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ABSTRACT
Although there is a consensus among philosophers of mathematics and mathemati-

cians that mathematical explanations exist, only a few authors have proposed accounts
of explanation in mathematics. These accounts fit into the unificationist or top-down
approach to explanation.We argue that thesemodels can be complemented by a bottom-
up approach to explanation in mathematics. We introduce the mechanistic model of
explanation in science and discuss the possibility of using this model in mathematics,
arguing that using it does not presuppose a Platonist view of mathematics and allows one
to gain insight into why a theorem is true by answering what-if-things-had-been-different
questions.

1. INTRODUCTION
There is an increasing consensus among philosophers of mathematics andmathemati-
cians that mathematical explanations exist. Mancosu [2008] draws attention to two
different senses of mathematical explanation: mathematical explanation in the natural
or social sciences on the one hand, and explanation within mathematics itself on the
other hand. In this paper we will only discuss the latter case. Furthermore, the scope
of this paper is limited to explanatory proofs in mathematics. We do not address the
explanatory power of mathematical techniques that go beyond traditional proof, for
example the use of diagrams.

Philosophers such as Mancosu [2001] have pointed to the topic of explanation
in philosophy of mathematics, tracing it back to Aristotle and the community of
mathematicians. The central idea is that mathematical activity is not merely driven
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232 • Frans andWeber

by justificatory aims such as the collection of mathematical truths. In many cases
mathematicians will search for alternative proofs of known results in order to find a
better explanation of the mathematical facts. Mancosu [2008, p. 142] refers to the
mathematicianMordell, who describes this phenomenon:

Even when a proof has been mastered, there may be a feeling of dissatisfaction
with it, though it may be strictly logical and convincing; such as, for example, the
proof of a proposition in Euclid. The reader may feel that something is missing.
The argument may have been presented in such a way as to throw no light on
the why and wherefore of the procedure or on the origin of the proof or why it
succeeds. [Mordell, 1959, p. 11]

The underlying idea is that mathematical proofs can do more than establish the
truth of a mathematical claim. While all proofs of theorem p show that p is true, some
proofs also reveal why p is true. In contrast with the extensive discussion of scientific
explanation, only a few authors have proposed accounts of mathematical explanation.

In philosophy of science, the goal of explicating what explanations are has led to
two traditions: the causal tradition and the unificationist tradition. Salmon [1989]
describes this distinction as bottom-up and top-down explanation. The top-down
approach subsumes the explanandum under general principles, aiming at unifying sev-
eral phenomena under these same general principles. With respect to explanation in
mathematics, all theories developed up till now are top-down approaches, leaving the
bottom-up approach to mathematical explanation — if any — untouched. Starting
from a geometrical proof, we will argue that the bottom-up approach is also fruitful
in mathematics.

In Section 2 we show that the seminal theory of Steiner [1978] and the improved
version of it in Weber and Verhoeven [2002] fit into the top-down approach. This
section serves as background against which we develop a bottom-up account of expla-
nation in mathematics. This account is meant to be complementary to the top-down
approach; they are not rivals.We develop this account in three steps: first we introduce
themechanisticmodel of explanation (Section 3); thenwe give an example (section 4)
and discuss how this model could be used in mathematics (Section 5). Then we dis-
cuss the pros and cons of applying this model to mathematical explanation (potential
objections in Section 6, advantages in Section 7).

2. THE TOP-DOWN APPROACH IN THE PHILOSOPHICAL
ANALYSIS OF MATHEMATICAL EXPLANATION

2.1. Steiner’s Theory and Its Refinement byWeber and Verhoeven
Steiner [1978, p. 143] uses the concept of characterizing property to draw a distinc-
tion between explanatory and non-explanatory proofs. A characterizing property is a
property unique to a given entity or structure within a family or domain of such enti-
ties or structures. The concept of a family is left undefined. According to Steiner, an
explanatory proof always makes reference to a characterizing property of an entity or
structure mentioned in the theorem. Furthermore, it must be evident that the result
depends on the property (if we substitute for the entity another entity in the family
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which does not have the property, the proof fails to go through) and that by suitably
‘deforming’ the proof while holding the ‘proof-idea’ constant, we can get a proof of
a related theorem. Though many of Steiner’s concepts (family, deformation, proof-
idea) are vague, we can construct examples which beyond any doubt would classify
as explanatory proofs by his criterion. Take the following proof of the Pythagorean
Theorem:

