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1 Modeling Hypothetical Reasoning by means of Formal Logics

To an outsider, the claim that hypothetical or abductive reasoning1 can be mod-
eled by means of formal logics might sound as outlandish as claiming that com-
puters have the same cognitive and creative abilities as humans. After all, ab-
ductive reasoning, the process of forming explanatory hypotheses for puzzling
observations, is often considered to be the hallmark of creative ingenuity, lead-
ing to our rich and wide diversity of ideas, innovations and scientific theories. It
just seems impossible that this richness can be reconstructed or created by just
using formal tools, which are by nature abstracted from the specific semantic
content. This argument, in short the “creativity excludes logic” argument, is the
main reason why even the field itself is sharply divided between believers and
non-believers.

This argument, however, is a straw man. Nobody would argue for the claim
that hypothetical reasoning can be modeled by means of formal logics along
these lines. What is argued for in this paper and the various sources it cites is
the more modest claim that certain aspects and forms of hypothetical reasoning
can be modeled with the aid of formal systems that are specifically suited for
this task.

There are three important ways in which this modest claim differs from the
straw man that is attacked by the “creativity excludes logic” argument. First,
it not implied that the logics that are used are classical or deductive logics.
Second, abductive reasoning is not a monolithic concept: it does not consist of
a single method or procedure, but consists of many different patterns; formal
logics are only used to capture one specific and precisely defined pattern at a
time. Third, the relation between formal logics and abductive reasoning is not
one of agent and activity (i.e. formal logics do not display themselves abductive
reasoning like humans do) but one of model and target: formal logics are used
by (human) agents to model and – to a certain extent – to simulate certain
aspects of human abductive reasoning. The semantic content that is lacking in
abductive reasoning is provided by these agents.

In the remainder of this introduction, I will go into further detail on the type
of logics that are suitable for modelling abductive reasoning and introduce in
general terms the framework that is used for the logics in this paper.

To those who are still a bit suspicious how abductive reasoning patterns
can be modeled using formal logics, I want to stress that I do not mean that
any of these patterns is a valid inference in classical logic or any other (non-
trivial) deductive logic. To model defeasible reasoning steps such as hypothesis

1 In this paper, I use the notion of hypothetical reasoning always and only to indicate the reason-
ing towards (explanatory) hypotheses, i.e. the act of suggesting hypotheses for certain observations or
puzzling facts. This patterns is since Peirce commonly known as abduction. This kind of reasoning
has to be distinguished from reasoning that starts from certain (possibly counterfactual) hypotheses,
a meaning in which Rescher (1964) used the notion of hypothetical reasoning. To avoid confusion,
I will generally use the notion of abductive reasoning.
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formation, one has to use non-monotonic logics: logics for which an extension
of a premise set does not always yield a consequence set that is a superset of the
original consequence set. Or, put more simply, logics according to which new
information may lead us to revoke old conclusions.

It is important to note that my purpose in using logics is not the classical
purpose of the discipline of logic. Classically, the discipline of logic studies the
correct way to infer further knowledge from already known facts. The cor-
rect way should guarantee the truth of the new facts, under the supposition
that the old facts are true. Accordingly, this has motivated the search for the
right (deductive) logic (whether it be Classical Logic or another one such as
Intuitionistic Logic). My purpose, however, is to model or explicate human rea-
soning patterns. As these patterns are fallible, leading to conclusions that are
not necessarily true even if the premises are assumed to be true, it should be
possible to revoke previously derived results; hence, my use of non-monotonic
logics. Also, because there are many patterns of human reasoning, I naturally
conceive of a plenitude of logics in order to describe them.

Let me explain this a bit more formally. A logic can be considered as a
function from the power set of the sentences of a language to itself. So, given a
language L and the setW of its well-formed formulas:

L : ℘(W)→ ℘(W)

Hence, a logic determines for every set of sentences (or premise set) Γ which
sentences can be inferred from it (CnL(Γ) =df L(Γ)). Therefore, as a reasoning
pattern is nothing more than the inference of some statements given some initial
statements, in principle, a logic can be devised to model any reasoning pattern
in science.2 If this pattern can be formally described, description by a formal
logic is in principle possible.

Deductive logics, such as Classical Logic (CL), have the property of mono-
tonicity, i.e. for all premise sets Γ and Γ′:

CnL(Γ) ⊆ CnL(Γ ∪ Γ′)

Most patterns of human reasoning, however, do not meet this criterion. For
instance, if an agent infers a hypothesis, she is well aware that it might need to
be revoked on closer consideration of the available background knowledge or
in light of new information.

Although non-monotonic reasoning has typically received less attention in
the field of logic than monotonic reasoning, various frameworks for defeasible
reasoning and non-monotonic logics are available such as default logic, adap-
tive logics and belief revision.3 In this article, I overview the progress that has

2 In reality, scientific and human reasoning include not only sentences or propositions, but also
direct observations, sketches and various other symbolic representations. Yet for the purpose of
modeling particular reasoning patterns, we can generally represent those sources by suitable propo-
sitions.

3 For an general overview of the variation in approaches, see Koons (2014).



2 Advantages and Drawbacks 4

been made on modelling abduction within the adaptive logics framework, a
framework created by Batens over the past three decades.4 This framework
for devising non-monotonic logics has some advantages that suit very well the
project of modelling abductive reasoning patterns.

First, the focus in the adaptive logics program is, in contrast with other
approaches to non-monotonic reasoning, on proof theory. For these logics, a
dynamic proof style has been defined in order to mimic to a certain extent
actual human reasoning patterns. More in particular, these dynamic proofs
display the two forms of revoking previously derived results that can also be
found in human reasoning: revoking old conclusions on closer consideration of
the available evidence (internal dynamics) and revoking them in light of new
information (external dynamics).5

Second, over the years, a solid meta-theory has been built for this frame-
work, which guarantees that if an adaptive logic is created according to certain
standards (the so-called “standard format”), many important metatheoretical
properties are generically proven. This creates an opportunity for projects such
as this to focus almost exclusively on the application of these formal methods
without having to worry too much about proving their meta-theoretical charac-
teristics.

Finally, as the framework is presented as a unified framework for non-mono-
tonic logics, it has been applied in many different contexts. Over the years,
adaptive logics have been devised for, apart from abduction, paraconsistent rea-
soning, induction, argumentation, deontic reasoning, etc.6

2 Advantages and Drawbacks

Explicating patterns of hypothesis formation by means of formal logics has a
clear advantage: by reducing patterns to their formal and structural essence,
an insight into the pattern’s precise conditions and applications is gained that is
hard to achieve purely by studying different cases.

Another great advantage of the formal explication of human reasoning pat-
terns is that it allows for the possibility to provide artificially intelligent agents
(which in general lack the human capacity for context awareness unless it is

4 For an extensive overview and thorough formal introduction, see Straßer (2013) or Batens
(2007).

5 One should not be misled, however, by this idea of dynamic proofs in thinking that the con-
sequence set of adaptive logics for a certain premise set depends on the proof. Adaptive logics
are proper proof-invariant logics that assign for each premise set Γ exactly one consequence set
CnL(Γ).

6 Most applications of the adaptive logics framework have been studied at the Centre for Logic
and Philosophy of Science (Ghent University). At the Centre’s preprints list (http://logica.
ugent.be/centrum/writings/pubs.php), references can be found to many papers in various con-
texts. The reference works mentioned earlier, Straßer (2013) and Batens (n.d.), also give a good
overview of the various applications.
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explicitly provided) with formal patterns to simulate human reasoning. In the
case of hypothesis formation, this possibility has presently already found ap-
plications in the AI subfields of abduction (diagnosis), planning and machine
learning.7

The method of explicating patterns of hypothesis formation by means of
formal adaptive logics also has certain drawbacks, however.

First, formal logics are expressed in terms of a formal language, in which
not all elements of human reasoning processes can be represented. This leads
inevitably to certain losses. A very obvious example is that in general only
propositions can be represented in logics. That means that all observations, fig-
ures or other symbolic representations must be reduced to descriptions of them.
A more important example in the case of abduction is the implication relation.
The adaptive logics framework I use is, certainly for ampliative logics such as
those for abduction or induction, largely built around the use of a classical ma-
terial implication (mostly to keep things sufficiently simple).8 As a result of this,
all relations between a hypothesis and the observations that led to their forma-
tion (their triggers) are modeled by material implications. It is clear that this is
a strong reduction of the actual richness of such relations. Hypotheses do not
have to imply their triggers: they can also just be correlated with them or be
probabilistically likely; or the relation can be much more specific, as in the case
of an explanatory or causal relation.

Second, if one sets out to model actual historical human reasoning processes
by means of dynamic logical proofs (as the adaptive framework allows us to do),
one quickly finds that it is no easy task to boil down those actual processes to
the micro structure of their individual reasoning steps. As human agents often
combine individual steps and seldom take note of each individual step, this type
of models always contains an aspect of simulation.

