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Abstract

In this paper, we present mainly two logical systems that clarify prag-
matic aspects of the process of explanation. The first concerns a proof
theory that leads to the derivation of possible initial conditions from an
explanandum and a given theory. The second logic concerns the derivation
of questions in view of the verification of some possible initial condition,
or of one out of several possible initial conditions. It is essential that the
latter derivation proceeds in terms of all available knowledge, and not in
terms of the explaining theory. It is shown that the second logic provides
useful information for explicating further pragmatic aspects of the pro-
cess of explanation. Several extensions of the logics are argued to be both
useful and rather easy to obtain.

1 Pragmatic Aspects of Explanation

Two central themes in Matti Sintonen’s work on explanation, are (i) the urge to
pay more attention to the process of explanation, rather than to its result, and
(ii) the importance of pragmatic aspects of explanation. In order to understand
scientific explanation, the important question is not to delineate the conditions
under which a set of empirical data together with a set of theories constitute
an explanation of some phenomenon, but rather to describe the way in which
scientists proceed in search for an explanation of some phenomenon. Needless
to say, this search is heavily laden with pragmatic aspects. We are on Sintonen’s
side in this respect. We are even on his side in a further respect, which is that,
nevertheless, logic is essential in the study of explanation.
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A brief warning seems useful in this respect. The role of logic for explana-
tion is often identified with the definition of an explanation (as a product). This
is presumably a consequence of the fact that Hempel’s popular and (mainly)
product oriented theory of explanation from (especially) [16], describes an expla-
nation as a deduction of the explanandum from a theory together with empirical
data, and that Hempel qualifies this theory as non-pragmatic. Writes Hempel:
“This ideal intent suggests the problem of constructing a nonpragmatic con-
cept of scientific explanation—a concept which is abstracted, as it were, from
the pragmatic one, and which does not require relativization with respect to
questioning individuals [. . . ]” ([16, p. 426]), and he compares the concept of
explanation with the concept of mathematical proof.

This paper concerns the process of explanation, including its pragmatic as-
pects. We shall present some simple logical tools that we consider not only
useful but even required in this respect. We are not sure whether Sintonen
will be fully in sympathy with our approach. In several respects, our approach
diverges from the one that is apparently advocated by Sintonen. Where Hin-
tikka and his associates, e.g., in [20], (and also Atocha Aliseda in [1]) proceed in
terms of tableaux-like structures, we proceed in terms of proofs.1 Moreover, we
often push into the definition of the consequence relation (and hence into the
‘definitory’ rules) part (or all) of the reasoning that Hintikka and his associates
locate in the strategy (see, for example [18]). As a result of this, our logics have
often a consequence relation that is not Tarskian,2 and most of our logics have
dynamic proof theories, which enable one to explicate a person’s dynamic rea-
soning. We shall not defend our approach here—we hope to do so in a different
paper soon—but rather illustrate it.

In the subsequent sections we shall mainly concentrate on two important
aspects of the process of explanation. First, in search of an explanation of
some phenomenon in view of some theory, one needs to identify certain factual
statements as possible explanations, or rather possible initial conditions. We
shall show that this identification, which involves many pragmatic aspects, is
a matter of logic (Section 3—some brief technical preparation is contained in
Section 2). We shall present a specific proof format and a simple strategic rule
that, when applied to a set of theories and a why-question, deliver the possible
initial conditions. We shall even outline (briefly in order to avoid technicalities)
a logic that does not require the aforementioned heuristic rules—put differently:
for which the strategic rule is pushed down into the definitory rules.

Given one or more possible initial conditions, one has to find out whether it,
or one of them, is true and hence leads to an explanation. This second important
aspect of the process of explanation is often neglected. We shall handle it by

1So, we disagree with Sintonen where he writes, in [27], that reasoning about models has
certain advantages over proofs from premises. Moreover, we have studied tableau methods for
inconsistency-adaptive logics, in [11] and [12], and there the dynamic proofs are heuristically
superior to all tableau methods we were able to devise. As far as we can see, this result may
be generalized.

2A Tarskian consequence relation is reflexive (A ` A), transitive (if Γ ` B and ∆∪{B} ` A,
then Γ ∪∆ ` A), and monotonic (if Γ ` A, then Γ ∪∆ ` A).
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phrasing possible initial conditions as ‘starting questions’ of the form ?A (is A
the case?). One may obtain the answer to ?A by deriving A or ∼A from one’s
knowledge—and, with one small proviso, all of one’s knowledge may be relied
upon here—or by observation and experiment. More often than not, however,
?A cannot be answered in a direct way, and in this case one has to derive other
questions from ?A and from one’s knowledge—again, all of one’s knowledge—in
order to obtain an answer to ?A. We shall first present a simple logic for deriving
questions in Section 4, and next upgrade it, in Section 5, to an adaptive logic3

Q for deriving the right questions (in view of one or more explanatory goals).
The logic Q enables one to “identify good research questions” in the sense of
[28, p. 128], and implements a central idea from [27], namely that why-questions
are tackled by deriving and answering a series of factual questions.

In the last three sections, we consider the combination of the explanation
seeking deduction with the logic Q, discuss some further pragmatic aspects, and
briefly consider some obvious extensions of the logics presented in this paper.

2 Informative and Analysing Moves

In the subsequent sections we need a distinction that is most easily made clear
in terms of the block-approach from [4] and [5]. For present purposes, we shall
take CL to be the standard of deduction. Any annotated CL-proof determines
a block-analysis—if the proof is not annotated, only finitely many annotations
are compatible with it. The block analysis of the proof is determined by the
discriminations and identifications the author of the proof has minimally made
in the formulas of the proof in order to construct the proof (according to the
annotation). An example will clarify the matter. Applying the Premise rule
comes to introducing a block: there is no need for any insight in the structure
of the formula in order to write it down in the proof.

1 [[(p ⊃ ∼q) ⊃ (p&(∼r ∨ ∼p))]]1 Premise
2 [[p ⊃ ∼q]]2 Premise

In order to apply Modus Ponens to these premises, one needs to analyse
the first block as an implication between two blocks, and one needs to identify
the implicans block with block 2; the derived block is of course the implicatum
block of 1:

1 [[(p ⊃ ∼q)]]2 ⊃ [[(p&(∼r ∨ ∼p))]]3 Premise
2 [[p ⊃ ∼q]]2 Premise
3 [[p&(∼r ∨ ∼p)]]3 1, 2; Modus Ponens

3This kind of logics was developed in the Ghent Centre for Logic and Philosophy of Science.
The name refers to a special feature of these logics: they adapt to the specific set of premises.
Consequences of the premises are supposed to behave in a certain way with respect to the
premises, unless and until proven otherwise. As a result, there are some rules of inference that
are not validated or invalidated in general, but of which some applications are validated while
others are not, depending on the premises. See, for example [6] for a survey of adaptive logics.
A home page bibliography on the topic is available at http://logica.rug.ac.be/adlog/.
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If the proof is continued by deriving p by Simplification from 3, then the
block analysis will read:

1 [[(p ⊃ ∼q)]]2 ⊃ ([[p]]4&[[∼r ∨ ∼p]]5) Premise
2 [[p ⊃ ∼q]]2 Premise
3 [[p]]4&[[∼r ∨ ∼p]]5 1, 2; Modus Ponens
4 [[p]]4 3; Simplification

Remark that block 3 is split up everywhere in the proof—if it were not split
up at line 1, the justification of line 3 would be mistaken.