Proof T1

(1) For every triangle ABC: c2 = a2 + b2 − 2ab cos(a, b) Prem
(2) For every angle θ : cos θ = 0 if θ = 90◦ Prem
(3) For every right-angled triangle ABC with hypotenuse c:

(a, b) = 90◦
Prem

(4) For every right-angled triangle ABC with hypotenuse c: c2 =
a2 + b2

1, 2, 3

This proof makes reference to characterizing properties of right-angled triangles
with hypotenuse c, namely that (a, b) = 90◦. It is evident that the proof fails to go
through if another kind of triangle is considered, since (3) is false for all other types of
triangles. Furthermore, we can easily imagine similar proofs of related theorems. E.g.,
obtuse triangles contain exactly one angle θ > 90◦. Because cos θ < 0 if 90◦ < θ <

180◦, we can derive that for all obtuse triangles, c2 > a2 + b2.

Proof T2

(1) For every triangle ABC: c2 = a2 + b2 − 2ab cos(a, b) Prem
(2) For every angle θ :−1 < cos θ < 0 if 90◦ < θ < 180◦ Prem
(3) For every obtuse-angled triangle ABC with obtuse angle in c:

90◦ < (a, b) < 180◦
Prem

(4) For every obtuse-angled triangle ABC with hypotenuse c:
c2 > a2 + b2

1, 2, 3

This proof makes reference to the characterizing property of obtuse-angled trian-
gles with obtuse angle atC, namely that 90◦ < (a, b) < 180◦. It can also be ‘deformed’
back to proof T1. The couple (T1,T2) answers the question “Why does it hold for
right-angled triangles ABC with hypotenuse c that c2 = a2 + b2, while for obtuse-
angled triangles ABC with obtuse angle at C it holds that c2 > a2 + b2?”.

Both proofs are individually explanatory according to Steiner’s criterion, though
their explanatory power depends on the possibility of ‘deforming’ the proofs, or, in
practice, on the existence of such ‘deformed proofs and the related theorems they
prove. For this reason Weber and Verhoeven [2002] argue that Steiner’s account in
fact sees mathematical explanations as answers to the question: “Why do mathemat-
ical objects of class X have property Q , while those of class Y have property Q ′?”.
Questions of this formhave to be answered bymeans of a couple of proofs; one individ-
ual proof is not enough. The proofs in the couple must use the same general theorem
(cf. premise (1) in our proofs) and must use the characteristic property of respectively
class X and class Y). Once we take this step, it is easy to see that Steiner fits within the
unificationist tradition. We discuss the issue below.
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234 • Frans andWeber

2.2. Explanation as Unification
One of the generally accepted aims of explanation in the natural and social sciences is
unification. Unifying events consist in showing that two or more different events are
instances of the same (set of) law(s) of nature. As an example, assume that we have
observed the following:

Pendulum a had a period in the interval [1.99s, 2.02s].
Pendulum b had a period in the interval [2.44s, 2.47s].

These events can be unified by deriving them from the pendulum law. The first
derivation is:
(1) For all pendulums1 P = 2π

√
L/g,

(2) a has a length in the interval [0.99m, 1.01m].
(3) All pendulums that have a length in the interval [0.99m, 1.01m], have a period

in the interval [1.99s, 2.02s].
(4) Pendulum a has a period in the interval [1.99s, 2.02s].

(1) and (2) are premises. (3) is derived from (1), the explanandum (4) is derived from
(2) and (3). The second derivation is

(1) For all pendulums P = 2π
√
L/g,

(2′) b has a length in the interval [1.49m, 1.51m].
(3′) All pendulums that have a length in the interval [1.49m, 1.51m], have a

period in the interval [2.44s, 2.47s].
(4′) Pendulum b has a period in the interval [2.44s, 2.47s].

