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SUPERVENIENCE: ITS LOGIC AND ITS INFERENTIAL ROLE IN
CLASSICAL GENETICS∗

BERT LEURIDAN†

Abstract
Supervenience is mostly conceived of as a purely philosophical con-
cept. Nevertheless, I will argue, it played an important and very
fruitful inferential role in classical genetics. Gregor Mendel as-
sumed that phenotypic traits supervene on underlying factors, and
this assumption allowed him to successfully predict and explain the
phenotypical regularities he had experimentally discovered. There-
fore it is interesting to explicate how we reason about supervenience
relations.

I will tackle the following two questions. Firstly, can a reliable
method (a logic) be found for inferring supervenience claims from
data? Secondly, can a reliable method (a logic) be found to em-
pirically test supervenience claims? I will answer these questions
within the framework of the adaptive logics programme.

1. What is supervenience?

Supervenience is a concept that is well-known in present-day analytic philos-
ophy, in intellectual domains as different as ethics, aesthetics, metaphysics,
philosophy of science, etc. It is generally thought of as being a relation be-
tween (sets of) properties. A set of properties A supervenes one a set of
properties B if and only if any two objects that are B-indiscernible (i.e., ex-
actly alike according to the properties in B) are also A-indiscernible (see
Kim, 1993a; Savallos and Yalçin, 1995). For example, to believe that the
moral is supervenient on the natural is to believe that if two objects (persons,
acts, states of affairs, . . . ) are alike in all natural respects, they are also alike
in all moral respects (Kim, 1984, 57).
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Usually, A and B are closed under Boolean property forming operations
(mostly complementation, conjunction and disjunction).1 Some of their
members are called maximal properties (Kim, 1984, 58–59). These are the
strongest consistent properties constructible in them. Maximal properties are
jointly exhaustive and mutually exclusive (so every object must have one and
only one of them). For example, suppose that B is the Boolean closure of
{P, Q, R}. Then the eight B-maximal properties are (P ∧Q∧R), (P ∧Q∧
∼R), . . . , (∼P ∧∼Q∧∼R). Two objects are B-indiscernible if and only if
they have the same B-maximal property. So the definition of supervenience
can be stated more precisely as

Definition 1 : A supervenes on B if and only if for any x and y if x and y
have the same B-maximal property then x and y have the same A-maximal
property.

There are many different concepts of supervenience. The definition just
given concerns protosupervenience (Bacon, 1995) or de facto supervenience
(McLaughlin, 1995). Other concepts, like weak supervenience or strong su-
pervenience can be obtained from it by adding modal strength (see McLaugh-
lin (1995) for definitions of these concepts). In the rest of this paper, when
I use ‘supervenience’ or ‘supervenes’ this should be read as ‘de facto super-
venience’ or ‘protosupervenes’.

Protosupervenience is not a popular concept. Many philosophers think
it’s too weak to express interesting metaphysical claims. Because they lack
modal strength, relations of protosupervenience do not carry over to other
possible worlds. I admit that this is a serious flaw in metaphysical dis-
cussions. Nevertheless, de facto supervenience deserves our attention as it
played an important inferential role in classical genetics.

Supervenience has two crucial features: determination and multiple real-
izability. Definition 1 states that once an object’s B-properties are fixed, it’s
A-properties are fixed too. In other words, the B-properties determine the A-
properties. But definition 1 does not rule out the possibility that two objects
are A-indiscernible and yet are B-discernible. In other words, it explicitly
allows for the multiple realizability of A-properties by B-properties.

1 So, for example, if G ∈ A and H ∈ A, then also ∼G ∈ A, G ∧ H ∈ A, G ∨ ∼H ∈

A, . . . Note, however, that the metaphysical status of disjunctive and of negative properties
has frequently been debated (see Kim, 1993a).
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2. Mendel’s experimental treatment of heredity and hybridization

For centuries, philosophers, scientists and breeders paid much attention to
the problems of heredity and hybridization. At the end of the 18th century
and especially in the 19th century, research into these phenomena became
academically institutionalized, partly due to the huge economic advantages
it promised to offer. (Orel, 1996, 7–35) In the 1850s and 1860s, Gregor
Mendel (1822–1884) studied heredity and hybridization both experimentally
and theoretically. He presented his findings to the Brünn Natural History
Society in 1865. In 1866 his paper, “Versuche über Pflanzen-Hybriden”
(Mendel, 1933), was published.2 Mendel’s results remained largely unno-
ticed until they were ‘rediscovered’ by Carl Correns and by Hugo de Vries in
1900.3 From then onwards they were rapidly circulated throughout Europe
and the States, largely due to William Bateson’s proselytism (Orel, 1996,
282–293).

Mendel’s experiments were very fruitful compared to those of his prede-
cessors. This was partly due to the following methodological decision: in-
stead of studying the overall similarities and differences between subsequent
generations, he focussed on pairs of discrete traits (mainly in Pisum or pea
plants). He selected seven pairs of opposing traits (for instance long stems
and short stems, or green and yellow pods, or round and wrinkled seeds) and
in each experiment he considered only a definite number of them. (Stern and
Sherwood, 1966, 5–8)

This methodological decision was very fruitful (Meijer, 1983, 128–129). It
allowed him to discover a set of fairly simple phenotypic regularities. First,
he found out that if opposing traits are united by fertilization, only one of
them is manifest in the resulting hybrids (e.g., after crossing true-breeding
long-stemmed plants with short-stemmed ones, all hybrids, now called the
F1-generation, have long stems).4 This was the case for all seven pairs of
traits. The manifest traits he called dominating, the opposing ones recessive
(Stern and Sherwood, 1966, 9–10). Secondly, he found out that after selfing

2 In 1966, Curt Stern and Eva R. Sherwood published a very good translation: “Experi-
ments on Plant Hybrids” (in Stern and Sherwood, 1966, 1–48).

3 The prevailing story about this dramatic ‘rediscovery’ is not very veracious. On the
one hand, it is most likely that Hugo de Vries knew about Mendel’s work before 1900. On
the other hand, both de Vries and Correns seem to have accepted only part of Mendel’s
explanation. (see Orel, 1996, 284, 289)

4 A true-breeding plant is a plant that only produces offspring with the same traits after
selfing (in contrast to hybrid plants, cf. infra). Selfing or self-fertilizing means that seeds are
fertilized with pollen from the same plant (either naturally or artificially). Pisum plants are
self-fertilizing in nature.