Human reasoning also does not proceed linearly step by step as proofs do:
it contains circular motions, off-topic deviations and irrational connections that
cannot be captured by formal logics. Therefore, models of such reasoning pro-
cesses are always to a great extent idealized.

Natural languages are also immensely more complex than any formal lan-
guage can aspire to be. Therefore, models of human reasoning are unavoidably
simplifications. Furthermore, as formal logics state everything explicitly, any
modeler of human reasoning has to simplify deliberately the actual cases, only
to achieve a certain degree of comprehensibility.

Altogether, it is clear that formal models of human reasoning processes are,
in fact, only models: they contain abstractions, simulations, simplifications and
idealizations. And although these techniques are the key characteristics of mod-

7 For an overview, see Paul (2000).
8 This is an issue relevant beyond the field of adaptive logics. Paul (2000, p. 36) has claimed that

most approaches to abduction use a material implication that is implicitly interpreted as some kind
of explanatory or causal relation.
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els, such as those used in science, it is not always easy to evade the criticism that
formal logics can only handle toy examples.

Third, certain patterns of creative hypothesis formation, i.e. those that in-
troduce the hypothetical existence of new concepts, cannot be modeled by first-
order logics. They require the use of second-order logics, and this is a possibility
of which, at present, the adaptive logics framework is not capable.

Fourth, as we are purely concerned with hypothesis formation and not with
hypothesis selection, formal methods will generate sets of possible hypotheses
that grow exponentially in relation to the growth of the agent’s background
knowledge. It is clear that this also poses a limit to the application of these
methods to real world problems.

Finally, one might question the normativity of this project (and more gener-
ally of the adaptive logics program). By aiming to describe actual human rea-
soning processes, this branch of logics appears to put a descriptive ideal first,
which contrasts sharply with the strongly normative ideals in the field of logic in
general. The standard answer to this question is that adaptive logics attempt to
provide both: on the one hand, they aim to describe actual reasoning patterns;
on the other, once these patterns are identified, they aim to prescribe how these
patters should be rationally applied. Yet this does not answer how the trade-off
between these two goals of description and normativity should be conceived: is
it better to have a large set of logics that is able to describe virtually any pat-
tern actually found in human reasoning, or should we keep this set trimmed
and qualify most actual human reasoning as failing to accord with the highest
normative standards? Therefore, it remains a legitimate criticism that the goals
of description and prescription cannot be so easily joined: how their trade-off
should be dealt with needs further theoretical underpinning.

3 Four types of Hypothetical Reasoning

The quest to characterize abduction under a single schema was abandoned
around 1980. The main reasons were that such attempts (e.g. Hanson’s (1958;
1961) proposal to call abduction “the logic of discovery”) often did not pro-
vide much detailed guidance for actual discovery processes, and that even these
general attempts always captured only a part of the discovery process (e.g. In-
ference to the Best Explanation (Harman, 1965) describes only the selection of
hypotheses, not their formation).

Around the same time, research from different fields such as philosophy of
science based on historical cases, artificial intelligence and cognitive science
resulted in a new consensus that there is a plenitude of patterns, heuristics and
methods of discovery, which are open to normative guidance, yet this guidance
might be content-, subject-, or context-dependent (Nickles, 1980; Simon, 1973).

Various authors in the literature on abduction have tried to provide classifi-



3 Four types of Hypothetical Reasoning 7

cations of various patterns of abduction (Thagard, 1988; Schurz, 2008a; Hoff-
mann, 2010). Although these attempts differ slightly, some general patterns
clearly stand out. Below, I give my personal interpretation of these major gen-
eral patterns. The main reason I deviate from the previous classifications is that
I want to simplify the rather prolific classifications, yet provide a sufficient basis
for formal modeling. The reasons why I think this is possible is that I neither at-
tempt to give a fully exhaustive list nor a list the elements of which are mutually
exclusive. I only want to give a simple list as a basis that covers most instances
of abductive reasoning and can serve as the basis of formal modeling.

Before I give my personal classification of these major patterns found in
abductive reasoning, it is important to note that abductive inferences form ex-
planatory hypotheses for observed facts using the agent’s background beliefs
(or knowledge). Therefore, these patterns have the structure of the inference
of a hypothesis (HYP) from some observed facts (OBS) and some of the agent’s
background beliefs (or knowledge) (BBK).

In line with the Fregean tradition, I consider factual statements as statements
of a concept with regard to one or more objects (or a logical combination of
such statements). For instance, the statement “There was a civil war in France
in 1789” can be analyzed as the concept “civil war” with regard to “France
in 1789”. A fact is a true factual statement. As such, concepts can also be
considered as the class of all objects (or tuples of objects) for which the concept
with regard to that object (or tuple of objects) is a fact. An observed fact is
a factual statement describing an agent’s observation that she considers to be
true. This can be broadly conceived to include also, for instance, a graph or
a table of measurements in an article. Together, the observed facts form the
trigger for the agent.

In my semi-formal description of these patterns, I express that p should be
considered as a hypothesis by using a formulation of the form “It might be that
p”; beliefs and observed facts can be expressed simply by stating their content.
Concepts are denoted by uppercase letters, objects by lowercase letters. Addi-
tion of a subscript denotes a finite list of objects or concepts (including, unless
stated otherwise, the possibility of a single object or concept).

1. Abduction of a Singular Fact

(OBS) F with regard to xi
(BBK) E with regard to some objects explains F with regard to those

objects

(HYP) It might be that E with regard to xi

Some examples of this pattern, which has also been called “simple abduc-
tion” (Thagard, 1988), “factual abduction” (Schurz, 2008a) and “selective
fact abduction” (Hoffmann, 2010), are:

• the inference that the hominid who has been dubbed Lucy might
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have been bipedal, from observing the particular structure of her
pelvis and knee bones and knowledge about how the structure of
pelvis and knee bones relates to the locomotion of animals.

• the inference that two particles might have opposite electric charges,
from observing their attraction and knowledge of the Coulomb force.

2. Abduction of a Generalization

(OBS) F with regard to all observed objects of class D
(BBK) E with regard to some objects explains F with regard to those

objects

(HYP) It might be that E with regard to all objects of class D

Some examples of this pattern, which has also been called “rule abduc-
tion” (Thagard, 1988), “law abduction” (Schurz, 2008a) and “selective
law abduction” (Hoffmann, 2010), are:

• the inference that all hominids of the last three million years might
have been bipedal, from observing the similar structure of the pelvis
and knee bones of all observed hominid skeletons dated to be younger
than three million years and knowledge about how the structure of
pelvis and knee bones relates to the locomotion of animals.

• the inference that all emitted radiation from a particular chemical
element might be electrically neutral, from observing in all experi-
ments conducted so far that radiation emitted by this element con-
tinues in a straight path in an external magnetic field perpendicular
to the stream of radiation and knowledge of the Lorentz force and
Newton’s second law.

3. Existential Abduction, or the abduction of the existence of unknown ob-
jects from a particular class

(OBS) F with regard to xi
(BBK) the existence of objects yi of class E would explain F with regard

to xi
(HYP) It might be that there exist objects yi of class E

Some examples of this pattern, which was already called “existential ab-
duction” by Thagard (1988), and has also been called “first-order exis-
tential abduction” (Schurz, 2008a) and “selective type abduction” (Hoff-
mann, 2010), are:

• the inference that a hominid of the genus Australopithecus might
have lived in this area, from observing a set of vulcanized foot im-
prints and the belief that these foot imprints are of an Australopithe-
cus.
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• the inference that there might be other charged particles in the cham-
ber, from observing deflections in the path of a charged particle in a
chamber without external electric or magnetic fields and knowledge
of the Coulomb and Lorentz forces and Newton’s second law.

4. Conceptual Abduction, or the abduction of a new concept

(OBS) Fi with regard to multiple xj individually
(BBK) No known concept explains why Fi for all xj
(HYP) It might be that there is a similarity between the xj , which can be

labeled with a new concept E, that explains why Fi with regard
to all the various xj individually

Some examples of this pattern, which largely coincides with the various
types of “second order abduction” Schurz (2008a) suggests,9 and several
of the types of “creative abduction” conceived by Hoffmann (2010), are:

• the inference that there might be a new species of hominids, from
observing various hominid fossils that are similar in many ways and
believing that these fossils cannot be classified in the current taxon-
omy of hominids.

• the inference that there might exist a new type of interaction, from
observing similar interactive behavior between certain types of par-
ticles in similar experiments and believing that this behavior cannot
be explained by the already known interactions, properties of the
involved particles and properties of the experimental setup.