Note that the two derivations in the case of the pendulum have the same structure,
use the same law, and differ only in the ‘characterizing property’ of each pendulum.
Philip Kitcher, one of the developers of the explanatory unification approach, defends
the idea that unification can cover mathematical explanations as well:

For even in areas of investigation where causal concepts do not apply— such as
mathematics— we can make sense of the view that there are patterns of deriva-
tion that can be applied again and again to generate a variety of conclusions
[Kitcher, 1989, p. 437]

It is clear that proofs that give answers to the question “Why do mathematical objects
of class X have property Q , while those of class Y have property Q ′?” and satisfy the
criteria of explanation discussed above, unify mathematical facts in a way similar to the
way two physical explanations unify the two physical facts.

2.3. Link with Hempel’s Covering-LawModel
One of the central tenets of the covering-lawmodel of explanations as it was developed
byCarlHempel [1965] is that empirical regularities have to be explained by subsuming

1This equation is a simplification which only holds if the angular displacement is small enough
that the small-angle approximation is true. [Serway, 2008, p. 432]
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them under other laws (i.e., by showing that the explanandum regularity could have
been expected given the law(s) in the explanans). Here is an example of what Hempel
had in mind:

All waves reflect (Covering law)
All sounds are waves (Auxiliary hypothesis)
All sounds reflect (Explanandum)

It is clear that Steiner’s account fits into this covering law idea: explanatory proofs
use an overarching, more general theorem than the one that is to be explained. As
we will see immediately, Hempel’s model has been criticized and an alternative has
been developed: the mechanistic account of explanation of capacities. The rest of this
paper is an investigation of the potential of this account (which is certainly very valu-
able for the analysis of explanations in many empirical sciences) for the analysis of
mathematical explanation.

3. MECHANISTIC EXPLANATION OF CAPACITIES

3.1. Introduction
Though probably most philosophers of explanation realized that covering-law expla-
nations of regularities are difficult to find outside physics, an alternative was not
developed until the end of the twentieth century. This is how William Bechtel and
Adele Abrahamsen describe the situation:

The received view of scientific explanation in philosophy (the deductive-
nomological orD-Nmodel) holds that to explain a phenomenon is to subsume it
under a law. However, most actual explanations in the life sciences do not appeal
to laws specified in the D-Nmodel. [2005, pp. 421–422]

The life sciences include biology (cell biology, genetics, . . . ) but also, e.g., neuroscience.
Bechtel and Abrahamsen claim that the discrepancy is due to a focus on physics:

Given the ubiquity of references to mechanism in biology, and sparseness of
reference to laws, it is a curious fact that mechanistic explanation was mostly
neglected in the literature of 20th century philosophy of science. This was due
both to the emphasis placed on physics and to the way in which explanation in
physics was construed. [2005, p. 423]

In this sectionwediscuss the alternative thatwas developed from2000onwards: the
mechanistic model of explanation. We focus on explanations of capacities. A capacity
can be ascribed to a system or to a class of systems. By a capacity we mean the ability
of a system to react in a specific way (i.e., to produce a specific output) given certain
inputs. So if we claim that a system has a capacity, we claim that there is a regularity (a
systematic connection between inputs and outputs) in its behavior.

3.2. TheMechanistic Model of Explanation
Many generalizations in biology, cognitive science, psychology, and engineering sci-
ences ascribe capacities to classes of systems. Andone of themain taskswhich scientists
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236 • Frans andWeber

in these disciplines set themselves (besides establishing the regularities) is explaining
them. So these scientists ask why-questions about capacities ascribed to classes of
systems. Here are some examples:

Why do plants and bacteria have the capacity to convert carbon dioxide into
organic compounds?
Why do humans have the capacity to see depth?

Starting with the seminal paper [2000] of Machamer, Darden, and Craver, many
philosophers have claimed that these capacities should be explained by means of
a mechanistic explanation, which does not look like a covering-law explanation at
all. So mechanistic explanations are put forward as an alternative to covering-law
explanations. They are defined as follows:

A mechanistic explanation of a capacity is a description of the underlying
mechanism.

We define mechanisms as follows:

Amechanism is a collection of entities and activities that are organized such that
they realize the capacity.