4 BERT LEURIDAN

these hybrids, the recessive traits reappear in the hybrid progeny (now called
the F2-generation) along with the dominating traits. The average ratio of
dominant traits to recessive traits in his experiments approximated 3:1 (Stern
and Sherwood, 1966, 10–13). Thirdly, selfing the F2-generation yielded the
following results. Plants with the recessive trait begot recessive progeny
only. Of the dominant plants, only one third yielded exclusively dominant
progeny. Like the recessive progeny, this was true-breeding. The remain-
ing dominant plants from the F2-generation behaved like the F1-hybrids, i.e.
they begot both dominant and recessive progeny with an average ratio of
3:1 (Stern and Sherwood, 1966, 14–15). Fourthly and finally, experiments
involving more than one pair of opposing traits (now called multihybrid ex-
periments) indicated that

the behavior of each pair of differing traits in a hybrid associa-
tion is independent of all other differences in the two parental
plants. (Stern and Sherwood, 1966, 22)

Mendel’s methodological decision not only allowed him to discover these
phenotypic regularities. It also helped him to find a simple explanation. It
consisted of two main parts. On the one hand he assumed that phenotypic
traits are caused by some underlying factors, which he sometimes called in-
nere Beschaffenheit, other times Factoren or Anlagen (see Mendel, 1933,
23–24). On the other hand, he made assumptions about the behavior of
these factors, i.e. about how they are transmitted from generation to genera-
tion. In the beginning of the 20th century, these assumptions would be called
‘Mendel’s Laws’.

In the next section, I will pursue the relation between traits and their un-
derlying factors. Mendel’s laws I will shortly handle in section 9.

3. The relation between factors and traits

Mendel assumed that observable traits were caused or determined by un-
observable factors. This approach was certainly not new. Since antiquity,
philosophers and scientists have searched for mechanisms underlying hered-
itary phenomena. But Mendel’s focuss on discrete traits gave rise to a rela-
tively simpler picture. Now what exactly was the relation between traits and
their underlying factors?

For ease of reference, let me introduce four predicates: P = ‘has the dom-
inating trait’, P ′ = ‘has the recessive trait’, P = ‘has the potential for the
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dominating trait’, and P′ = ‘has the potential for the recessive trait’.5 With
these four predicates it is fairly easy to express the relation between traits
and their underlying factors (see Stern and Sherwood, 1966, 23–32).

(3.1) (∀x)((P′x&∼Px) ⊃ P ′x)

In other words, if a plant has the potential for the recessive trait but not
for the dominating one, it will have the recessive trait. Dominating traits
can be realized in two different ways. The next two formulas concern what
Mendel called ‘constant dominating traits’ and ‘hybrid traits’ respectively
(Stern and Sherwood, 1966, 16). Hybrid and constant dominating traits are
observationally indistinguishable.6

(3.2) (∀x)((Px&∼P
′x) ⊃ Px)

(3.3) (∀x)((Px&P
′x) ⊃ Px)

This list of formulas exhausts all possible cases, since every plant has to have
at least one of these potentials:

(3.4) ∼(∃x)(∼Px&∼P
′x)

From this short exposition it is clear what is the relation between traits and
factors. A plant’s internal make-up determines its observable traits. But the
latter (at least the dominating ones) are multiply realizable. In other words,
traits supervene upon factors.

5 Note that Mendel did not typographically distinguish between traits and factors. Note
also that Mendel typically used small letters to refer to recessive traits. I deviate from this
convention in order to dovetail with the language of first order predicate logic (cf. infra).

6 Note that I do not refer to diploidy (the fact that the somatic cells of pea plants contain
two copies of every chromosome and hence also two alleles of every gene, one of which
is inherited from the father, the other from the mother) here. Although his theory is often
presented in terms of pairs of factors or alleles in modern genetics textbooks (cf. Klug et al.,
2006, 41), Mendel was not wedded to this idea. Most plausibly, he believed that pea plants
received one factor from each parent, but he thought they were uncountable fluids, rather than
countable particles. If the two factors were identical, he regarded them as one (cf. mixing
water with water yields . . . water). Only if the factors were different they existed in pairs (cf.
after mixing water and oil you still end up with two different fluids). (Meijer, 1983, 139–142,
147)
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4. Specific claims of supervenience

My use of the concept of supervenience in the last section was rather unusual.
Claims like ‘the mental supervenes on the physical’ or ‘the moral supervenes
on the natural’ or ‘properties of wholes supervene on the properties of their
parts’ have been frequently debated during the last three centuries. They are
very general and abstract, and they seem inappropriate for empirical testing.
Mendel’s claims that ‘trait such-and-so supervenes on factors such-and-so’,
by contrast, were highly specific and could be experimentally tested (at least
indirectly — see section 9). So it might be objected that I wrongly applied
the concept of supervenience. For two reasons, however, such an objection
would be undeserved.

On the one hand, supervenience claims do not have to be general. Tradi-
tional definitions, such as definition 1, refer to sets of properties A and B
without requiring that they cover a complete ontological level (such as ‘the
mental’ or ‘the physical’). This demand may be added (in which case super-
venience claims are indeed quite unsuitable for empirical testing), but this is
not necessary.

On the other hand, specific supervenience claims may also be valuable.
According to Jaegwon Kim,

the only direct way of explaining why a general superve-
nience relation holds . . . is to appeal to the presence of spe-
cific supervenience relations — that is, appropriate correla-
tions between specific supervenient properties and their su-
pervenient bases. . . . Moreover, such correlations seem to
be the best, and most natural, evidential ground for super-
venience claims — often the only kind of solid evidence we
could have for empirical supervenience claims. (Kim, 1993b,
159, his italics)7

So far, I have tried to show that supervenience claims implicitly played a
role in scientific practice, more specifically in the work of Gregor Mendel. I
have also shown that his supervenience claims differed from those tradition-
ally encountered in the philosophical literature. They were specific, rather
than general. In the rest of this paper, I want to address the following two
questions:

(1) Is it possible to develop a reliable method for inferring specific su-
pervenience claims from a set of data?

(2) Is it possible to develop a reliable method for testing specific super-
venience claims by confronting them with the data?

7 See also Kim (1988, 122–123).
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To that end, I will present two logics of supervenience that deal with spe-
cific supervenience claims. These will be written as PS

{δ}
{π1,...,πm}, in which

π1, . . . , πm and δ are primitive predicates of adicity 1. They must be read
as ‘{δ} supervenes on {π1, . . . , πm}’. Contrary to what is customary in
the literature about supervenience, I do not close these sets under Boolean
operations (in section 5, the reader will notice that this poses no technical
problems).

5. Maximal Properties, Carnapian Divisions and the Logical Form of Su-
pervenience Claims

Before I present the logic of supervenience I will shortly dwell on the log-
ical form of supervenience claims. In view of definition 1, I will start with
maximal properties or predicates, making use of the Carnapian concept of
‘division’ (Carnap, 1951).

Definition 2 : A is a basic formula (a BF-formula) iff the following condition
is fulfilled:

(a) A consists of a primitive predicate of adicity 1 and one variable,8 or
(b) A consists of a negation sign, a primitive predicate of adicity 1 and

one variable.

So Px, Ry, and ∼Qz are BF-formulas if P, Q and R are primitive.

Definition 3 : B is a conjunction of basic formulas (a CBF-formula) iff the
following four conditions are fulfilled:

(a) B is the conjunction of one or more BF-formulas,9

(b) all of its conjuncts are different,
(c) none of its conjuncts is the negation of another conjunct, and
(d) all of its conjuncts contain the same variable.

