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Abstract

This paper presents and illustrates a formal logic for the abduction of singular hypotheses. The logic has

a semantics and a dynamic proof theory that is sound and complete with respect to the semantics. The

logic presupposes that, with respect to a specific application, the set of explananda and the set of possible
explanantia are disjoint (but not necessarily exhaustive). Where an explanandum can be explained by
different explanantia, the logic allows only for the abduction of their disjunction.
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1 Introduction

Many logicians display disinterest or even suspicion with respect to abduction. The reason
is twofold. The first is that abductive steps are of the form

B(β), (∀α)(A(α) ⊃ B(α)) / A(β), (1.1)

a fallacy known as Affirming the Consequent (combined with Universal Instantiation). The
second is that many examples of purportedly sound abductions seem to rely on a hidden
non-formal reasoning: the only sensible formal rule behind them seems to lead inevitably to
a set of unsound and even inconsistent conclusions. For instance, from the explananda Qa
and Ra and the generalizations (∀x)(Px ⊃ Qx) and (∀x)(¬Px ⊃ Rx), (1.1) enables one to
generate both Pa and ¬Pa.1

In this paper, we shall present a logic for the abduction of singular hypotheses, LAr. We
were only able to forge this logic by introducing a restriction, and not a very original one.
Where W is the set of closed formulas of the standard predicative language, we introduce two
sets of truth functions of closed primitive formulas,2 We and Wa, requiring that no primitive
formula occurs in a member of We as well as in a member of Wa. The sets may but need
not be combinatorially closed, in other words, they need not contain all subformulas of their
members or all truth-functions of these subformulas.

Intuitively, We is the set of explananda, formulas that are considered as requiring an
explanation, whereas Wa is the set of explanantia, formulas that, if they can be abduced,

1Outside the domain of formal logic, logic-based approaches to abduction are quite popular at the moment. In the domain

of Artificial Intelligence, for instance, they recently led to an impressive number of systems for a wide variety of application

contexts (such as diagnostic reasoning, text understanding, case-based reasoning, and planning)—see [19] for an overview.

But also in the domain of cognitive science and philosophy of science they proved very fruitful. Examples are Hintikka’s

analysis of abduction in terms of the interrogative model of inquiry (see especially [15]), Aliseda’s approach to abduction in

terms of semantic tableaux (see [1]), Magnani’s integration of results on diagnostic reasoning and scientific reasoning (see

[16] and [17]), and Thagard’s reconstruction of several important discoveries in the history of science and in the history of

medicine (see, for instance, [20] and [21]). A reconstruction of these logic-based approaches in terms of ampliative adaptive

logics is presented in [18].
2Primitive formulas are those that contain no logical symbols, except possibly for identity.
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form potential explanations for the explananda. The requirement that no primitive formula
occurs in members of both sets can be easily justified with respect to applications. If one tries
to abduce an explanation, one has in mind a phenomenon for which an explanation is sought,
and the explanation should be logically independent of the explained phenomenon—everyone
rejects (even partial) self-explanations. Similarly, one often looks for an explanation of a
set of phenomena, for example the symptoms displayed by a patient. Here too the sought
explanations will be in terms of diseases, or in terms of the past history of the patient, but
not in terms of symptoms.

The sets We and Wa are seen as application dependent. After abducing Ra ∧ Sa in
order to explain Pa ∨ Qa, nothing prevents one from seeking an explanation for Ra. So
where Ra ∧ Sa belonged to Wa for the first application, Ra belongs to We for the second
application. Remark that we do not have to require that abducted knowledge has a lower
degree of certainty than the original premises. The premises may be closed under LAr with
respect to a couple 〈We,Wa〉, and the resulting set may be closed under LAr with respect
to another such couple.

Some will claim that the reference to We and Wa turns LAr into a non-formal logic, for
example because uniformity (as standardly defined) fails. We consider such objections as
mainly verbal. Consider the expression

〈Γ,We,Wa〉 �LAr A .

If this expression is true, then so is the expression obtained by systematically replacing in the
expression one schematic letter by a letter of the same sort (a sentential letter, a predicate
of a certain rank, an individual constant or an individual variable) that does not occur in
the original expression. The operation may be repeated on the result, etc. Put differently,
if an expression as the above one is true, then so is every expression that shares all logical
forms with it. This is as good a criterion for formality as any other.

Incidentally, for many application contexts, Wa may be taken to be a function of We, viz.
the set of all formulas that do not contain any primitive formula that occurs in We. As the
reader will see, the premise set may then be written as 〈Γ,We〉, and the requirement that
the abduced conclusions belong to the so defined Wa may be pushed into the logic itself
(because it now became a purely formal matter). And 〈Γ,We〉 may be interpreted as a set
of declarative premises, Γ, together with a set of explanation questions, viz. why questions
about the members of We that are CL-derivable from Γ.

As one would expect, LAr has some non-standard properties (it is non-monotonic, for in-
stance). We shall also show that it adequately captures the main characteristics of abductive
reasoning processes.

One such characteristic is that abductive steps are combined with deductive steps. Partly
because of this combination, abductive reasoning processes are dynamical. For instance, a
conclusion reached on the basis of an abductive step may be withdrawn when its negation
is derived by deductive means.

An important property of LAr is that it not only nicely integrates deductive and abductive
steps, but that it moreover has a decent proof theory. This proof theory is dynamical, but
warrants that the conclusions derived at a given stage are justified in view of the insight in
the premises at that stage. Another advantage of the presented logic is that, as compared
to other existing systems for abductive reasoning, it is very close to natural reasoning.