This definition includes the three key terms which mechanists use: entities, activities,
and organization. A description of a mechanism is usually called a model of the mech-
anism. The core idea of the mechanists is that, in order to have explanatory value, the
model has to describe the mechanism in terms of its entities, its activities, and the
way these entities and activities are organized. Before we present an example, some
characteristic quotes. Bechtel and Abrahamsen write:

A mechanism is a structure performing a function in virtue of its component
parts, component operations, and their organization. The orchestrated func-
tioning of the mechanism is responsible for one or more phenomena. [2005,
p. 423]

Carl Craver writes:

[M]echanisms are entities and activities organized such that they exhibit the
explanandum phenomenon. [2007, p. 6, italics removed]

These quotes show that mechanists have no unique way of defining what a mech-
anism is. However, there is a common core idea and our definition captures this core
idea.

3.3. An Example
Our example is about an electrical circuit, which we label E. Assume that everything
inside the large rectangle is contained in an opaque box, so that only the three input
wires and two output wires are visible. Assume also that we can somehow measure
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Fig. 1. Electrical circuit E.

whether these wires are charged or not. Then an experiment can be performed to see
whether there is a regularity connecting the states of the input wires with the states of
the output wires. Suppose that such an experiment yields the following claim:

If input1(E) = 1, input2(E) = 0, and input3(E) = 1,
then output1(E) = 0 and output2(E) = 1.

“Input1(E) = 1” is shorthand for “The first input wire of E is charged”, input2(E) = 0
for “The second input wire of E is not charged”, etc. This claim ascribes a capacity (the
capacity to produce a specific output given a specific input) to the system E. In order
to give a mechanistic explanation of this capacity, we have to open the box. If we do
this, we discover that E contains three binary gates (a, b, and c) and several wires. This
is what we find out about the entities of the mechanism. Each of the gates can be taken
out of the circuit; so we can investigate their individual behaviour. Assume that such
tests give the following results:

a is an AND gate.
b is an XOR gate.
c is an XOR gate.

An AND gate has output 1 if and only if both inputs are 1. And XOR gate (exclu-
sive OR) has output 1 if and only if the values of the inputs are different. These are
claims about the activities of the entities. Finally, we can describe the organisation of
the circuit:

The circuit is wired such that:

output(b) = input2(a).
output(b) = input1(c).
input1(E) = input1(b).
input2(E) = input2(b).
input3(E) = input1(a) = input2(c).
output1(E) = output(c).
output2(E) = output(a).
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Fig. 2. Butterfly theorem.

4. A MATHEMATICAL EXAMPLE

4.1. The Butterfly Theorem
In this section we will discuss the possibility of using the mechanistic model of expla-
nation in mathematics. The butterfly theorem is a result in Euclidean geometry. Let C
be the midpoint of a chord AB of a circle, through which two other chords FG and ED
are drawn; FD cuts AB atM and EG cuts AB atN. Then C is the midpoint ofMN. The
name is evidently linked with the apparent image of a butterfly in the configuration of
the problem. Numerous proofs have been developed, varying in difficulty and length.
Bankoff [1987] traces the presumably earliest proof of this problem back to 1815. We
will use a proof that involves the identification of entities that are part of the original
figure. We will argue that such a proof is explanatory as well.

4.2. Proof

(1) ∠FDE and∠EGF are equal Inscribed angles
∠DFG and∠DEG are equal Inscribed angles

(2) �FCD and�ECG are similar (1: Property similar triangles)
(3) FD

FC = EG
EC (2: Property similar triangles)

(4) Construct pointH onDF such
that OH is perpendicular to
DF, and construct point J on
EG such that OJ is perpendic-
ular to EG

(5) FD = 2.FH (4: Property of a chord)
EG = 2.EJ (4: Property of a chord)
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Fig. 3. Butterfly theorem: Intermediate steps.

(6) FH
FC = EJ

EC (3,5: Substitution)
(7) �FCH and�ECJ are similar (1, 6: Property of similar triangles)
(8) ∠EJC and∠FHC are equal (Property corresponding angles)
(9) �OCMH is cyclic (4:∠FHO +∠ACO = 180◦)

�OCNJ is cyclic (4:∠EJO +∠BCO = 180◦)2
(10) ∠MHC and∠MOC are equal (9: Inscribed angles)

∠CON and∠CJN are equal (9: Inscribed angles)
(11) ∠MOC and∠CON are equal (8, 10: Substitution)
(12) �OCM and�OCN are equal (10, 11: Property equal triangles)
(13) C is the midpoint ofMN (12: Property equal triangles)