If the proof is continued by first deriving ∼r ∨ ∼p by Simplification, and
next deriving p ∨ ∼r by Addition from 4, we obtain:

1 [[(p ⊃ ∼q)]]2 ⊃ ([[p]]4&[[∼r ∨ ∼p]]5) Premise
2 [[p ⊃ ∼q]]2 Premise
3 [[p]]4&[[∼r ∨ ∼p]]5 1, 2; Modus Ponens
4 [[p]]4 3; Simplification
5 [[∼r ∨ ∼p]]5 3; Simplification
6 [[p]]4 ∨ [[∼r]]6 4; Addition

By now, the idea should be clear. Writing down a proof requires that one
analyses some formulas (discriminates its subformulas) and that one identifies
some formulas or subformulas. The effect of the discriminations is that blocks
are replaced by block formulas (formulas formed from blocks by logical symbols
and possibly parentheses). The effect of the identifications may be that two
blocks that previously had a different number, receive the same number. We
repeat that the block analysis of a proof reveals the discriminations and identi-
fications that the author of the proof has minimally made in the formulas of the
proof in order to construct the proof (according to the annotation). In [4] and
[5], the block analysis is spelled out decently for predicative logics—these in-
volve some complications that are not essential here. (Especially the first paper
contains several interesting applications of the method.)

The block analysis enables one to distinguish between informative and non-
informative moves in a proof. A step is informative iff it requires that the
premises are further analysed. Steps 3 and 4 are obvious examples. For reasons
that will become clear when we consider the semantic criterion (see below),
applications of the premise rule are also seen as informative moves. So, steps
1–4 in the proof are informative, while steps 5 and 6 are not.

There is an interesting difference between step 5 and step 6. If [[∼r ∨ ∼p]]5

had been derived at line 4, its derivation would have been an informative move.
Line 5 is not the result of an informative move simply because [[p]]4 was already
derived from 3. So, in some proofs from premises 1 and 2, [[∼r∨∼p]]5 is derived
by an informative move. There is, however, no way to derive 6 from 4 by an
informative move.

Remark that, in order to construct the proof up to line 6, there is no need to
see that the ‘content’ of block 6 is a subformula of block 5. Even if the content
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of block 6 were identical to the content of block 5, it would not be required
that the author of the proof has made the identification between blocks 5 and
6 (whence they should still have different numbers).

The distinction between informative and non-informative moves may also
be characterized in semantical terms. Suppose that we have a semantics for
block formulas—the matter is spelled out in [4] and [5]. Let a model for a
block proof at a stage be a model that verifies the premises, as analysed in
the present and previous stages of the proof—a stage of a proof is simply the
number of its last line. In the transition from stage 2 to stage 3 in the proof
displayed above, the formula [[(p ⊃ ∼q) ⊃ (p&(∼r ∨ ∼p))]]1 was analysed as
[[(p ⊃ ∼q)]]2 ⊃ [[(p&(∼r ∨ ∼p))]]3. At stage 1 and 2 of the proof, block 3 has
value 1 (true) in some models of the proof and value 0 (false) in others. At
stage 3 of the proof, only models that assign value 1 to block 3 are models
of the premises.4 In other words, with each informative move, the models of
the premises are narrowed down (to a subset of the models of the previous
stage).5 This clarifies at once why we consider applications of the premise rule
as informative moves. With each premise one adds to the proof, the set of models
is narrowed down (to the models that verify the newly introduced block).

This semantic criterion is important because it does not depend on the set
of formulas that actually constitute the proof, but only on the block formulas
that occur in the proof. In the proof displayed above, [[∼r ∨ ∼p]]5 is not yet
derived at stage 4, but nevertheless is a semantic consequence of the premises
(as analysed at stage 4 of the proof).

Some informative steps contain non-informative substeps. Thus, the step
from p&r to p ∨ q is informative (one has to analyse p&r as a conjunction),
but is composed of an (informative) application of Simplification and a (non-
informative) application of Addition. For reasons that will appear later, we
are interested in moves that are not only informative, but moreover analysing.
Intuitively, they should not contain any non-informative substeps. Obviously,
this can be made precise with respect to a specific set of rules of inference, but
we want a more general characterization that classifies all derivable moves as
analysing or non-analysing. The block approach provides us with a criterion.

By the complexity of a meta-language formula we shall mean the number of
logical symbols that occur in the formula. Thus the complexity of A is 0, the
complexity of ∼A and of A ⊃ B is 1, etc.

A sound rule of inference

X1, . . . , Xn / Y (1)

will be called non-redundant iff, for any block analysis that makes it a sound
rule, (i) the content of each block is a meta-variable (and nothing else) and
(ii) no premise block formula is superfluous.6 Rule (1) is analysing iff (i) it

4The reason is obviously that block 2 is also a premise, and that an implication is true
only if its antecedent is false or its consequent is true.

5This enables one to ‘measure’ the information (about the premises) that is provided by a
proof at a stage.

6Thus both A, A ⊃ (B&C) / B&C and A, A ⊃ B, C / B are redundant.
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is informative and non-redundant, and (ii) there is no sound non-redundant
rule X1, . . . , Xn / Z in which the complexity of Z is smaller than the complex-
ity of Y . Adjunction and A / ∼∼A are not analysing because they are not
informative.7 Addition and Irrelevance (A / B ⊃ A) are non-redundant but
are not analysing because they are not informative and do not fulfil (ii). The
rule A&B / A ∨C is non-redundant and is informative, but does not fulfil (ii).
Some examples of analysing rules: Modus Ponens, Modus Tollens,8 Disjunctive
Syllogism, Dilemma, ∼∼A / A, and ((A ∨B)&C) ⊃ D / (A&C) ⊃ D.

We now introduce a specific consequence relation derived from CL. We shall
say that

A1, . . . , An `CLa B

iff there is a CL-proof of B from A1, . . . , An in which only the Premise rule and
analysing rules have been applied.9

3 Explanation Seeking Deduction

In this section, we illustrate an explanation seeking process that proceeds in
terms of a proof. The results of this section depend on (i) the ‘natural’ proof
search procedure for CL (and for a few other systems) presented in [3] and
(ii) the results on conditional derivations that will be written up in a paper by
Diderik Batens and Dagmar Provijn.10 While there is no need to repeat any
results from (i), we need to explain the basic idea behind (ii).

Formulas that occur in a proof may be analysed by deriving subformulas
(and instances) from them. Thus, a formula of the form A&B is analysed by
applying Simplification. Some formulas (basically those of the forms A ⊃ B and
A∨B) can only be analysed with the help of a ‘minor premise’ (as in applications
of Modus Ponens and Modus Tollens for formulas of the form A ⊃ B, and in
applications of Disjunctive Syllogism for formulas of the form A∨B). Precisely
these formulas cause trouble in complex cases.11 Interestingly, the formulas that
cause trouble are typically those that are essential in an explanation seeking

7Rules obtained from an analysing rule by the metalinguistic equivalent of Uniform Substi-
tution (in the way A, A ⊃ (B&C) / B&C is obtained from Modus Ponens) are not analysing
because they are redundant. Their applications are obviously also applications of the analysing
rule.

8All variants of Modus Tollens are analysing. For example A ⊃ ∼B, B / ∼A fulfils (ii)
because A ⊃ ∼B, B / B is redundant.

9An analysing (and hence informative) rule may have non-informative applications—see
line 5 of the block-proof example. It follows that a CLa-proof may contain non-informative
moves, provided each of them is the result of an application of an analysing rule.