The logic presented in this paper will be based on Classical Logic—henceforth CL. So, all
references to causality, laws of nature, and similar non-extensional concepts will be out of the
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picture. We do not doubt that more interesting results may be obtained from intensional
logics. However, we want to keep the discussion as simple and transparant as possible.
Moreover, that we are able to phrase an interesting abductive logic within an extensional
context is rather fascinating in itself.

The results in the present paper are an outcome of the adaptive logic programme. Adap-
tive logics are a family of non-standard logics that are especially suited to study, in a formally
exact way, reasoning processes that are non-monotonic and/or dynamical.3 The first logic
in this family was designed around 1980 (see [2]) and was meant to interpret (possibly)
inconsistent theories as consistently as possible.4 Later the notion of an adaptive logic was
generalized in different ways (for instance, to capture ampliative forms of reasoning) and a
whole variety of adaptive logics was designed—see [4] and [13] for a survey.

2 Preliminaries for a Logic of Abduction

As a first approximation, a logic may be called abductive if and only if it is obtained by
extending CL with a suitably restricted version of rule (1.1). The restrictions will distinguish
between sound and unsound applications of the rule. A first restriction is obviously that
B(β) ∈ We and A(β) ∈ Wa. We also have to require that (∀α)(A(α) ⊃ B(α)) is not a CL-
theorem. In view of the first restriction, this rules out cases in which A(β) is a contradiction
or B(β) is a tautology—nobody wants to seek an explanation for a tautology and nobody
will accept an explanation by ex falso quodlibet.

There are some more restrictions. Given the formal character of CL, the claim that there
are formal abductive logics commits one to the following statement:

If some application of (1.1) is sound and some other application of it is not, then
there should be a formal difference between the two.

Although this statement is correct, it is not free of ambiguity. Rules of logic are applied
against the background of some set of premises, say Γ.5 The formal character of a logic does
not derive from the fact that there is a formal link between the premises of the application of
some rule and its conclusion, but from the fact that there is a formal link between (a subset
of) Γ and the last step in a proof (respectively, the semantic consequence). In the case of
monotonic logics, the formal character of the logic warrants the formal character of the rules.
In the case of non-monotonic logics, it does not. Here, the soundness of an application of
a rule may depend on the set of premises. So the formal character of an abductive logic
depends on whether there is a formal difference between sound and unsound applications of
the following reformulation of (1.1):

If Γ �CL B(β), Γ �CL (∀α)(A(α) ⊃ B(α)), B(β) ∈ We, A(β) ∈ Wa,
and �CL (∀α)(A(α) ⊃ B(α)), then 〈Γ,We,Wa〉 �LAr A(β) (2.1)

A reasonable further requirement on an abductive logic is that it consistently extends
the CL-consequences of Γ. This requirement has some immediate consequences for our
abductive logic.

3A reasoning pattern is called dynamical if the mere analysis of the premises may lead to the withdrawal of previously

drawn conclusions. Not all dynamical reasoning patterns are non-monotonic. In [5], for instance, it is shown that the pure

logic of relevant implication can be characterized by a dynamic proof theory.
4Logics that satisfy this property are referred to as inconsistency-adaptive logics.
5In order to keep the discussion as simple as possible, we comply with the usual supposition that all relevant knowledge

about some domain may be considered as a set of premises Γ.
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Suppose that Γ �CL Pa and Γ �CL (∀x)(Qx ⊃ Px) and that we want an explanatory
hypothesis for Pa. Suppose further that We consists of all singular formulas that contain
no other predicates than P and R, and that Wa comprises all remaining singular formulas.
Applying (2.1) delivers Qa. But, quite obviously, we do not want to draw this conclusion
from the above premises if ¬Qa is CL-derivable from Γ.

What if ¬Qa is abductively derivable from the Γ from the previous paragraph? The
simplest case is where also (∀x)(¬Qx ⊃ Px) ∈ Γ. In this case, Γ �CL (∀x)Px, and hence
Γ �CL (∀x)(A(x) ⊃ Px) for any A(x). So (given our extensional framework), it does
not seem to make sense to abductively derive any explanation for Pa. In a slightly more
complicated case, an attempt to explain Pa might lead to ¬Qa by a series of applications
of (2.1)—first to S1a, from there to S2a, . . ., and from Sna to ¬Qa. However, this is only
possible if Γ �CL (∀x)(¬Qa ⊃ Px), which brings us back to the previous situation.

A further complication is where, 〈Γ,We,Wa〉 being as two paragraphs ago, Γ �CL Ra
and Γ �CL (∀x)(¬Qx ⊃ Rx). If we look for an explanatory hypothesis for both Pa and Ra,
(2.1) will enable us to arrive at both Qa and ¬Qa. Both Qa and ¬Qa might be considered
as sensible conclusions. Even if we do so, this does not force us to consider, say, Sa as a
sensible conclusion. Nevertheless, at least one of the conclusions has to be rejected in view
of the above requirement that abduction should lead to a consistent consequence set. As, in
the present case, there is no formal difference between the applications of (2.1) that lead to
Qa and ¬Qa respectively, both applications have to be rejected in view of the requirement
that our abductive logic be formal.

Things become more difficult once we consider more complex formulas. Where We and
Wa are as before, consider a Γ such that:

Γ �CL Pa (2.2)
Γ �CL (∀x)((Qx ∧ Sx) ⊃ Px) (2.3)

Applying (2.1) delivers Qa ∧ Sa, but is this a sound abduction? To see that it not always
is, suppose that Γ �CL (∀x)(Qx ⊃ Px). In this case, Γ �CL (∀x)((Qx ∧ A(x)) ⊃ Px) for
any A(x). So, (2.2) and (2.3) cannot warrant that Qa ∧ Sa is abductively derivable from
Γ—if they did, the set of abductive consequences would be trivial. As we shall see below,
also this case is adequately handled by the logic LAr.