5. ANALYSIS OF THE PROOF

5.1. Explanatory Proof
In Section 3, mechanistic explanation was defined in terms of entities, activities,
and organization. We will demonstrate how the proof of the butterfly theorem is

2We thank the anonymous referee for pointing out that if pointH and pointM coincide, this step
is not possible. It is nevertheless still possible to come to the conclusion that �OCM and �OCN
are equal. In the case that H and M coincide, we know that ∠FMC and ∠CMO are complemen-
tary angles, since ∠FMO is a right angle. Similarly, ∠CJO and ∠EJC are complementary angles.
∠CNO and∠CJO are equal, since they are inscribed angles in ©OCNJ. Consequently,∠CNO and
∠CHO are equal. Since we also know that∠HCO and∠NCO are equal(right angles), and they have
a common side CO, we can derive that�OCM and�OCN are equal.
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Fig. 4. Butterfly theorem: Final steps.

explanatory by (a) identifying a dependency to be explained, (b) identifying entities,
(c) substituting the notion of activities with the notion of difference-makers, and (d)
show that these difference-makers are organized such that the truth of the theorem is
established. Finally, we will discuss a second proof that lacks this kind of information
to clarify what is gained by our explanatory proof.

5.2. Capacity
All explanations start with the identification of the explanandum. In the case of mech-
anistic explanation the explanandum is a capacity of a system or a class of systems. A
capacity is defined, parallel to the discussion above, as a systematic connection between
a specific input and output. The class of systems that we ascribe a capacity to is here the
set of quadrilaterals inscribed into a circle. The instructions used to construct the figure
are the input:

C is the midpoint of a chord AB of a circle.
FG and ED are chords that go through point C.
FD cuts AB atM.
EG cuts AB atN.

If a quadrilateral DFEG inscribed in a circle satisfies these criteria, it will produce a
specific output:

C is the midpoint ofMN.
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Within the set of quadrilaterals inscribed in a circle, one can find many figures
that do not satisfy the input conditions. However, these specific conditions result in
a specific output. Throughout the further discussion of using the mechanistic account
of explanation in mathematics, we must be careful not to present an account in mathe-
matics that sounds too causal. Rather than speaking of a capacity that is realized, wewill
speak of a dependency between the given input and output. The question why the but-
terfly theorem is true is thus the question why the system has the dependency between
this result and the specific input.

5.3. Entities and Activities
Two important constituents of mechanistic explanation are entities and activities. The
proof as well identifies certain entities of the original structure such as chords, trian-
gles, midpoints, and angles. We can furthermore make claims about these entities or
component parts:

If a triangle has two angles that are equal to two angles of another triangle, these
triangles are similar. (Step 2)
A line from the centre of a circle, perpendicular to a chord, bisects the chord.
(Step 5)

It would be peculiar to argue that these are claims about the activities of the entities.
An activity would suggest that the magnitude of an angle produces similar triangles.
We do not defend such a productive relation betweenmathematical entities. However,
rather than speaking of some sort of active exchange between properties of mathemat-
ical entities, one can speak of a dependency between these properties. The property
that the line is from the centre of a circle is dependently related to the property that the
intersection is the midpoint of the chord.

5.4. Difference-makers
One can investigate this relationship between entities by varying the properties of the
entities. If we vary a property of a mathematical entity,3 we see how other properties
change in response. It is for example possible to vary the property of the line from the
centre of the circle to a chord:

If a line from the centre of a circle is perpendicular to a chord, the chord is divided
equally. If a line from the centre of a circle is not perpendicular, the chord is not
divided equally.

3We can intervene on the value of the properties, but not on the properties themselves. We can-
not, for example, change the fact that if a line from themidpoint of a circle is perpendicular, the chord
is divided equally. But by intervening on the value of, for example, the angle, we can make its relation
with the division of the chord clear.
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Such an investigation corresponds to the interventionist account of Woodward
[2003]. Woodward defines causality and explanations in terms of manipulations or
interventions. The meaning of a causal claim is that intervening on some variable
would change the value of another variable. This allows one to answer what-if-things-
had-been-different questions, leading to an account of explanation by Woodward and
Hitchcock:

On our account the aim of explanation is to provide the resources for answering
what-if-things-had-been-different questions bymaking explicit what the value of
the explanandum variable depends upon. [2003, p. 190]

Several mechanists, such as Craver [2007] and Glennan [2002], refer to the inter-
ventionist account of Woodward, accepting that mechanistic explanation is in fact
answering certain kinds of what-if-things-had-been-different questions.We treat inter-
ventions in mathematics, such as described above, as imaginary. The proof makes
explicit that the butterfly theorem depends upon properties of the identified entities.
These can be subject of what-if-things-were-different questions:

What if the angles were not equal to the angles of another triangle?
What if the line from the centre of the circle was not perpendicular to the chord?

