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Summary. The symbolic mode of reasoning in algebra, as it emerged during the
sixteenth century, can be considered as a form of model-based reasoning. In this
paper we will discuss the functions and mechanisms of this model and show how
the model relates to its arithmetical basis. We will argue that the symbolic model
was made possible by the epistemic justification of the basic operations of algebra
as practiced within the abbaco tradition. We will also show that this form of model-
based reasoning facilitated the expansion of the number concept from Renaissance
interpretations of number to the full notion of algebraic numbers.
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1.1 Symbolic reasoning is model-based reasoning

We previously introduced the idea of considering algebraic problem solving as
a model-based activity [16]. This allowed us to characterize the emergence of
symbolic algebra in the sixteenth century as a transition from a geometrical
model to a symbolic one. While the solution methods for algebraic problems,
introduced in Europe by Latin translations from Arabic, are not by them-
selves geometrical, the validation for the rules of finding the roots of equa-
tions depended on a geometrical model. Geometrical proofs from the Arabic
and abbaco tradition may have been derived from the practice of geometrical
algebra which goes back to Old-babylonian algebra. Jens Høyrup has con-
vincingly demonstrated how Old-Babylonian scribes did not solve equations
as proposed by Neugebauer, but depended on a naive cut-and-paste geometri-
cal model [18]. Jörgen Friberg has further shown that the geometrical algebra
in book II of Euclid’s Elements “appears instead to have been a direct transla-
tion into non-metric and non-numerical ’geometric algebra’ of key results from
Babylonian metric algebra” [12]. Greek geometric algebra can thus be consid-
ered a generalization of Babylonian metric algebra using the same geometric
model.
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While the geometrical model continued to provide an epistemic justifica-
tion for the rules of algebra in the Arabic and abbaco tradition, it also had
its limitations. Geometrical models lost their intuitive appeal once problems
went beyond the three dimensions. Also notions such as negative quantities
or negative surfaces are impossible or very difficult to represent geometrically.
Within the abbaco tradition geometrical models were actually rarely used. We
only find them in the treatises by Maestro Dardi di Pisa (w. 1344) Antonio
de’ Mazzinghi (c.1353-c.1383) , Maestro Bendetto da Firenze (1429-1479) and
Piero della Francesca (1416-1492). During the abbaco period which is to be
situated between 1300 and 1500, algebraic practice slowly moved towards a
symbolic model. This is not immediately evident from the treatises they have
left behind as there is little use of symbolism in these texts. However, we
argue that symbolism was introduced into mathematics as a consequence of
this process towards symbolic reasoning and not as a precondition. Algebraic
symbolism developed into its present form during the sixteenth and early sev-
enteenth century. The conditions for the transition towards a symbolic model
were prepared by the practice of abbaco masters. The main condition was
the epistemic justification of the basic operations of arithmetic. Once there
was a strong belief that current mathematical practices had a general valid-
ity, it became possible to apply these operations in an abstract way, without
accounting for the values they were dealing with. After several centuries of
abbaco practice, this belief in the validity of the operations became so strong
that it allowed for the acceptance of anomalous results, such as negative and
imaginary quantities. The main mechanism of the symbolic model is that the
practices of arithmetical operations were adopted within a model in which
one makes abstraction of the actual values. This mechanism can be explained
by the principle of permanence of equivalent forms.