10The proof search procedure meant in (i) is intended for students of elementary logic
classes, and presupposes that the goal (the formula to be derived from the premises) is given.
For the propositional part of CL, the instructions, which are algorithmic for this fragment,
are discussed and justified in [2]. The instructions are also implemented in a logic training
programme, earlier written in Turbo Pascal, now extended and rewritten in Delphi.

11Where a proof is directed at deriving a conclusion, the complex cases are those in which
the antecedent (or the negation of the consequent) of an implicative formula is not obtained
in the proof by analysing steps, but is derivable from available formulas. (Do not forget to
include theorems.)
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deduction. This is why an instrument, which was available for different reasons,
proves extremely helpful in the present paper.

If a proof contains troublemakers of the aforementioned kind, we have to
apply heuristic reasoning. This may be very complex, and many search paths
may not lead to success. Moreover, if one applies a standard proof format, the
heuristic reasoning cannot be written down in the proof. So, in order to make
explicit the heuristic reasoning that leads to adding new steps to a proof, a
specific format was devised (relying on results from adaptive logics) to push the
heuristic reasoning down into the proof. Suppose that a proof contains a line of
the following form:

i A ⊃ B [some justification]

If we are interested in deriving B, we should try to derive A (in order to apply
Modus Ponens). Our new proof format allows us to write this in the proof as
follows:

i + 1 B i, ?; Modus Ponens {A}

The question mark in the ‘justification’ indicates that a line at which A
occurs is missing at this stage of the proof. The A in the condition indicates
that, if we are able to derive A, then we can remove the condition and replace
the question mark (with the number of the line at which A is derived), and
hence we will have derived B from the premises.12

From line i, we may also derive:

i + 2 ∼A i, ?; Modus Tollens {∼B}

and similar conditional moves may be made if the analysed formula is a disjunc-
tion (this time applying Disjunctive Syllogism).

Nothing prevents one to operate on a member of the condition. Thus, if the
same proof contains

j C [some justification] {D,B}

then one may add

j + 1 C i + 1, j, C-Trans {D,A}

Rule C-Trans applies transitivity to the condition: as {D,B} is sufficient to
obtain C and {A} is sufficient to obtain B, {D,A} is sufficient to obtain C.

All this should be easy to understand. The criterion for E being derivable
from the premises on the condition ∆ is simply that E is derivable from the
premises together with the elements of ∆. In view of this, it is equally obvious
that complex elements of a condition may themselves be analysed. If the condi-
tion contains a conjunction, this may be replaced by its conjuncts. The matter
is equally simple if the condition contains a disjunction: from

12According to the standard use in adaptive logics, all lines that have a (non-empty) con-
dition in the present kind of construction should be marked. We do not write these marks
because they would be redundant anyway.
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k F [some justification] {G ∨H}

one may derive both

k + 1 F k, C-∨-E {G}
k + 2 F k, C-∨-E {H}

in which C-∨-E indicates that we eliminated a disjunction in the condition of
line k.

The reader who thinks to recognize all this is quite right. Our proof format
is clearly related to tableaux as well as to Gentzen-style proofs.13 However, our
proof format has the advantage to avoid the (sometimes) complex trees required
by tableau methods or Gentzen-style proofs.14

In order to verify the correctness of some conditional derivation (of any
complexity), it is sufficient to realize that A is derivable on the condition ∆ just
in case

∧
(∆) ⊃ A is derivable unconditionally from the premises.

With the promise that details and metatheoretic proofs on this proof method
will be disclosed in the announced paper, we take it that the general idea is
sufficiently clear and proceed to an example of an explanation seeking proof. In
order to keep things as simple as possible, we present the matter in terms of a
CL-proof and a specific strategy. At the end of this section, we shall argue that
the strategy may be pushed down into the proof format itself.

Suppose that we are looking for an explanation of Qa, that we consider some
theory as a potential candidate for delivering the required explanation (for one
thing, because the predicate Q occurs in it), and set out to search for the initial
conditions that, together with the theory, form an explanation of Qa. We start
our proof by writing the axioms of the theory as premises—we chose an example
that is not terribly complex.

1 (∀x)(Sx ⊃ (Tx ⊃ Px)) Premise
2 (∀x)((Px&∼Qx) ⊃ Rx) Premise
3 (∀x)(Px ⊃ ∼Rx) Premise
4 (∀x)(Tx ⊃ Rx) Premise

The question is “Why Qa?”. Given our format, we may note the goal within
the proof, viz. by adding:

5 Qa Goal {Qa}

We might first have derived Qa ⊃ Qa, and next have derived 5 from that. To
do so, however, would be more confusing than helpful. Indeed, we might have
derived A ⊃ A for any A, whereas only Qa is our goal. The only relation with

13It is also related to Fitch-style proofs. Indeed, as any condition is finite, E is derivable
from the premises on the condition ∆ just in case E is derivable from the premises together
with the hypothesis

∧
(∆).

14And it does not lead to the oddity that would result from a multiplicity of non-closed
subproofs of the same level in a Fitch-style proof.
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Qa ⊃ Qa is that this theorem justifies line 5.15 Line 5 states that one may
derive Qa on the condition Qa. But clearly, this condition does not provide
an explanation of Qa—we shall take this to be defined by Hintikka’s criteria as
stated in [19] or [15] and elsewhere.16 So, our aim is to obtain from 1–5 a line
on which Qa is derived on some condition such that its members, together with
the theory 1–4, form an explanation of Qa.

Now we come to the strategic moves. With all due respect, and ready to
blame any misunderstanding on ourselves, we were unable to find out which
strategy either Hintikka and his associates or Aliseda would consider advisable
in the present situation. So, we go by our own lights (but by no means claim
originality here).

Let us call a formula interesting iff it brings us ‘closer to’ (that is: contains)
some element of a condition.17 Our Golden Rule will be: (i) simplify the mem-
bers of the conditions and (ii) only derive (conditionally or unconditionally)
interesting formulas.

Given the present stage of the proof, the only interesting formulas are those
that contain Qa (as a positive part). This has an important effect: all formulas
that we shall derive will be useful for finding an explanation of Qa (if there is
one). Put differently, each conditional line in the proof will be a step towards
deriving Qa on some condition that, together with the theory 1–4, forms an
explanation of Qa.

Even an elementary insight in CL reveals that the only way to obtain Qa
is by using premise 2: it is the only premise that contains the predicate Q. So,
given that we are looking for Qa (as the only condition reveals), we first derive
the a-instance of 2 and next conditionally derive the subformula that contains
Qa (as a positive part):

6 (Pa&∼Qa) ⊃ Ra 2; ∀-Instantiation
7 ∼(Pa&∼Qa) 6, ?; Modus Tollens {∼Ra}

At this stage, two formulas occur in some condition, Qa and ∼Ra. By the
Golden Rule, we either continue to analyse 7, or operate on 3. Actually, it does
not matter what we do first; let us first analyse 7.

15Incidentally, our proof format enables one to introduce, without any harm, a multiplicity
of goals (or explananda) within the same proof. To do so in a tableau method would cause
the tableau to split in as many branches as there are goals—for Beth-tableaux: would cause
the construction to split in as many tableaux as there are goals. Next, each of these branches
(or tableaux) have to be split separately in order to handle formulas that, in our proofs, are
analysed within the same proof.