Having introduced some general restrictions on (1.1), we turn to the purposes that an
application of abduction may serve. There are at least two rather different ones. Consider
the case of a patient a displaying some symptom P who consults a physician to get cured.
Suppose that the physician’s theoretical knowledge contains (∀x)(Qx ⊃ Px) and (∀x)(Rx ⊃
Px), and no other (sensible) candidates for an abductive step. It would be rather stupid of
the physician to conclude to Qa and to act accordingly. This would be stupid because, if Ra
is the case, rather than Qa, the patient would not be cured. So, the appropriate behaviour
for the physician would be to draw the conclusion Qa ∨ Ra and to test whether Qa, Ra or
both are true, or to act in such a way that the patient gets cured in either case.

Compare this situation to one in which a ‘theoretician’ has the same knowledge (or a
set of knowledge of the same logical form), but is merely interested in finding and testing
explanatory hypotheses for Pa. In this case, there would be no harm if the theoretician
derived, say, Qa and tested it. If it turns out true, an explanation is produced. If it turns
out false, Ra might be the next hypothesis derived.

In this paper, we shall concentrate on the type of situation in which we have to act on the
abducted conclusion and hence better take all possibilities into account. In line with this,
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our logic of abduction will lead to a set of explanatory hypotheses that are not only jointly
compatible with the premises but also as weak as possible in view of them.

3 Illustration of the Logic

The general idea behind LAr is extremely simple: it is allowed that (2.1) is applied “as
much as possible”. For the moment, this ambiguous phrase may be interpreted as “unless
and until (∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ ¬A(β)) turns out to be CL-derivable from Γ”. So,
whenever it is CL-derivable from Γ that, for some general rule (∀α)(A(α) ⊃ B(α) and some
explanandum B(β), (2.1) cannot be applied consistently (because, ¬A(β) is CL-derivable
from Γ), the application of (2.1) is overruled. In view of what we have seen in the previous
section, this is exactly what we want.

To save space, expressions of the form (∀α)(A(α) ⊃ B(α))∧(B(β)∧¬A(β)) will be abbre-
viated as �B(β),¬A(β)� and, in line with what is common for adaptive logics, �B(β),¬A(β)�
will be called an “ abnormality”.6 As we will see below, it is possible that a disjunction of
abnormalities is CL-derivable from a set of premises Γ without any of its disjuncts being
derivable from it. This fact will prove crucial to obtain an adequate logic for abduction.

We shall devote the sequel of this section to an illustration of the proof theory that we
shall spell out in Section 4. We shall present a simple example, not worrying too much
about technicalities, but concentrating on the way in which the requirements from the
previous section are met. Suppose that our set of premises Γ consists of the following
generalizations

(∀x)(Px ⊃ Rx), (∀x)(Px ⊃ Sx), (∀x)(Qx ⊃ Sx), (∀x)(Qx ⊃ Tx),
(∀x)(¬Px ⊃ Tx)

and the following data

Ra, Rb, ¬Sb, Sc, Sd, ¬Td, Re, Te.

Let We be the set of all singular formulas that are truth-functions of primitive formulas
containing the predicates R, S and T , and Wa the set of all singular formulas that do not
contain these predicates.

One way to start a LAr-proof from Γ is by entering all the premises:

1 (∀x)(Px ⊃ Rx) – PREM ∅
2 (∀x)(Px ⊃ Sx) – PREM ∅
3 (∀x)(Qx ⊃ Sx) – PREM ∅
4 (∀x)(Qx ⊃ Tx) – PREM ∅
5 (∀x)(¬Px ⊃ Tx) – PREM ∅
6 Ra – PREM ∅
7 Rb – PREM ∅
8 ¬Sb – PREM ∅
9 Sc – PREM ∅
10 Sd – PREM ∅
11 ¬Td – PREM ∅
12 Re – PREM ∅
13 Te – PREM ∅

6The term “abnormality” refers to formulas that overrule the application of some desired inference rule—in our case the

abduction scheme (1.1).
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For each of these lines, the third and fourth element form the “justification” for the formula
that constitutes the second element. The third element contains the line numbers of the
formulas from which the formula is derived (obviously empty in the case of premises); the
fourth element contains the name of the rule by means of which the formula is derived (in
the above case the premise rule PREM). The empty sets at the end of each line can be
ignored for the moment.

For reasons of transparency, we shall from now on represent the proof (as much as possible)
in a diagrammatic way:

��
��

��
��

��
��

��
��

��
��

��
��

R

P

S

Q

T

¬P↙ ↘ ↙ ↘ ↙1 2 3 4 5

P Q R S T

a + 6

b + 7 − 8

c + 9

d + 10 − 11

e + 12 + 13

The node-and-arrow-structure represents the generalizations (for instance, the first arrow
stands for (∀x)(Px ⊃ Rx)) and the array represents the data (the “+” in the first row stands
for Ra, the “−” in the second row for ¬Sb). The numbers in the diagram refer to the stage
at which the corresponding formula is entered in the proof.