1.2 The principle of the permanence of equivalent forms

George Peacock was together with George Boole, August De Morgan and
Duncan Gregory one of the founders of Cambridge’s Analytical Society. This
group laid the foundations of what they called algebra of logic, and would
later become symbolic logic. This symbolic logic in turn would lay the new
foundations for formalism in mathematics with Frege and Hilbert. Peacock
was the first to coin the term ’symbolic algebra’. In 1830, he published his
Treatise on Algebra, in two books. The first book is on Arithmetical algebra,
the second on Symbolic algebra. Peculiarly, both works use symbols, but in
arithmetical algebra: “we consider symbols as representing numbers, and the
operations to which they are submitted as included in the same definitions”
[23, p. ix]. What this means is that Peacock formulates (arbitrary) restrictions
on the operations of algebra so that the results always remain natural num-
bers. A quadratic equation is therefore not allowed in arithmetical algebra as
it can lead to negative, irrational or imaginary roots. Symbolic algebra is then
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seen as a generalization of arithmetical algebra in which all its truths are pre-
served. For this property he coined the term “the principle of the permanence
of equivalent forms”. Forms which are equivalent within arithmetic (for any
choice of natural numbers) therefore remain equivalent in symbolic algebra.
These forms implicitly define the laws of associativity and commutativity for
addition and multiplication and the law of distribution. Such an approach
would later lead to the axiomatization of arithmetic and other branches of
mathematics. Now, from the point of model-based reasoning, not only does
Peacock’s symbolic algebra use a symbolic model, so does his arithmetical
algebra. The operations allowed in his arithmetical algebra preserve closure
for the natural numbers, while his symbolic algebra allows for all the opera-
tions valid for the arithmetic of natural numbers, integers, irrational numbers
and complex numbers. If we use the principle of permanence of equivalent
forms to this last class of numbers, we can characterize the history of sym-
bolic algebra until the advent of quaternions, introduced in 1843 by Hamilton.
Quaternions do not preserve the commutative law for multiplication and lead
to the idea of multiple possible algebras. We would like to demonstrate that
Peacocks principle of the permanence of equivalent forms is a fruitful frame-
work for studying changes in the history of the number concept. We will first
show that the arbitrary limitations put on Peacock’s arithmetical algebra also
appear in the Arithmetica by Diophantus. Further we will demonstrate that
such limitations on operations were gradually lifted from algebraic practice
and that because of a process of epistemic justification of basic operations
a symbolization of algebra became possible. We will show by two examples
that some important developments and changes of the number concept can
be explained as a form of model-based reasoning within this framework.

1.3 The arithmetical algebra of Diophantus

1.3.1 The myth of syncopated algebra

The Arithmetica by Diophantus has often been considered a transition point
between rhetorical and symbolic algebra. In his study on Greek algebra [21],
the German scholar Georg Heinrich Ferdinand Nesselmann coined the term
’syncopated algebra’ for such intermediate phase. His tripartite distinction has
become such a common-place depiction of the history of algebraic symbolism
that modern-day authors even fail to mention their source. The repeated use
of Nesselmann’s distinction in three Entwickelungstufen (steps in the devel-
opment) on the stairs to perfection is odd because it should be considered
a highly normative view which cannot be sustained within our current as-
sessment of the history of algebra. Its use in present-day textbooks can only
be explained by an embarrassing absence of any alternative models. We have
pointed out three serious problems with Nesselmann’s approach [17] which we
here summarize.
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A problem of chronology

Firstly, if seen as steps within a historical development, as is most certainly
the view by many who have used the distinction, the three phases suffer from
some serious chronological problems. Nesselmann places Iamblichus, Arabic
algebra, Italian abbacus algebra and Regiomontanus under rhetorical algebra
(“Die erste und niedrigste Stufe”) thereby covering the period from 250 to
1470. The second phase, called syncopated algebra, spans from Diophantus’s
Arithmetica to European algebra until the middle of the seventeenth century,
including Viète, Descartes and van Schooten. The third phase is purely sym-
bolic and constitutes modern algebra with the symbolism we still use today.
Though little is known for certain about Diophantus, most scholars situate the
Arithmetica in the third century which is about the same period as Iamblichus
(c. 245-325). So, syncopated algebra overlaps with rhetorical algebra for most
of its history. This raises serious objections and questions such as “Did these
two systems influence each other?” With the discovery of the Arabic transla-
tions of the Arithmetica [26] [25] we now know that Diophantus was translated
and discussed in the Arab world ever since Qustā ibn Lūqā’s book (c. 860).
So if the syncopated algebra of Diophantus was known by the Arabs why did
it not affect their rhetorical algebra? If the Greek manuscripts used for the
Arab translation of the Arithmetica contained symbols, we would expect to
find some traces of it in the Arab version.