16There is (in general) no positive test (see, for example, [13]) for two of these criteria: the
initial condition should be compatible with the theory, and the negation of the explanandum
should be compatible with the theory. Hence, our logic will only apply to theories formulated
in decidable fragments of the language of CL. This is easily repaired by moving to an adaptive
logic—an easy exercise in view of the adaptive logic of compatibility presented in [10].

17This must be specified: A brings us ‘closer to’ a B iff B is a positive part in A and at least
some subformula of A of which B is a positive part is not derived on the same or a weaker
condition. There are two technical bits here. A positive part of a formula is an unnegated
disjunct of the prenex conjunctive normal form of the formula—this may be defined in a way
that is simpler but more longwinded. Condition ∆ is weaker than condition ∆′ iff ∆ ⊂ ∆′.
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8 ∼Pa ∨Qa 7; ∼-&-Elimination {∼Ra}

in which we retain the condition of 7 for reasons that should be clear from what
precedes.

From 8 one may take two conditional steps by Disjunctive Syllogism, but
only one is interesting (at the present stage of the proof) in view of the Golden
Rule:

9 Qa 8, ?; Disjunctive Syllogism {Pa,∼Ra}

It is easy to check that theory 1–4 together with initial condition Pa&∼Ra
forms an explanation of Qa by the criteria of [19] or [15].

While we might stop the explanation seeking deduction at this point, we still
have something on our agenda: to operate on premise 3 in view of ∼Ra. This
leads to the following steps:

10 Pa ⊃ ∼Ra 3; ∀-Instantiation
11 ∼Ra 10, ?; Modus Ponens {Pa}
12 Qa 9, 11; C-Trans {Pa}

The last step invokes two (very different) comments. First, there is abso-
lutely no need to keep in mind the question marks (referring to lines) that occur
in previous steps in the proof. By deriving Qa on the (sole) condition Pa, we
have established that Pa ⊃ Qa is derivable from the theory 1–4. Next, and
more importantly with respect to the process of explanation, we found out that
Pa in itself is sufficient to explain Qa (the theory 1–4 together with the initial
condition Pa explains Qa according to the criteria from [19] and [15]). However
difficult, expensive, time consuming, or whatever—see Section 7—the test for
Ra, this test is neither necessary nor useful to establish Qa. We stress this
because it is important from a pragmatic point of view.

We have first seen that Qa may be explained by Pa&∼Ra. Next, we have
‘simplified’ this to: Qa may be explained by Pa. At this point we might decide
to stop looking for further explanations of Qa from the theory 1–4. However,
there may be other such explanations and some of them may be pragmatically
preferable to Pa—see Section 7. So, let us continue.

If we continue, we should know which formulas are still interesting. Qa
and Pa are certainly among them, but what about ∼Ra? Avoiding a technical
explanation, we just state that ∼Ra is not interesting for the continuation of
our present deductive search. We shall see, however, that ∼Ra may very well
be interesting as soon as we enter the second part of our endeavour, which will
concern the derivation of (factual) questions.18

To see what will be the next move, it is important to realize that premises
2 and 3 have been completely analysed with respect to interesting formulas. So,
we shall have to operate on premise 1, which indeed contains P . This leads to:

18As we shall remark later, the separation of both reasoning processes is artificial, and
introduced here only for reasons of exposition.
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13 Sa ⊃ (Ta ⊃ Pa) 1; ∀-Instantiation
14 Ta ⊃ Pa 13, ?; Modus Ponens {Sa}
15 Pa 14, ?; Modus Ponens {Sa, Ta}

Given that Qa is our (only) main goal (as is revealed by line 5), we continue:

16 Qa 12, 15; C-Trans {Sa, Ta}

At this point, the theory 1–4 is exhausted with respect to the explanation
seeking deduction. No further statement is derivable in view of the Golden Rule.

The explanation seeking deduction has led us to three ‘initial conditions’
that, together with 1–4, form an explanation of Qa: Pa, Pa&∼Ra, and Sa&Ta.
There is absolutely nothing wrong with the second initial condition. From a
pragmatic viewpoint, however, we have to keep in mind that any empirical in-
formation needed to establish the first initial condition, is necessary but insuffi-
cient to establish the second initial condition. The situation for the third initial
condition is rather different. Our theory warrants that establishing Sa&Ta is
one of the ways to establish Pa, but it may be very sensible to set out test-
ing Sa&Ta. Obviously, other theories may lead to initial conditions that are
independent, both logically and with respect to the theory.

By the reasoning exemplified before, the possible initial conditions are lo-
cated. A quite different task is now before us: to empirically establish one of
the initial conditions. This bit we shall explicate in terms of a logic of questions.
The starting questions will concern the initial conditions, in the example: ?Pa,
?(Pa&∼Ra), and ?(Sa&Ta).

Before moving on to this task, let us briefly comment on the previous de-
duction. Up to now, we have shown that the possible initial conditions may be
located in a proof that is guided by heuristic rules. We did not reason in terms
of models (or tableaux), and by introducing the conditional lines, we were able
to push the bookkeeping of the heuristic reasoning into the proof itself. Also,
we hope that the reader who ever tried to reach the same effect by means of
tableaux will appreciate the elegance and goal-directedness of the result.

However, we may do better. There is a consequence relation that defines
{Pa, Pa&∼Ra, Sa&Ta} as the consequence set of 1–5. In order not to interrupt
our main line of reasoning, we characterize it in stenographic form.

Using the same format as before (with conditional and unconditional lines),
the only rules one is permitted to apply are (i) the Premise and Goal rules, and
(ii) other rules provided they lead to splitting up members of a condition or
deriving interesting formulas. In other words, we push the Golden Rule into the
definitory rules themselves. The thus obtained proofs are a subset of the CLa-
proofs.19 The consequences of 1–5 (in general: of a theory and a main goal)
are the

∧
(∆) such that (i) the main goal is derived on the condition ∆, and

(ii) the triple consisting of the theory,
∧

(∆), and the main goal (explanandum)

19For example, the move from A on the condition ∆∪{B∨C} to A on the condition ∆∪{B}
corresponds to an application of the analysing rule (D&(B ∨ C)) ⊃ A / (D&B) ⊃ A.
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fulfils the criteria as stated in [19] or [15].20 Even if one would refuse the name
“consequence relation” to this relation, one will admit that we are explicating
reasoning. And actually, we are explicating sound reasoning. For example, to
derive Ra on the condition Ta from 1–5 is not only heuristically mistaken but
is bad reasoning plain and simple.21

4 A Logic of Questions

Let us return to the starting questions that we obtained in the previous section.
While answering the starting questions is a pragmatic process, there are some
logical aspects to it. If a question cannot be answered in a direct way, we shall
have to obtain an answer from derived questions, and this derivation should be
sound.

We shall present a simple and novel logic of questions, restricted to the
derivation of questions from other questions. For our insights in questions, we
are indebted to many, but especially to Jaakko Hintikka, who has been pressing
the subject for more than twenty years now, and to Andrzej Wísniewski who
has cracked many hard nuts, for example in [32]. Our proposal will be different
from theirs, but we shall not discuss the differences here.