Using the terminology of Magnani (2001) and following the distinction of
Schurz (2008a), the first two patterns, abduction of a singular fact and abduc-
tion of a generalization, can be considered as instances of selective abduction,
as the agent selects an appropriate hypothesis in her background knowledge,
while the latter two, existential abduction and conceptual abduction, can be
called creative abduction, as the agent creates a new hypothetical concept or
object.10

As stated before, my list is not exhaustive. Further patterns have been iden-
tified, such as the abduction of a new perspective (Hoffmann, 2010), e.g. to sug-
gest that a problem might have a geometrical solution instead of an algebraic
one; “analogical abduction” (Thagard, 1988), e.g. explaining similar properties

9 It was Schurz who pointed out that this pattern is rational and useful for science only if the
observation concerns several objects each individually having the same or similar properties, so
that some form of conceptual unification is obtained. Otherwise, for each fact it could be suggested
that there exists an ad hoc power that explains (only) this single fact.

10 Hoffmann (2010) would dispute this distinction, as he sees the third pattern (existential abduc-
tion) in the first place as the selection of an already known type (e.g. the genus Australopithecus),
and not so much as the creation of a new token (someone of this genus of which his/her existence
is now hypothesized).



3 Four types of Hypothetical Reasoning 10

of water and light, by hypothesizing that light could also be wave-like; or “the-
oretical model abduction” (Schurz, 2008a), i.e. explaining some observation by
suggesting suitable initial conditions given some governing principles or laws.
Some have even considered “visual abduction”, the inference from the obser-
vation itself to a statement describing this observation, as a separate pattern
(Thagard and Shelley, 1997). For some of these patterns (or instances of them),
it is possible to argue that they are a special case of one of the patterns above.
For instance, the suggestion of the wave nature of light can also be seen as an
instance of conceptual abduction, in which the (mathematical) concept ‘wave
behavior’ is contructed to explain the similar properties of water and light; yet it
is true that the analogical nature of this inference makes it a special subpattern
with interesting properties in itself.11

Perhaps more important to note is that these patterns are not mutually ex-
clusive given a particular instance of abductive reasoning. For instance, the in-
ference that leads to the explanation of why a particular piece of iron is rusted
can be described both as singular fact abduction (this piece of iron underwent
a reaction with oxygen) or as existential abduction (there were oxygen atoms
present with which this piece of iron reacted). But in essence it describes the
same explanation for the same explanandum. Also, combinations occur. For in-
stance, if a new particle is hypothesized as an explanation for an experimental
anomaly,12 then we have both an instance of existential abduction (there is a not
yet observed particle that causes the observed phenomenon) and an instance of
conceptual abduction (these hypothesized particles are of a new kind).13 Yet
in the mind of the scientist, this process of hypothesis formation might have
occurred in a single reasoning step.

We should not, however, be too worried about these issues, if we remember
that these patterns are categories for linguistic descriptions of actual reason-
ing processes. Any actual instance of hypothesis formation can be described
in several ways by means of natural language, and some of these expressions
can be formally analyzed in more than one way. Therefore, I do not think that
we should focus too much on the exact classification of particular instances
of hypothesis formation. Yet this does not render meaningless the project of
explicating various patterns of hypothesis formation. The goal of this project
is to provide normative guidance for future hypothesis formation. If particu-
lar problems or observations can be looked at from different perspectives and,
therefore, expressed in various ways, it is only beneficial for an agent to have
multiple patterns of hypothesis formation at her disposal.

11 This is also how Schurz (2008a) presents it; in his classification, analogical abduction is one of
the types of second order existential abduction he conceives of.

12 See, for instance, Wolfgang Pauli’s suggestion of the neutrino in the case of the anomalous β
spectrum (Gauderis, 2013b).

13 I think this particular combination coincides with Hoffmann’s (2010) pattern of “creative fact
abduction”.
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4 Abductive Reasoning and Adaptive logics

Let us turn now to the various attempts to model abductive reasoning by means
of adaptive logics. Let me start by pointing out the main characteristics why the
framework of adaptive logics is fit for this job.

First, adaptive logics allow for a direct implementation of defeasible rea-
soning steps (in casu applications of Affirming the Consequent). This makes it
possible to construct logical proofs that nicely integrate defeasible (in this case
ampliative) and deductive inferences. This corresponds to natural reasoning
processes.

Second, the formal apparatus of an adaptive logic instructs exactly which
formulas would falsify a (defeasible) reasoning step. As these formulas are
assumed to be false (so long as one cannot derive them), they are called ab-
normalities in the adaptive logic literature. So, if one or a combination of these
abnormalities is derived in a proof, it instructs in a formal way which defeasi-
ble steps cannot be maintained. This possibility of defeating previous reasoning
steps mirrors nicely the dynamics found in actual human reasoning.

Third, for all adaptive logics in standard format, such as the presented logics
LAr

s and MLAs
s, there are generic proofs for most of the important metatheo-

retical properties such as soundness and completeness (Batens, 2007).

So far, most research effort has been focused on modeling singular fact ab-
duction, which already proves to be, even it appears to be the easiest case, a
rich and fruitful point of departure. This is not exclusive to the adaptive logics
framework: in general, very little logics have been proposed for other forms be-
sides singular abduction. Some of the few exceptions are Thagard (1988) and
Gauderis and Van De Putte (2012). This last logic, which is constructed within
the adaptive logics framework, suffers, however, from some complications (see
Beirlaen and Aliseda (2014, appendix B) and Gauderis (2013c, p. 140)). There-
fore, I shall limit myself in this overview to the various attempts to model sin-
gular fact abduction within the framework of adaptive logics.

The history of research into singular fact abduction within the adaptive log-
ics community dates back to the early 2000s and can be traced through the arti-
cles Meheus, Verhoeven, Van Dyck and Provijn (2002), Batens, Meheus, Provijn
and Verhoeven (2003), Meheus and Batens (2006), Meheus and Provijn (2007),
Meheus (2007), Lycke (2009) and Lycke (2012). Besides presenting early log-
ics for singular fact abduction, this research has also shown that there actually
exist two types of singular fact abduction (see Section 5). In recent years, for
each of these two types of abduction an adaptive logic in standard format (see
Section 6) has been developped: LAr

s for practical abduction (Meheus, 2011)
and MLAs

s for theoretical abduction Gauderis (2013a). These will be the two
logics that will be presented and explained in this article (see Sections 7 and
8). It further needs to be noted that recent research has even pushed further by
considering abduction from inconsistent theories (Provijn, 2012), adaptations
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for use in AI (Gauderis, 2011; improved version in Gauderis, 2013c, Ch. 5)
and a first logic for propositional singular fact abduction (Beirlaen and Aliseda,
2014).

5 The Problem of Multiple Explanatory Hypotheses

The early research into logics for abduction has shown that two types of abduc-
tion logics can actually be constructed, depending on how the logic deals with
multiple explanatory hypotheses for a single observation.

To explain this problem, consider the following example. Suppose we have
to form hypotheses for the puzzling fact Pa while our background knowledge
contains both (∀x)(Qx ⊃ Px) and (∀x)(Rx ⊃ Px). There are two ways in which
one can proceed. First, we can construct a logic in which we can derive only the
disjunction (Qa ∨ Ra) and not the individual hypotheses Qa and Ra. This first
way, called practical abduction14 and modeled by the logic LAr

s (Meheus, 2011,
see Section 7), is suitable for modeling situations in which one has to act on the
basis of the conclusions before having the chance to find out which hypothesis
actually is the case. A good example is how people react to unexpected behavior.
If someone suddenly starts to shout, people will typically react in a hesitant way,
taking into account that either they themselves are somehow at fault or that the
shouting person is just frustrated or crazy and acting inappropriately.

Second, someone with a theoretical perspective (for instance, a scientist or
a detective) is interested in finding out which of the various hypotheses is the
actual explanation. Therefore it is important that she can abduce the individual
hypotheses Qa and Ra in order to examine them further one by one. Early work
on these kind of logics has been done in Lycke (2009, 2012) and another solu-
tion of Lycke (personal communication). Yet these logics have a quite complex
proof theory. This is because, on the one hand, one has to be able to derive Qa
and Ra separately, but on the other, one has to prevent the derivation of their
conjunction (Qa ∧ Ra), because it seems counterintuitive to take the conjunc-
tion of two possible hypotheses as an explanation: for instance, if the street is
wet, it would be weird to suggest that it has rained and that the fire department
also just held an exercise. Moreover, if the two possible hypotheses are actually
incompatible, it would lead to explosion in a classical context.

The logic MLAs
s (Gauderis, 2013a) presented in this overview article (Sec-

tion 8) solves this problem by adding modalities to the language and deriving
the hypotheses ♦Qa and ♦Ra instead of Qa and Ra. By conceiving of hypothe-
ses as logical possibilities, the conjunction problem is automatically solved be-
cause ♦Qa∧♦Ra does not imply ♦(Qa∧Ra) in any standard modal logic. This
approach also nicely coincides with the common idea that hypotheses are pos-

14 According to the definition suggested in Meheus and Batens (2006, pp. 224–225) and first used
in Lycke (2009).
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sibilities. These features make the logic MLAs
s very suitable for the modeling

of actual theoretical abductive reasoning processes.