The role of scribes

The earliest extant Greek manuscript, once in the hands of Planudes and used
by Tannery, is the thirteenth-century Codex Matritensis 4678 (ff. 58-135).
The extant Arabic translation published independently by Jacques Sesiano
and Roshdi Rashed was completed in 1198. So no copies of the Arithmetica
before the twelfth century are extant. The ten centuries separating the orig-
inal text from the earliest Greek copy is a huge distance. Two important
revolutionary changes took place around the ninth century: the transition of
papyrus to paper and the replacement of the Greek uncial or majuscule script
by a new minuscule one. The transition to the new script was very uniform
and drastic to a degree which puzzles today’s scholars. From about 850 ev-
ery scribe copying a manuscript would almost certainly adopt the minuscule
script. Transcribing an old text into the new text was a laborious and dif-
ficult task, certainly not an undertaking to be repeated when a copy in the
new script was already somewhere available. It is therefore very likely that
all extant manuscript copies are derived from one Byzantine archetype copy
in Greek minuscule. Although contractions where also used in uncial texts,
the new minuscule much facilitated the use of ligatures. This practice of com-
bining letters, when performed with some consequence, saved considerable
time and therefore money. Imagine the time savings by consistently replacing
ἀριθμὸς, which appears many times for every problem, by ς in the whole of
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the Arithmetica. The role of professional scribes should therefore not be un-
derestimated. Although we find some occurrences of shorthand notations in
papyri, the paleographic evidence we now have on a consistent use of liga-
tures and abbreviations for mathematical words points to a process initiated
by mediæval scribes rather than to an invention by classic Greek authors.
Whatever syncopated nature we can attribute to the Arithmetica it is mostly
an unintended achievement of the scribes.

Symbols or ligatures?

A third problem concerns the interpretation of the qualifications ’rhetorical’
and ’syncopated’. Many authors of the twentieth century attribute a highly
symbolic nature to the Arithmetica. Let us take Cajori as the most quoted
reference on the history of mathematical notations. Typical for Cajori’s ap-
proach is the methodological mistake of starting from modern mathematical
concepts and operations and looking for corresponding historical ones. He
finds in Diophantus no symbol for multiplication, and addition is expressed
by juxtaposition. For subtraction the symbol is ap . As an example he writes
the polynomial x3 +13x2 +5x+2 as κυας ηap δυ ιγ µo β where κυ, δυ, ἀριθμὸς
are the third, second and first power of the unknown and µ

o represents the
units. Higher order powers of the unknown are used by Diophantus as addi-
tive combination of the first to third powers.

Cajori makes no distinction between symbols, notations or abbreviations.
In fact, his contribution to the history of mathematics is titled A History of
Mathematical Notations. In order to investigate the specific nature of math-
ematical symbolism one has to make the distinction between symbolic and
non-symbolic mathematics. This was, after all, the purpose of Nesselmann’s
threefold phases. We take the position together with Thomas Heath, Paul
Ver Eecke and Jacob Klein, that the letter abbreviations in the Arithmetica
should be understood purely as ligatures [19, p. 146]:

We must not forget that all the signs which Diophantus uses are
merely word abbreviations. This is true, in particular for the sign of
”lacking”, ap , and for the sign of the unknown number, ς , which (as
Heath has convincingly shown) represents nothing but a ligature for
ἀριθμὸς.