We are now in a position to make inferences from the premises. Let us first concentrate
on the explanandum Ra. As is easily observed, the generalization represented by the first
arrow can be used to ‘abduce’ an explanatory hypothesis for Ra. In an LAr-proof from Γ,
this is done by applying the rule RC:

��
��

��
��

R

P↙1 P Q R S T

a + 6

14 Pa 1, 6 RC {�Ra,¬Pa�}
RC is a conditional rule: it allows one to add abductive hypotheses to the proof, but only on
a certain condition. This condition is represented by the fifth element of the line. Intuitively,
line 14 can be read as: Pa is derivable from the formulas on lines 1 and 6, unless and until
it can no longer be assumed (consistently) that �Ra,¬Pa� is false.

Given our present insights in the premises (represented by the formulas that are explicitly
written down in the proof), there is no reason to believe that ¬Pa is true, and hence, it is
consistent to assume that �Ra,¬Pa� is false. This is why, at this stage of the proof,7 Pa is
considered to be derivable from the premises (in view of line 14). If, at a later stage of the
proof, it would turn out that the condition of line 14 is no longer satisfied, then this line will
be ‘marked’ and the formula that occurs on it will no longer be considered to be derived.
(The marking of lines will be illustrated below.)

In view of the formula on line 14, the generalization represented by the second arrow
allows one to infer the prediction Sa; this is done by means of the rule RU:

7Remember that the proof theory of LAr is dynamical: formulas that are considered to be derived at some stage in the

proof, may no longer be considered as derived at a later stage of the proof. The dynamics will be illustrated below.
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��
��

��
��

P

S

↘2 P Q R S T

a + 14

15 Sa 2, 14 RU {�Ra,¬Pa�}
RU is a generic rule that allows one to infer all CL-consequences: whenever some formula A
is CL-derivable from a number of formulas B1, . . . , Bn that are considered to be derived in
the proof at some stage, then, at that stage, A can be added to the proof by means of RU.
Note that RU is an unconditional rule: unlike RC, it does not lead to the introduction of
new conditions. If, however, some of the Bi to which RU is applied are themselves derived
on a non-empty condition, then these conditions are conjoined for the conclusion. Thus, as
the formula of line 14 is used to derive the formula on line 15, the condition of the former is
‘carried over’ to the latter. This is obviously as it should be: if, at a later stage in the proof,
the conclusion of line 14 is withdrawn because its condition is no longer satisfied, then all
formulas that rely on it should also be withdrawn.

Let us now turn to the explanandum Rb. As in the previous case, the rule RC enables us
to abduce an explanatory hypothesis for Rb (see line 16 below). However, this time, we are
also able to infer, by means of RU, the negation of our explanatory hypothesis:

��
��

��
��

��
��

R

P

S

↙ ↘1 2 P Q R S T

b + 7 − 8

16 Pb 1, 7 RC {�Rb,¬Pb�}
17 ¬Pb 2, 8 RU ∅

Hence, we are able to infer the following abnormality:

��
��

��
��

R

P↙1 P Q R S T

b + 16 ‖ − 17 + 7

18 �Rb,¬Pb� 1, 7, 17 RU ∅
At this stage in the proof, the condition of line 16 is no longer satisfied. As a consequence,

the conclusion of line 16 is withdrawn from the proof. The withdrawal of a conclusion from
the proof is recorded by marking the line on which the formula occurs. This is how the
proof looks like at stage 18 (lines 1 to 15 are as before):

. . .

16 Pb 1, 7 RC {�Rb,¬Pb�} �18

17 ¬Pb 2, 8 RU ∅
18 �Rb,¬Pb� 1, 7, 17 RU ∅

We shall now show what happens when more than one explanatory hypothesis can be
abduced for the same explanandum. Have a look at Sc:

��
��

��
��

��
��

P

S

Q

↘ ↙2 3 P Q R S T

c + 9
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In view of the relevant generalizations, the proof can be extended as follows:

19 Pc 2, 9 RC {�Sc,¬Pc�}
20 Qc 3, 9 RC {�Sc,¬Qc�}
However, as the reader can verify, the following disjunctions of abnormalities are CL-
derivable from the premises:

21 �Sc,¬Pc� ∨ �Sc,¬(Qc ∧ ¬Pc)� 2, 3, 9 RU ∅
22 �Sc,¬Qc� ∨ �Sc,¬(Pc ∧ ¬Qc)� 2, 3, 9 RU ∅
The formula on line 21 expresses that �Sc,¬Pc� or �Sc,¬(Qc ∧ ¬Pc)� is true. Hence, it
cannot be assumed that both disjuncts are false.

In view of such a disjunction of abnormalities, different strategies are possible. The one
followed by LAr is very cautious. As (at this stage of the proof) it is unclear which one
of the two disjuncts is true, both disjuncts are (at this stage of the proof) considered as
‘unreliable’. As a result, all formulas that are derived on the assumption that one of these
disjuncts is false, are withdrawn. Thus, in our case, the formula on line 19 is withdrawn
in view of the formula on line 21. By an analogous reasoning, the formula on line 20 is
withdrawn in view of the formula on line 22:

. . .
19 Pc 2, 9 RC {�Sc,¬Pc�} �21

20 Qc 3, 9 RC {�Sc,¬Qc�} �22

21 �Sc,¬Pc� ∨ �Sc,¬(Qc ∧ ¬Pc)� 2, 3, 9 RU ∅
22 �Sc,¬Qc� ∨ �Sc,¬(Pc ∧ ¬Qc)� 2, 3, 9 RU ∅

A mark may be removed at a later stage. Suppose, for example, that �Sc,¬(Qc ∧ ¬Pc)�
is CL-derivable from the premises, and is actually derived in the proof. So it would be clear
which of the two disjuncts of the formula of line 21 is true, viz. the second one. As a result,
line 19 would not be marked any more (unless �Sc,¬Pc� is a disjunct of another disjunction
of abnormalities).