So (Rx∧∼Qx) is a CBF-formula, whereas (Px∧Px), (Px∧∼Px) and
(Px ∧ ∼Qz) are not.

8 A predicate is primitive in a certain language iff it cannot be defined with the help of
other predicates of that language.

9 If there is only one BF-formula, the resulting CBF-formula is not really a conjunction.
Nevertheless, I allow it as a limit case.
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CBF-formulas can be abbreviated by defining CBF-predicates. For exam-
ple, one can introduce a predicate M and stipulate that ‘Mα’ means ‘(Pα∧
(Rα ∧ ∼Qα))’. CBF-divisions are special sets of such CBF-predicates.

Definition 4 : Suppose that M1, M2, . . ., Mk are k CBF-predicates (k ≥ 2).
These predicates form a CBF-division iff the following conditions hold (CL

stands for standard classical logic):
(a) `CL (∀α)(M1α ∨ M2α ∨ . . . ∨ Mkα).
(b) For all Mi and Mj (i 6= j): `CL (∀α)∼(Miα ∧ Mjα).

The members of a CBF-division are jointly exhaustive and mutually ex-
clusive. Moreover, all of them are consistent (see the third condition of defi-
nition 3). This means that they denote maximal properties.

Now we have the full formal apparatus to fix the logical form of specific
supervenience claims. Let PS

A
B stand for ‘A supervenes on B’ (in which

A is a set containing one primitive predicate of adicity 1 and B is a set of
(one or more) such predicates). Let S be the set of all such supervenience
claims (relative to some language).10 Where ΠB = {M1, . . . , Mn} and
ΠA = {M ′

1, M
′
2} are some B- and A-CBF-division respectively, this comes

down to: S contains all formulas of the form:

∧
{(∀α)(Miα ⊃ M ′

1α) ∨ (∀α)(Miα ⊃ M ′
2α)|Mi ∈ ΠB

and M ′
1, M

′
2 ∈ ΠA}

This formula clearly shows that supervenience claims in fact are clusters
of inductive generalizations. They are inductive generalizations, since it is
claimed, for each B-maximal property Mi, that all Mi-objects have some
other property in common. They are clusters of such generalizations since
our faith in each of them is closely tied to our faith in the others. Suppose we
would find out that two objects have the same B-maximal property Mi, yet
are A-discernible. This would lead to the conclusion that A does not super-
vene on B. But then our trust in each of the other inductive generalizations
(viz. those regarding the other B-maximal properties) would erode too.

10 Note that I just restricted the members of S to supervenience claims whose supervening
set is a singleton. In spite of this restriction, I can still express more complex claims of
supervenience, because the following holds in general: PS

{δ1,...,δn}

{π1,...,πm} iff PS
{δ1}

{π1,...,πm} ∧

PS
{δ2}

{π1,...,πm} ∧ . . . ∧ PS
{δn}

{π1,...,πm} (I leave it to the reader to check this fact).
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6. The Adaptive Logics Programme

The logics of supervenience that I will present below are adaptive. Adap-
tive logics have some very important advantages. Firstly, they have a dy-
namic proof theory that more closely resembles actual reasoning processes
than does that of e.g. classical logic. They display an internal dynamics:
in an adaptive proof, conclusions may be drawn on certain conditions and
they may again be dropped if these conditions are violated. Secondly, the
semantics and the meta-theory of the adaptive logics guarantee that given
an adaptive logic and a premise set, the set of final consequences is fixed
(Batens, 2004). For these reasons, adaptive logics provide a suitable concep-
tual framework for addressing the questions from page 6.

In this section, I will give a rough sketch of the adaptive logics programme
and of the standard format for adaptive logics. For a more extensive intro-
duction, see Batens (2001, 2004). Since supervenience claims can be con-
ceived of as clusters of inductive generalizations, I will frequently refer to
IL

r and IL
m, the adaptive logics of induction that were presented in Batens

and Haesaert (2001).
An adaptive logic interprets a premise set ‘as normally as possible’. What

counts as normal or abnormal depends on the specific adaptive logic one is
dealing with. The logics of induction interpret a premise set as uniformly as
possible. How they do this will become clear in the rest of this section.

All (flat) adaptive logics AL can be characterized by a triple: a lower limit
logic, a set of abnormalities and a strategy.11 The lower limit logic (LLL)
is a monotonic logic. It is the stable part of AL. From a proof theoretic
point of view, the lower limit logic delineates the rules of inference that hold
unconditionally. From a semantic point of view, the adaptive models of the
premise set Γ are a subset of its lower limit models. Therefore, CnLLL(Γ) ⊆
CnAL(Γ). IL

r and IL
m both have CL as their lower limit logic.

The set of abnormalities (Ω) consists of the formulas, characterized by
some logical form, that are presupposed to be false, unless and until proven
otherwise. In the case of IL

r and IL
m, the abnormalities are formulas of the

form ∃A∧∃∼A in which A is purely functional (i.e. no individual constants,
propositional letters or quantifiers occur in it) and in which ∃A abbreviates
the existential closure of A.

The lower limit logic and the set of abnormalities Ω together specify an
upper limit logic (ULL). The ULL is obtained by adding to the characteri-
zation of the lower limit logic an axiom, a semantic clause, or an inference
rule that rules out abnormalities. So the semantics of the upper limit logic

11 Flat adaptive logics, unlike prioritized ones, treat all premises on a par. I will not discuss
prioritized adaptive logics here; see Batens (2004).
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consists of the LLL-models that verify no abnormality. The upper limit logic
of IL

r and IL
m is UCL: the result of extending CL with the axiom ∃A ⊃ ∀A.

In the UCL-models, the interpretation of every predicate of adicity n is either
the empty set ∅ or the set of all n-tuples of members of the domain — they
are called the uniform models.

An adaptive logic presupposes all abnormalities (all A ∈ Ω) to be false,
unless and until proven otherwise. An abnormality is true if it is LLL-
derivable from the premises. However, it is possible that a set of premises
LLL-entails a disjunction of abnormalities, but none of its disjuncts.

Call a disjunction of abnormalities a Dab-formula and write it as Dab(∆),
in which ∆ is a finite subset of Ω. The Dab-formulas that are LLL-derivable
from Γ are called the Dab-consequences of Γ. Dab(∆) is a minimal Dab-
consequence of Γ iff Γ `LLL Dab(∆) and there is no ∆′ ⊂ ∆ such that
Γ `LLL Dab(∆′).

If Dab(∆) is a minimal Dab-consequence of Γ, then it is LLL-derivable
that some member of ∆ behaves abnormally, but not which one does. How an
adaptive logic treats these minimal Dab-consequences depends on its adap-
tive strategy. The two adaptive strategies that are mostly used are Reliability
and Minimal Abnormality. They each lead to a different semantics and proof
theory. (In the following paragraphs, AL

r and AL
m denote adaptive logics

having Reliability and Minimal Abnormality as their strategy respectively).
The AL-models of a premise set Γ are a subset of its LLL-models, but both

strategies have a different selection criterion. Let Ab(M) = {A | A ∈ Ω and
M |= A} and let U(Γ) = {A | A ∈ ∆ for some minimal Dab-consequence
∆ of Γ}.

