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Abstract. In a multi-agent deontic setting, normative conflicts can take
a variety of different logical forms. In this paper, we present a very general
characterization of such conflicts, including both intra- and inter-agent
normative conflicts, conflicts between groups of agents, conflicts between
obligations and permissions, and conflicts between contradictory norms.
In order to account for the consistent possibility of this wide variety
of conflict-types, we present a paraconsistent deontic logic, i.e. a logic
that invalidates the classical principle of non-contradiction. Next, we
strengthen this logic within the adaptive logics framework for defeasible
reasoning. The resulting inconsistency-adaptive deontic logic interprets
a given set of norms ‘as consistently as possible’.

1 Introduction

The development of systems capable of tolerating conflicting norms is considered
an important challenge in the fields of deontic logic [14] and normative multi-
agent systems [7]. In this paper, we try to meet this challenge by consistently
allowing for various types of normative conflicts within a non-classical multi-
agent framework, i.e. a multi-agent framework that invalidates some rules and
theorems of Standard Deontic Logic (SDL).

For reasons of presentation we will first introduce a classical variant of the
framework (Section 2), and illustrate how the resulting logic MDC treats indi-
vidual and collective obligations. Next, we present a subdivision of various types
of normative conflicts (Section 3), and show that MDC cannot consistently
allow for the possibility of such conflicts.

In order to prevent instances of normative conflicts from giving rise to deontic
explosion, we introduce a paraconsistent variant of the logic MDC: the logic
MDP (Section 4). As opposed to MDC, MDP can consistently deal with any
type of normative conflict. However, the conflict-tolerance of MDP comes at a
price. Since MDP gives up some of the rules validated by SDL (and hence by
MDC), it loses much of the latter system’s inferential power. This drawback is
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common to any monotonic paraconsistent deontic logic presented so far (Section
5).

The solution to this problem presented here consists of extending MDP
within the adaptive logics framework [4]. In the resulting logic (called MDPm),
some MDC-inferences are made conditional upon the behavior of the premises:
MDPm verifies only those inferences which rely on premises that can safely be
assumed to behave ‘normally’. The technically precise sense in which MDPm

does so is spelled out in Section 6. MDPm has the nice property that for premise
sets all members of which behave ‘normally’ in this sense, MDPm delivers the
same consequences as MDC.

2 A simple classical multi-agent framework

2.1 Language

We use a denumerable setWa of propositional constants (atoms) p, q, r, . . .. The
〈¬,∧,∨,⊃,≡〉-closure of Wa is denoted by W. We call formulas in W (purely)
propositional formulas.

Next to propositional formulas, we use a finite set I = {i1, . . . , in} of agents.
We will in the remainder often refer to groups of agents J in I, i.e. non-empty
subsets of I. The following notation is useful for this: J ⊆∅ I iff J 6= ∅ and
J ⊆ I. The set WI = {〈A, J〉 | A ∈ W, J ⊆∅ I} denotes the set of agent-
proposition pairs. Throughout the paper, we will use “AJ” as a shortcut for
“〈A, J〉.” Where i ∈ I, we will in the remainder of the paper abbreviate A{i}
by Ai. A formula AJ ∈ WI is translated as “group J brings about A by a joint
effort”. We will discuss and distinguish this notion from another, weaker reading
of group obligations in Section 2.3.Wc

I is the set of all formulas in the 〈¬,∧,∨,⊃
,≡〉-closure of WI . Where W l denotes the set of literals (i.e. the set of atoms in
Wa and their negations), we also define the set W l

I = {AJ | A ∈ W l, J ⊆∅ I}
of agent-literal complexes. Finally, the set Wc of well-defined formulas for the
classical multi-agent framework is defined recursively as follows:

Wc := 〈W ∪WI〉 | O〈Wc
I 〉 | P〈Wc

I 〉 | ¬〈Wc〉 | 〈Wc〉 ∧ 〈Wc〉 |
〈Wc〉 ∨ 〈Wc〉 | 〈Wc〉 ⊃ 〈Wc〉 | 〈Wc〉 ≡ 〈Wc〉

Where A ∈ Wc
I , a formula OA [PA] is interpreted as “it ought to be [is

permitted] that A”. Hence, OAi is read as “It ought to be that agent i brings
about A”. Similarly, OAJ is read as “The group of agents J ought to bring
about A by a joint effort”. We do not allow for formulas OA and PA where
A ∈ Wc \ Wc

I such as OB where B is a propositional atom. This is because
we are only interested in obligations that are addressed directly to (groups of)
agents. Note that we do allow for formulas such as O(Ai ∨Bj) and OAi ∨OBj .
While the former expresses that it ought to be the case that either i brings
about A or that j brings about B, the latter expresses that either i ought to
bring about A or j ought to bring about B. This difference corresponds to the
distinction in SDL between the formulas O(A ∨B) and OA ∨ OB.



There is another subtlety worth pointing out, namely the difference between
O¬(Ai) and O(¬A)i. While the latter indicates i’s obligation to bring about ¬A,
the former is literally read as “It ought to be that it is not the case that i brings
about A”. This can be understood as i’s obligation to refrain from bringing
about A.

2.2 The logic MDC

In this section we present a classical system for modeling normative reasoning.
We presuppose that (i) norms dealt with by this system arise from the same
source, and (ii) agents have epistemic access to all norms issued by this source.

Let us demonstrate how to adjust the Kripke-frames that are usually used
in order to semantically characterize SDL to the multi-agent setting of MDC.
We shortly outline some of the basic ideas. An SDL-model is a tuple M =
〈W,R, v, w0〉. W is a set of worlds where each world is associated with a set of
atoms by the assignment function v : Wa → ℘(W ). A propositional atom A is
said to hold in a world w iff it is assigned to the world by v, i.e. w ∈ v(A). The
validity of complex formulas is then recursively defined as usual. R ⊆W ×W is
a serial accessibility relation. A formula A is obliged in a world w iff it is valid in
all the accessible worlds of w. Moreover, w0 ∈W is the so-called actual world.

Let us now step-by-step generalize these frames for the multi-agent setting.
First we need to introduce agents. We represent them by a finite non-empty
set I = {i1, . . . , in}. An MDC-model is a tuple M = 〈W, I,R, v, vI , w0〉 where
as before W is a set of worlds, R ⊆ W × W is a serial accessibility relation,
v : Wa → ℘(W ) is an assignment function, and w0 ∈ W is the actual world.
Just as before, the idea is that the propositional atom A is the case in w iff
w ∈ v(A).