These questions not only demonstrate the motivation for further steps of the proof
showing how properties of specific parts are related to each other. The proof also iden-
tifies which entities and properties are relevant in order to explain why the theorem
holds, since imaginary manipulation of an entity shows how the system, of which
a dependency between an input and output is described in the theorem, changes
in response. An entity and a property are relevant if changing the property would
change the outcome of the proof. In other words, such entities and properties are
difference-makers. The proof identifies which entities and properties are difference-
makers. Interventions also allow one to see which entities and properties are not
difference-makers. Answering the question “what if the slope of a chord is different”
shows that the slope of the chord is irrelevant since intervention on it does not have
any effect on further steps or the conclusion of the proof. The proof is consequently
only a part of the explanation. The proof gives a person the relevant difference-makers.
We argue that a person can gain deeper understanding by asking the appropriate ques-
tions. If a person succeeds in this task, (s)he understands how each separate part of the
original figure contributes to the truth of the theorem, similar to the case of the elec-
trical circuit discussed earlier. Such information, we argue, is genuinely explanatory
information.

This approach further implies that the notion of activities does not have to be
assumed in order to defend mechanistic explanation in mathematics. Both scientists
and mathematicians search for difference-makers. In science this entails identifying
entities and activities. Mathematicians on the other hand identify entities and depen-
dencies between properties of these entities. Both approaches allow the investigator to
answer what-if-things-had-been-different questions by intervention, and increase their
understanding in how difference-makers are relevant for the explanandum. It should
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Fig. 5. Butterfly theorem.

nonetheless be clear that the concepts of difference-makers in science and in mathe-
matics are not identical. Firstly, an intervention in science holds only ceteris paribus.
This means that a scientist works in a framework which includes the rest of the mecha-
nism and other scientific laws. If a part of themechanism, for example, does not remain
intact, a certain outcome of an intervention could no longer hold. The mathematical
statement that “If a line from the centre of a circle is perpendicular to a chord, the chord
is divided equally” holds in contrast for every circle in Euclidean space. Secondly, in
contrast to science, there is no real observational movement in mathematics. We will
discuss this point in Section 6.

5.5. Organization
The final element in the characterization of mechanistic explanations is organization.
What does it mean to say that the entities and difference-makers in the case of the
butterfly theorem are organized such that the theorem is true? Firstly, we need all
difference-makers in order to establish the truth of the theorem.One difference-maker,
or even all but one, do not yield an explanation of the butterfly theorem. In order to
give such an explanation, we need to see how all difference-makers collectively explain
the theorem. Secondly, there is a certain sequence in the steps of the proof that can
not be changed. Likewise, there is a certain structure in the mechanistic explanation
of the butterfly theorem. One could start with constructing points H and J (step 5),
but one cannot come to step 6 without going through steps 1 to 4. Thirdly, the spatial
organization is crucial. The same set of difference-makers could be applied on a sim-
ilar structure that does not prove the butterfly theorem. Hence, we can see how not
only the values of the difference-makers have effects on the proof, but that the enti-
ties and properties are organized such that the truth of the mathematical theorem is
established.
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5.6. A Second Proof
We can clarify what explanatory power we gain using the account by looking at a sec-
ond proof of the butterfly theorem.4 It should be noted that this is only a proof of a
special case, and that we use specific co-ordinates. It is possible to discuss other cases
and work with arbitrary co-ordinates, but that would significantly increase the length
and complexity of the proof. We limit ourselves to the discussion of this case here, in
order to clarify our account further. Let us take a look at the proof.

(1) Assume that:
Q is the midpoint of ST;
AB goes from A(0, 1) to B(0, 1); and
CD is parallel to the x-axis.