6 The Standard Format of Adaptive Logics

Before I present the logics for abduction LAs
r and MLAs

s, I must first provide
the reader with the necessary background about the adaptive logics framework,
and, more in particular, with the nuts and bolts of its standard format. This will
of course be a limited introduction, and I refer the reader to e.g. Straßer (2013)
or Batens (2007) for a thorough introduction.

Definition An adaptive logic in standard format is defined by a triple:

(i) A lower limit logic (henceforth LLL): a reflexive, transitive, monotonic
and compact logic that has a characteristic semantics.15

(ii) A set of abnormalities Ω: a set of LLL-contingent formulas (formulas that
are not theorems of LLL) characterized by a logical form, or a union of
such sets.

(iii) An adaptive strategy.

The lower limit logic LLL specifies the stable part of the adaptive logic. Its
rules are unconditionally valid in the adaptive logic, and anything that follows
from the premises by LLL will never be revoked. Apart from that, it is also pos-
sible in an adaptive logic to derive defeasible consequences. These are obtained
by assuming that the elements of the set of abnormalities are “as much as pos-
sible” false. The adaptive strategy is needed to specify “as much as possible”.
This will become clearer further on.

Dynamic Proof Theory As stated before, a key advantage of adaptive logics is
their dynamic proof theory which models human reasoning. This dynamics is
possible because a line in an adaptive proof has – along with a line number, a
formula and a justification – a fourth element, i.e. the condition. A condition
is a finite subset of the set of abnormalities and specifies which abnormalities
need to be assumed to be false for the formula on that line to be derivable.

The inference rules in an adaptive logic reduce to three generic rules. Where
Γ is the set of premises, Θ a finite subset of the set of abnormalities Ω and

15 Strictly speaking, the standard format for adaptive logics requires that a lower limit logic con-
tains, in addition to the LLL-operators, also the operators of CL (Classical Logic). However, these
operators have merely a technical role (in the generic meta-theory for adaptive logics) and are not
used in the applications presented here. Therefore, given the introductory nature of this section, I
will not go into further detail. In the logics presented in this dissertation, the condition is implicitly
assumed to be satisfied.
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Dab(Θ) the (classical) disjunction of the abnormalities in Θ, and where

A ∆

abbreviates that A occurs in the proof on the condition ∆, the inference rules
are given by the generic rules:

PREM If A ∈ Γ:
...

...
A ∅

RU If A1, ..., An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, ..., An `LLL B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The premise rule PREM states that a premise may be introduced at any line
of a proof on the empty condition. The unconditional inference rule RU states
that, if A1, . . . , An `LLL B and A1, . . . , An occur in the proof on the conditions
∆1, . . . ,∆n, we may add B on the condition ∆1 ∪ . . . ∪ ∆n. The strength of
an adaptive logic comes from the third rule, the conditional inference rule RC,
which works analogously to RU, but introduces new conditions. So, it allows
one to take defeasible steps based on the assumption that the abnormalities
are false.16 Several examples of how these rules are employed in the following
sections.

The only thing we still need is a criterion that defines when we consider
a line of the proof to be defeated. At first sight, it seems straightforward to
mark17 lines of which one of the elements of the condition is unconditionally18

derived from the premises. But this strategy, called the simple strategy, usually
has a serious flaw. If it is possible to derive unconditionally a disjunction of
abnormalities Dab(∆) that is minimal, i.e. if there is no ∆′ ⊂ ∆ such that

16 The rule also makes clear that any adaptive proof can be transformed into a Fitch-style proof in
the LLL by writing down for each line the disjunction of the formula and all of the abnormalities
in the condition.

17 Defeated lines in a proof are marked instead of deleted, because, in general, it is possible that
they may later become unmarked in an extension of the proof.

18 Unconditionally derived is to be understood as derived on the empty condition.
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Dab(∆′) can be unconditionally derived, the simple strategy would ignore this
information. This is problematic, however, because at least one of the disjuncts
of the ignored disjunction has to be true. Therefore, we can use the simple
strategy only in cases where

Γ `LLL Dab(∆) only if there is an A ∈ ∆ such that Γ `LLL A

with Dab(∆) any disjunction of abnormalities out of Ω. This condition will be
met for the logic MLAs

s (Section 8); this logic will, hence, employ the simple
strategy.

The majority of logics, however, does not meet this criterion and for those
logics, more advanced strategies have been developed. The best-known of these
are reliability and minimal abnormality. The logic LAr

s uses the reliability strat-
egy. This strategy, which will be explained and illustrated below, orders to mark
any line of which one of the elements is unconditionally derived as a disjunct
from a minimal disjunction of abnormalities.19

7 LAr
s: a Logic for Practical Singular Fact Abduction

In this section, I will introduce the reader to the logic LAr
s (Meheus, 2011) in

an informal manner. This will allow the reader to gain a better understanding
of the framework of adaptive logics and the functioning of its dynamic proof
theory. In the next section, I will do the same for the logic MLAs

s, and, finally,
in section 9, I will give the formal definitions for both logics.

In order to model abductive reasoning processes of singular facts, the logic
LAr

s (as will the logic MLAs
s) contains, in addition to deductive inference steps,

defeasible reasoning steps based on an argumentation schema known as Affirm-
ing the Consequent (combined with Universal Instantiation):

(∀α)(A(α) ⊃ B(α)), B(β)/A(β)

The choice for a predicate logic is motivated by the fact that a material
implication is used to model the relation between explanans and explanandum.
As it is well known that B `CL A ⊃ B, a propositional logic would allow us to
derive anything as a hypothesis. In the predicative case, the use of the universal

19 At this point, I have introduced all elements to explain the naming of the two logics that will
be presented in this paper: as might be expected LA and MLA stand for “Logic for Abduction”
and “Modal Logic for Abduction” and the superscripts r and s stand for the adaptive strategies
reliability and simple strategy. The subscript s originally denoted that the logic was formulated in
the standard format for adaptive logics, but in Gauderis (2013c), I argued that it is more useful to
interpret this s as that they are logics for singular fact abduction. After all, most adaptive logics are
nowadays formulated in the standard format anyhow, and this allows to contrast these logics with
the logic LAr

∀ which is a logic for abduction of generalizations (Gauderis and Van De Putte, 2012;
Gauderis, 2013c).
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quantifier can avoid this.20 For a propositional logic for abduction that solves
this problem in another way, see Beirlaen and Aliseda (2014).

Let me first overview the list of desiderata for this logic. This is important
because in specifying the set of abnormalities and the strategy, we have to check
whether they allow us to model practical abductive reasoning according to our
expectations. Apart from the fact that by means of this logic we should be able to
derive hypotheses according to the schema of Affirming the Consequent, we have
to make sure that we cannot derive – as a side effect – random hypotheses which
are not related to the explanandum. Finally, as I pointed out in the introduction,
it is a nice feature of adaptive logics that they enable us to integrate defeasible
and deductive steps.

Lower Limit Logic The lower limit logic of LAr
s is classical first order logic CL.

This means that the deductive inferences of this logic are the reasoning steps
modeled by classical logic. Also, as this logic is an extension of classical logic,
any classical consequence of a premise set will also be a consequence of the
premise set according to this logic.

Set of abnormalities Ω If we take (here and in further definitions) the meta
variables A and B to represent (well-formed) formulas, α a variable and β a
constant of the language in which the logic is defined L, we can define the set
of abnormalities of the logics LAr

s as:

Ω = {(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β))) |
No predicate that occurs in B occurs in A}

The first line is the logical form of the abnormality; the second line in the
definition is to prevent self-explanatory hypotheses. To understand the func-
tioning of this logical form, consider the following example starting from the
premise set {Qa,∀x(Px ⊃ Qx)},∀x(Px ⊃ Rx):

1 ∀x(Px ⊃ Qx) -;PREM ∅
2 Qa -;PREM ∅
3 Pa ∨ ¬Pa -; RU ∅
4 Pa ∨ (∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)) 1,2,3;RU ∅
5 Pa 4;RC {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)}

From this premise set we would like to be able to form the hypothesis Pa.
This is possible, because this premise set allows us to derive the statement on
line 4, and this disjunction has the form that allows us to derive conditionally
the hypothesis Pa by applying the rule RC. From this hypothesis we can now
reason further deductively by applying e.g. modus ponens (note that the result
of this inference has also a non-empty condition):

20 For example, compare `CL B(β) ⊃ (A(β) ⊃ B(β)) with 6`CL B(β) ⊃ (∀α)(A(α) ⊃ B(α)).
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...
...

...
...