We are not only interested in what is the case in our worlds, but also in
causation, more precisely the question which agents cause certain events. In
order to express this, our worlds are not just points, such as in the case of the
SDL-semantics, but they are structured. Every world w ∈W is associated with
tuples 〈w, J〉, for all J ⊆∅ I. We use wJ as a shortcut for 〈w, J〉.

While in SDL the assignment v associates a world w ∈ W with atoms in
order to express what atoms hold in w, we add now an additional assignment vI
that associates each wJ with literals in order to express what literals are brought
about by the group of agents J . The idea is that a literal A is brought about in w
by a group of agents J iff wJ ∈ v(A). Hence, vI :W l → ℘({wJ | w ∈W,J ⊆∅ I}).

v associates only atoms (and not literals) with worlds because this provides
enough information to uniquely define whether a complex propositional formula
representing factual information holds in a world. We for instance do not need
to assign worlds to negated propositional atoms such as ¬A, since by means of
a semantic clause such as the following it can be determined whether ¬A holds
in a world w: (†) “¬A holds in w in a model M iff A does not hold in w in M”.
Note that, in order to determine whether J brings about ¬A in w, we cannot
rely on the fact that J does not bring about A. After all, from the fact that J
refrains from bringing about A we cannot infer that J brings about ¬A. The



fact that A or ¬A holds in a world may be independent of actions by J . Hence,
we need to specify for each literal by what group of agents it is brought about
(if any).

In the SDL-semantics the clause (†) ensures that the worlds are consistent
in the sense that it is not the case that for an atom A, A holds in a world
w and at the same time ¬A holds in the world w. Since vI associates worlds
with both atoms and their negations we need to ensure the consistency by a
frame-condition:

F-Con For all A ∈ Wa, for all w ∈ W , and for all J,K ⊆∅ I: (i) if wJ ∈ vI(A)
then wK /∈ vI(¬A) and (ii) if wJ ∈ vI(¬A) then wK /∈ vI(A).

Moreover, we want to ensure that whenever an agent or group brings about A,
then A is also the case (factually). This is guaranteed by adding the following
frame condition:

F-Fac For all A ∈ Wa and all w ∈W , (i) if wJ ∈ vI(A) then w ∈ v(A) and (ii)
if wJ ∈ vI(¬A) then w /∈ v(A).

The valuation vM :Wc →W associated with the model M is defined by:

ClI where AJ ∈ W l
I : M,w |= AJ iff wJ ∈ vI(A)

CI∧ where A,B ∈ W : M,w |= (A∧B)J iffM,w |= AJ andM,w |= BJ
CI∨ where A,B ∈ W : M,w |= (A∨B)J iff M,w |= AJ or M,w |= BJ
CI⊃ where A,B ∈ W : M,w |= (A ⊃ B)J iff M,w 6|= AJ or M,w |= BJ
CI≡ where A,B ∈ W : M,w |= (A ≡ B)J iff (M,w |= AJ iff M,w |=

BJ)
CI¬¬ where A ∈ W : M,w |= (¬¬A)J iff M,w |= AJ
CI¬∨ where A,B ∈ W : M,w |= (¬(A ∨B))J iff M,w |= (¬A ∧ ¬B)J
CI¬∧ where A,B ∈ W : M,w |= (¬(A ∧B))J iff M,w |= (¬A ∨ ¬B)J
CI¬⊃ where A,B ∈ W : M,w |= (¬(A ⊃ B))J iff M,w |= (A ∧ ¬B)J
CI¬≡ where A,B ∈ W : M,w |= (¬(A ≡ B))J iff M,w |= ((A ∨ B) ∧

(¬A ∨ ¬B))J
Ca where A ∈ Wa : M,w |= A iff w ∈ v(A)
C¬ where A ∈ Wc : M,w |= ¬A iff M,w 6|= A
C∧ where A,B ∈ Wc : M,w |= A ∧B iff M,w |= A and M,w |= B
C∨ where A,B ∈ Wc : M,w |= A ∨B iff M,w |= A or M,w |= B
C⊃ where A,B ∈ Wc : M,w |= A ⊃ B iff M,w 6|= A or M,w |= B
C≡ where A,B ∈ Wc : M,w |= A ≡ B iff (M,w |= A iff M,w |= B)
CO where A ∈ Wc

I : M,w |= OA iff M,w′ |= A for all w′ such that
Rww′

CP where A ∈ Wc
I : M,w |= PA iff M,w′ |= A for some w′ such that

Rww′

An MDC-model M verifies A ∈ Wc (M 
MDC A) iff M,w0 |= A. Where
Γ ⊆ Wc, M is an MDC-model of Γ iff M is an MDC-model and M 
MDC A
for all A ∈ Γ . Moreover, |=MDC A iff all MDC-models verify A, and Γ |=MDC A
iff all MDC-models of Γ verify A.

All of the following inferences are valid in MDC (where A,B ∈ Wc
I ):



OA,OB |=MDC O(A ∧B)
OA |=MDC ¬O¬A

O(A ∨B),O¬A |=MDC OB

2.3 More on group obligations

Where i, j ∈ I, the formula OA{i,j} abbreviates a collective obligation for group
{i, j} to bring about A. Note that none of OAi, OAj , OAi∨OAj , and O(Ai∨Aj)
is MDC-derivable from OA{i,j}. This is due to the fact that OA{i,j} expresses
that i and j should bring about A by a joint effort. Collective obligations of
this kind are called strict collective obligations by Dignum & Royakkers [11]. A
strict collective obligation to bring about A is satisfied only if all agents in the
collective bring about A together.

Not all collective obligations are strict collective obligations. Suppose, for
instance, that a mother of three children orders her offspring to do the dishes.
In order to satisfy this obligation, it might not matter if only one or two of the
children actually do the dishes. All that matters is that, in the end, the dishes
are clean. The obligation issued by this agent is hence not a strict collective
obligation. It is what Dignum & Royakkers call a weak collective obligation. A
weak collective obligation to bring about A is satisfied as soon as any subset of
the collective brings about A.

Although the formula OAJ is in MDC interpreted as a strict collective obli-
gation, we can also define an obligation operator Ow in order to express weak
collective obligations:

OwAJ =df O(
∨
K⊆∅J

AK)

The weak collective obligation operator Ow captures the intended meaning
that if a group of agents ought to bring about a certain state of affairs, then this
state of affairs ought to be brought about by some subset of the group.1 It follows
immediately by the definition and CI∨ that |=MP OAJ ⊃ OwAJ . Obviously, if
the group J faces the strict collective obligation to bring about A, then some
subgroup of J –namely J itself– has to bring about A. Note that OwAi = OAi.