(2) The equation of AB is: x + y = 1.
The equation of CD is: y = −

√
2
2 .

(3) Since we know the co-ordinates of both A and D, we know the
equation of AD is:
y − 1 = − 2+√

2√
2
x.

Similarly, we find the following equation of BC:
y =

√
2

2+√
2
(x− 1).

(4) We now have a system of the equationsAD and BC, which allows us
to find the co-ordinates of pointQ :
xQ = 1

2 ; yQ = −
√
2

2(2+
√

2)
.

(5) Using the co-ordinates of O and Q , we determine the equation of
OQ :
y = −

√
2

2(2+
√

2)
x.

(6) Since we know thatQ is themidpoint of ST,OQ is perpendicular to
ST. This allows us to find the slope, and thus the equation of PR:
y = 2+√

2√
2
x− 2+√

2
1+√

2
.

(7) Solving the system of equations of AB and PR gives us the co-
ordinates of P:
xP = 4+3

√
2

6+4
√
2
; yP = 1 − 4+3

√
2

6+4
√
2
.

(8) Similarly, solving the system of the equations of CD and PR gives us
the co-ordinates of R:
xR =

√
2

2+√
2
; yR = −

√
2
2 .

(9) If we have xP − xQ = xQ − xR and we have yP − yQ = yQ − yR , we
can conclude that |QP| = |QR|. For the values of xwe find:
xP − xQ = 4+3

√
2

6+4
√
2

− 1
2 =

√
2

4+2
√
2

= 1
2 −

√
2

2+√
2

= xQ − xR .

4This proof was written by Jean Paul Van Bendegem after a discussion of this paper. We thank
him sincerely for this contribution.
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(10) For the values of ywe find:
yP − yQ = 1 − 4+3

√
2

6+4
√
2

+
√
2

2(2+√
2)

= 1
2 = −

√
2

2(2+√
2)

+
√
2
2 =

yQ − yR .
(11) Since we have xP − xQ = xQ − xR andwe have yP − yQ = yQ − yR ,

we can now conclude that |QP| = |QR|.

This analytical proof gives us a justification of the butterfly theorem (of this particu-
lar case). Furthermore, it makes reference to certain entities of the figure such as points
and lines. We do not, however, receive any information on how the properties of these
entities are specifically organized such that the theorem holds. The only operations
that are performed are determining equations, solving equations, and solving systems
of equations. This ismathematically legitimate, and helps us to establish the truth of the
theorem. However, it is not clear how this helps us understand why the theorem holds.
What our proof, using the model of mechanistic explanation, contributes is showing
how certain difference-makers underlie the theorem. By making interventions on the
properties of the identified entities, it is demonstrated how and which other properties
and the outcome of the proof change in response. As a result, given the identification
of these difference-makers, the outcome of the proof is to be expected. We argue that
this is genuine explanatory information.

However, we should perhaps not be too quick to conclude that the second proof
cannot give such information. We argue that the first proof gives us clear information
that we need to complete a deeper understanding of the theorem.While this is unclear
in the second proof, perhaps someone with an expertise in analytical proofs can rec-
ognize difference-makers here as well. This is a final characteristic of our account. We
argue that the use of concepts such as difference-makers and what-if-things-had-been-
different questions, allows one to expect and explain a mathematical theorem. Since
it involves certain insights from the person in question, one will not always extract
an explanation from a potentially explanatory proof. Furthermore, every mathemati-
cian has one’s own expertise, and this can lead to the fact that certain mathematicians
find one proof identifiesmore satisfactory difference-makers than another. This results
from personal preferences and knowledge, and we take it to be natural that these
influence the appreciation of certain explanations.