5 Pa 4;RC {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)}
6 ∀x(Px ⊃ Rx) -; PREM ∅
7 Ra 5,6;RU {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)}

Suppose now that we come to know that ¬Pa is the case and add this
premise to the premise set and continue the proof.21

...
...

...
...

5 Pa 4;RC {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)} X9

6 ∀x(Px ⊃ Rx) -; PREM ∅
7 Ra 5,6;RU {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)} X9

8 ¬Pa -;PREM ∅
9 ∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa) 1,2,6; RU ∅

This new premise makes it possible to derive unconditionally on line 9 the
condition of the hypothesis Pa. At this point, it is clear that we should not trust
anymore the hypothesis formed on line 5, which we indicate by marking this
line with a checkmark, indicating that we lost our confidence in this formula
once we wrote down line 9. As the formula Ra is arrived at by reasoning futher
upon the hypothesis Pa, it has (at least) the same condition, and is, hence, at
this point also marked.

In summary, each time we defeasibly derive a hypothesis, we have to state
explicitly the condition the (suspected) truth of which would defeat the hypoth-
esis. Therefore, we can assume the hypothesis to be true as long as we can
assume the condition to be false; but as soon as we have evidence that the
condition might be true, we should withdraw the hypothesis.

Reliability Strategy In the previous example, we withdraw the hypothesis be-
cause its condition was explicitly derived. However, have a look at the following
example proof from the premise set {Qa,Ra, ∀x(Px ⊃ Qx),∀x(¬Px ⊃ Rx)}:

1 ∀x(Px ⊃ Qx) -;PREM ∅
2 ∀x(¬Px ⊃ Rx) -;PREM ∅
3 Qa -;PREM ∅
4 Ra -;PREM ∅
5 Pa 1,3;RC {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)}
6 ¬Pa 2,4;RC {∀x(¬Px ⊃ Rx) ∧ (Ra ∧ Pa)}

21 Strictly speaking, this is not what is actually done. What I actually do is start a new proof
with another premise set (the extended set). But it is easily seen that I can start this new proof
with exactly the same lines as the old proof. This way, it looks as if I extended the old proof.
This qualification needs to be considered each time I speak about “adding premises and continuing
a proof”, a phrase I will continue to use because it nicely mirrors how human beings deal with
incoming information: they do no start over their reasoning but incorporate the new information at
the point where they have arrived.
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There is clearly something fishy about this situation. As the conditions on
line 5 and 6 are not derivable from this premise set, logical explosion would
allow us to derive anything from this premise set, if we were to use the simple
strategy. Still, it is quite obvious that at least one of those two conditions have
to be false, as the disjunction of these two conditions is a theorem of the lower
limit logic. Yet, as we do not know from these premises which disjunct is true
and which one is false, the most reliable thing to do is to mark both lines:
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...
...

...
...

5 Pa 1,3;RC {∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)} X7

6 ¬Pa 2,4;RC {∀x(¬Px ⊃ Rx) ∧ (Ra ∧ Pa)} X7

7 (∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))∨ 1-4;RU ∅
(∀x(¬Px ⊃ Rx) ∧ (Ra ∧ Pa))

This marking strategy is called the reliability strategy and it orders us to mark
lines for which an element of the condition has been unconditionally derived as
a disjunct of a minimal disjunction of abnormalities (or in short, a minimal
Dab-formula). It is important to note that (1) the disjunction should only hold
disjuncts that have the form of an abnormality (otherwise, a defeating disjunc-
tion could be constructed for every hypothesis) and (2) that this disjunction
should be minimal (as disjunctions can always be extended by applications of
the addition rule). To clarify this last point: suppose we were able to derive the
condition of line 5 by itself, then the disjunction on line 7 would not be minimal
anymore and there would be no reason anymore to mark line 6.

Practical Abduction The logic LAr
s is a logic for practical abduction. This

means that it solves the problem of multiple explanatory hypotheses by only
allowing the disjunction of the various hypotheses to be derived. Consider the
following example from the premise set {Ra,∀x(Px ⊃ Rx),∀x(Qx ⊃ Rx)}:

1 ∀x(Px ⊃ Rx) -;PREM ∅
2 ∀x(Qx ⊃ Rx) -;PREM ∅
3 Ra -;PREM ∅
4 Pa 1,3;RC {∀x(Px ⊃ Rx) ∧ (Ra ∧ ¬Pa)} X6

5 Qa 1,2;RC {∀x(Qx ⊃ Rx) ∧ (Ra ∧ ¬Qa)} X7

6 (∀x(Px ⊃ Rx) ∧ (Ra ∧ ¬Pa))∨ 1-3;RC ∅
(∀x((Qx ∧ ¬Px) ⊃ Rx)∧
(Ra ∧ ¬(Qa ∧ ¬Pa)))

7 (∀x(Qx ⊃ Rx) ∧ (Ra ∧ ¬Qa))∨ 1-3;RC ∅
(∀x((Px ∧ ¬Qx) ⊃ Rx)∧
(Ra ∧ ¬(Pa ∧ ¬Qa)))

8 ∀x((Px ∨Qx) ⊃ Rx) 1,2;RU ∅
9 Pa ∨Qa 3,8;RC {∀x((Px ∨Qx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∨Qa))}

Because of the fact that the minimal Dab-formulas on line 6 and 7 could
be derived from the premises, the individual hypotheses Pa and Qa have to
be withdrawn, yet the condition of their disjunction on line 9 is not part of a
minimal Dab-formula from these premises.

Avoiding Random Hypotheses Another important feature of a logic for abduc-
tion is that it prevents to allow to derive random hypotheses. The three most
common ways to introduce random hypotheses is (1) by deriving an expla-
nation for a tautology, e.g. deriving Xa from the theorems Pa ∨ ¬Pa and
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∀x(Xx ⊃ (Px ∨ ¬Px))); (2) by deriving contradictions as explanations, which
leads to logical explosion, e.g. deriving Xa ∧ ¬Xa from Pa and the theorem
∀x((Xx ∧ ¬Xx) ⊃ Px); or (3) by deriving hypotheses that are not the most
parsimonious ones, e.g. deriving Pa ∧Xa from Qa and ∀x(Px ⊃ Qx) (and its
consequence ∀x((Px∧Xx) ⊃ Qx)). The logic LAr

s prevent these three ways by
similar mechanisms as the mechanism to block individual hypotheses illustrated
above. Elaborate examples for each of these three ways can be found in Meheus
(2011).

8 MLAs
s: a Logic for Theoretical Singular Fact Abduction

In this section, I will introduce the reader to the logic MLAs
s (Gauderis, 2013a)

in a similar informal manner. The formal definitions can also be found in Section
9. Analogously, this logic also models deductive steps combined with applica-
tions of Affirming the Consequent (combined with Universal Instantiation), yet it
treats the problem of multiple explanatory hypotheses now in a different way:
it allows to derive these hypotheses individually, yet to avoid logical explosion
caused by mutually exclusive hypotheses, it treats them as modal possibilities
(see Section 5).

The list of desiderata for this logic is very analogous as the one for the logic
LAr

s, except for treating the problem of multiple explanatory hypotheses in a
different manner. Specific for this logic (as this logic is aimed at modeling the
reasoning of e.g. scientists or detectives (Gauderis, 2012)) is the desideratum
that it handles contradictory hypotheses, predictions and counterevidence in a
natural way.

Formal Language Schema As this logic is a modal logic, the language of this
logic is an extension of the language of classical logic CL. Let us denote the
standard predicative language of classical logic with L. I will further use C, V,
F andW to refer respectively to the sets of individual constants, individual vari-
ables, all (well-formed) formulas of L and the closed (well-formed) formulas of
L.

LM , the language of the logic MLAs
s, is L extended with the modal operator

�. WM , the set of closed formulas of LM is the smallest set that satisfies the
following conditions:

1. if A ∈ W, then A, �A ∈ WM

2. if A ∈ WM , then ¬A ∈ WM

3. if A,B ∈ WM , then A ∧B,A ∨B,A ⊃ B,A ≡ B ∈ WM

It is important to notice that there are no occurrences of modal operators
within the scope of another modal operator or a quantifier. I further define the
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setWΓ, the subset ofWM the elements of which can act as premises in the logic,
as:

WΓ = {�A | A ∈ W}

It is easily seen thatWΓ ⊂ WM .

Lower Limit Logic The LLL of MLAs
s is the predicative version of D, restricted

to the language schema WM . D is characterized by a full axiomatization of
predicate CL together with two axioms, an inference rule and a definition:

K �(A ⊃ B) ⊃ (�A ⊃ �B)
D �A ⊃ ¬�¬A

NEC if ` A, then ` �A
♦df ♦A =df ¬�¬A

This logic is one of the weakest normal modal logics that exist and is ob-
tained by adding the D-axiom to the axiomatization of the better-known mini-
mal normal modal logic K.