Definition 5 : A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 6 : Γ |=AL
r A iff A is verified by all reliable models of Γ.

Definition 7 : A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M′ of Γ such that Ab(M′) ⊂ Ab(M).

Definition 8 : Γ |=AL
m A iff A is verified by all minimally abnormal models

of Γ.

The proof theory of adaptive logics is dynamic. Formulas that are derived
at some stage s of a proof may be considered as not derived at some later
stage s′ (where adding a new line to the proof brings it to the next stage). The
motor for this dynamics is given by the Derivability Adjustment Theorem,
which describes the relation between the lower limit logic, the upper limit
logic and the set of abnormalities.
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Theorem 1 : Γ `ULL A iff there is some finite ∆ ⊂ Ω such that Γ `LLL A ∨
Dab(∆) (Derivability Adjustment Theorem)

Proof. See Batens (2004). �

If Γ `LLL A ∨ Dab(∆) then either A is LLL-derivable from Γ or some
abnormality (some member of ∆) is true. Since adaptive logics presuppose
abnormalities to be false, unless and until proven otherwise, one may derive
A from Γ provided that the members of ∆ behave normally. How this last
sentence is to be interpreted again depends on the adaptive strategy.

The lines of a dynamic proof consist of five elements: (i) a line number,
(ii) a derived formula A, (iii) the line numbers of the formulas from which
A is derived, (iv) the rule by which A is derived, and (v) the set of formulas
that should behave normally (depending on the strategy chosen) in order for
A to be so derivable. In an adaptive proof, the following rules may be used
(I list them in generic form):

• PREM : if A ∈ Γ, then one may add a line consisting of (i) the
appropriate line number, (ii) A, (iii) “ – ”, (iv) “PREM”, and (v) ∅.

• RU : If B1, . . . , Bm `LLL A and B1, . . . , Bm occur in the proof
on the conditions ∆1, . . . , ∆m respectively, then one may add a line
consisting of (i) the appropriate line number, (ii) A, (iii) the line num-
bers of the Bi, (iv) “RU”, and (v) ∆1 ∪ . . . ∪ ∆m.

• RC : If B1, . . . , Bm `LLL A ∨Dab(Θ) and B1, . . . , Bm occur in the
proof on the conditions ∆1, . . . , ∆m respectively, then one may add
a line consisting of (i) the appropriate line number, (ii) A, (iii) the
line number of the Bi, (iv) “RC”, and (v) Θ ∪ ∆1 ∪ . . . ∪ ∆m.

Lines in a dynamic proof may be marked. These marks may change from
one stage of the proof to the next because marked lines may be unmarked
again. The second element of a marked line is not considered as derived
from the premises. Marking is governed by a marking definition that is char-
acteristic for the adaptive strategy. Together with the rules and the definition
of (final) derivability this marking definition governs the proof theory.

At any stage of the proof, zero or more Dab-formulas are LLL-derived
from the premises. Some of them are minimal at that stage. Let Us(Γ) be
the union of all ∆ for which Dab(∆) is a minimal Dab-consequence at stage
s. So Us(Γ) is the set of unreliable formulas at stage s. Let Φ◦

s(Γ) be the set
of all sets that contain one disjunct out of each minimal Dab-formula at stage
s. Let Φ?

s(Γ) contain, for any ϕ ∈ Φ◦
s(Γ), the set CnLLL(ϕ) ∩ Ω. Finally,

let Φs(Γ) contain those members of Φ?
s(Γ) that are not proper supersets of

other members of Φ?
s(Γ) (see Batens, 2001).

Definition 9 : Marking for AL
r: Line i is marked at stage s iff, where ∆ is

its fifth element, ∆ ∩ Us(Γ) 6= ∅.
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Definition 10 : Marking for AL
m: Line i is marked at stage s iff, where A is

its second element and ∆ is its fifth element, (i) there is no ϕ ∈ Φs(Γ) such
that ϕ ∩ ∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line k that has A as
its second element and has as its fifth element some Θ such that ϕ∩Θ = ∅.

Given these marking definitions and the generic rules, derivability may
seem rather problematic for adaptive logics. Nevertheless both derivability
at a stage and final derivability are well defined.

Definition 11 : A formula A is derived at stage s of a proof from Γ iff A is
the second element of a non-marked line at stage s.

Definition 12 : A is finally derived from Γ on line i of a proof at stage s
iff (i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) any extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

All formulas that can be finally derived at some stage s are finally deriv-
able.

Definition 13 : Γ `AL A (A is finally derivable from Γ) iff A is finally derived
on a line of an AL-proof from Γ.

In section 8.2, I will present an example of a dynamic proof in which the
difference between derivability at a stage and final derivability, as well as the
difference between the reliability and the minimal abnormality strategy will
be illustrated.

7. The logic of supervenience

Supervenience claims can be regarded as clusters of inductive generaliza-
tions (see page 8). This suggests that the logic of supervenience can be ob-
tained by simply modifying the logics of induction ILr and ILm. The result
of this modification I will call LPS: the logic of protosupervenience.

ILr and ILm are characterized as follows: (i) they have CL as their lower
limit logic, (ii) they interpret a premise set ‘as uniformly as possible’ (i.e.,
abnormalities are formulas of the form ∃A ∧ ∃∼A, in which A is a purely
functional formula), (iii) their upper limit logic UCL is CL together with the
axiom ∃A ⊃ ∀A, and (v) their adaptive strategy is either reliability (ILr) or
minimal abnormality (ILm).
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7.1. LPS

LPS presupposes that negations of supervenience claims are false, unless
and until proven otherwise. Such negations state that there are two or more
individuals that are B-indiscernible yet A-discernible. So the set of abnor-
malities is

Ω = {∼PS
A
B | PS

A
B ∈ S}.

In other words, where ΠB and ΠA are defined as on page 8 and α denotes a
variable, the members of Ω are equivalent to formulas of the form

∨
{(∃α)(Miα ∧ M ′

1α) ∧ (∃α)(Miα ∧ M ′
2α)|Mi ∈ ΠB

and M ′
1, M

′
2 ∈ ΠA}

The upper limit logic should presuppose that no abnormality is true. So it
can be obtained by adding to CL the axiom-scheme (abbreviated as PS

A
B)

∧
{(∀α)(Miα ⊃ M ′

1α) ∨ (∀α)(Miα ⊃ M ′
2α)|Mi ∈ ΠB

and M ′
1, M

′
2 ∈ ΠA}.

This upper limit logic, call it DCL, has an interesting semantics, which
strongly resembles the UCL-semantics. The DCL-models are not uniform,
but dual. They divide their domain D in two parts (D′ and D − D′) such
that the interpretation of every primitive predicate of adicity 1 is either D ′ or
D −D′.12

As was made clear in section 6, it has to be shown that DCL is connected
in the right way to the lower limit logic CL and the set of abnormalities Ω
by the Derivability Adjustment Theorem. I will do this in section 7.4, after I
have presented the DCL-semantics in more detail.