6. POSSIBLE OBJECTIONS
In the previous section we already referred to the issue of ‘capacities’ and ‘activities’
in mathematics. It is important to stress as well that we do not make claims about the
ontological status of mathematical entities. Approaching the proof in terms of mech-
anisms by referring to entities, difference-makers, and organization could appear to
suggest thatwe are talking about actual objects, whilemathematical objects are abstract
and are not spatially or temporally localized. Paul Benacerraf [1973] raised this epis-
temological problem for Platonist positions towards mathematics. The mechanistic
model can, however, be interpreted by both realist and nominalist accounts regarding
the existence of mathematical objects.
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Two types of realism aboutmathematics should be distinguished:metaphysical and
semantic. Metaphysical realism is the belief that mathematical entities exist, coincid-
ing with Platonist views of mathematics. Semantic realism on the other side is the
belief that mathematical statements have objective truth-values. In order to identify
entities and perform imaginary manipulations as discussed above, one can adopt a
metaphysical-realist position but it suffices to adopt the semantic-realist position. One
can answer questions about a triangle without adopting a metaphysical-realist posi-
tion about this entity. Take for example the claim that an equilateral triangle cannot
have a right angle. We cannot imagine manipulating an equilateral triangle in such a
way that one of its angles is a right angle. In order to do so, we have to have a fixed
meaning for an equilateral triangle and a right angle. One does not have to presuppose
that these entities actually exist. Several nominalist approaches tomathematics, such as
themodal-structural account ofGeoffreyHellman [1989], are semantic-realist without
being metaphysical-realist.

7. ADVANTAGES
The account of Steiner does not allow us to grant any explanatory value to the dis-
cussed proof of the butterfly theorem. First, it is hard to see what the characterizing
property of any entity mentioned in the theorem would be. The proof depends on
properties of several entities such as circle, chord, and triangle. The theorem fails to
hold if we drop any of its conditions, but it is impossible to isolate a property of an entity
mentioned in the theorem. Furthermore, the proof is not deformable and consequently
has no unifying value.

We argued that the proof can be seen as explanatory. More precisely, approach-
ing the proof in terms of entities and imaginary manipulations allows us to answer
what-if-things-had-been-different questions. Victor Gijsbers [2011] has also proposed
an interventionist theory of mathematical explanation. He argues that a proof that
is categorized as explanatory by Steiner can be reconstructed to be a Woodwardian
explanation. In the case of the proof of the Pythagorean theorem discussed above, the
explanatory power of the proof arises from the possibility of intervening on the right
angle. This intervention shows how, starting from the cosine law that holds in every tri-
angle, the Pythagorean theorem holds only in right-angled triangles. Such an account
does not discuss bottom-up explanations, since it only addresses intervention on the
class of objects mentioned in the theorem.

Our account goes further, stating that identifying parts of the mathematical object
and showing how they make a difference for the truth of a theorem has explana-
tory power. This can be clarified by the notions of decomposition and localization,
introduced by Bechtel and Richardson [1993]. Decomposition is the strategy where
scientists divide the system into separate sub-processes. The authors assume that an
activity of the system is a product of a set of subordinate functions performed in parts
of the system. Localization subsequently means that scientists can indicate in which
component parts these sub-processes occur.We argue that, at least for geometry,math-
ematicians likewise decompose mathematical figures and localize a set of component
parts that are relevant difference-makers to the mathematical theorem. This approach
goes beyond intervening on the class of objects mentioned in the theorem.
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8. CONCLUDING REMARKS
We have argued that, while developed accounts of mathematical explanation fit top-
down approaches to explanation, the bottom-up approach to explanation is also fruitful
in mathematics, more precisely in geometry. Similar to a mechanistic explanation of
an electrical circuit, a geometrical proof depends upon the identification of entities,
properties, and difference-makers. The proof shows how the theorem depends upon
properties of component parts of the mathematical structure. By imaginative manip-
ulation of one property, one can see how properties of other entities and the truth
of the mathematical theorem change. Such an approach allows one to answer what-
if-things-had-been-different questions and gain insight into why the theorem is true.
We have argued that such an approach does not necessarily entail postulating the exis-
tence of mathematical objects. Our approach furthermore shows that certain proofs
are explanatory while having no unifying value.

We do not argue that the unificationist approach to mathematical explanation is
wrong. We endorse a pluralist view of mathematical explanation. Both top-down and
bottom-up explanations have a place in geometry. This does not render all proofs
explanatory, since certain types of proof, such as proofs using reductio ad absurdum,
fail to give either bottom-up or top-down explanations.

The benefits, limits, differences, and similarities of both types of explanation should
be further analyzed in future research. This paper discussed the possibility of bottom-
up explanation by looking at geometry. Future research should address whether this
can be extended to mathematical domains outside geometry. Furthermore, it would
be interesting to see whether our account could clarify the explanatory power of visual
proofs.
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