The semantics for this logic can be expressed by a standard possible world
Kripke semantics where the accessibility relation R between possible worlds is
serial, i.e. for every world w in the model, there is at least one world w′ in the
model such that Rww′.

Intended Interpretation of the modal operators As indicated above, explanatory
hypotheses – the results of abductive inferences – will be represented by for-
mulas of the form ♦A (A ∈ W). Formulas of the form �B are used to repre-
sent explananda, other observational data and relevant background knowledge.
Otherwise, this information would not be able to revoke derived hypotheses.22

The reason D is chosen instead of K is that it is assumed that the explananda
and background information are together consistent. This assumption is mod-
eled by the D-axiom.23

Set of Abnormalities Since the final form of the abnormalities is quite complex
– although the idea behind it is straightforward – I will first consider two more
basic proposals that are constitutive for the final form and show why they are
insufficient. Obviously, only closed well-formed formulas can be an element of
any set of abnormalities. This will not be explicitly stated each time.

22 For instance, ¬A and ♦A are not contradictory, whereas �¬A and ♦A are.
23 For instance, the premise set {�¬Pa, �(∀x)Px} is a set modeling an inconsistent set of back-

ground knowledge and observations. However, in the logic K, this set would not be considered
inconsistent, because we cannot derive anything from this set by Ex Falso Quodlibet. To be able to
do this, we need the D-axiom.
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First proposal Ω1 This first proposal is a modal version of the set of abnormal-
ities of the logic LAr

s:

Ω1 = {�(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β))) |
No predicate that occurs in B occurs in A}

Analogous to the logic LAr
s, this means that a derived hypothesis will be de-

feated if one shows explicitly that the hypothesis cannot be the case.

Simple Strategy For this logic we can use the simple strategy, which means, as
stated before, that we have to mark lines for which one of the elements of the
condition is unconditionally derived. We can easily see that the condition for
use of the simple strategy, i.e.

Γ `LLL Dab(∆) only if there is an A ∈ ∆ such that Γ `LLL A,

is fulfilled here. Since all premises have the form�A, the only option to derive a
disjunction of abnormalities would be to apply addition, i.e. to derive (�A∨�B)
from �A (or �B), because it is well-known that �(A ∨ B) 0 �A ∨ �B in any
standard modal logic.24

Contradictory hypotheses As a first example of the functioning of this logic, con-
sider the following example starting from the premise set {�Qa,�Ra,�∀x(Px ⊃
Qx),�∀x(¬Px ⊃ Rx)}. As the reader is by now probably accustomed with the
functioning of the abnormalities, it is also already shown how this logic is able
to handle contradictory hypotheses without causing explosion.

1 �∀x(Px ⊃ Qx) -;PREM ∅
2 �∀x(¬Px ⊃ Rx) -;PREM ∅
3 �Qa -;PREM ∅
4 �Ra -;PREM ∅
5 ♦Pa 1,3;RC {�(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))}
6 ♦¬Pa 2,4;RC {�(∀x(¬Px ⊃ Rx) ∧ (Ra ∧ ¬¬Pa))}
7 ♦Pa ∧ ♦¬Pa 5,6;RU {�(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)),

�(∀x(¬Px ⊃ Rx) ∧ (Ra ∧ ¬¬Pa))}

♦Pa and ♦¬Pa are both derivable hypotheses because the conditions on
lines 5-7 are not unconditionally derivable from the premise set. It is also in-
teresting to note that, because of the properties of the lower limit D, it is not
possible to derive from these premises that ♦(Pa ∧ ¬Pa). The conjunction of
two hypotheses is never considered as a hypothesis itself, unless there is further
background information that links the two hypotheses in some way.

24 It is also possible to derive a disjunction from the premises by means of the K-axiom. For
instance, �(A ⊃ B) ` ¬�A ∨ �B, but the first disjunct will always be equivalent to a possibility
(♦¬A) and can, hence, not be an abnormality.
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Predictions and Evidence To show that this logic handles predictions and (coun-
ter)evidence for these predictions in a natural way, let us extend the premise set
with the additional implication �∀x(Px ⊃ Sx):

8 �∀x(Px ⊃ Sx) -;PREM ∅
9 ♦Sa 5,8;RU {�(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))}

With this extra implication we can derive the prediction ♦Sa. As long as
we have no further information about this prediction (for instance, by obser-
vation), it remains a hypothesis derived on the same condition as ♦Pa. If we
would test this prediction, we would have two possibilities. On the one hand,
if the prediction turns out to be false, the premise �¬Sa could be added to the
premise set:

...
...

...
...

5 ♦Pa 1,3;RC {�(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))} X12

...
...

...
...

9 ♦Sa 5,8;RU {�(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa))} X12

10 �¬Sa PREM ∅
11 �¬Pa 8,10;RU ∅
12 �(∀x(Px ⊃ Qx) ∧ (Qa ∧ ¬Pa)) 1,3,11;RU ∅

In this case, we could subsequently derive �¬Pa, which would falsify the
hypothesis ♦Pa. On the other hand, if the prediction Sa turned out to be true,
the premise �Sa could have been added, but this extension of the premise
set would not allow us to derive �Pa. Since true predictions only corroborate
the hypothesis and do not prove it, while false predictions directly falsify the
hypothesis, one can say that this logic handles predictions in a Popperian way.25

Contradictions One of the three ways a logic of abduction could generate ran-
dom hypotheses as a side effect is by allowing for the abduction of contradic-
tions. How this is possible and how the logic prevents this is illustrated in the
following proof from the premise set {�Qa}:

1 �Qa -;PREM ∅
2 �∀x((Xx ∧ ¬Xx) ⊃ Qx) -;RU ∅
3 ♦(Xa ∧ ¬Xa) 1,2;RC {�(∀x((Xx ∧ ¬Xx) ⊃ Qx)∧ X4

(Qa ∧ ¬(Xa ∧ ¬Xa)))}
4 �(∀x((Xx ∧ ¬Xx) ⊃ Qx)∧ 1;RU ∅

(Qa ∧ (¬Xa ∨Xa)))

25 It needs to be remembered that MLAs
s is a logic for modeling abduction and handling ex-

planatory hypotheses, not a formal methodology of science. This logic has nothing to say about the
confirmation of theories.
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Tautologies Still, there are other ways to derive random hypotheses that are
not prevented by the first proposal for the set of abnormalities Ω1. For instance,
Ω1 does not prevent that random hypotheses can be derived from a tautology, as
illustrated by the following example. As it is impossible in the following proof
from the premise set ∅ to unconditionally derive the abnormality in the condi-
tion of line 3 from the premises, the formula of line 3, the random hypothesis
♦Xa, remains derived in every possible extension of the proof.

1 �(Qa ∨ ¬Qa) -;RU ∅
2 �∀x(Xx ⊃ (Qx ∨ ¬Qx)) -;RU ∅
3 ♦Xa 1,2;RC {�(∀x(Xx ⊃ (Qx ∨ ¬Qx))∧

((Qa ∨ ¬Qa) ∧ ¬Xa))}

Therefore, let me adjust the set of abnormalities to obtain the second proposal
Ω2.

Second proposal Ω2 No hypothesis can be abduced from a tautology if the ab-
normalities have the following form:

Ω2 = {�(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)))

∨ �∀αB(α) |
No predicate that occurs in B occurs in A}

It is clear that we can keep using the simple strategy with this new set of
abnormalities. It is also easily seen that all of the advantages and examples de-
scribed above still hold. Each time we can derive an abnormality of Ω1, we can
derive the corresponding abnormality of Ω2 by a simple application of addition.
Finally, the problem raised by the tautologies, as illustrated in the previous ex-
ample, is solved in an elegant way, because the form of the abnormalities makes
sure that the abnormality will always be a theorem in case the explanandum is
a theorem. So, nothing can be abduced from tautologies.

Most parsimonious explanantia Still, there is third way to derive random hy-
potheses that cannot be prevented by Ω2. Consider, for instance, the following
proof from the premise set {�Ra,�∀x(Px ⊃ Rx)}:

1 �Ra -;PREM ∅
2 �∀x(Px ⊃ Rx) -;PREM ∅
3 �∀x((Px ∧Xx) ⊃ Rx) 2;RU ∅
4 ♦(Pa ∧Xa) 1,3;RC {�(∀x((Px ∧Xx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Xa))) ∨�∀xRx}
5 ♦Xa 4;RU {�(∀x((Px ∧Xx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Xa))) ∨�∀xRx}

The reason why we can derive the random hypothesis ♦Xa is the absence of
a mechanism to ensure that the abduced hypothesis is the most parsimonious
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one and not the result of strengthening the antecedent of an implication. Before
defining the final and actual set of abnormalities that also prevents this way
of generating random hypotheses, I have to introduce a new notation to keep
things as perspicuous as possible.