7.2. The semantics of DCL

Let L be the usual predicative language-schema. Let S be the set of senten-
tial letters, C and V the set of letters for individual constants and variables
respectively, F the set of open and closed formulas, and P r the set of letters

12 Note that UCL-models are a subset of the DCL-models, viz. the models for which
D

′ = D.
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for predicates of rank r. To simplify the semantic handling of the quanti-
fiers, I extend L to the pseudo-language schema L+ by introducing a set of
pseudo-constants, O, that has at least the cardinality of the largest model one
wants to consider. Let W+ be the set of wffs (closed formulas) of L+.

A DCL-model is a triple M = 〈D, D′, v〉 in which D is a set, D′ ⊆ D,
and v is an assignment function defined by:

D1.1 v : C ∪ O 7→ D (where D = {v(α)|α ∈ C ∪ O})
D1.2 v : S 7→ {0, 1}
D1.3 v : P1 7→ {D′, D − D′}
D1.4 v : Pr 7→ ℘(Dr) (the power set of the r-th Cartesian product of D,

for r > 1)

The valuation function vM : W+ 7→ {0, 1} determined by the model M
is defined as for CL:

D2.1 vM : F 7→ {0, 1}
D2.2 where A ∈ S, vM(A) = v(A)
D2.3 vM(πα1 . . . αr) = 1 iff 〈v(α1), . . . , v(αr)〉 ∈ v(π)
D2.4 vM(α = β) = 1 iff v(α) = v(β)
D2.5 vM(∼A) = 1 iff vM(A) = 0
D2.6 vM(A ∨ B) = 1 iff vM(A) = 1 or vM(B) = 1
D2.7 vM((∃α)A(α)) = 1 iff vM(A(β)) = 1 for some β ∈ C ∪ O
Clauses for ∧,⊃,≡ and ∀ are as usual.

7.3. Soundness and Completeness for DCL

Theorem 2 : If Γ `DCL A, then Γ |=DCL A (Soundness for DCL)

Proof. Consider an axiomatic DCL-proof of A from Γ. The lines of this
proof consist of premises, CL-axioms, applications of CL-inference rules
(such as modus ponens and universal generalization) and axioms of the form
PS

A
B . Consider a DCL-model M = 〈D, D′, v〉 such that vM verifies all

members of Γ. Since all DCL-models are CL-models, vM verifies all CL-
axioms and if vM(B1) = . . . = vM(Bn) = 1 and C follows from B1, . . . ,
Bn by some CL-inference rule, vM(C) = 1. So vM(A) = 1 if vM verifies
all DCL-axioms of the form PS

A
B .

To prove that vM verifies all DCL-axioms of the form PS
A
B , suppose

that vM(PS
A
B) = 0 for some A and B (A being a singleton and B =

{P1, . . . , Pn}). This means that for some β, γ ∈ C ∪ O, M ∈ ΠB and
M ′,∼M ′ ∈ ΠA, vM(Mβ) = vM(Mγ) = 1 (the individuals denoted have
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the same B-maximal property) but vM(M ′β) = vM(∼M ′γ) = 1 (they do
not have the same A-maximal property). Since A is a singleton, M ′ is a
primitive predicate of rank 1. In accordance with D1.3, let v(M ′) = D′. So
v(β) ∈ D′, but v(γ) /∈ D′ (*).13

Mβ abbreviates a CBF-formula of the form ±P1β∧±P2β∧. . .∧±Pnβ in
which each occurrence of ‘±’ may, but need not, stand for ‘∼’ (analogously
for γ). Since vM(Mβ) = vM(Mγ) = 1, the following holds for each Pi:
either v(β), v(γ) ∈ v(Pi) or v(β), v(γ) /∈ v(Pi) (if Pi is preceded by ‘∼’).
By D1.3, v(Pi) = D′ or v(Pi) = D−D′. So either β, γ ∈ D′ or β, γ /∈ D′,
which contradicts (*). �

Theorem 3 : If Γ |=DCL A, then Γ `DCL A (Completeness for DCL)14

Proof. Suppose that Γ 0DCL A, and that A and all members of Γ are wffs
of L. Consider a sequence B1, B2, . . . that contains all wffs of L+ and in
which each wff of the form (∃α)A is followed immediately by an instance
A(oi/α) for some oi ∈ O that does not occur in any previous member of the
list. Then define

∆0 = CnDCL(Γ)
∆i+1 = CnDCL(∆i ∪ {Bi+1}) if A /∈ CnDCL(∆i ∪ {Bi+1}), and
∆i+1 = ∆i otherwise
∆ = ∆0 ∪ ∆1 ∪ . . .

Each of the following is provable: (i) Γ ⊆ ∆ (by the definition of ∆),
(ii) A /∈ ∆ (idem), (iii) ∆ is deductively closed (idem), (iv) ∆ is maximally
non-trivial and (v) ∆ is ω-complete.

For the proof of (iv), remark first that A ⊃ C ∈ ∆ for all C. Indeed, if
A ⊃ C /∈ ∆, then there is a ∆i such that ∆i ∪ {A ⊃ C} `DCL A. But then
∆i `DCL (A ⊃ C) ⊃ A (by the deduction theorem15 ) and hence ∆i `DCL A
(by the CL-axiom ((A ⊃ B) ⊃ A) ⊃ A), which is impossible. If E /∈ ∆,
then there is a ∆i such that ∆i ∪ E `DCL A. Since A ⊃ C ∈ ∆ for all C,
∆ ∪ E is trivial.

13 I could just as well have stipulated that v(M ′) = D − D′, without thereby affecting
the results of this proof.

14 This completeness proof strongly resembles the one given in Batens (1999) for the
paraconsistent logic CLuN.

15 I leave it to the reader to check that the deduction theorem holds for DCL.
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For the proof of (v), suppose that (∃α)C ∈ ∆, but there is no β ∈ C ∪ O
such that C(β/α) ∈ ∆. Let (∃α)C = Bi. So Bi+1 = C(oj/α) for some
oj that does not occur in 〈B1, B2, . . . , Bi〉. Since oj is no part of L, oj

does not occur in A nor in some member of Γ. From the supposition it
follows that (∃α)C ∈ ∆i and C(oj/α) /∈ ∆i+1. So by the definition of
∆, ∆i ∪ {C(oj/α)} `DCL A, and hence ∆i `DCL C(oj/α) ⊃ A (by the
deduction theorem). Since ∆i `DCL (∃α)C and oj does not occur in any
member of ∆i, ∆i `DCL A. But then A ∈ ∆i, which is impossible.