Even Nesselmann acknowledges that the ’symbols’ in the Arithmetica are
just word abbreviations (”sie bedient sich für gewisse oft wiederkehrende Be-
griffe und Operationen constanter Abbreviaturen statt der vollen Worte”). In
his excellent French literal translation of Diophantus, Ver Eecke consequently
omits all abbreviations and provides a fully rhetorical rendering of the text as
in ”Partager un carré proposé en deux carrés” (II.8, ”Divide a given square
into two squares”), which makes it probably the most faithful interpretation
of the original text.
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This objection marks our most important critique on the threefold dis-
tinction: symbols are not just abbreviations or practical short-hand notations.
Algebraic symbolism is a sort of representation which allows abstractions and
new kinds of operations. This symbolic way of thinking can use words, lig-
atures or symbols. The distinction between words, word abbreviations and
symbols is in some way irrelevant with regards to the symbolic nature of
algebra.

We will now show that the solution method of Diophantus often reflects
the characteristics of Peacock’s arithmetical algebra in the way solutions are
guided by arbitrary limitations on the possible solutions.

1.3.2 Diophantus’s number concept

The definition of number states that “all numbers are made up of some mul-
titude of units, so that it is manifest that their formation is subject to no
limit” [14, p. 7]. Thus zero and one were not considered numbers, only natural
numbers higher than one are multitudes. Negative numbers were considered
“absurd”. Irrational solutions do not appear at all since they were not consid-
ered numbers. Fractions are acceptable as they can be brought to the same
denominator and thus become multitudes. The value of the arithmos can only
be a number which satisfies this concept of numbers. Therefore zero can never
be a solution. Where quadratic problems lead to a positive and a negative
root, Diophantus always takes the positive solution. In case of two positive
roots, the smaller one is used. Other types of solutions are not allowed in
Diophantus’s arithmetical algebra.

1.3.3 The restrictions of arithmetical algebra

We will now demonstrate by means of two examples from book IV that Dio-
phantus’s algebra resembles Peacock’s arithmetical algebra in putting arbi-
trary restrictions on the operations to avoid irrational and negative solutions.
Not only is Diophantus avoiding such solutions, the process of resolving the
indeterminacy of many of his problems precisely depends on these restrictions.

Avoiding non-rational solutions

The first problem IV.10 asks to find two cubes the sum of which is equal
to the sum of their sides [14, p. 172]. The solution starts with the choice
of two and three arithmoi for the sides of the two cubes. If we use x for
arithmos then we arrive at the identity 5x = 35x3, with an irrational result
for x. In Arabic algebra or abbaco algebra this would pose no problem at all.
Now the next step is interesting. Diophantus remarks that the solution would
become rational if we find “two cubes the sum of which has to the sum of
their sides as the ratio of a square to square”. The cubes 53 and 83 satisfy
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this condition and this choice leads to the rational solution ( 125
343 ,

125
343 ). Heath

adds a long footnote to this problem that a general solution can be obtained
by dividing the equation x3 + y3 = x + y by (x + y). This observation is
true of course, but is a typical approach of symbolic algebra which would not
be endeavored by Diophantus. The diophantine approach is to first ’probe’
the problem with the most simple choice of 2x and 3x for the sides of the
cubes. He then notices that this leads to a non-rational solution and uses
the problematic expression to find the condition which guarantees a rational
solution. It is precisely the restriction of “the ratio of a square to square”
which guarantees a rational solution that resolves the indeterminacy of the
problem. This way of reasoning is not coincidental but systematic to many
problems of the Arithmetica. Problems 9, 10, 11, 12, 14, 18, 24, 28, 31 and 32
of book IV explicitly state conditions to make the result rational.