Our logic of questions enables one to derive many questions from a given
question. A first idea is that ?A is derivable from Γ∪{?B} iff one of the possible
answers to ?B is derivable from one of the possible answers to ?A together
with a (possibly empty) set of (accepted) descriptive premises Γ. Thus, one
might consider ?q to be derivable from ?p and p ⊃ q because ∼q, p ⊃ q ` ∼p.
Taken literally, this approach leads to the derivation of irrelevant questions—
for example, from ?p would follow ?(p ∨ q), and from this ?q. So we shall first
transform the above criterion to a criterion that is equivalent with respect to
CL, viz. that ?A is derivable from Γ∪{?B} iff one of the possible answers to ?A
is derivable from one of the possible answers to ?B together with Γ. Next, we
eliminate irrelevant questions by requiring a CLa-derivation, rather than a CL-
derivation. However, this transformation introduces another problem. From
p, q ` q one should not conclude that ?q is derivable from {?p, q}. The obvious
way out is to require that no answer to the derived question should be derivable
from the descriptive premises alone. This leads to a nice definition from a
systematic point of view, but is problematic from a pragmatic point of view
because CL is undecidable and there is no positive test for B1, . . . , Bn 0CL A.

20The consequence relation is non-monotonic, the consequences are a selection of conditions
of Qa rather than formulas derived in the proof, etc. All this is highly non-standard, but
nothing much follows from this fact in itself.

21Some logicians will balk at this and, selectively quoting Aristotle, claim that the deriva-
tion of Ra on the condition Ta is sound because it is truth preserving (in that it comes to
unconditionally deriving Ta ⊃ Ra). Our reply to this is double. On the one hand, logic is a
goal-directed activity. Thus, if the premise is p and the goal is p ∨ q, the derivation of p ∨ r,
(p ∨ r) ∨ r, etc., is certainly truth preserving but nevertheless a candid example of bad (and
stupid) reasoning. On the other hand, the whole truth-preservation argument works only in
terms of a semantics. Getting acquainted with the semantics of some adaptive logics might
liberate truth-preservationists from a couple of prejudices.
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There is a sensible approach to this problem in terms of an adaptive logic—
see a forthcoming paper by Kristof De Clercq and Joke Meheus (that solves the
problem within the context of Wísniewski’s approach). However, given the aim
of the present paper, the right approach seems to require a pragmatic notion
of derivability, rather than a systematic one. Whether a person or group X is
justified in deriving a question at some point in time, depends on the knowledge
of X at that time. Suppose that X faces the question ?A, that B is derivable
from A together with some descriptive statements (that are CLa-derivable from
X’s knowledge), and X has no proof, at time t, that either B or ∼B is derivable
from the descriptive statements alone. In such a case, X is clearly justified
in deriving the question ?B at t. It may turn out later that either B or ∼B
is derivable from the descriptive statements, but this does not undermine the
justification for X to derive ?B at time t. We shall write

B1, . . . , Bn 0X
CL A

to denote that no proof available to X is a proof of B1, . . . , Bn `CL A.22

Remark that B1, . . . , Bn 0X
CL A contains an implicit reference to time—

logical insights in B1, . . . , Bn may change over time (and usually change in the
course of searching a proof from B1, . . . , Bn). However, we shall not further
complicate the notation because it will always be clear from the context which
point in time is referred to. The same holds for the logic of questions to which
we now proceed.

We upgrade CLa to the logic of questions CLq. The language will be that of
CL extended with the question operator ?, but without operations on questions.
CLq is obtained by extending CLa with the following two rules. QD enables
one to derive questions, QA to answer questions by non-analysing steps.

QD Where n ≥ 0,

if A,B1, . . . , Bn `CLa C or
∼A,B1, . . . , Bn `CLa C or
A,B1, . . . , Bn `CLa ∼C or
∼A,B1, . . . , Bn `CLa ∼C ,

and B1, . . . , Bn 0X
CL C and

B1, . . . , Bn 0X
CL ∼C ,

then ?A,B1, . . . , Bn `X
CLq ?C .

QA Where n ≥ 0,

if ?C occurs in the proof
and B1, . . . , Bn `CL C (respectively B1, . . . , Bn `CL ∼C),

then C (respectively ∼C) may be added to the proof.

22One may strengthen this, for example by requiring that no known decision method—
remember that many fragments of CL are decidable—answers B1, . . . , Bn `X

CL A in the
negative. In our view, however, our characterization in the text is the appropriate one. On
this, we definitely agree with Hintikka. If a question can be (easily) answered by observation,
to do so may be preferable over attempting to derive the answer, especially as the attempt
may be longwinded and unsuccessful.
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Let us start with some general comments. QD concerns yes-no questions. We
could introduce a similar rule for wh-questions, but will not do so in the present
paper. Next, the consequence relation `X

CLq is a pragmatic one. What we are
interested in, in the present context, is whether it is justified for the explanation
seeking person or group X to derive a question in view of X’s relevant logical
insights. Finally, as `CLa and 0X

CL are defined only for formulas that belong
to the language of CL, no “?” occurs in A, B1, . . . , Bn or C in the above rule.
Remark also that all rules of CLa are valid in CLq; the rule QD extends CLa

to handle questions.
Rule QA simply enables one to derive answers to questions (that occur in

the proof) even if the answers cannot be obtained from the descriptive premises
by analysing rules. Thus if ?(p ∨ q), then p ∨ q may be derived from p, and
∼(p ∨ q) may be derived from ∼p and ∼q.23

We now move to some properties of CLq. We have

?(A ∨B) `X
CLq ?A

because
∼(A ∨B) `CLa ∼A .

However, ?p 0X
CLq?(p∨q) because there is no CLa-proof of either p∨q or ∼(p∨q)

from either p or ∼p. Similarly, ?p 0X
CLq?(p&q). Remark also that ?A and ?∼A

are variants of the same question. A positive answer to ?A means that A is the
case, a negative one that ∼A is the case. A positive answer to ?∼A means that
∼A is the case, a negative one that ∼∼A and hence A is the case.

Quite different comments concern the intuitive justification of our logic of
questions. First, CLq concerns only deriving questions from other questions
together with descriptive premises. Actually, this problem is an extremely im-
portant one. If one takes serious the idea that science is problem driven, then
one has to explicate the reasoning about and from problems. Accepted theories
and data play an essential role in this. Consider the question ?p. If we know
that q ⊃ p, then the question ?q is useful for answering ?p—if the answer to
?q is positive, so is the answer to ?p. If we know that p ⊃ q, then again the
question ?q is useful for answering ?p—if the answer to ?q is negative, so is the
answer to ?p.

Remark that the logic CLq presupposes that a question is useful as soon as
one of its answers is. To see this, suppose that ?A is derived from ?(A ∨ B).
If the answer to ?A is positive, we have an answer to ?(A ∨ B). If the answer
to ?A is negative, we still need an answer to ?B in order to have an answer to
?(A ∨ B). Here, even a negative answer to ?A takes us a step forwards in that
?(A ∨ B) is reduced to ?B. But this is not always the case. If ?A is derived
from ?B and A ⊃ B, a positive answer to ?A provides an answer to ?B, but a
negative answer to ?A is useless for answering ?B. Nevertheless, if we cannot

23It can be shown (by relying on QD) that the derivation of answers by non-analysing rules
cannot lead to the derivation of irrelevant questions (see below) because the presence of p∨ q
or ∼(p ∨ q) cannot lead to questions that were not derivable in the presence of ?(p ∨ q).
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obtain an answer to ?B in a direct way, and we can obtain one to ?A, then it is
clearly sensible to derive the latter question.

Summarizing what we have so far, CLq enables one to ‘split up’ questions
into relevant subquestions, and to derive questions from other questions in view
of empirical knowledge. Remark, however, that the relevance of a question to
another question is not transitive. Thus from ?A, B ⊃ A, and B ⊃ C, one may
first derive ?B and next ?C. But no answer to ?C provides (for all the premises
reveal) an answer to ?A, which was the question we started from. This may
seem problematic and hence deserves some more attention.