The disambiguation of the notion of collective obligation by means of the
distinction between strict and weak collective obligations allows us to further
illustrate some subtle differences in MDC. Suppose that some agent i ought
to bring about ¬A, whereas agents i and j ought to bring about A ∨ B. If the
latter obligation is interpreted as a strict collective obligation, then it is MDC-
derivable that i and j share the strict collective obligation to bring about B:

(1) O(¬A)i,O(A ∨B){i,j} |=MDC OB{i,j}

1 The Ow-operator as defined here is slightly different from the one defined by
Dignum & Royakkers in [11]. We write the latter operator as Ow. Then OwAJ =df∨

K⊆∅J
OAK . Note that OwA{a,b} = O(Aa ∨ Ab ∨ A{a,b}), while OwA{a,b} =

OAa ∨OAb ∨OA{a,b}. We prefer to define weak obligation in terms of Ow instead of
Ow because we take a weak (collective) obligation to be a single norm rather than a
disjunction of norms.



In general, if some group faces a strict collective obligation, then it should
try to satisfy this obligation in a way that conflicting obligations are avoided
whenever possible. This is exactly what happens in the above example.

If we interpret i and j’s obligation to bring about A∨B as a weak collective
obligation, then OB{i,j} is no longer MDC-derivable, but the weaker obligation
OwB{i,j} is:

(2) O(¬A)i,O
w(A ∨B){i,j} |=MDC OwB{i,j}

Again, conflicting obligations are neatly avoided: i and j’s weak obligation
to bring about A ∨ B is satisfied in a consistent way whenever i, j, or i and j
together bring about B.

If instead of supposing that i has the obligation to bring about ¬A, we
suppose that i merely has the obligation to refrain from bringing about A, the
above reasoning no longer applies:

(3) O¬(Ai),O(A ∨B){i,j} 6|=MDC OB{i,j}

That i ought to refrain from bringing about A, does not entail that the group
{i, j} ought to do so.2 Hence there is no strict obligation for {i, j} to bring about
B. In the variant for weak collective obligation, a similar reasoning applies:

(4) O¬(Ai),O
w(A ∨B){i,j} 6|=MDC OwB{i,j}

That i should refrain from bringing about A does not allow us to derive a
weak collective obligation for i and j to bring about B, because Ow(A ∨B){i,j}
is also satisfied if, for instance, j brings about A or if i and j together (in the
strict sense) bring about A.

3 Normative conflicts

In single-agent settings, normative conflicts (moral conflicts, deontic conflicts)
are usually conceived as situations in which an agent has two (or more) con-
flicting obligations. In the language of MDC, such intra-agent conflicts between
obligations can have two logical forms. Where the agent in question is repre-
sented by the subscript i, we say that i faces an obligation-obligation conflict
(in short, an OO-conflict) if, for some A, either OAi ∧O(¬A)i or OAi ∧O¬(Ai).
In the first case, i has both an obligation to bring about A and an obligation to
bring about ¬A. In the second case, i has both an obligation to bring about A
and an obligation to refrain from bringing about A. Similarly, a group of agents
J faces an OO-conflict if OAJ ∧ O(¬A)J or if OAJ ∧ O¬(AJ).

In a multi-agent setting, we have to allow for the possibility of inter-agent
conflicts next to intra-agent conflicts. Conflicts of obligations between different
(groups of) agents can arise only in case one of the agents or groups, say J , has
to bring about a state of the world inconsistent with a state of the world that
should be brought about by another agent or group, say K, i.e. if OAJ∧O(¬A)K .

2 Suppose, for example, that i has to refrain from lifting a heavy cupboard (because,
for instance, i has chronic back pain). From this it does not follow that i should still
refrain from doing so if she is assisted by j.



Note that if J 6= K, a formula OAJ ∧ O¬(AK) no longer guarantees a conflict
of obligations in the multi-agent setting: it is perfectly possible that agent or
group J brings about A, while another agent or group K refrains from bringing
about A. Altogether, in a multi-agent framework an OO-conflict has one of the
following two logical forms: OAJ ∧ O¬(AJ) or OAJ ∧ O(¬A)K (where possibly
J = K).

Logicians often limit their study of normative conflicts to conflicts between
two or more obligations, e.g. [13, 15, 17, 18, 25]. However, other types of norma-
tive conflicts can occur. It might, for instance, be the case that an agent or group
J ought to bring about A, while J is also permitted to refrain from doing so,
i.e. OAJ ∧ P¬(AJ). Moreover, J might have the obligation to bring about A
while a possibly different group or agent K is permitted to bring about ¬A, i.e.
OAJ∧P(¬A)K . In what follows such conflicts will be called obligation-permission
conflicts or OP-conflicts. For some examples of OP-conflicts in a single-agent set-
ting, see [6, 30]. The possibility of OP-conflicts was also defended in [1, 2, 8, 35].

In [6, 24] examples were given of contradicting norms. Suppose, for instance,
that in some country the constitution contains the following clauses concerning
parliamentary elections: (i) it is not the case that women are permitted to vote,
and (ii) property holders are permitted to vote. Suppose further that (possibly
due to a recent revision of the property law) women are allowed to hold property.
Then the law is inconsistent: any female property holder i is both permitted and
not permitted to vote: PVi ∧ ¬PVi (example from [24, pp. 184-185]).

The same reasoning holds, of course, for formulas of the form OA ∧ ¬OA
(where A ∈ Wc

I ). As hinted at above, normative conflicts of the type PA∧¬PA
or OA ∧ ¬OA are called contradicting norms.

Next to contradicting norms, i.e. different norms that contradict each other,
one might also face a contradictory norm, i.e. a norm that contradicts itself. A
contradictory norm is of the form O(AJ∧¬(AJ)), P(AJ∧¬(AJ)), O(AJ∧(¬A)K),
P(AJ∧(¬A)K), O(A∧¬A)J , or P(A∧¬A)J . For a defense of contradictory norms,
we refer to [24].