Avoiding negative solutions

Problem 27 of book IV shows how Diophantus adds conditions to avoid a
negative even when the final solution would be positive. The problems asks
for two numbers such that their product minus either gives a cube [14], 168.
He takes for the first number 8x and for the second x2 +1 so that the product
minus the first 8x3 + 8x − 8x is a cube. Then he notices that the product
minus the first (8x3 + 8x−x2−1) becomes a problem as it should be equated
to (2x− 1)3 to get rid of the cube term. He therefore calls this “impossible”.
Heath remarks that the expression can be equated to either (2x − 1

12 )3 or
( 1
12x− 1)3 with a positive rational solution for both. However, this is not the

point. The salient point is that Diophantus chooses new initial conditions in
order to guarantee a positive result with 8x + 1 for the first and x2 for the
second. Now (8x3+8x−x2−1) can be equated with (2x−1)3 and the result will
be positive. Here again the choice of conditions to resolve the indeterminacy
is guided by his limitations on the conception of number.

1.3.4 Expanding the number concept

Jacob Klein, a student of Heidegger and interpreter of Plato, wrote a long
treatise in 1936 on the number concept starting with Plato and the devel-
opment of algebra from Diophantus to Viète [19]. It became very influential
for the history of mathematics after its translation into English in 1968. For
Klein it is not the evolution of solution methods for solving equations which
follows some logical path but the ontological transformation of the underlying
concepts within an ideal Platonic realm. He restricts all other possible under-
standings of the emergence of symbolic algebra by formulating his research
question as follows: “What transformation did a concept like that of arith-
mos have to undergo in order that a ‘symbolic’ calculating technique might
grow out of the Diophantine tradition?” [19, p. 147]. According to Klein it is
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ultimately Viète who “by means of the introduction of a general mathemati-
cal symbolism actually realizes the fundamental transformation of conceptual
foundations” [19, p. 149]. Klein places the historical move towards the use of
symbols with Viète and thus ignores important contributions by the abbaco
masters, by Michael Stifel [28] [29], Girolamo Cardano [7] [8] and the French
algebraists Jacques Peletier [24], Johannes Buteo [6] and Guillaume Gosselin
[13]. The new environment of symbolic representation provides the opportu-
nity to “the ancient concept of arithmos” to “transfer into a new conceptual
dimension” [19, p. 185]. As soon as this happens, symbolic algebra is born:
“As soon as ‘general number’ is conceived and represented in the medium of
species as an ‘object’ in itself, that is, symbolically, the modern concept of
‘number’ is born”[19, p. 175].

Of course, Klein is right that the expansion of the number concept is crucial
to the emergence of symbolic algebra but we do not endorse a philosophy
where concepts realize themselves with the purpose to advance mathematics.
The line of influence is in the opposite direction. The algebraic practices of
abbaco masters facilitated the expansion of the number concept. But before
we will demonstrate this for negative and imaginary numbers we first have to
understand the primary conditions for such a process. The acceptance of a
new kind of solutions to algebraic problems becomes possible only when there
is a strong belief in the validity of accepted practices. We will now discuss
how these practices were epistemically justified.

1.4 Epistemic justification of basic operations

1.4.1 Example of abstraction: multiplying binomials

A good example of the process of abstraction as a necessary condition for the
transition to a symbolic mathematics is found in the multiplication procedure
for two binomials. The procedure of crosswise multiplication, “multiplicare in
croce” is a recurring topic in almost all abbaco treatises. The interesting aspect
is that the method applies to a wide variety of ’numbers’ and still follows the
same procedure. The procedure is often accompanied by a diagram showing
the terms in a crosswise fashion. In our interpretation the diagram functions
as a validation for the procedure rather than being an essential element in the
application of the procedure. Let us look at an example in the abbaco treatise
by Paolo Gherardi where he multiplies two rational numbers [4, p. 16]:

Se noi avessimo a multipricare numero sano e rocto contra numero
sano e rocto, s̀ı dovemo multipricare l’uno numero sano contra l’altro e
possa li rocti in croce. Asempro a la decta regola. 12 1

2 via 15 1
4 quanto

fa? Però diremo: 12 via 15 fa 180. Or diremo: 12 via 1
4 fa [3], echo 183.