∆ may contain wffs of the form α = β (α, β ∈ C∪O). For each α ∈ C∪O
I define the equivalence class [α] = {β | α = β ∈ ∆}. For the α ∈ V , let
[α] = [β] for some arbitrary β ∈ C. Now I define a CL-model M as follows:

(1) D = {[α] | α ∈ C ∪ O}
(2) where α ∈ C ∪ O ∪ V : v(α) = [α]
(3) where A ∈ S : v(A) = 1 iff A ∈ ∆, and
(4) where π ∈ Pr : v(π) = {〈[α1], . . . , [αr]〉 | πα1, . . . , αr ∈ ∆}

I have to show that (*) vM(A) = 1 iff A ∈ ∆. By the clauses (3) and (4)
this trivially holds for all A ∈ S and for all πα1, . . . , αr. It also holds for
wffs of the form α = β since vM(α = β) = 1 iff v(α) = v(β) iff [α] = [β]
iff α = β ∈ ∆.

Suppose that (*) holds for some A. Then it also holds for ∼A, A ∧ B,
A ∨ B, A ⊃ B, A ≡ B, (∃α)A and (∀α)A. The proof of these cases
proceeds as for CL. For example, if ∼A ∈ ∆, then A /∈ ∆ (because ∆ is
not trivial), so vM(A) = 0 and hence vM(∼A) = 1. If vM(∼A) = 1, then
vM(A) = 0. So A /∈ ∆. Since ∆ is maximally non-trivial, ∆ ∪ {A} is
trivial. So ∼A ∈ ∆.

So there is a CL-model M that verifies all members of ∆, and hence of Γ,
but falsifies A. Now it only has to be shown that it is in fact a DCL-model
(i.e. that D1.3 holds for it). Take some arbitrary π, π′ ∈ P1. Let v(π) = D′

and v(π′) = D′′.
For all α ∈ C ∪ O, either πα ∈ ∆ or ∼πα ∈ ∆ (suppose that πα,∼πα /∈

∆, then vM(πα) = vM(∼πα) = 0, which is impossible). Analogously,
either π′α ∈ ∆ or ∼π′α ∈ ∆.

Case 1: πα ∈ ∆ and π′α ∈ ∆. So by clause (4), [α] ∈ D′ and [α] ∈ D′′.
Now for all β ∈ C ∪ O, if [β] ∈ D′, then πβ ∈ ∆. But then also π′β ∈ ∆
and hence [β] ∈ D′′, because πα, π′α, πβ ∈ ∆ and πα, π′α, πβ `DCL π′β.
So D′ ⊆ D′′. Analogously, for all β ∈ C ∪ O, if [β] ∈ D′′, then π′β ∈ ∆.
Hence πβ ∈ ∆ and [β] ∈ D′. So D′′ ⊆ D′. It follows that D′′ = D′.

Case 2: πα ∈ ∆ and ∼π′α ∈ ∆ (so π′α /∈ ∆, because ∆ is not trivial).
By clause (4), [α] ∈ D′ and [α] ∈ D − D′′. Now for all β ∈ C ∪ O, if
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[β] ∈ D′, then πβ ∈ ∆. But then also ∼π′β ∈ ∆ and [β] ∈ D − D′′. So
D′ ⊆ D − D′′. Analogously, for all β ∈ C ∪ O, if [β] ∈ D − D′′, then
π′β /∈ ∆ and ∼π′β ∈ ∆. But then πβ ∈ ∆ and [β] ∈ D′. So D−D′′ ⊆ D′.
It follows that D′′ = D − D′.

Case 3: ∼πα ∈ ∆ and π′α ∈ ∆. I leave it to the reader to prove that
D′′ = D − D′.

Case 4: ∼πα ∈ ∆ and ∼π′α ∈ ∆. I leave it to the reader to prove that
D′′ = D′.

So for every π ∈ P1 : v(π) ∈ {D′, D − D′}, for some D′ ⊆ D. This
means that clause D1.3 holds and that M is a DCL-model 〈D, D′, v〉 that
verifies all members of Γ but falsifies A. So Γ 2DCL A. �

7.4. LPS revisited

Relying on the proofs of soundness and completeness for DCL, I can now
prove that the Derivability Adjustment Theorem holds.

Theorem 4 : Γ `DCL A iff there is some finite ∆ ⊂ Ω such that Γ `CL

A ∨ Dab(∆) (Derivability Adjustment Theorem)

Proof. For the left-right direction, suppose that Γ `DCL A. It follows that all
DCL-models of Γ verify A. All other CL-models of Γ verify some member
of Ω. Hence there is a ∆′ ⊆ Ω such that all CL-models of Γ verify a member
of ∆′ ∪ {A}. By the right compactness of CL16 , there is a finite ∆ ⊆ ∆′

such that all CL-models of Γ verify a member of ∆∪{A}. So all CL-models
of Γ verify A ∨ Dab(∆).

For the right-left direction, suppose that Γ `CL A ∨ Dab(∆), and hence
that Γ |=CL A ∨ Dab(∆). It follows that all CL-models of Γ, and hence
all DCL-models of Γ, verify A ∨ Dab(∆). But all DCL-models of Γ falsify
Dab(∆). Consequently, Γ |=DCL A and hence Γ `DCL A. �

The proof theoretic rules of LPS are as specified in section 6 (PREM,
RU and RC), as are its marking definitions and its semantics (of course I’m
implicitly distinguishing between LPS

r and LPS
m).

7.5. The Problem with LPS

Although the above characterization of LPS seems intuitively clear and fits
the standard format for adaptive logics, it has a tremendous disadvantage —

16 Right compactness: every model of Γ verifies a member of ∆ iff every model of Γ
verifies a member of some finite ∆′

⊆ ∆.
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a disadvantage that neither ILr nor ILm has. No one wants to derive from
the empty premise set, ∅, that “All P are Q”, for any P and Q. Fortunately,
∅ 0ILr (∀x)(Px ⊃ Qx) and ∅ 0ILm (∀x)(Px ⊃ Qx) (see Batens and Hae-
saert, 2001, 267). Analogously, one doesn’t want to derive from ∅ that PS

A
B

for any sets A and B.17 However, to give one example, ∅ `LPS ((∀x)(Px ⊃
Qx)∨(∀x)(Px ⊃ ∼Qx))∧((∀x)(∼Px ⊃ Qx)∨(∀x)(∼Px ⊃ ∼Qx)). The
reason is that ∼PS

{Q}
{P}, which is equivalent to ((∃x)(Px∧Qx)∧ (∃x)(Px∧

∼Qx))∨ ((∃x)(∼Px∧Qx)∧ (∃x)(∼Px∧∼Qx)), is not a member of any
minimal Dab-consequence from ∅. In fact, no abnormality is CL-derivable
from ∅, since none of them is verified by all CL-models of ∅ (the model with
only one object in its domain falsifies all abnormalities).

The problem with LPS is even worse than that. Not only is any claim of
supervenience derivable from ∅. It is also the case that if the premises say
nothing about some property T (say nothing about its instances), then for
every set of properties B it is derivable that {T} supervenes on B. This im-
plies that applying LPS to a premise set will always lead to unwarranted, and
hence unwanted supervenience claims. Therefore, the question whether it is
possible to develop a reliable method for inferring (specific) supervenience
claims from a set of data has to be answered negatively.