Unfortunately, none of the types of normative conflicts presented above can
be dealt with consistently by the logic MDC. MDC trivializes all instances of
all types of normative conflicts. This gives rise to what is usually called deontic
explosion: the fact that from a deontic conflict any obligation follows. See [13, 30]
for a more detailed discussion of this phenomenon in deontic logic. An oversight
of the various types of normative conflicts and their accompanying principles of
deontic explosion is provided in the table below. Where A ∈ W and B,C ∈ Wc

I :

OO-conflicts: OAJ ∧ O¬(AJ) |= OC, OAJ ∧ O(¬A)K |= OC
OP-conflicts: OAJ ∧ P¬(AJ) |= OC, OAJ ∧ P(¬A)K |= OC

Contradicting norms: OB ∧ ¬OB |= OC, PB ∧ ¬PB |= OC
Contradictory norms: O(AJ ∧ ¬(AJ)) |= OC, P(AJ ∧ ¬(AJ)) |= OC,

O(AJ ∧ (¬A)K) |= OC, P(AJ ∧ (¬A)K) |= OC,
O(A ∧ ¬A)J |= OC, P(A ∧ ¬A)J |= OC



4 Avoiding deontic explosion: the logic MDP

Since MDC causes explosion when faced with a normative conflict, and since
we want to allow for the consistent possibility of normative conflicts, we need
a logic that is weaker than MDC.3 The situation is analogous in non-agentive
settings. There too, SDL gives rise to explosion in view of formulas of the form
OA ∧ O¬A, OA ∧ P¬A, etc. And there too, authors have suggested weakening
the logic in order to tolerate normative conflicts; for some examples, see [12, 21,
25, 28, 31, 32]. A good oversight can be found in [13].

The solution presented here is to replace the classical negation operator by a
weaker negation operator that renders invalid the Ex Contradictione Quodlibet
principle (ECQ), i.e. A∧¬A |= B. One of the main reasons for invalidating ECQ
in deontic logic is that it is the only possible solution for consistently allowing
for contradicting norms.

Logics that invalidate ECQ are usually called paraconsistent logics. In a
single-agent deontic setting, paraconsistent deontic logics have been presented
in [6, 10, 24]. To the best of our knowledge, this solution was never before used
in a multi-agent deontic setting.

The logic obtained by replacing the classical negation of MDC by a weaker,
paraconsistent negation is called MDP.4

Since we want MDP to invalidate all explosion principles from the table in
Section 3, frame condition F-Con must be given up. In MDC, F-Con excludes
accessible worlds which validate both AJ and (¬A)K for some J and K. Hence
this condition immediately trivializes e.g. normative conflicts of the form OAJ ∧
O(¬A)K or OAJ ∧ P(¬A)K . Thus if we want to consistently allow for all types
of normative conflicts, F-Con must be rejected.

Giving up F-Con takes us one step closer towards a conflict-tolerant deontic
logic. However, even if F-Con is rejected, triviality still ensues in view of e.g.
conflicts of the form OAJ∧O¬(AJ) or OAJ∧P¬(AJ). Hence more work is needed
in order to make the new logic fully conflict-tolerant, i.e. in order to invalidate
all explosion principles stated for MDC in the table in Section 3.

Analogous to MDC-models, MDP-models are tuples 〈W, I,R, v, vI , w0〉.
The only difference is that the factual assignment v is now defined more broadly,
i.e. v :W l ∪ {¬(AJ) | A ∈ W l} → ℘(W ). Moreover we remove the MDC-frame
condition F-Con, and replace F-Fac with F-Fac′:

3 Some authors circumnavigate the problems posed by normative conflicts by making
their formal system more expressive rather than by weakening its axioms or rules. For
instance, in [18] Kooi & Tamminga add super- and subscripts to the deontic operators
in order to express the source and the interest group in view of which a norm holds.
However, in their system explosion still ensues when faced with conflicting norms
that hold for the same source and interest group. Such ‘hardcore’ normative conflicts
are sometimes called symmetrical conflicts [20, 27]. In order to consistently allow for
the possibility of these conflicts in deontic logic, we need a non-standard formalism,
i.e. a formalism that invalidates one or more of the theorems and rules of SDL.

4 The negation of MDP is that of the paraconsistent logic CLuNs as found in e.g.
[3, 5].



F-Fac′ For all A ∈ Wa, all w ∈ W and all J ⊆∅ I, (i) if wJ ∈ vI(A) then
w ∈ v(A) and (ii) if wJ ∈ vI(¬A) then w /∈ v(A) or w ∈ v(¬A).

The valuation vM : Wc → W is defined by ClI , CI∧, CI∨, CI⊃, CI≡, CI¬¬,
CI¬∨, CI¬∧, CI¬⊃, CI¬≡, Ca, C∧, C∨, C⊃, C≡, C⊥, CO, CP, and the fol-
lowing:

C¬′ where A ∈ W l ∪W l
I : M,w |= ¬A iff M,w 6|= A or w ∈ v(¬A)

C¬¬ where A ∈ Wc : M,w |= ¬¬A iff M,w |= A
C¬∨ where A,B ∈ Wc : M,w |= ¬(A ∨B) iff M,w |= ¬A ∧ ¬B
C¬∧ where A,B ∈ Wc : M,w |= ¬(A ∧B) iff M,w |= ¬A ∨ ¬B
C¬ ⊃ where A,B ∈ Wc : M,w |= ¬(A ⊃ B) iff M,w |= A ∧ ¬B
C¬≡ where A,B ∈ Wc : M,w |= ¬(A ≡ B) iff M,w |= (A∨B)∧ (¬A∨

¬B)

As before, an MDP-model M verifies A (M 
MDP A) iff M,w0 |= A. Where
Γ ⊆ Wc, M is an MDP-model of Γ iff M is an MDP-model and M 
MDP A
for all A ∈ Γ . Moreover, |=MDP A iff all MDP-models verify A, and Γ |=MDP A
iff all MDP-models of Γ verify A.

C¬¬, C¬∧, C¬∨, C¬⊃, and C¬≡ ensure that de Morgan laws and the double-
negation rule are valid for complex formulas inWc. Due to the weakened negation
of MDP this does not follow anymore from the other semantic clauses.

MDP allows for both AJ and ¬(AJ) to be true at one and the same accessible
world. Consequently, this logic can consistently model situations in which for an
agent or group J it ought to be that J brings about A and that J refrains from
bringing about A. In general, for any A ∈ Wc, MDP allows for both A and ¬A
to be true at one and the same accessible world. This is exactly what we need if
we also want to consistently allow for the possibility of contradicting norms.