Or prendi il 1
2 di 15 1

4 ch’è 7 5
8 , agiustalo sopra 183 e sono 190 5

8 e tanto
fa 12 1

2 via 15 1
4 . Ed è facta.
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Here the multiplication of two fractional numbers 12 1
2 and 15 1

4 is surprisingly
treated as the product of two binomials (12+ 1

2 )(15+ 1
4 ) instead of the product

of two fractions 25
2 and 61

4 . In the pseudo-Paolo dell’abbaco treatise, the author
explicitly refers to the two methods, one by multiplication of binomials and the
other as a multiplication of two fractions [1, p. 28]. We therefore understand
the method of multiplying binomials as a general procedure for multiplying all
kinds of entities that can be expressed as binomials. It suffices to identify the
elements of the two binomials in the crosswise diagram to justify the method.
We thus find it applied to the multiplication of surds and the multiplication of
polynomials. As shown in the figure above, Maestro Dardi uses the crosswise

Fig. 1.0. Maestro Dardi’s scheme for crosswise multiplication of surd binomials
(from Chigi M.VIII.170 f.7r).

multiplication for calculating the square of (
√

5 +
√

7) as 12 +
√

140. Many
abbaco treatises also treat the multiplication of two algebraic binomials in the
same way, such as (x− 2)(x− 3).

1.4.2 Epistemic justification of the rules of signs

The justification for the rules of signs build further on the justification schemes
for the multiplication of binomials. These rules define the result of arithmeti-
cal operations on combinations of positives and negatives. These rules were
common in cultures that recognized and calculated with negative quantities
such as China and India. The Brāhmasput.hasiddhānta of c. 628 includes all
the rules of sign for addition, subtraction, multiplication and division [10].
They also appear in Arabic works from the eleventh century. In Europe there
was no recognition of negative quantities and therefore a formal treatment of
the rules of signs appeared much later. These rules were known implicitly and
were applied within the abbacus tradition, for example in the multiplication
of irrational binomials in Fibonacci (1202; [5, p. 370] [27, p. 510]).

Its epistemic validation stems from correctly applying the rules for mul-
tiplying binomials by cross-wise multiplication in which you add all the sub-
products. The first of such proofs in European mathematics appeared in a
treatise of c.1343 by Maestro Dardi titled Aliabraa argibra (f.4v, [11, p. 44]).
It explains why a negative multiplied by a negative makes a positive. It is re-
peated in various other manuscripts dealing with algebra during the fifteenth
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century. The reasoning goes as follows: we know that 8 times 8 makes 64.
Therefore (10 − 2) times (10 − 2) should also result in 64. You multiply 10
by 10, this makes 100, then 10 times −2 which is −20 and again 10 times
−2 or −20 leaves us with 60. The last product is (−2)(−2) but as we have
to arrive at 64, this must necessarily be +4. Therefore a negative multiplied
by a negative always makes a positive. The strong belief by abbaco masters

Fig. 1.1. Maestro Dardi’s scheme for the justification of the rules of signs by cross-
wise multiplication (from Chigi M.VIII.170 f.4v).

in the correctness of the operations made it possible to extend algebra from
the domain of natural numbers to a domain which includes negative numbers.
Using the principle of permanence of equivalent forms, the “proof” is the only
possible justification for the rules of signs which preserves the distributive
law and the law of identity for multiplication (1 times any number n equals
n). Reasoning within a symbolic model which was epistemologically justified
and led to the creation of new objects on the object level: negative numbers
in arithmetic. Luca Pacioli lists the rules of signs for all basic operations in
his Summa of 1494 [22]. Interestingly, he does not refer to whole numbers,
fractions, surds or cossic numbers. The rules are formulated abstractly, as in
“ a negative divided by a negative makes a positive”, which we would expect
within a symbolic context.