We shall see that, apart from derivability at a stage, one can define a stable notion of
derivability, viz. final derivability. Intuitively, a formula is finally derived on line i of a proof
iff it is possible to extend the proof in such a way that line i is unmarked and remains
unmarked in every further extension of the proof.

In view of the present premises, lines 19 and 20 will remain marked in any extension of
the proof, whence neither Pc nor Qc is finally derivable from the premises. However, their
disjunction Pc ∨ Qc is. This can be seen from the following extension of the proof:

��
��

��
��

��
��

P

S

Q

↘ ↙2 3 P Q R S T

c + 9

23 (∀x)((Px ∨ Qx) ⊃ Sx) 2, 3 RU ∅
24 Pc ∨ Qc 9, 23 RU {�Sc,¬(Pc ∨ Qc)�}
As no minimal disjunction of abnormalities is derivable that has �Sc,¬(Pc∨Qc)� as one of
its disjuncts, the formula on line 24 is finally derivable from the premises.8

8Every disjunction of abnormalities can be seen as
∨

(∆) in which ∆ is a finite set of abnormalities and
∨

(∆) is their

disjunction.
∨

(∆) is a minimal disjunction of abnormalities that is derivable from the premises if and only if
∨

(∆) is

derivable from the premises and there is no ∆′ ⊂ ∆ such that
∨

(∆′) is derivable from the premises.
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Also for the explanandum Sd the rule RC enables one to derive a disjunction of explana-
tory hypotheses:

��
��

��
��

��
��

P

S

Q

↘ ↙2 3 P Q R S T

d + 10

25 Pd ∨ Qd 2, 3, 10 RC {�Sd,¬(Pd ∨ Qd)�}
This time, however, one of the disjuncts can be eliminated by pure deductive means:

��
��

��
��

Q

T

↘4 P Q R S T

d − 11

26 ¬Qd 4, 11 RU ∅
27 Pd 25, 26 RU {�Sd,¬(Pd ∨ Qd)�}
This nicely illustrates how LAr allows for the integration of deductive and abductive steps.9

Let us finally turn to the situation where different explanatory hypotheses are mutually
incompatible with the premises. As may be seen from the following extension of the proof,
this is the case for the explanatory hypotheses that are abducible for Re and Te:

��
��

��
��

��
��

��
��

R

P

T

¬P↙ ↙1 5 P Q R S T

e + 12 + 13

28 Pe 1, 12 RC {�Re,¬Pe�}
29 ¬Pe 5, 13 RC {�Te, Pe�}
Although both these hypotheses may be entered at some stage in the proof, neither of them
is finally derivable from the premises. This is warranted by the following CL-derivable
disjunction of abnormalities:

30 �Re,¬Pe� ∨ �Te, Pe� 1, 5, 12, 13 RU ∅
As soon as the formula on line 30 is added to the proof, lines 28 and 29 are marked—they

remain marked in any extension of the proof.
Note that this mechanism also comes into play when the antecedent of some generalization

is arbitrarily strengthened. Suppose, for instance, that the proof is extended in the following
way:

31 (∀x)((Px ∧ Ux) ⊃ Rx) 1 RU ∅
32 (∀x)((Px ∧ ¬Ux) ⊃ Rx) 1 RU ∅
33 Pa ∧ Ua 6, 31 RC {�Ra,¬(Pa ∧ Ua)�}
34 Pa ∧ ¬Ua 6, 32 RC {�Ra,¬(Pa ∧ ¬Ua)�}

If the formulas on lines 33 and 34 would be finally derivable from the premises, one would
not only obtain explanatory hypotheses that are partly irrelevant, but even triviality:

9The attentive reader will have observed that Pd is also derivable on the condition {�Sd, ¬Pd�}.
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35 Ua 33 RU {�Ra,¬(Pa ∧ Ua)�}
36 ¬Ua 34 RU {�Ra,¬(Pa ∧ ¬Ua)�}
37 p 35, 36 RU {�Ra,¬(Pa ∧ Ua)�, �Ra,¬(Pa ∧ ¬Ua)�}

However, the following disjunction of abnormalities is CL-derivable:10

38 �Ra,¬(Pa ∧ Ua)� ∨ �Ra,¬(Pa ∧ ¬Ua)� 1, 6 RU ∅
As soon as this line is added to the proof, lines 33–37 are marked.11 It is moreover easily

observed that these lines will remain marked in any further extension of the proof, and
hence, that the formulas on these lines are not finally derivable.

The example discussed was rather simple. As we have no room to multiply examples, let
us at least remark that there is no problem for LAr to abduce from a theory an explanation
for a complex statement, for example Pa ∧ Qa.

4 Precise Description of the Logic

We shall restrict the discussion to unary predicates (predicates expressing properties). It is
very well possible that our result may be generalized, but we have no proof, at this moment,
that it can.

LAr can be formulated in the standard format from [6] and [9], which greatly simplifies
the technical stuff. An adaptive logic AL is in standard format if it is characterized as a
triple consisting of three elements: (i) LLL, a compact and monotonic lower limit logic,
(ii) Ω, a set of abnormalities that all have the same logical form, and (iii) an adaptive
strategy.

The lower limit logic LLL determines the part of the adaptive logic AL that is not subject
to adaptation. From a proof theoretic point of view, the lower limit logic delineates the rules
of inference that hold unexceptionally. From a semantic point of view, the adaptive models
of a premise set Γ are a selection of the LLL-models of Γ. It follows that CnLLL(Γ) ⊆
CnAL(Γ). The lower limit logic of LAr is obviously CL, and remember that its premise set
is 〈Γ,We,Wa〉.