8. Solving the Problem: RLPS
r and RLPS

m

The problem with LPS suggests that instead of blindly applying the con-
ditional rule RC to a set of data, we should rather use our logic to test a
well-chosen set of supervenience claims. To that end, we have to slightly
modify or restrict LPS. Restricted LPS, or RLPS, takes as premises an or-
dered pair of sets Σ = 〈Γ, Γ∗〉. Γ can contain any kind of premises except
supervenience claims; the latter are relegated to Γ∗. So Γ∗ ⊂ S contains the
supervenience claims we want to reason about. These modifications have an
influence both on the proof theory and on the semantics of RLPS.

8.1. The proof theory of RLPS
r and RLPS

m

The derivability adjustment theorem for RLPS is the same as for LPS. How-
ever, it is no longer the case that we accept as adaptive consequences of Γ all
A such that for some ∆ ⊂ Ω, (i) Γ `CL A∨Dab(∆) and (ii) all members of

17 Of course, if A ⊆ B, it is trivially true that PS
A
B . So we should not be reluctant to

derive this supervenience claim from the empty premise set. Notwithstanding this trivial
case, however, we should only accept specific supervenience claims if they are empirically
warranted (cf. Jaegwon Kim’s quote on page 6).
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∆ behave normally. Instead, ∆ may only contain negations of members of
Γ∗ or be the empty set. Given this modification, these are the rules of RLPS

(again, they are presented in generic form):
• PREM : if A ∈ Γ, then one may add a line consisting of (i) the

appropriate line number, (ii) A, (iii) “ – ”, (iv) “PREM”, and (v) ∅.
• RU : If B1, . . . , Bm `CL A and B1, . . . , Bm occur in the proof with

the conditions ∆1, . . . , ∆m respectively, then one may add a line
consisting of (i) the appropriate line number, (ii) A, (iii) the line num-
bers of the Bi, (iv) “RU”, and (v) ∆1 ∪ . . . ∪ ∆m.

• SUP : If `CL A ∨ Dab(Θ) and A ∈ Γ∗, then one may add a line
consisting of (i) the appropriate line number, (ii) A, (iii) “ – ”, (iv)
“SUP”, and (v) Θ.

The marking definitions of RLPS
r and RLPS

m are as usual.

8.2. Example

Consider the premise set Σ = 〈Γ, Γ∗〉, with Γ = {Pa ∧ ∼Qa ∧ ∼Sa, Qb ∧

∼Rb, Pc∧∼Rc, Pd∧Rd,∼Qe∧Re} and Γ∗ = {PS
{Q}
{P}, PS

{Q}
{R}, PS

{S}
{P}}.

In this section I will illustrate the dynamics of adaptive proofs, make clear
that some formulas are finally derivable while others are not, and show that
RLPS

r and RLPS
m may lead to different conclusions from the same Σ.

1 Pa ∧ ∼Qa ∧ ∼Sa – PREM ∅
2 Qb ∧ ∼Rb – PREM ∅
3 Pc ∧ ∼Rc – PREM ∅
4 Pd ∧ Rd – PREM ∅

516 PS
{Q}
{P} – SUP {∼PS

{Q}
{P}}

616 (∀x)(Px ⊃ Qx) ∨ (∀x)(Px ⊃ ∼Qx) 5 RU {∼PS
{Q}
{P}}

716 (∀x)(Px ⊃ ∼Qx) 1,6 RU {∼PS
{Q}
{P}}

816 ∼Qc 3,7 RU {∼PS
{Q}
{P}}

9(16) ∼Qd 4,7 RU {∼PS
{Q}
{P}}

1016 ∼Pb 2,7 RU {∼PS
{Q}
{P}}

At this point, I have conditionally derived that ∼Qc, ∼Qd and ∼Pb. How-
ever, it might later turn out that these predictions are untenable (indeed, it
will turn out at stage 16 that according to the reliability strategy all of them
are, as is indicated by the superscript that is added to their line numbers;
according to minimal abnormality, ∼Qd is not untenable).
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Now I will introduce another member of Γ∗ and see whether I can derive
some more predictions.

1116 PS
{Q}
{R} – SUP {∼PS

{Q}
{R}}

1216 Qc 2, 3, 11 RU {∼PS
{Q}
{R}}

13 ∼Qe ∧ Re – PREM ∅

14(16) ∼Qd 4,11,13 RU {∼PS
{Q}
{R}}

Some of the predictions that that are derived at this stage are mutually
inconsistent (Qc, ∼Qc). Fortunately, this poses no problem. Both conse-
quences will have to be dropped in view of the Dab-consequence derived at
line 16.

15 Qc ∨ ∼Qc – RU ∅

16 ∼PS
{Q}
{P} ∨ ∼PS

{Q}
{R} 1,2,3,15 RU ∅

According to RLPS
r, all lines that have either ∼PS

{Q}
{P} or ∼PS

{Q}
{R} or both

as a member of their fifth element, have to be marked (including lines 9 and
14). So with the reliability strategy, we get rid of the incompatible predic-
tions Qc and ∼Qc.

The markings definition of RLPS
m is slightly different. It demands that

the same lines are marked, except for 9 and 14. The reason is that it inter-
prets line 16 as minimally abnormal, i.e. it presupposes that either ∼PS

{Q}
{P}

is true, or ∼PS
{Q}
{R}, but not both. If ∼PS

{Q}
{R} is false, ∼Qd is derivable on

line 14; if ∼PS
{Q}
{P} is false, ∼Qd is derivable on line 9. So ∼Qd is RLPS

m-
derivable at stage 16. Moreover, since the formula on line 16 is a minimal
Dab-consequence of Γ, ∼Qd is finally derivable according to RLPS

m. Since
no minimal Dab-consequence has ∼PS

{S}
{P} as a disjunct, ∼Sc and ∼Sd are

also finally derivable (both with RLPS
r and RLPS

m) and PS
{S}
{P} is empiri-

cally corroborated:

17 PS
{S}
{P} – SUP {∼PS

{S}
{P}}

18 ∼Sc 1,3,17 RU {∼PS
{S}
{P}}

19 ∼Sd 1,4,17 RU {∼PS
{S}
{P}}
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RLPS
r and RLPS

m lead to different consequence sets. In general, CnRLPS
r

(Σ) ⊆ CnRLPS
m(Σ). Whether the one should be preferred to the other

depends on the context in which you apply them. Both have a nice dy-
namic proof theory as well as a nice semantics (see below). The advantage
of RLPS

r is that its proof theory is easier.

8.3. The semantics of RLPS
r and RLPS

m

The semantics of RLPS
r and RLPS

m are obtained by relaxing the constraints
imposed on the LLL-models. The selection of the models still is based on the
abnormalities they verify, but only those abnormalities that are negations of
members of Γ∗ are taken into account.