In the example, one of the answers to ?C, viz. ∼C provides an answer
to ?B, viz. ∼B. So, although ?C is not useful for directly answering ?A, it is
indirectly useful in this connection. It reveals that one possible way for obtaining
a positive answer to ?A, viz. from ?B, fails, and hence that we have to look for
another way to obtain an answer to ?A. The use of this insight becomes even
more clear if the descriptive premises are somewhat more complex. Consider
the premises ?A, B ⊃ A, D ⊃ B, E ⊃ D, and B ⊃ C. From this we may derive
the questions ?B, ?D and ?E, and a positive answer to any of them provides
a positive answer to ?A. But if one cannot obtain an answer to any of these
derived questions in a direct way, but obtains a negative answer to the derived
question ?C, then we know at once that, in order to answer ?A, it is useless
to derive further questions from ?B, ?D or ?E. So, a whole branch of possible
questions (in other cases a whole subtree) is ‘cut away’ by a negative answer to
?C. This suggests part of the strategy that we shall apply in the next section.
Given a question for which no answer can be obtained in a direct way, we shall
first try to derive a question for which an answer can be obtained in a direct
way. If that is impossible, we shall derive questions from which in turn may be
derived questions for which an answer can be obtained directly, etc. In general,
we shall look for the shortest paths that lead to questions for which we can
obtain an answer directly.

CLq enables one to derive questions that are relevant for answering derived
questions, but are not necessarily relevant for answering a starting question.
Precisely for this reason, it is essential that we impose heavy restrictions on
the deductive closure of the descriptive premises, viz. close them under CLa

rather than CL. Let us see why this is so. Suppose first that we replace CLa

by CL in QD. Then, from ?A would follow ?(A ∨ B), and from this ?B. In
other words, we could derive any question from any other question in two steps.
Similar problems arise if we leave QD unchanged, but add it to CL rather than
to CLa.

Some will argue that CLa does not allow one to derive all relevant questions.
It may be impossible to obtain an answer to ?A directly, and possible to obtain
an answer to ?(A ∨ B) directly; and a negative answer to ?(A ∨ B) entails a
negative answer to ?A. By this reasoning, it seems that ?(A ∨ B) should be
derivable from ?A (at least for some B). We think that this argument does not
hold water. If (first case) a negative answer to ?(A ∨ B) is derivable from the
descriptive premises, then so is a negative answer to ?A. And if (case 2) there
are observational means that provide a negative answer to ?(A∨B) directly (and
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not to ?A), then there is something one can observe, or some measurement that
leads to a certain state of a measuring instrument, or some test the outcome of
which can be observed, and this something or state or outcome will have a name
in any language that is not utterly artificial. So, there will be a C from which
one may conclude ∼(A ∨ B) and hence C ⊃ ∼A will be among the descriptive
premises or will be derivable from them by CLa.

5 Deriving the Right Questions

In Section 3, we have presented the means to arrive at possible initial condi-
tions. These provide one with the starting questions, which one will try to
answer by relying on one’s full knowledge system. If one of the starting ques-
tions is answered positively, one has located an initial condition that holds true,
and hence has found an explanation. From the starting questions (and one’s
knowledge) one will derive further questions, aiming at a set of questions that
can be answered by observation and experiment, or by deduction from one’s
knowledge. This typical pragmatic process is often neglected in the literature.
This is a pity, especially as the process is in general radically different from
seeking possible initial conditions. Indeed, it almost never proceeds in terms
of the explaining theory (premises 1–4 in the simple example from Section 3).
Nearly always, different available knowledge has to be invoked, and all available
knowledge may be invoked. To answer a starting question, one may have to use
instruments (and hence rely on the theories describing their use), one may have
to set up experiments, relying on theories that may have nothing in common
with the theory used in the explanation, etc.

So, in finding out whether a possible initial condition is true, one will rely
on one’s whole knowledge system. There is one proviso. It is well-known and
already occurs in [16]: we should obtain the answers in a way that is independent
of establishing the truth of the explanandum. This is a simple and obvious
matter and we shall not comment on it any further.24

Let us move on to our logic, which (for reasons that will soon appear) will
be an adaptive logic. It extends CLq but is very different from it. Clearly, we
need a special premise-like rule for starting questions. If, for example, Pa is a
possible initial condition for explaining Qa, we introduce the starting question
as follows:

i ?Pa SQ 〈Pa, Qa〉

The far right of this line contains its condition. It is a couple of formulas
(in real life, statements) and suggests the following reading: an answer to the
question (here ?Pa) is relevant (and in this case exhaustive) for establishing the

24Actually, the proviso has a weak and a strong version. The weak version requires that
the explanandum is not used to establish the truth of the initial condition. The strong
version requires that there is a set of empirical results by which the truth of the explanandum
is established, and that no element in this set is used to establish the truth of the initial
condition.
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truth or falsehood of Pa, which is a possible initial condition for explaining Qa.
Conditions as the one of line i should not be confused with the conditions we
met in Section 3. The present conditions will play a central role for marking
certain lines of the proof. That a line is marked at a stage of the proof will mean
that the question derived at that line is not any more useful for answering the
connected why-question. The why-question may be read off from the second
element of the condition of the line—for line i above: why-Qa.

There is no need to remember, for the sake of the present proofs, the the-
ory that should be combined with (in our example) Pa in order to obtain an
explanation of Qa. This theory is identified in the proofs introduced in Section
3. The present endeavour is directed at obtaining an answer to ?Pa. We do,
however, have to remember that we are looking for an explanation of Qa. One
reason is that, in establishing the truth or falsehood of Pa, we have to take into
account the proviso mentioned in the second paragraph of this section, viz. that
one should not rely on the truth of Qa in order to establish the truth of Pa.

There is a further reason for explicitly mentioning the explanandum in the
condition. Our aim, in the present section, is not merely to apply CLq, but
rather to define an adaptive logic (that extends CLq and) that serves a specific
purpose, viz. to derive only those questions that are useful for arriving at an
explanation. Thus if it is found out, either by deductive means or from new
premises (answers to questions obtained from observation and experiment) that
Pa is false, then the above listed starting question proves useless, at that point
in time, for explaining Qa. The same applies to all questions derived from ?Pa
(in any number of steps). Once Pa is established to be false, no answer to any
derived question will change this. By way of bookkeeping, we shall mark all
those lines, viz. all lines that have 〈Pa, Qa〉 as their condition. As we shall need
several marks, these ones will be called E-marks.

Suppose that there are several possible initial conditions for Qa (as is the case
in the example from Section 3), and hence several starting questions. As soon
as one of the starting questions is answered positively, there is an explanation
of Qa, and hence it is not useful to continue searching for answers to the other
starting questions (that concern the explanandum Qa).25 Even the starting
question that has been answered in the positive ceased, by this very fact, to
be a useful question for finding an explanation Qa. It should not provoke any
empirical research or any attempt to derive one of its answers by logic. In
other words, as soon as an explanation is available, all questions relating to the
same explanandum should be marked. The marks indicating this will be called
A-marks.

Clearly, whether a question is useful with respect to a specific explanatory
aim, depends on one’s logical insights and factual knowledge. Both of these
change over time, the first by reasoning, the second by observation and ex-
periment. This is why the use of a question should be judged at a stage of
our inquiry. The latter can safely be identified with the stage of our proof,

25There is nothing wrong, of course, with searching for several explanations for Qa, but this
is not the standardly pursued aim and we shall stick to the latter.
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because the proof contains all relevant deductions as well as all new empirical
data (which are introduced as new premises). This shows that we need a third
kind of marks, which we shall call Q-marks. As soon as a question is answered,
it should not be pursued any more. So, lines containing answered questions
will be Q-marked.26 We shall see later that our proof format is very useful for
deciding whether a question is Q-marked or not.