Notation Suppose APCN (α) is the prenex conjunctive normal form of A(α).
This is the equivalent form of A(α) where all quantifiers are first moved to
the front of the expression and where, consequently, the remaining (quantifier-
free) expression is written in conjunctive normal form, i.e. as a conjunction of
disjunctions of literals.

APCN (α) = (Q1γ1) . . . (Qmγm)(A1(α) ∧ . . . ∧An(α))

and ` APCN (α) ≡ A(α)

with m > 0,n > 1,Qi ∈ {∀,∃} for i 6 m, γi ∈ V for i 6 m, α ∈ V and Ai(α)
disjunctions of literals in F for i 6 n.

Then, I can introduce the new notation A−1
i (α) (1 6 i 6 n) so that I have

a way to take out one of the conjuncts of a formula in PCN form. In cases
where the conjunction consists of only one conjunct (and, obviously, no more
parsimonious explanation is possible), the substitution with a random tautol-
ogy will make sure that the condition for parsimony, added in the next set of
abnormalities, is satisfied trivially.

if n > 1 : A−1
i (α) =df (Q1γ1) . . . (Qmγm)(A1(α) ∧ . . . ∧Ai−1(α) ∧

Ai+1(α) ∧ . . . ∧An(α))

with Aj (1 6 j 6 n) the jth conjunct of APCN (α)

if n = 1 : A−1
1 (α) =df >

with > any tautology of CL

Final proposal Ω With this notation I can write the logical form of the set of
abnormalities Ω of the logic MLAs

s.

Ω = {�(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)))

∨ �∀αB(α) ∨
n∨

i=1

�∀α(A−1
i (α) ⊃ B(α)) |

No predicate that occurs in B occurs in A}

This form might look complex, but its functioning is quite straightforward.
I have actually constructed the disjunction of the three reasons why we should
refrain from considering A(β) as a good explanatory hypothesis for the phe-
nomenon B(β), even if we have (∀α)(A(α) ⊃ B(α)). The disjunction will make
sure that the hypothesis A(β) is rejected as soon as one of the following is the
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case: (i) when ¬A(β) is derived, (ii) when B(β) is a tautology (and obviously,
does not need an explanatory hypothesis) or (iii) when A(β) has a redundant
part and is therefore not an adequate explanatory hypothesis. For the same rea-
sons as stated in the description of Ω2, we can keep using the simple strategy
and all of the advantages and examples described above will still hold.

Let us have a look at how this final set of abnormalities solves the previous
problem. As we fully wrote out the condition, we can easily see that the third
disjunct is actually a premise, and that, hence, the abnormality is uncondition-
ally derivable.

1 �Ra -;PREM ∅
2 �∀x(Px ⊃ Rx) -;PREM ∅
3 �∀x((Px ∧Qx) ⊃ Rx) 2;RU ∅
4 ♦(Pa ∧Qa) 1,3;RC {�(∀x((Px ∧Qx) ⊃ Rx)∧

(Ra ∧ ¬(Pa ∧Qa))) ∨�∀xRx
∨�∀x(Px ⊃ Rx)
∨�∀x(Qx ⊃ Rx)} X5

5 �(∀x((Px ∧Qx) ⊃ Rx)∧ 2; RU ∅
(Ra ∧ ¬(Pa ∧Qa))) ∨�∀xRx
∨�∀x(Px ⊃ Rx)
∨�∀x(Qx ⊃ Rx)}

9 Formal Presentations of the Logics LAr
s and MLAs

s

In this final section, I will define the logics LAr
s and MLAs

s in a formal and
precise way.26 Like any adaptive logic in standard format, the the logics LAr

s

and MLAs
s are characterized by the triple of a lower limit logic, a set of abnor-

malities and an adaptive strategy.

For LAr
s, the lower limit logic is CL, the strategy is the reliability strategy

and the set of abnormalities ΩLAr
s

is defined by:

ΩLAr
s

= {(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β))) |
No predicate that occurs in B occurs in A}

For MLAs
s, the lower limit logic is D, the strategy is the simple strategy

and the set of abnormalities ΩMLAs
s

is, relying on the previously introduced
abbreviation, defined by:

ΩMLAs
s

= {�(∀α(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)))

∨ �∀αB(α) ∨
n∨

i=1

�∀α(A−1
i (α) ⊃ B(α)) |

No predicate that occurs in B occurs in A}
26 This section is limited to what I need to present these specific logics. For a more general formal

presentation of adaptive logics in standard format, see Batens (2007).
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Proof Theory The proof theory of these logics is characterized by the three
generic inference rules introduced in section 2 and the following definitions.

Within adaptive logics, proofs are considered to be chains of subsequent
stages. A stage of a proof is a sequence of lines obtained by application of the
three generic rules. As such, every proof starts off with the first stage which is
an empty sequence. Each time a line is added to the proof by applying one of
the inference rules, the proof comes to its next stage, which is the sequence of
lines written so far extended with the new line.

Definition 1 (Minimal Dab-formula at stage s). A Dab-formula Dab(∆)27 is
a minimal Dab-formula at stage s if and only if Dab(∆) is derived on the empty
condition at stage s, and there is no ∆′ ⊂ ∆ for which Dab(∆′) is derived on the
empty condition at stage s.

Definition 2 (Set of unreliable formulas Us(Γ) at stage s). The set of unreli-
able formulas Us(Γ) at stage s is the union of all ∆ for whichDab(∆) is a minimal
Dab-formula at stage s.

Definition 3 (Marking for the reliability strategy). Line i with condition Θ is
marked for the reliability strategy at stage s of a proof if and only if Θ∩Us(Γ) 6= ∅.

Definition 4 (Marking for the simple strategy). Line i with condition Θ is
marked for the simple strategy at stage s of a proof, if stage s contains a line of
which an A ∈ Θ is the formula and ∅ the condition.

Definition 5 (Derivation of a formula at stage s). A formula A is derived from
Γ at stage s of a proof if and only if A is the formula of a line that is unmarked at
stage s.

Definition 6 (Final derivation of a formula at stage s). A formula A is finally
derived from Γ at stage s of a proof if and only if A is derived at line i, line i is
not marked at stage s and every extension of the proof in which i is marked may
be further extended in such a way that line i is unmarked.28

Definition 7 (Final Derivability for LAr
s). Γ `LAr

s
A (A ∈ CnLAr

s
(Γ)) if and

only if A is finally derived in an LAr
s-proof from Γ.

Definition 8 (Final Derivability for MLAs
s). For Γ ⊂ WΓ: Γ `MLAs

s
A (A ∈

CnMLAs
s
(Γ)) if and only if A is finally derived in a MLAs

s-proof from Γ.

Semantics The semantics of an adaptive logic is obtained by a selection on the
models of the lower limit logic. For a more elaborate discussion of the following
definitions, I refer to the original articles and the aforementioned theoretical
overviews of adaptive logics.

27 Recall, Dab(Θ) is the (classical) disjunction of the abnormalities in a finite subset Θ of the set
of abnormalities Ω.

28 Using the simple strategy, it is not possible that a marked line becomes unmarked at a later
stage of a proof. Therefore, the final criterium reduces for this strategy to the requirement that the
line remains unmarked in every extension of the proof.
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Definition 9. A CL-model M of the premise set Γ is reliable if and only if {A ∈
Ω | M � A} ⊆ ∆1 ∪ ∆2 ∪ . . . with {Dab(∆1), Dab(∆2), . . .} the set of minimal
Dab-consequences of Γ.

Definition 10. A D-model M of the premise set Γ is simply all right if and only if
{A ∈ Ω |M � A} = {A ∈ Ω | Γ `D A}.

Definition 11 (Semantic Consequence of LAr
s). Γ �LAr

s
A if and only if A is

verified by all reliable models of Γ.

Definition 12 (Semantic Consequence of MLAs
s). For Γ ⊂ WΓ: Γ �MLAs

s
A

if and only if A is verified by all simply all right models of Γ.

The fact that these two logics are in standard format warrants that the fol-
lowing theorems hold:

Theorem 1 (Soundness and Completeness of LAr
s). Γ `LAr

s
A if and only if

Γ �LAr
s
A.

Theorem 2 (Soundness and Completeness of MLAs
s). Γ `MLAs

s
A if and

only if Γ �MLAs
s
A.

10 Conclusion

In this overview paper, I covered quite some ground. I started by discussing the
possibility of modeling abduction by means of formal logics, after which I ex-
panded this discussion by identifying four main abduction patterns. Next, I dis-
cussed the benefits of using the adaptive logics framework to model abductive
reasoning. Zooming in to the details of singular fact abduction, I consequently
argued that the problem of multiple explanatory hypotheses can be solved ac-
cording to two different strategies, which are called theoretical and practical
abduction. Finally, I concluded this paper by presenting two full adaptive logics
in standard format: LAr

s for practical singular fact abduction and MLAs
s for

theoretical singular fact abduction.