As we have seen, abnormalities are formulas that are presupposed to be false, unless and
until proven otherwise. Ω comprises all formulas of a certain (possibly restricted) logical
form. In the case of LAr the restriction will refer to We and Wa.12

For LAr we define Ω = {(∀α)(A(α) ⊃ B(α)) ∧ (B(β) ∧ (¬A(β)) | A(β) ∈ Wa; B(β) ∈
We; �CL (∀α)(A(α) ⊃ B(α))}. In the present extensional framework, (∀α)(A(α) ⊃ B(α))
can be taken to express that A contains a (sufficient) cause for B—we write “‘contains”
because A may be itself a conjunction and some of its conjuncts may not be required for
warranting B.13 The second conjunct of an abnormality states that the specific sufficient
cause A(β) for B(β) did not occur. The requirement that (∀α)(A(α) ⊃ B(α)) is not a CL-
theorem has to be added in order to prevent that all models would display abnormalities, as
we shall see when we come to the upper limit logic. However, as was explained in Section

10Actually, the fact that the formulas on lines 33 and 34 are jointly incompatible with the premises warrants that the

disjunction of the union of their conditions is CL-derivable from the premises.
11Even if 32, 34, 36 and 37 had not been derived, 38 would be derivable and would cause line 31 to be marked.
12The specific restriction that will be imposed causes LAr not to be strictly in standard format. However, the metatheoretic

claims that we want to derive from the standard format still can be proved. Moreover, the logic has a hardly different variant,

in which Wa is a function of We as described in Section 1, that is in standard format.
13Every man who is too lazy to shave and wears spectacles has a beard, but the fact that the second author wears spectacles

is not part of a potential cause for his having a beard.
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2, this requirement is harmless. An adaptive logic presupposes that abnormalities are false
unless and until proven otherwise. So, the presupposition of LAr is that, if an effect did
occur, then all its potential causes (in the weak, extensional, sense) did also occur.

The strategy will be Reliability. It is well-known that Minimal Abnormality would deliver
a few more consequences in peculiar (and somewhat weird) cases. However, as its marking
definition is rather tiresome, this would have unnecessarily complicated the discussion of the
example in Section 3.

If one adds to the lower limit logic an axiom schema excluding that abnormalities occur,
viz. an axiom schema that reduces abnormal premise sets to triviality, one obtains the so-
called upper limit logic. The upper limit logic of LAr is somewhat unusual as it refers to
the sets We and Wa. It is obtained by extending CL with the axiom schema (∀α)(A(α) ⊃
B(α)) ⊃ (B(β) ⊃ A(β)) provided B(β) ∈ We and A(β) ∈ Wa. It is easily seen that
this comes to the requirement that, if the proviso is met, (∀α)(A(α) ⊃ B(α)) is logically
equivalent to (∀α)(A(α) ≡ B(α)). We shall not care to give this upper limit logic a name.

In some cases, the upper limit logic for ampliative adaptive logics has no practical appli-
cation context because none of its models corresponds to the actual world—for an example
see uniform classical logic, UCL, from [10]. This does not apply to the upper limit logic
of LAr. It is useful to discuss this briefly as it clarifies the circumstances under which
abductions can be derived.

Our upper limit logic presupposes that every statement in We has a unique and maximally
specific cause in Wa. Let us consider an concrete example for a very simple language, in
which only occur the predicates P , Q and R and, say, twenty individual constants a1, . . . , a20.
Suppose moreover that We contains the twenty formulas Pai (1 ≤ i ≤ 20), and that Wa

comprises all formulas in which P does not occur. Consider first a chaotic model, in which
some elements of the domain have properties P , Q and R, some elements have properties P
and Q but not R, and so on for all eight combinations. As this model verifies no contingent
generalization of the form (∀x)(A(x) ⊃ Px), for A(β) ∈ Wa, no abnormalities occur in
it and hence it is an upper limit model (it is a CL-model that verifies the added axiom
schema).

As this model is plainly uninteresting with respect to abduction, one wonders whether
there are others, and indeed there are. Consider any model that verifies (∀x)((Qx ∧ Rx) ≡
Px), but falsifies (∀x)(±Qx ⊃ Px) as well as (∀x)(±Rx ⊃ Px) (in which each ± is either
a negation or nothing)—hence it also falsifies (∀x)((Qx ∧ ¬Rx) ⊃ Px) and so on. It is
easily seen that this model verifies not a single abnormality, and hence is an upper limit
model. The same holds for any model that verifies (∀x)((±Qx ∧ ±Rx) ≡ Px), but falsifies
(∀x)(±Qx ⊃ Px) as well as (∀x)(±Rx ⊃ Px).

No upper limit model verifies (∀x)(Qx ⊃ Px) unless it also verifies ¬(∃x)Px. Indeed, if a
model would verify the former formula, it would also verify (∀x)((Qx ∧ Rx) ⊃ Px) as well
as (∀x)((Qx ∧ ¬Rx) ⊃ Px), and hence, if some object, say a, had property P , the model
would verify �Pa,¬(Qa ∧ Ra)� ∨ �Pa,¬(Qa ∧ ¬Ra)�.

Of course, there are LAr-models that verify (∀x)(Qx ⊃ Px) as well as Pa. All of these
will verify some abnormalities, but some do not verify a disjunction of abnormalities of which
�Pa,¬Qa� is a disjunct. This is precisely what makes adaptive logics interesting, viz. that
they interpret abnormal premise sets as normally as possible.