1.5 Expansion of the number concept

If our first example were negative numbers, our second example comes as no
surprise. Cardano was the first to perform a calculation with - what is now
known as - imaginary numbers, in chapter 37 of the Ars Magna named de
regula falsum ponendis, or the “Rule of Postulating a Negative” [9, III, p. 287]
[8, English p. 219].

Here the context is slightly different. In the early sixteenth century
quadratic problems in algebra were reduced to a standard form for which
a canonical rule could be applied. Depending on the sign of the coefficients,
three different rules were applied, already known from the first Arabic work
on algebra. Furthermore, a geometrical proof was known for these rules, so
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there was a justified belief in their correctness. Now Cardano was confronted
with a quadratic problem which leads to imaginary roots. However, he does
not reduce the problem to an equation but tries to reason geometrically. The
problem is as follows:

The second species of negative assumption involves the square root
of a negative. I will give an example: If it should be said, divide 10 into
two parts the product of which is 30 or 40, it is clear that this case
is impossible. Nevertheless, we will work thus: We divide 10 into two
equal parts, making each 5. These we square, making 25. Subtract
40, if you will, from the 25 thus produced, as I showed you in the
chapter on operations in the sixth book, leaving a remainder of −15,
the square root of which added to or subtracted from 5 gives parts the
product of which is 40. These will be (5 +

√
−15) and (5 +−

√
−15).

Fig. 1.2. Cardano picturing a negative surface (from the Ars Magna, 1545, f.66r).

By using a geometrical demonstration, he tries to get a grasp on the new
concept (Figure 3). He proceeds as with the standard demonstration of the
rule for solving quadratic problems. Let AB be the 10 to be divided. Divide
the line at C into two equal parts. Square AC to AD. Since 40 is four times
10 this corresponds with the rectangle 4AB. Now

√
−15 corresponds with the

subtraction of AD by the larger 4AB. Thus, Cardano finds that this strange
new object is a negative or a missing surface. This makes no sense to him and
he therefore writes that the problem is impossible. Cardano still struggled
with the interpretation of

√
−15, but was putting aside the mental tortures

involved and performed the multiplication of the surd binomials

(5 +
√
−15)(5 +

√
−15)

correctly to arrive at 25+15 or 40. Multiplying the two binomials produces four
terms. The first is evidently 25. The second and third (5(

√
−15)+5+(−

√
−15)
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are cancelled out by their signs, whatever their value is. The innovation lies
in the fourth:

(
√
−15)(−

√
−15) = −(−15)

Cardano was well aware of the proofs of the rules of signs, as the one by
Maestro Dardi we discussed, and proceeds in a similar way. Here the product
of the two terms must be 15 to arrive at the sum of 40. The multiplication
of a positive root with a negative must lead to something negative. However,
the result must be +15, therefore the product of two roots of minus 15 must
be minus 15. Again, the reasoning takes place within the symbolic model.
No reasonable interpretation could be given to the root of minus 15. Cardano
attempted a geometrical interpretation, but a negative surface makes no sense
either. Actually, Cardano is here using an abductive reasoning step which is
explained by the chapter heading “Posing a negative”. The occurrence of the
root of a negative is an anomaly to the Renaissance conception of number. To
make the reasoning acceptable he opts the most convenient hypothesis which
fits into the rhetoric of abbaco algebra: begin by posing a negative value for
the cosa. The operations become perfectly acceptable when one poses that
the cosa stands for −15 as:

(
√
x)(−

√
x) = −(x)

It took another three centuries before a sensible geometrical interpretation
was established. Using the law of distribution and the rules of signs, valid on
the symbolic level, Cardano defined the first operations on imaginary num-
bers. In 1572, Bombelli would formulate all possible operations on imaginary
numbers by which the number concept was again extended. In both exam-
ples new mathematical objects were created by reasoning within the symbolic
model. Through the epistemological justification of correctly performing the
operations, these new objects, negative numbers and imaginary numbers, be-
came accepted.
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