Altogether, the paraconsistent multi-agent deontic logic MDP is fully conflict-
tolerant (where A ∈ W, and B,C ∈ Wc

I ):

OO-conflicts: OAJ ∧ O¬(AJ) 6|=MDP OC, OAJ ∧ O(¬A)K 6|=MDP OC
OP-conflicts: OAJ ∧ P¬(AJ) 6|=MDP OC, OAJ ∧ P(¬A)K 6|=MDP OC

Contradicting norms: OB ∧ ¬OB 6|=MDP OC, PB ∧ ¬PB 6|=MDP OC
Contradictory norms: O(AJ ∧ ¬(AJ)) 6|=MDP OC, P(AJ ∧ ¬(AJ)) 6|=MDP OC,

O(AJ ∧ (¬A)K) 6|=MDP OC, P(AJ ∧ (¬A)K) 6|=MDP OC,
O(A ∧ ¬A)J 6|=MDP OC, P(A ∧ ¬A)J 6|=MDP OC

5 Drawbacks of MDP

In an MDP-model, accessible worlds can consistently verify contradictions. This
is what causes MDP to avoid deontic explosion when faced with a normative
conflict. However, this property comes at a cost. We illustrate this by means
of an example. Suppose that Frank has baked cookies and that it’s hot in his
kitchen. In order to let some fresh air in, Frank ought to open the door or open



the window (O(D ∨W )f ). However, if someone opens the door, the neighbour’s
dog might smell Frank’s cookies and try to steal them from the table. Hence
Frank should take care that the door remains closed (O(¬D)f ). In this situation
Frank can consistently satisfy his obligations by simply opening the window.

Yet OWf is not MDP-derivable from O(D ∨W )f and O(¬D)f . Note that
there are MDP-models of the premise set Γ1 = {O(D∨W )f ,O(¬D)f} in which
inconsistent worlds are accessible from the actual world, i.e. worlds in which both
Df and (¬D)f are true (and, consequently, in which both D and ¬D are true).
In these worlds, Wf may be false while the premises are true. In contrast, all
the MDC-models of our premise set Γ1 are such that all the accessible worlds
are consistent and verify (D ∨W )f , (¬D)f and hence Wf . This is the reason
why Γ1 |=MDC OWf while Γ1 6|=MDP OWf . Obviously our premise set is not
conflicting. In such cases we would ideally expect from any deontic logic that its
models do not verify normative conflicts. Hence, in our case we are interested in
MDP-models that –just like the MDC-models– do not validate Df ∧ (¬D)f in
any of the accessible worlds, i.e. models M for which M 6
MDP P (Df ∧ (¬D)f ).
It is easy to see that all these models validate Wf in all the accessible worlds, just
like the MDC-models. In other words, since Γ1 |=MDP OWf ∨ P (Df ∧ (¬D)f )
we get OWf by selecting models that do not validate any normative conflicts.

The solution offered above is obviously not working as soon as we have to
deal with conflicting premise sets. Suppose Frank invited his aunt Maggie for a
cup of coffee and cookies in the afternoon. However, his other aunt Beth is an
awfully jealous person: she would be deeply insulted if she’s not also invited.
Hence Frank has the obligation to also invite Beth (OBf ). On the other hand,
Maggie cannot stand Beth (she’s a rather difficult person) and whenever they
are together all hell breaks loose. Thus, Frank should make sure that Beth is
not invited (O(¬B)f ). Let Γ2 = Γ1 ∪ {OBf ,O(¬B)f}. While MDC trivializes
Γ2, MDP does not trivialize Γ2 but is again too weak. For the same reason as
above, Γ2 6|=MDP OWf . However, in contrast to above we cannot now simply
select models whose worlds are consistent since there are no such models. Indeed,
all models of Γ2 are such that in all accessible worlds Bf and (¬B)f are valid.
In other words, all models validate O(Bf ∧ (¬B)f ). But, similar to above, the
idea is to not take into consideration models that validate P(Df ∧ (¬D)f ).

In a nutshell the idea is to strengthen MDP by selecting models whose
accessible worlds are “as non-conflicting as possible”. This idea will be realized
by means of the adaptive logic MDPm.

Before we introduce this logic in Section 6, let us focus on some other weak-
nesses of MDP. For instance, all of the following inferences are invalid in MDP,
for the same reason why OWf is not MDP-derivable from O(D ∨ W )f and
O(¬D)f : because of the possibility of contradictions being true in accessible
worlds in MDP-models.5 Where A,B ∈ W, and C,D ∈ Wc:

(1) O(A ∨B)J ,O(¬A)J 6|=MDP OBJ
5 These problems are common to monotonic logics with a paraconsistent negation. In

[6], it was argued that the paraconsistent deontic logics presented in [10, 24, 25] are
too weak to account for deontic reasoning.



(2) O(A ∨B)J ,O¬(AJ) 6|=MDP OBJ
(3) OAJ 6|=MDP ¬P¬(AJ)
(4) ¬OAJ 6|=MDP P¬(AJ)
(5) PAJ 6|=MDP ¬O¬(AJ)
(6) ¬PAJ 6|=MDP O¬(AJ)
(7) C ∨D,¬C 6|=MDP D
(8) C ⊃ D 6|=MDP ¬D ⊃ ¬C

Items (1) and (2) represent deontic variants of Disjunctive Syllogism, (3)–(6)
represent variants of the interdefinability between obligations and permissions,
(7) is the propositional version of Disjunctive Syllogism, and (8) is Contraposi-
tion. In contrast, the following inferences are valid in MDP.

(1’) O(A ∨B)J ,O(¬A)J |=MDP OBJ ∨ P(AJ ∧ (¬A)J)
(2’) O(A ∨B)J ,O¬(AJ) |=MDP OBJ ∨ P(AJ ∧ ¬(AJ))
(3’) OAJ |=MDP ¬P¬(AJ) ∨ P(AJ ∧ ¬(AJ))
(4’) ¬OAJ |=MDP P¬(AJ) ∨ (OAJ ∧ ¬OAJ)
(5’) PAJ |=MDP ¬O¬(AJ) ∨ P(AJ ∧ ¬(AJ))
(6’) ¬PAJ |=MDP O¬(AJ) ∨ (PAJ ∧ ¬PAJ)
(7’) C ∨D,¬C |=MDP D ∨ (C ∧ ¬C)
(8’) C ⊃ D |=MDP (¬D ⊃ ¬C) ∨ (D ∧ ¬D)

In items (1’)–(8’), all formulas on the right-hand side of the “∨”-sign repre-
sent normative conflicts. As in our example above, interpreting premise sets as
non-conflicting as possible will validate the deontic and propositional versions of
Disjunctive Syllogism, the interdefinability between obligations and permissions,
and Contraposition as much as possible. Indeed, given that the normative con-
flicts on the right-hand side of “∨” are false in (1’)–(8’), the left-hand disjuncts
must be true.

6 The adaptive logic MDPm

Adaptive logics are characterized by means of a triple consisting of a lower limit
logic (henceforth LLL), a set of abnormalities Ω, and an adaptive strategy.6 The
LLL constitutes the stable part of an adaptive logic: everything that is LLL-
derivable from a given set of premises, is still derivable by means of the adaptive
logic. Formulating adaptive logics in the standard format has the advantage
that a rich meta-theory is immediately available for this format [4]. Although
adaptive logics come with an attractive dynamic proof theory we will for the
sake of conciseness focus in this paper exclusively on the semantics.