We should add a final warning before presenting the promised logic. This
logic does not improve on the knowledge system (of a person or group X). If this
knowledge systems contains (∀x)((Rx&Sx) ⊃ Px) as well as (∀x)((Rx&∼Sx) ⊃
Px), then (∀x)(Rx ⊃ Px) is derivable from it, and hence, while ?Ra is relevant
for ?Pa, ?Sa actually is not. But if the knowledge system is given in this clumsy
way, our logic will not prevent one from deriving ?Sa (in two steps) from ?Pa.
The only way to prevent this (in an absolute sense), is by referring to derivability
(from the knowledge system). But as CL is undecidable, any such reference will
lead to a nice systematic definition, but not to a useful pragmatic tool.27

By now the reader should be sufficiently prepared to have a look at the
(generic) rules of the adaptive logic Q. We have a Premise rule, a (condi-
tional) rule for introducing starting questions, and an unconditional rule for
other derivations.

PREM If A ∈ Γ, then one may add to the proof a line consisting of

(i) the appropriate line number,
(ii) A,
(iii) “−”,
(iv) “PREM”, and
(v) ∅.

SQ Given a possible initial condition B for an explanation of A, as located
in an explanation seeking deduction, one may add to the proof a line
consisting of

(i) the appropriate line number,
(ii) B,
(iii) “−”,
(iv) “SQ”, and
(v) 〈B,A〉.

RU If A1, . . . , An `CLq B (n ≥ 0), and A1, . . . , An occur in the proof on the
conditions ∆1, . . . ,∆n respectively,28 then one may add to the proof a
line consisting of

(i) the appropriate line number,

26Listing the question in the condition (which would then be a triple) would involve a rather
useless repetition (even if it would agree with the standard proof format of adaptive logics).

27It is not difficult to devise an adaptive logic that eliminates irrelevant ‘connections’ from
the knowledge system. We fear, however, that another complication might scare off the reader.

28If no Ai is a question, all ∆i will be empty. Moreover, it is obvious in view of rule QD
that it is useless to include several questions among the Ai. So, if one proceeds sensibly, at
most one of the ∆i will be non-empty.
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(ii) B,
(iii) the line numbers of the Ai,
(iv) “RU”, and
(v) ∆1 ∪ . . . ∪∆n.

As explained above, the marking of lines in a proof is governed by a Marking
Definition. We shall, as promised, introduce three such definitions. The first
eliminates starting questions that received a negative answer. It ensures that
a line with condition 〈B,A〉 is marked if it turns out that B is not a possible
explanation of A. The second eliminates all questions aiming at finding an
explanation of A as soon as such explanation is available. The third Marking
Definition eliminates all questions that have been answered (whether positively
or negatively).

Definition 1 A line is E-marked at stage s iff, where 〈B,A〉 is its fifth element,
∼B is unconditionally derived in the proof at stage s.

Definition 2 A line i is A-marked at stage s iff, where 〈B,A〉 is its fifth ele-
ment, some line j in the proof has 〈C,A〉 as its fifth element, and C is uncon-
ditionally derived in the proof at stage s.

Definition 3 A line i is Q-marked at stage s iff, where ?A is its second element,
either A or ∼A is unconditionally derived in the proof at stage s.

In view of these definitions, we define two forms of derivability as is usual
for dynamic proofs. A line will be called marked iff it is E-marked, A-marked
or Q-marked. A formula is derived at stage s of a proof from Γ iff it is the
second element of a line of that proof and the line is non-marked at stage s. A
formula is finally derived at line i of a proof at a stage from Γ iff it is the second
element of line i, line i is non-marked at that stage, and will not be marked in
any extension of the proof. A formula is finally derivable from Γ iff it is finally
derived at some line in a proof at a stage from Γ.

Definition 4 Γ `Q A iff A is finally derivable from Γ.

All descriptive statements derived in the proof are finally derived. The final
derivability of a question indicates that none of its answers is derivable from the
premises29 that were introduced, that its starting question was not answered,
and that no explanation was obtained for the explanandum it is related to.
Whether more data (some of them answers to questions) are obtained later is a
different matter.

In most adaptive logics, we are interested in the finally derivable conse-
quences. This is the reason for inserting the usual definition above. But here
the matter is rather different: if the search for an explanation (of one or more

29We mean the original premises (one’s knowledge system at the start) as well as the ‘new’
premises (answers to questions).
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explananda) is successful (in that, for each of them, one of the starting ques-
tions was answered in the positive), all lines at which questions were derived
are marked. This indicates that no empirical inquiry and no deductive job is
left. Of course, the marked lines are still there. From them one may read off
the explanations.

As soon as a non-starting question ?A is answered, it will be clear from the
proof whether this has an effect on the question from which ?A was derived.
Thus, if the answer is A, and ?A was derived from ?(A ∨ B), then one simply
derives A∨B from A (by rule QA). If the answer is A and ?A was derived from
?B and A ⊃ B, then one derives B (by Modus Ponens, which is an analysing
rule). In other words, if an answered question is derived with the aim to answer
another question, then it will immediately be clear from the proof whether an
answer to the ‘premise’ question is derivable from the answer of the derived
question.

The natural strategy30 for Q-proofs was already discussed in the previous
section. If no direct observational answer for a question is available, we shall
either engage in the attempt to derive the answer from the descriptive premises,
or look for the shortest paths that bring us to a question for which an answer
can be obtained directly from observation. Roughly, the method for doing so is
similar to the strategy described in Section 3. Apart from this, the reader will
remember what was said in the previous section on ‘cutting off’ subtrees from
the tree of questions.

6 Putting Things Together

That the explanation seeking deduction was separated from the derivation of
questions is rather artificial, and actually was only introduced here for reasons
of exposition. Putting both kinds of proofs together is simple enough, provided
one makes clear that the theory from which one tries to obtain one or more
initial conditions, is clearly distinguished from the rest of our knowledge. Thus,
the lines of the proofs introduced in Section 3 may be intermingled with the lines
of the proofs from Section 5, provided one, for example, attaches a subscript to
each formula of the former proof.

We introduce this change to stress that there is no need to derive all possible
initial conditions (with respect to the explaining theory) before starting to derive
questions. If a possible initial condition is found, one may at once introduce the
starting question, and derive further questions from it. Questions will of course
not be given a subscript. This would be useless, as their purpose is obvious in
view of their condition and of the context.

Moreover, there is nothing wrong with deriving initial conditions that pertain
to different explanatory theories, or even to different explananda. Quite to the
contrary, this will only make it more transparent that answering some derived

30Given the complexity and the novel character of the adaptive logic Q, we shall not attempt
to push the strategy in the proof itself this time.
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questions is necessary (or sufficient) for explaining a phenomenon in one or
several ways, or for explaining several phenomena.

There is no danger that logics get mixed up by deriving both initial condi-
tions and questions within the same proof. The conditional lines that contain or
lead to possible initial conditions, are CL-lines in disguise—we have sufficiently
stressed that above. They are all clearly distinguished by a subscript, as are
all other consequences of the explaining theories. Moreover, it is easily verified
that all descriptive formulas derived in those proofs are CLa-consequences of
the premises. Hence, they may be invoked for deriving questions. The condi-
tional lines that contain questions bear a somewhat looser relation to CL (that
we shall not try to characterize here), but then their form and their function in
the proofs is sufficiently distinct to avoid all confusion.