Let us now turn to the proofs. If the deduction rules are formulated in generic format, they
are identical for all adaptive logics in standard format. Where Γ contains the (declarative)
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premises as before,
A ∆

abbreviates that A occurs in the proof on the condition ∆, and Dab(∆) is the disjunction
of the members of a finite ∆ ⊂ Ω, the rules may be phrased as follows:14

PREM If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An �CL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An �CL B ∨ Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

There is a striking correspondence between LAr-proofs and CL-proofs. Suppose that one
transforms each line

A ∆

from the LAr-proof into
A ∨ Dab(∆) ,

where “∨Dab(∅)” is defined as the empty string. It is easy enough to establish, by an obvious
induction on the length of the proof, that the resulting sequence of formulas is a CL-proof
obtained by applications of PREM and RU only. This result is extremely useful from a
metatheoretic point of view and clarifies what is going on in a dynamic proof.

We now turn to the marking definition. We shall say that Dab(∆) is a minimal Dab-
formula at stage s of a proof if, at that stage, Dab(∆) occurs in the proof on the empty
condition and, for any ∆′ ⊂ ∆, Dab(∆′) does not occur in the proof on the empty condi-
tion. Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas at stage s of the proof,
Us(〈Γ,We,Wa〉) = ∆1 ∪ . . . ∪ ∆n is the set of unreliable formulas at stage s. The marking
definition for the Reliability strategy is as follows:

Definition 4.1
Line i is marked at stage s iff, where ∆ is its condition, ∆ ∩ Us(〈Γ,We,Wa〉) �= ∅.

If Dab(∆) is a minimal Dab-formula at stage s of the proof, then, in as far as one knows
in view of the proof at this stage, the premises require one of the abnormalities in ∆ to be
true but do not specify which one is true. The Reliability strategy considers all of them as
unreliable. So the underlying idea is: if the understanding of the premises provided by the
present stage of the proof is correct, the formulas occurring at unmarked lines are derivable
from the premises, whereas the formulas occurring at marked lines are not.

Apart from the unstable derivability at a stage, one wants a stable kind of derivability,
which is called final derivability.

14The only rule that introduces non-empty conditions is RC. In other words, before RC is applied in a proof, the condition

of every line will be ∅.
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Definition 4.2
A is finally derived from 〈Γ,We,Wa〉 on line i of a proof at stage s iff (i) A is the second
element of line i, (ii) line i is not marked at stage s, and (iii) any extension of the proof in
which line i is marked may be further extended in such a way that line i is unmarked.

Definition 4.3
〈Γ,We,Wa〉 �LAr A (A is finally LAr-derivable from Γ) iff A is finally derived on a line of
a LAr-proof from 〈Γ,We,Wa〉.

Remark that these are definitions, and that they are not intended to have a direct com-
putational use.

The semantics of all adaptive logics is defined in the same way in terms of the lower limit
logic, here CL, the set of abnormalities Ω and the strategy. M |= A will denote that M
assigns a designated value to A, in other words that M verifies A. M |= Γ will denote that
M verifies all members of Γ.

The abnormal part of a CL-model M will be defined as follows:

Definition 4.4
Ab(M) = {A ∈ Ω | M |= A}

Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of 〈Γ,We,Wa〉,15
U(〈Γ,We,Wa〉) = ∆1 ∪ ∆2 ∪ . . . is the set of formulas that are unreliable with respect
to 〈Γ,We,Wa〉.16
Definition 4.5
A CL-model M of 〈Γ,We,Wa〉 is reliable iff Ab(M) ⊆ U(〈Γ,We,Wa〉).

Intuitively, U(〈Γ,We,Wa〉) comprises the abnormalities that, in view of the Reliability
strategy, cannot be avoided if all members of Γ are supposed to be true. A reliable model
of 〈Γ,We,Wa〉 is one that verifies at most the members of U(〈Γ,We,Wa〉).
Definition 4.6
〈Γ,We,Wa〉 �LAr A iff A is verified by all reliable models of 〈Γ,We,Wa〉.

It is provable by standard means that 〈Γ,We,Wa〉 �LAr A iff 〈Γ,We,Wa〉 �LAr A (that
the syntax is sound and complete with respect to the semantics). Some further desirable
properties are provable as well (see [7] and especially [9]). These properties include the essen-
tial property that CnLAr(〈Γ,We,Wa〉) is consistent. Actually this is an easy consequence
of Strict Reassurance (see [6]).

5 Concluding Remarks

The plot we had in mind is that, given a set of knowledge Γ, one abduces the (weakest)
explanation of some fact or some set of facts (the members of We that are CL-derivable
from Γ). This explanation should belong to a specific part of the language Wa, possibly all
sentences of the language that do not contain any primitive formula that occurs in We. As
we mentioned before, the abduced statements may be added to the premises, Γ thus being
extended to Γ′, and no harm results if LAr is applied to Γ′ with respect to a different set
of explanatory questions.

15Obviously, the minimal Dab-consequences of 〈Γ, We, Wa〉 may be semantically defined.
16In the following definition we write that “a CL-model M of 〈Γ, We, Wa〉 is Reliable” because the Reliability of M

depends on 〈Γ, We, Wa〉 and not just on Γ. That M is a CL-model of 〈Γ, We, Wa〉 obviously depends on Γ alone.
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We have looked into the properties of Γ that contain existentially quantified explananda,
as in the case where Γ contains both (∀x)(Px ⊃ Qx) and (∃x)Qx. Not much sensible can
be derived from such premise sets, and we think this is quite all right. By all means, if one
wants to explain the properties of some object that has no name, one can simply give it
one—even if one did not observe the object, but merely knows that it exists.