Typically, an adaptive logic enables one to derive, for most premise sets,
some extra consequences on top of those that are LLL-derivable. These supple-

6 For an introduction to adaptive logics, see [4]. However, familiarity with this frame-
work for non-monotonic reasoning is not necessary for understanding the workings
of the logic MDPm.



mentary consequences are obtained by interpreting a premise set “as normally as
possible”. The exact interpretation of this idea depends on the adaptive strategy
which defines which models of the LLL are selected.7 For our present purposes,
we shall use the Minimal Abnormality strategy. The logic MDPm is character-
ized by:

(1) LLL: MDP

(2) Set of abnormalities: Ω = Ω1 ∪Ω2 ∪Ω3, where
Ω1 = {A ∧ ¬A | A ∈ Wc}
Ω2 = {P(AJ ∧ ¬(AJ)) | A ∈ W, J ⊆∅ I}
Ω3 = {P(AJ ∧ (¬A)K) | A ∈ W; J,K ⊆∅ I}

(3) Adaptive strategy: Minimal Abnormality

By (1) we make sure that we select MDP-models. This ensures that MDPm

inherits the conflict-tolerance from MDP.
As mentioned, adaptive logics interpret premise sets in a way that as few

abnormalities as possible are verified. The attentive reader will have noticed that
not all conflict-types that were listed in the table in Section 3 occur in Ω. This
is justified due to the fact that all other conflict-types give rise to abnormalities
in Ω, as the following table shows (where A ∈ W, and B,C ∈ Wc

I )8:

OAJ ,O¬(AJ) |=MDP P(AJ ∧ ¬(AJ)), OAJ ,O(¬A)K |=MDP P(AJ ∧ (¬A)K)
OAJ ,P¬(AJ) |=MDP P(AJ ∧ ¬(AJ)), OAJ ,P(¬A)K |=MDP P(AJ ∧ (¬A)K)

O(AJ ∧ ¬(AJ)) |=MDP P(AJ ∧ ¬(AJ)), O(AJ ∧ (¬A)K) |=MDP P(AJ ∧ (¬A)K)
O(A ∧ ¬A)J |=MDP P(AJ ∧ (¬A)J), P(A ∧ ¬A)J |=MDP P(AJ ∧ (¬A)J)

For our semantic selection we will make use of the notion of the abnormal part
of an MDP-model, i.e. the set of all abnormalities verified by it: Ab(M) = {A ∈
Ω | M 
MDP A}. The Minimal Abnormality strategy selects all MDP-models
of a premise set Γ which have a minimal abnormal part (w.r.t. set-inclusion).

Definition 1. An MDP-model M of Γ is minimally abnormal iff there is no
MDP-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The semantic consequence relation of the logic MDPm is defined by selecting
the minimally abnormal MDP-models:

Definition 2. Γ |=MDPm A iff A is verified by all minimally abnormal MDP-
models of Γ .

The fact that the set of MDPm-models of Γ is a subset of the set of MDP-
models of Γ immediately ensures that MDPm strengthens MDP.

Theorem 1. If Γ |=MDP A, then Γ |=MDPm A.

7 Besides adaptive logics many other formal frameworks make use of semantic selec-
tions, e.g. [19, 26].

8 conflicts of the form OB ∧¬OB, PB ∧¬PB, P(AJ ∧¬(AJ)), or P(AJ ∧ (¬A)K) are
not listed in the table, since these conflicts already have the form of an abnormality.



For an illustration of the logic, let’s return to the example presented in Section
5. Remember that Γ1 6|=MDP OWf . However, Γ1 |=MDP OWf ∨P(Df ∧ (¬D)f ).
By C∨, we know that (†) for all MDP-models M of Γ1: if M 6
MDP P(Df ∧
(¬D)f ) then M 
MDP OWf .

No abnormality A ∈ Ω is an MDP-consequence of Γ1, hence there are MDP-
models M of Γ1 such that Ab(M) = ∅. By Definition 1, these and only these are
the minimal abnormal models of Γ1. It follows that, for all minimal abnormal
models M of Γ1, M 6
MDP P(Df∧(¬D)f ). By (†), it follows that M 
MDP OWf

for all minimal abnormal models M of Γ1. Hence, by Definition 2, Γ1 |=MDPm

OWf .
By the same reasoning as applied in the example above, we can show that

all of (1”)-(8”) below are MDPm-valid in view of the MDP-validity of (1’)-(8’)
as displayed in Section 5:

(1”) O(A ∨B)J ,O(¬A)J |=MDPm OBJ
(2”) O(A ∨B)J ,O¬(AJ) |=MDPm OBJ
(3”) OAJ |=MDPm ¬P¬(AJ)
(4”) ¬OAJ |=MDPm P¬(AJ)
(5”) PAJ |=MDPm ¬O¬(AJ)
(6”) ¬PAJ |=MDPm O¬(AJ)
(7”) C ∨D,¬C |=MDPm D
(8”) C ⊃ D |=MDPm ¬D ⊃ ¬C

In a similar fashion, we can show that other intuitive MDC-inferences are
also MDPm-valid in the absence of normative conflicts. Remember from Section
2.3 that O(¬A)i,O(A∨B){i,j} |=MDC OB{i,j} and O(¬A)i,O

w(A∨B){i,j} |=MDC

OwB{i,j}. Both of these inferences are invalidated by MDP. However, O(¬A)i,O(A∨
B){i,j} |=MDP OB{i,j} ∨ P(A{i,j} ∧ (¬A)i), and O(¬A)i,O

w(A ∨B){i,j} |=MDP

OwB{i,j}∨P(Ai∧(¬A)i)∨P(Aj∧(¬A)i)∨P(A{i,j}∧(¬A)i). Note that none of the
minimal abnormal MDP-models of {O(¬A)i,O(A∨B){i,j}} and {O(¬A)i,O

w(A∨
B){i,j}} validate one of the abnormalities P(A{i,j} ∧ (¬A)i),P(Ai ∧ (¬A)i), or
P(Aj∧(¬A)i). Hence O(¬A)i,O(A∨B){i,j} |=MDPm OB{i,j} and O(¬A)i,O

w(A∨
B){i,j} |=MDPm OwB{i,j}.

The following theorem shows that for any MDC-consistent premise set the
MDPm-consequences are identical to the MDC-consequences:

Theorem 2. For all MDC-consistent Γ , Γ |=MDPm A iff Γ |=MDC A.