7 Some Further Pragmatic Aspects

In the two previous sections, we have tacitly supposed that, if an answer to a
question can be obtained by observation or experiment, then this answer is ob-
tained and added to the proof. However, this supposition unjustifiably reduces
important pragmatic aspects of explanation to unproblematic side-aspects of
the search for explanations. Given a set of questions that can be answered by
observation or experiment, one faces a serious decision problem: Which obser-
vations and experiments will be carried out? Clearly, this cannot be settled
by logic. Nevertheless, the logic Q provides an important tool for reaching a
decision.

The central considerations for making the decision concern available means.
Some questions may be answered by observation, provided one is in the right
spot at the right time, or one is able to get there. Other questions may be
answered by the outcome of an experiment, provided one has (or can afford to
provide oneself with) the required materials, instruments, competence to handle
the instruments, etc. It is not difficult to see that economic considerations are
essential here: buying objects, hiring people, and getting the funding for it.

Sometimes, the means to answer the questions are standard. Often, and
especially for the most interesting questions, they are not. Galileo’s experiment
to ‘discover’ the laws of the free fall is an excellent example.31 There were no
stopwatches and no electronic eyes. The ingenuity by which he managed, relying
on heavy theoretical presuppositions, to rephrase the problem of the free fall
in such a way that the inclined plane experiment would answer it, and next
managed to combine ears and eyes and hand and a flow of water to measure
time, can only provoke awe. The reasoning that is behind this ingenuity is
heavily relying on logic, but unfortunately is wholly beyond the scope of the
present paper. Nevertheless, it is quite clear that generating questions is not
the toughest problem.

31This question is not so different from the ones we have been dealing with in the present
paper—see Section 8.
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Consider a scientist X and his available (economic and intellectual) means.
Given that X has derived all (or some of) the right questions, which decision
should X take with respect to observation and experiment? The answer is less
simple than one might expect. Suppose that Pa ∨ Ra and Sa are possible
explanations of Qa, that the questions ?Pa ∨ Ra and ?Sa were introduced,
and that the questions ?Pa and ?Ra were derived from ?Pa ∨ Ra. Suppose
moreover that there is no direct test for answering ?Pa ∨ Ra, that the test for
?Pa is inexpensive, the one for ?Sa expensive, and the one for ?Ra extremely
expensive. If the inexpensive test for ?Pa delivers a positive answer, the problem
is solved. However, if its answer is negative, one will presumably opt for a test
for ?Sa. If that one is positive, the first test was, with hindsight, useless.

As the decision problem may be complex, it is necessary to have a clear view
on its different aspects, and precisely this may be provided by the logic Q. As
we have seen before, the proof makes explicit (in as far as this is not explicit
from the structure of the questions themselves), the logical relations that hold
between the answers to the questions. This may easily be turned into a search
tree, from which one may read off the use of a positive or negative answer to a
derived question for answering a starting question (including cutting off paths
for answering it). This illustrates the importance of deriving questions from the
starting questions. The search path (or paths) for answering the why-question
may contain several bifurcations. Each of these requires that one or more derived
questions are answered. Let us stress again that this logical information does
not in itself enable one to make the best decision with respect to observation
and experiment. Nevertheless, it provides the required paths on which economic
and similar considerations may be applied.

We briefly comment on the advantage of pursuing several why-questions at
the same time (possibly even in the same proof). With a few (sometimes noto-
rious) exceptions, scientists work on clusters of connected problems rather than
on a single problem. This is to some extend a matter of taking opportunities—a
result that is useless for one problem may be useful for another problem. Often,
however, it is also more efficient to work on several problems at the same time
(it makes one more alert, causes one to have more ideas, etc.) The matter is
not different for why-questions. From a survey of the questions that pertain to
different explanations, it may appear that some question is central for several
explanations. Even if answering it requires an expensive experiment, the fact
that its outcome is crucial for several explanations may influence the decision
to stage the experiment.

8 Conclusion and Open Problems

It goes without saying that the logics we have presented require a decent meta-
theoretic study and need to be extended in several respects. And we hope to
have convinced the reader that the logic deserves that metatheoretic study and
those extensions. As the first will not interest most of the readers of the present
Festschrift, we briefly comment on the extensions, especially on extensions that
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are necessary in view of the claims made by Matti Sintonen in writing.
Our logic of explanation allows only for singular questions and for singular

new premises (answers to questions). But clearly, the search for explanations
may lead to the formulation (and acceptance) of new theories. Sintonen points
this out in [27]. There is no need, of course, for having a single logic that
takes care of both kinds of problems. This is fully in line with Hintikka and
Halonen’s warning, in [19, p. 196], for a mixture of theorizing and explanation.
Moreover, one should distinguish between obtaining some relevant empirical
generalizations, and obtaining theories that may be highly abstract and theo-
retical in nature. It seems sensible to require that the search for an explanation
should, in simple cases, provide one both with an initial condition and with
the explanatory generalizations. But to devise a full blown theory is clearly a
matter of theorizing alone. Of course, it is related to why-questions. However,
it never concerns the explanation of some singular statement, but the expla-
nation of whole sets of connected singular statements, and the explanation of
generalizations.

So, while real theorizing should remain outside the picture, it is not difficult
to see how one may extend our logic in such a way that both an initial condition
and some required generalizations are obtained. Indeed, an adaptive logic of
induction is available—see [9]. It handles background knowledge, and generates
and rejects new generalizations, and it does all this exactly as it should.

This logic of induction does not allow one to withdraw premises (theories or
data), except when they are falsified by the data. This clearly is a disadvantage.
Of course, one might introduce a bracketing rule, where bracketed premises are
those for which one has a reason to (were it temporarily) withdraw them. We
think, however, that such reasons must be made explicit, and that it often is
the result of (possibly complex) reasoning, which also must be made explicit.
The simplest reason to withdraw A is that, after A was introduced, one obtains
direct empirical evidence for ∼A. (We refer to situations in which ∼A is a direct
conclusion of experience.) On the adaptive approach, ∼A will be added to the
premises, and an index will be attached to each premise, where the indices
indicate the weight of the evidence for a premise. The adaptive logic should
make sure that A and its consequences are neither derivable nor have any effect
on the conclusions that still are derivable. If there is no direct empirical evidence
for ∼A, A is withdrawn because other data or theories were obtained and either
contradict A or make it doubtful. The adaptive logic should again prevent A
from having any effect on the consequence set. Moreover, in this case it should
make explicit the reasoning that leads to the rejection of A. Such adaptive
logics are available: see [31] for some inadequate solutions of the problem and
[30] and [7] for some adequate ones.

Two further complications concern (i) the case in which a theory turns out
to be inconsistent, but no consistent and empirically satisfying alternative is
available, and (ii) the case in which a theory is falsified but no empirically
satisfying alternative is available. The first problem is amply documented in
the literature (for example [14], [25], [26], [29], [24], [22] and [23]) and the
second receives growing attention (for example [21]). To extend our logic in
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such a way that it can cope with those complications is rather simple in view of
the results on inconsistency-adaptive logics (actually, the best studied type of
adaptive logics). The extension may be carried out along the lines of [8], which
extends Hintikka’s theory of the process of explanation in such a way that it
can handle inconsistent data and theories.32
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