In the sequel of this section, we shall mainly comment on some alternative logics that can
easily be obtained from LAr and look attractive. A first alternative was already suggested
before, viz. that Wa is seen as a function of We. The advantage of introducing Wa as an
independent set is that it enables the user of the logic to restrict the explanations that may
be abduced. This, however, is only a slight advantage. Nothing prevents one to be interested
only in (and to seek to derive only) some of the statements that logically can be abduced.

There is a more different alternative for LAr that one might prefer. Suppose that one
seeks an explanation for Pa and that Qa∨Ra is finally LAr-derivable in view of the presence
of (∀x)(Qx ⊃ Px) and (∀x)(Rx ⊃ Px) (and the absence of certain other generalizations).
Suppose, however, that Γ contains also examples of cases where being Q or R is not a good
explanation for being P , even if no generalization indicates which is the explanation for the
P -hood of those examples. It is easy enough to produce such premise sets, for example
premise sets that contain Pc, ¬Qc and ¬Rc. The question is whether, in such cases, one is
still prepared to abduce Qa ∨ Ra.

We think there are some convincing arguments for answering the preceding question in
the negative. In Section 2, we made a choice as to the purposes that an application of
abduction may serve. In view of that choice, we wanted to derive the disjunction of all
possible explanations for the explanandum, unless when some of these explanations are
known (from Γ) to be false. Quite in line with this, one might reason that one should not
abduce Qa ∨ Ra in the example of the previous section, because one knows that this is not
the disjunction of all possible explanations for Pa. In other words, one will only abduce
Qa ∨ Ra if one has no reason to believe that something else might be the explanation for
P -hood (and not, as in the logic LAr if one merely does not see another possible explanation
for Pa).

It is not difficult to articulate a logic which agrees with this viewpoint. All one has to
do is introduce a slight change in the definition of the set of abnormalities, viz. as follows:
Ω = {(∀α)(A(α) ⊃ B(α)) ∧ (∃α)(B(α) ∧ ¬A(α)) | β ∈ C; A(β) ∈ Wa; B(β) ∈ We; �CL

(∀α)(A(α) ⊃ B(α))}.
Some readers will not be convinced by the properties of LAr. It may be shown that the

set of finally derivable LAr-consequences of a premise set 〈Γ,We,Wa〉 contains exactly the
formulas that one wants to abduce (together with the CL-consequences of the premises and
the abduced statements). However, these readers will wonder, how can one be sure to have
derived the finally derivable statements? Remark indeed that the formulas abduced at a
stage of the proof may not include all formulas that are finally derivable and may moreover
include some formulas that are not finally derivable (and will be marked at a later stage).

There are two kinds of answers to this objection. The first is that it may be justified to act
on the basis of derivability at a stage. It has been shown in [3] that, as the dynamic proof
proceeds, the insights in the premises may become better and never become worse (and
that one can determine from the extension of the proof whether the insights in the premises
did become better). This means that, at every stage of a dynamic proof, one confronts the
choice between continuing the proof in order to improve the insights in the premises, or to
act upon present insights. That there is such a choice is an intrinsic result of the kind of
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consequence relation we try to explicate—if a logic would avoid this choice, it would be a
bad explication of the consequence relation.

The second answer is that, in the absence of a positive test,17 there is no algorithm for
establishing in general that A is finally derivable from Γ even if it is. This does not prevent
the existence of criteria that enable one to establish, for a specific A, that it has been finally
derived from the premises in a given proof. Some criteria were presented in [3], [11] and [12],
and more criteria may be derived from results presented in those papers. Unfortunately,
most of these criteria are awfully complex and only transparent for people that are well
acquainted with the dynamic proofs. So we continued searching for something better. This
was provided by recent work on goal-directed proofs. The idea is not to formulate a specific
criterion, but rather to articulate a proof procedure that functions as a criterion. Whenever
the proof procedure stops, it establishes that A is or is not finally derivable from the premises.
Preparatory work on the propositional fragment of CL is presented in [14] and the proof
procedure is applied to a (propositional) inconsistency-adaptive logic in [8]. Meanwhile the
results for the predicative version are ready and it can easily be shown that these deliver
criteria for final derivability with respect to any adaptive logic that has Reliability as its
strategy.

The last paragraph does not make the considerations from the next-to-last one useless.
Indeed, given the properties of the explicated consequence relation, no criterion can apply
in all cases. So the reader might still feel unsatisfied. Suppose that one applies LAr to
〈Γ,We,Wa〉—in other words that one tries to explain the members of We in as far as they
are CL-derivable from Γ. Let Γ′ be the union of Γ with the set of statements that have
been abduced at some point in time from the previous application of LAr. Suppose next
that one applies LAr to 〈Γ′,We′

,Wa′〉. One of the troubles that might arise, is that one
obtains insights that motivate one to revise conclusions from the first application of LAr.18

This is not a problem for LAr, and we think this to be a very strong point. Indeed, several
consecutive applications of LAr may be combined with each other (in the same way as
prioritized adaptive logics are obtained in [6]). The combined adaptive logic enables to to
revise any abduction at any stage of the dynamic proof.

Several properties of LAr have still insufficiently been studied. One of them concerns the
effect of exchanging the order of consecutive applications of the logic. Still, we hope to have
shown that LAr is a sensible formal logic and that it leads to adequate results with respect
to the kinds of abduction that we described in Section 2.
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