A proof of Theorem 2 is contained in the Appendix. Note that (1”)-(8”) imme-
diately follow as a corollary to Theorem 2.

If all MDP-models of given a premise set verify at least one abnormality,
then MDPm is still considerably stronger than MDP. Consider the premise
set Γ2 from Section 5, where we enriched Γ1 with the conflicting obligations
concerning the invitation of aunt Beth, OBf and O(¬B)f . Here too, Frank’s
obligation to open the window is an MDPm-consequence: Γ2 |=MDPm OWf .
Although there are no models of Γ2 that have an empty abnormal part since all



models validate the abnormality P(Bf ∧ (¬B)f ), the minimal abnormal models
do not validate P(Df ∧ (¬D)f ) (as the reader can easily verify).

Imagine now that we add to Γ2 the premise O(¬W )f , which abbreviates
Frank’s obligation to take care that the window remains closed (e.g. because
it was painted recently and the paint is not dry yet). Let us call this extended
premise set Γ3. Then Γ3 |=MDP P(Df ∧(¬D)f )∨P(Wf ∧(¬W )f ). Consequently,
all minimally abnormal MDP-models M of Γ3 verify at least one of P(Df ∧
(¬D)f ) and P(Wf ∧ (¬W )f ). Γ3 has minimally abnormal MDP-models which
verify P(Df ∧ (¬D)f ). Since it is no longer the case that, for all minimally
abnormal MDP-models M of Γ3, M 6
MDP P(Df ∧ (¬D)f ), for these models it
no longer follows that M 
MDP OWf . Hence Γ3 6|=MDPm OWf . Since Γ1 ⊂ Γ3

and Γ1 |=MDPm OWf , this shows that the logic MDPm is non-monotonic.
The following theorems state some further meta-theoretical properties of

MDPm. LetMMDP
Γ [MMDPm

Γ ] abbreviate the set of MDP- [MDPm-] models
of Γ .

Theorem 3. If M ∈ MMDP
Γ −MMDPm

Γ , then there is a M ′ ∈ MMDPm

Γ such
that Ab(M ′) ⊂ Ab(M) (Strong reassurance).

For the proof of Theorem 3, we refer to [4].9

Theorem 4. If Γ |=MDPm A for all A ∈ Γ ′, then MMDPm

Γ =MMDPm

Γ∪Γ ′ .

Proof. Suppose (†) Γ |=MDPm A for all A ∈ Γ ′. Consider a M ∈ MMDPm

Γ∪Γ ′ .
Then M ∈ MMDP

Γ∪Γ ′ and whence M ∈ MMDP
Γ . Assume M /∈ MMDPm

Γ . By the
strong reassurance there is a M ′ ∈ MMDPm

Γ such that Ab(M ′) ⊂ Ab(M). In
view of (†), M ′ 
MDP A for every A ∈ Γ ′. Hence, M ′ ∈ MMDP

Γ∪Γ ′ . But then
M /∈MMDPm

Γ∪Γ ′ ,— a contradiction.
Consider a M ∈ MMDPm

Γ . By (†), M 
MDP A for every A ∈ Γ ′. By
definition also M ∈ MMDP

Γ . Hence M ∈ MMDP
Γ∪Γ ′ . Assume M /∈ MMDPm

Γ∪Γ ′ .
Hence, there is a M ′ ∈ MMDP

Γ∪Γ ′ for which Ab(M ′) ⊂ Ab(M). By definition,
M ∈MMDP

Γ . But then M /∈MMDPm

Γ ,— a contradiction.

Corollary 1. If Γ |=MDPm A for all A ∈ Γ ′, then

(i) if Γ |=MDPm A then Γ ∪ Γ ′ |=MDPm A (Cautious Monotonicity);
(ii) if Γ ∪ Γ ′ |=MDPm A then Γ |=MDPm A (Cautious Cut).

Theorem 5. MMDPm

Γ =MMDPm

{B|Γ |=MDPmB}, and whence Γ |=MDPm A iff

{B | Γ |=MDPm B} |=MDPm A (Fixed point).

Proof. Since obviously {B | Γ |=MDPm B} |=MDPm A for all A ∈ Γ , this is an
immediate consequence of Theorem 4 (where Γ ′ = {B | Γ |=MDPm B}).
9 In [4], the strong reassurance property is proven for logics that fit the so-called

standard format for adaptive logics. In order for the proof for strong reassurance
from [4] to work, MDPm needs to contain all classical connectives. MDPm can
easily be adjusted to do so by adding the constant false symbol “⊥” to its language,
and by defining a classical negation connective “∼” as ∼ A =df A ⊃ ⊥.



7 Outlook

The central problem tackled in this paper is the modeling of normative conflicts
in multi-agent deontic logic. Because of this focus and reasons of conciseness,
we have presented the logics MDC, MDP and MDPm in a very basic form.
In this section we will briefly demonstrate that they can be enhanced in various
ways.

Some may wish to increase the expressiveness of our logics by alethic modali-
ties. One way to technically realize this is to add another accessibility relation R′

to the MDC-models so that the models are tuples 〈W, I,R,R′, v, w0〉.10 Validity
for the �-operator is characterized as usual: M,w |= �A iff for all w′ ∈ W , if
R′ww′ then M,w′ |= A (and the dual version for ♦). By requiring R ⊆ R′ it
could be ensured that the Kantian “ought implies can” holds: OA ⊃ ♦A.

Another extension could indicate the authority that issues a norm. For in-
stance, OaAJ reads “authority a issues the norm that J brings about A”. Tech-
nically, introducing authorities is straightforward. First, we enhance our models
by a set A of authorities. This set may intersect with or even be identical to
the set of agents I. Second, instead of one accessibility relation we introduce
an accessibility relation Ra for each authority a ∈ A. The semantic clauses are
adjusted as expected: M,w |= OaA iff for all w′ ∈W , if Raww′ then M,w′ |= A
(and dually for Pa).

In a way technically analogous to the representation of different authorities
via superscripts to the deontic operators, we could add subscripts for distin-
guishing between various interest groups in view of which the norms hold (cfr.
[18]). Moreover, the adaptive framework could be enhanced so as to allow for
varying degrees of priority amongst norms and/or conditional norms [29].

The framework used in this paper is elementary not only in its limited ex-
pressive power, but also in its treatment of the notions of action and agency.
At the moment, this paper is lacking a comparison with other frameworks for
representing agency in deontic logic. Further research includes (i) the relation of
the agentive setting applied here with other such settings, e.g. dynamic logic [9,
22], stit theory [16, 18], and their historical predecessors [23, 33, 34]; and (ii) the
application of the inconsistency-adaptive approach for accommodating norma-
tive conflicts within these other frameworks for accounting for action in deontic
logic.

