals as the Acta Eruditorum in Leipzig, the Philosophical Transactions in 
London and the Histoire de l'Académie royale des sciences in Paris. With some 
expections, as Cramer (1750), the algebra books of the eighteenth century are 
primarily intended as textbooks, as part of the mathematics curriculum. 
Simpson (1740) is an early example. He reintroduces simple problems much as 
the lazy worker again, mainly to practice the translation and interpretation of 
word problems. It is within this new rhetoric that we have to situate Euler’s 
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Algebra. What Euler did not state himself, was made clear by the publisher 
(Euler, 1822, xxiii): 
 

We present the lovers of Algebra a work, of which a Russian translation 
appeared two years ago. The object of the celebrated author was to compose an 
Elementary Treatise, by which the beginner, without any other assistance might 
make himself complete master of Algebra. 

 
The rhetoric of problems is emphasized over and over again throughout the 
book: ‘To illustrate this method by examples’ (Euler 1822, §609, p. 207), and ‘in 
order to illustrate what has been said by an example’ (§726, p. 256). Euler’s 
book was the most successful of all algebra textbooks ever. By appropriating 
the problems from the antique book of Rudolff his father used for teaching 
him mathematics, Euler appealed to a large audience. His lucid accounts, such 
as the explanation why the quadratic equation has two roots (Euler 1822, 244-
8), are illustrated with practical and recreational problems to practice the 
translation into algebraic language. 

1.8 Conclusion 
The examination of algebra textbooks from the point of view of the changing 
rhetoric of problems provides us with some interesting insights. Different ways 
of presenting problems have played a crucial role in the transformation of early 
abacus manuscripts on algebra into the typical eighteenth-century textbook. 
While algebra consisted originally of problem solving only, an expansion 
through the amalgamation of medieval algorisms with abacus texts was the first 
step towards the modern textbook. Pacioli’s appropriation of abacus texts in 
his Summa initiated an important restructuring of algebraic derivations into a 
theoretical introduction and its application in problem solving. The extension 
of the number concept and the treatment of operations on irrational binomials 
and polynomials by Cardano set a new standard for algebra textbooks by his 
Practica Arithmeticae. Humanists such as Ramus and Peletier were inspired by the 
developments within rhetoric to restructure algebra books and paid more 
attention to the art of demonstration in algebraic derivations. The emergence 
of symbolic algebra in the mid-sixteenth century contributed to the idea of a 
mathesis universalis, as a normative discipline for arriving at certain knowledge. By 
the end of the sixteenth century the change of focus to the study of the 
structure of equations led to a more general formulation of problems. The 
solutions to general problems yielded theorems, propositions and canons, 
which constituted an extensive body of algebraic knowledge. The rhetoric of 
seventeenth-century textbooks adopted the Euclidian style of demonstration to 
provide more rigor in demonstration. The algebra textbooks of the eighteenth 
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century abandoned the constructive role of problems in producing 
mathematical knowledge. Instead, problems were used only for illustration and 
for practicing the algebraic language. Recreational problems from the 
Renaissance, which disappeared from books for almost two centuries, acquired 
the new function of exercises in transforming problems into equations. Euler’s 
Algebra is the textbook intended for self-study par excellence, which revives many 
older problems. This new established role of problems in algebra text books 
explains why Euler found in Rudolff’s Coss a suitable repository of examples. 
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