The abnormal part of a model M is defined as Ab(M) = {A | A ∈
Ω and M |= A} and U(Γ) = {A | A ∈ ∆ for some minimal Dab-
consequence ∆ of Γ}, as before. So U(Γ) ⊆ Ω. However, only for some
A ∈ U(Γ) there is a corresponding B ∈ Γ∗ which it contradicts. So let
Ω∗ = {∼A | A ∈ Γ∗}. Now it is easy to select the models in view of the
Ω∗-members they verify.

Definition 14 : M ∈ MΓ is reliable iff Ab(M) ∩ Ω∗ ⊆ U(Γ) ∩ Ω∗

Definition 15 : Γ |=RLPS
r A iff A is verified by all reliable models of Γ.

Definition 16 : M ∈ MΓ is minimally abnormal iff there is no M′ ∈ MΓ

such that Ab(M′) ∩ Ω∗ ⊂ Ab(M) ∩ Ω∗.

Definition 17 : Γ |=RLPS
m A iff A is verified by all minimally abnormal

models of Γ.

9. The Inferential Role of Supervenience in Classical Genetics

My presentation of LPS and RLPS has shown that the unconstrained in-
ference of supervenience claims is problematic, but that nonetheless such
claims can be reliably tested by confronting them with empirical data. But
what does this tell us about the inferential role of supervenience in classical
genetics?

In sections 2 and 3 I have argued that Mendel assumed that traits supervene
on underlying factors. But this poses a problem. Factors were unobservable,
and their existence could not be proven directly. So how could Mendel con-
front his supervenience claims with his data?

Mendel not only assumed that traits supervene on factors, he also put for-
ward assumptions about the behavior of the latter. Factors are passed on from
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generation to generation via the gametes. The internal make-up of gametes
depends on the make-up of the parent plant (Stern and Sherwood, 1966, 23–
31). If the latter is a hybrid (P&P′), half of its gametes will be P, the other
half will be P′. If the parent plant is not hybrid (so either if it is P&∼P′ or
∼P&P′), then all of its reproductive cells have the same make-up (viz. P

and P′ respectively). This set of assumptions would later be called Mendel’s
First Law, or the Law of Segregation. So far, I have only focussed on one set
of traits and one set of factors. In the dihybrid case, Mendel assumed that
the behavior of one set of factors is independent of the behavior of any other
set. Later this assumption would be known as Mendel’s Second Law, or the
Law of Independent Assortment.

These three sets of assumptions, the supervenience assumption and the
laws of segregation and of independent assortment could together be em-
pirically tested. The supervenience assumption allowed Mendel to deter-
mine the internal make-up of his experimental plants. The laws of segrega-
tion and of independent assortment allowed him to predict the distribution
of factors among the progeny. Finally, the distribution of traits among the
progeny could be derived (again on the basis of the supervenience assump-
tion). Mendel’s experimental results accorded very nicely with these predic-
tions.18

All this shows that Mendel’s supervenience claims could indirectly be tested,
and that they played an inferential role in his work. The supervenience as-
sumption was a fruitful one. No scientist or breeder had ever been able
to formulate, let alone to verify, such precise experimental predictions be-
fore Mendel. It paved the way to the successful experimental treatment
and mechanistic explanation of hereditary phenomena in the first decades
of the 20th century. Its merits are most clearly illustrated in the scientific
work of Thomas Hunt Morgan (1866–1945). Morgan was one of the most
influential geneticists of the first half of the 20th century. From 1911 on-
wards, he defended and elaborated the chromosome theory, which linked
the Mendelian factors or genes together with chromosomes (Morgan et al.,
1915; Morgan, 1926). The chromosome theory provided a deeper under-
standing of Mendel’s results (viz. of the mechanism underlying segregation
and independent assortment) and of its apparent exceptions (by referring to
linkage and crossing over).

Before 1911, however, Morgan was a confirmed adversary of Mendelism
and of the chromosome theory. In a little paper, “What are ‘Factors’ in

18 In fact, they accorded too nicely, as was argued by the famous statistician sir Ronald
Fisher (Stern and Sherwood, 1966, 139–172).
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Mendelian Explanations?” (Morgan, 1909), he strongly opposed the ‘mod-
ern factor-hypothesis’, i.e. the assumed supervenience of traits on factors.
Although he acknowledged the value of Mendel’s assumption to a certain
extent,19 he formulated two important criticisms. The first concerned the
‘jugglery’ that all too often involved Mendelian explanations.

If one factor will not explain the facts, then two are invoked; if
two prove insufficient, three will sometimes work out. (Mor-
gan, 1909, 365)

The second one is more relevant for the present discussion. Mendel’s con-
ceptual framework, he stated, reformulates the old idea of preformation (Mor-
gan, 1909, 366). According to preformation theories, the egg or the sperm
contains a preformed embryo (Orel, 1996, 9, 12). In the Mendelian picture,
they contain unit characters, or the factors responsible for these characters.20

According to epigenetic theories, by contrast, they contain a structureless
substance, out of which the embryo develops due to some vis essentialis
(Orel, 1996, 9). Morgan argued in favor of this epigenetic view:

The egg need not contain the characters of the adult, nor need
the sperm. Each contains a particular material which in the
course of the development produces in some unknown way
the character of the adult. (Morgan, 1909, 367, original ital-
ics)

The difference between preformation and epigenetic theories can be expli-
cated by means of the concept of supervenience. In the former, there is some
preformed or structured material that determines the organism’s traits. In the
latter, no underlying material is able to determine these traits by itself. Al-
though Morgan originally believed that the epigenetic view offered the best
way to scientific advance, he made his most valuable contributions to the
field of genetics after he accepted the supervenience of traits on factors.

19 He wrote:

I am not unappreciative of the distinct advantages that this method has in
handling the facts. I realize how valuable it has been to us to be able to
marshal our results under a few simple assumptions (. . . ). So long as we
do not lose sight of the purely arbitrary and formal nature of our formulae,
little harm will be done (. . . ). (Morgan, 1909, 365)

20 According to Morgan, the ‘factors’ were sometimes referred to as the actual characters
themselves (Morgan, 1909, 366).
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Let me conclude with a final question. To what extent was Mendel’s super-
venience assumption a tenable one? Accumulating evidence from molecular
biology has shown it isn’t tenable at all. In order to influence the phenotype
of an organism, the genetic information stored in its DNA must first be tran-
scribed, i.e. copied to mRNA sequences. Transcription is often regulated
(induced, repressed, enhanced) depending on the metabolic needs of the
cell and on the cell’s environment and the resulting RNA sequences are of-
ten subject to post-transcriptional modification (which might influence their
informational content, cf. alternative splicing). The information in these
mRNA sequences is then translated, i.e. it is used to synthesize polypeptide
chains. One or more of these chains may together form a protein. The func-
tion of this protein is not only determined by the constituting polypeptide
chains, but also by its structural organization in three-dimensional space.
Finally, most phenotypic traits are caused by a multitude of interacting pro-
teins. (Klug et al., 2006, chapters 13, 14, and 17) All this leads to the con-
clusion that the phenotype doesn’t supervene on the genotype (i.e. the linear
ordering of complementary bases in the DNA). Mendel’s assumption was
fruitful, but clearly false.
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