However, if we look at the prospect of modeling abductive reasoning by
means of formal (adaptive) logics, we have so far only scratched the tip of the
iceberg. At present, apart from a single exception, only logics have been devised
for singular fact abduction, which is in fact the most easy of the various patterns
of abduction. Yet the complications that already arise on this level should warn
us that the road ahead will be steep and arduous.



10 Conclusion 29

References

Aliseda, A. (2006). Abductive Reasoning. Logical Investigation into Discovery and Explana-
tion. Synthese Library (Vol. 330). Dordrecht: Springer.

Batens, D. (1999). Inconsistency-adaptive Logics. In E. Orlowska (ed.), Logic at Work.
Essays dedicated to the memory of Helena Rasiowa (pp. 445-472). Dordrecht: Springer.

Batens, D. (2004). The Need for Adaptive Logics in Epistemology. In D. Gabbay, S. Rah-
man, J. Symons, & J. Van Bendegem (eds.), Logic Epistemology and the Unity of Science
(pp. 459-485). Dordrecht: Kluwer Academic.

Batens, D. (2007). A Universal Logic Approach to Adaptive Logics. Logica Universalis, 1,
221-242.

Batens, D. (2011). Logics for Qualitative Inductive Generalization. Studia Logica, 97,
61-80.

Batens, D. (n.d.). Adaptive Logics and Dynamic Proofs. Mastering the Dynamics of Rea-
soning with Special Attention to Handling Inconsistency. Unpublished manuscript. Re-
trieved October 1, 2014, from http://logica.ugent.be/adlog/book.html

Batens, D., Meheus, J., Provijn, D., & Verhoeven, L. (2003). Some Adaptive Logics for
Diagnosis. Logic and Logical Philosophy, 11/12, 39-65.

Beirlaen, M., & Aliseda, A. (2014). A conditional Logic for Abduction. Synthese. doi:
10.1590/S1678-31662012000100002

Douven, I. (2011). Abduction. In E. Zalta (ed.), The Stanford Encyclopedia of Philoso-
phy (Spring 2011 edition). Retrieved from http://plato.stanford.edu/archives/

spr2011/entries/abduction/

Eco, U. (1983). Horns, Hooves, Insteps: Some Hypotheses on Three Types of Abduction.
In U. Eco, & T. Sebeok (eds.), The Sign of Three: Dupin, Holmes, Peirce(pp. 198-220).
Bloomington, IN: Indiana University Press.

Flach, P., & Kakas, A. (2000a). Abductive and Inductive Reasoning: Background and
Issues. In Flach and Kakas (2000b, pp. 1-27). Dordrecht: Kluwer Academic Publishers.

Flach, P. & Kakas, A. (eds.) (2000b) Abduction and Induction. Essays on their Relation and
Integration. Dordrecht: Kluwer Academic Publishers.

Gabbay, D., & Woods, J. (2006). Advice on Abductive Logic. Logic Journal of the IGPL,
14(2), 189-219.

Gauderis, T. (2011). An Adaptive Logic based Approach to Abduction in AI. In S. Sar-
dina and S. Vassos (eds.), Proceedings of the 9th International Workshop on Nonmono-
tonic Reasoning, Action and Change (NRAC 2011) (pp. 1-6). Retrieved from http:

//ijcai-11.iiia.csic.es/files/proceedings/W4-%20NRAC11-Proceedings.pdf

Gauderis, T. (2012). The Problem of Multiple Explanatory Hypotheses. In L. Demey and
J. Devuyst (eds.), Future directions for logic. Proceedings of PhDs in Logic III (pp. 45-54).
London: College Publications.



10 Conclusion 30

Gauderis, T. (2013a). Modelling Abduction in Science by means of a Modal Adaptive
Logic. Foundations of Science, 18(4), 611-624.

Gauderis, T. (2013b). To Envision a New Particle or Change an Existing Law? Hypothesis
Formation and Anomaly Resolution for the Curious Spectrum of the β Decay Spec-
trum. Studies in History and Philosophy of Modern Physics, in print.

Gauderis, T. (2013c). Patterns of hypothesis formation: at the crossroads of philosophy of
science, logic, epistemology, artificial intelligence and physics, PhD dissertation, Ghent
University.

Gauderis, T., & Van De Putte, F. (2012). Abduction of Generalizations. Theoria, 27(3),
345-363.

Hanson N. R. (1958). Patterns of Discovery: An Inquiry into the Conceptual Foundations
of Science. Cambridge University Press.

Hanson N. R. (1961). Is there a Logic of Scientific Discovery? In H. Feigl, & G. Maxwell
(eds.), Current Issues in the Philosophy of Science (pp. 20-35). New York: Holt, Rinehart
and Winston.

Harman, G. (1965). The inference to the best explanation. Philosophical Review, 74(1),
88-95.

Hoffmann, M. (2010). “Theoric Transformations” and a New Classification of Abductive
Inferences. Transactions of the Charles S. Peirce Society, 46(4), 570-590.

Koons, R. (2014). Defeasible Reasoning. In E. Zalta (ed.), The Stanford Encyclopedia
of Philosophy (Spring 2014 Edition). Retrieved from http://plato.stanford.edu/

archives/spr2014/entries/reasoning-defeasible/

Lycke, H. (2009). The Adaptive Logics Approach to Abduction. In E. Weber, T. Libert, P.
Marage, & G. Vanpaemel (eds.), Logic, Philosophy and History of Science in Belgium.
Proceedings of the Young Researchers Days 2008 (pp. 35-41). Brussels: KVAB.

Lycke, H. (2012). A formal explication of the search for explanations: the adaptive logics
approach to abductive reasoning. Logic Journal of IGPL, 20(2), 497516.

Magnani, L. (2001). Abduction, Reason and Science: Processes of Discovery and Explana-
tion. New York: Kluwer/Plenum.

Meheus, J. (2007). Adaptive Logics for Abduction and the Explication of Explanation-
seeking Processes. In O. Pombo, & A. Gerne (eds.), Abduction and the Process of Scien-
tific Discovery (pp. 97-119). Lisboa: Centro de Filosofia das Ciencias.

Meheus, J. (2011). A Formal Logic for the Abduction of Singular Hypotheses. In D. Dieks,
W. Gonzalez, S. Hartmann, T. Uebel & M. Weber (eds.), Explanation, Prediction, and
Confirmation (pp. 93-108). Dordrecht: Springer.

Meheus, J., & Batens, D. (2006). A Formal Logic for Abductive Reasoning. Logic Journal
of the IGPL, 14, 221-236.

Meheus, J. & Provijn, D. (2007). Abduction through Semantic Tableaux versus Abduction
through Goal-Directed Proofs. Theoria, 22(3), 295-304.



10 Conclusion 31

Meheus, J., Verhoeven, L., Van Dyck, M., & Provijn, D. (2002). Ampliative Adaptive
Logics and the Foundation of Logic-Based Approaches to Abduction. In L. Magnani,
N.J. Nersessian & Claudio Pizzi (eds.), Logical and Computational Aspects of Model-
Based Reasoning (pp. 39-71), Dordrecht: Kluwer Academic.

Nickles, T. (1980). Introductory Essay: Scientific Discovery and the Future of Philosophy
of Science. In T. Nickles (ed.), Scientific Discovery, Logic and Rationality (pp. 1-59).
Dordrecht: Reidel.

Paul, P. (2000). AI Approaches to Abduction. In D. Gabbay, &, R. Kruse (eds), Abductive
Reasoning and Uncertainty Management Systems, Volume 4 of Handbook of Defeasi-
ble Reasoning and Uncertainty Management Systems (pp. 35-98). Dordrecht: Kluwer
Academic Publishers.

Provijn, D. (2012). The generation of abductive explanations from inconsistent theories.
Logic Journal of the IGPL, 20(2), 400-416.

Rescher, N. (1964). Hypothetical Reasoning. Amsterdam: North-Holland.

Schurz, G. (2008a). Patterns of Abduction. Synthese, 164, 201-234.

Schurz, G. (2008b). Common Cause Abduction and the Formation of Theoretical Con-
cepts in Science. In C. Dégremont, L. Keiff, & H. Rückert (eds.), Dialogues Logics and
other Strange Things. Essays in honour of Shahid Rahman (pp. 337-364). London: Col-
lege Publications.

Simon, H. (1973) Does Scientific Discovery have a Logic? Philosophy of Science, 40,
471-480.

Straßer, C. (2013). Adaptive Logics for Defeasible Reasoning: Applications in Argumenta-
tion, Normative Reasoning and Default Reasoning. Dordrecht: Springer.

Thagard, P. (1988). Computational Philosophy of Science. Cambridge, MA: MIT Press.

Thagard, P., & Shelley, C. (1997). Abductive reasoning: Logic, visual thinking, and co-
herence. In M.-L. Dalla Chiara et al. (eds.), Logic and Scientific methods (pp. 413-427).
Dordrecht: Kluwer.