A Appendix: proof of Theorem 2

For every adaptive logic, there is a so-called upper limit logic. The upper limit logic
UMDP of MDPm is defined as follows: given a premise set Γ we select all MDP-
models M of Γ such that Ab(M) = ∅. UMDP is a monotonic logic that trivializes
premise sets that give rise to abnormalities.

Lemma 1. For each UMDP-model M of Γ , F-Con holds.

10 We will exemplify all enhancements by means of MDC. The arguments are analo-
gous for MDP and MDPm.



Proof. Let M = 〈W, I,R, v, vI , w0〉. Suppose for some w ∈W , some A ∈ Wa, and some
J,K ⊆∅ I, wJ ∈ vI(A) and wK ∈ vI(¬A). By F-Fac′, w ∈ v(A) and w ∈ v(¬A).
If w = w0, by Ca, C¬′ and C∧, M,w0 |= A ∧ ¬A and hence A ∧ ¬A ∈ Ab(M),—a
contradiction. If w 6= w0, then by Ca, C¬′, C∧ and CP, M,w0 |= P(AJ ∧ (¬A)K) and
hence P(AJ ∧ (¬A)K) ∈ Ab(M),—a contradiction. Hence, F-Con holds. ut

Let an MDP-model 〈W, I,R, v, vI , w0〉 be MDC-like iff, (a) for all A ∈ Wa, w ∈
v(¬A) iff w /∈ v(A); (b) for all AJ ∈ W l

I , w ∈ v(¬(AJ)) iff wJ /∈ vI(A); and (c) F-Fac
holds. We say that two models are equivalent iff they validate the same formulas.

Lemma 2. For each UMDP-model M = 〈W, I,R, v, vI , w0〉 there is an equivalent
MDC-like UMDP-model M ′ = 〈W, I,R, v′, vI , w0〉.
Proof. Define v′ as follows: (1) where A ∈ W l ∪ {¬(BJ) | B ∈ W l}, w0 ∈ v′(A) iff
w0 ∈ v(A); (2) where w ∈ W \ {w0} and A ∈ Wa, w ∈ v′(A) iff there is a J ⊆∅ I for
which wJ ∈ vI(A); (3) where w ∈ W \ {w0} and ¬A ∈ W l, w ∈ v′(¬A) iff w /∈ v′(A);
and (4) where A ∈ W l, w ∈ v′(¬(AJ)) iff wJ /∈ vI(A).

F-Con only depends on vI and hence holds for M ′ due to Lemma 1. F-Fac′(i)
holds by (2) and (ii) by (3) and due to F-Con. Hence, M ′ is a MDP-model.

F-Fac (i) holds due to F-Fac′ (i). Let wJ ∈ vI(¬A). Suppose first that w = w0.
By F-Fac′, w0 ∈ v′(¬A) or w0 /∈ v′(A) and whence w0 ∈ v(¬A) or w0 /∈ v(A). Assume
that w0 ∈ v(¬A)∩v(A). But then A∧¬A ∈ Ab(M),—a contradiction. Hence w0 /∈ v(A)
and whence w0 /∈ v′(A). Let now w ∈ W \ {w0}. By F-Con, there is no K ⊆∅ I for
which wK ∈ vI(A). Hence, by (2), w /∈ v′(A). Thus, F-Fac holds for M ′.

Note that (a) holds for v′ due to (3), and (b) holds due to (4). Hence, M ′ is
MDC-like.

M 
MDP A iff M ′ 
MDP A is shown by an induction over the length of the formula
A. The induction base is easily established. Where A ∈ Wa the equivalence holds by
Ca and (1). Where A ∈ W l

I the equivalence holds due to Cl
I . For the induction step

let first A = ¬A′. Suppose A′ ∈ Wa ∪W l
I . Note that by the induction hypothesis, C¬′

and (1) we have the same valuation for A. Let now A′ ∈ WI \ W l
I . Since both models

have the same assignment vI the valuation is analogous due to Cl
I , CI∧, CI∨, CI⊃,

CI≡, CI¬¬, CI¬∨, CI¬∧, CI¬⊃, and CI¬≡. The similar cases for A′ = BπC where
B,C ∈ Wc and π ∈ {∨,∧,⊃,≡} resp. for A′ = ¬B where B ∈ Wc are left to the
reader. The induction proceeds in a similar way if A ∈ WI \W l

I , A = OA′ or A = PA′

where A′ ∈ Wc
I , or A = BπC where B,C ∈ Wc and π ∈ {∨,∧,⊃,≡}. Since M and

M ′ are equivalent, Ab(M ′) = Ab(M) = ∅ and whence M ′ is an UMDP-model. ut
Corollary 1. Γ |=UMDP A iff each MDC-like UMDP-model M of Γ validates A.

Where M = 〈W, I,R, v, vI , w0〉 is an MDC-like UMDP-model, let Mc = 〈W, I,R,
vc, vI , w

0〉 be an MDC-model where vc : Wa → ℘(W ), A 7→ v(A). Note that Mc is
indeed an MDC-model since M satisfies F-Con and F-Fac and thus by the definition
also Mc.

Lemma 3. M and Mc are equivalent.

The Lemma is proved by a similar induction over the length of A as in the proof
of Lemma 2. Due to space restrictions this is left to the reader.

Lemma 4. Where M is an MDC-model of Γ , Ab(M) = ∅.
Proof. Suppose A ∈ Ab(M). Let A = B ∧ ¬B ∈ Ω1. By C¬, M |= B and M 6|= B,—a
contradiction. The other cases are similar and left to the reader. ut

Where M = 〈W, I,R, v, vI , w0〉 is an MDC-model, let Mp = 〈W, I,R, vp, vI , w0〉
be an MDC-like MDP-model where vp :W l ∪ {¬(AJ) | A ∈ W l, J ⊆∅ I} → ℘(W ) is
defined by: w ∈ vp(A) iff M,w |= A. The reader can easily verify that Mp is MDC-like.



Lemma 5. M and Mp are equivalent and Mp is a UMDP-model.

Again, the proof of the equivalence proceeds by a similar induction over the length
of A as in the proof of Lemma 2. By Lemma 4, Ab(M) = ∅ and hence Ab(Mp) = ∅.
Hence, Mp is a UMDP-model.

Theorem 2 is an immediate consequence of Corollary 1, Lemma 3 and Lemma 5.
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