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Abstract. This paper contains a concise introduction to a few central features
of inconsistency-adaptive logics. The focus is on the aim of the program, on
logics that may be useful with respect to applications, and on insights that
are central for judging the importance of the research goals and the adequacy
of results. Given the nature of adaptive logics, the paper may be read as a
peculiar introduction to defeasible reasoning.
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1. Introduction

By a logic I shall mean a function that assigns a consequence set to any premise
set. So where L is a language schema, with F as its set of formulas and W as its set
of closed formulas, a logic is a function ℘(W) → ℘(W). The standard predicative
language schema, viz. that of CL (classical logic), will be called Ls; Fs its set of
formulas and Ws its set of closed formulas.

Adaptive logics are formal logics but are not deductive logics. They do not
define the meaning of logical symbols and are certainly not in competition for
the title ‘standard of deduction’—that is: for delineating deductively correct infer-
ences from incorrect inferences and from non-deductive inferences. To the contrary,
adaptive logics explicate reasoning processes that are typically not deductive, viz.
defeasible reasoning processes.

Sometimes deductive logics are opposed to inductive logics. The expression
“inductive logic” may refer to constructions that proceed, for example in terms of
probabilities, as in Carnap’s work [31]. Where the expression refers to a logic in the
sense of the previous paragraph, inductive logics are a specific form of defeasible

I am indebted to Mathieu Beirlaen for careful comments on a previous draft.
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reasoning, next to many others. Handling inconsistency as described in the present
paper is just one of them.1

A logic is formal iff its consequence relation is defined in terms of logical
form. Some people identify this with the Uniform Substitution rule,2 but that is a
mistake because Uniform Substitution defines just one way in which a logic may be
formal. Let me quickly spell out a different one. A language or language schema L
will comprise one or more sets of non-logical symbols, for example sentential letters,
predicative letters, letters for individual constants, etc. Consider all total functions
f that map every such set to itself. Extend f to formulas, f(A) being the result of
replacing every non-logical symbol ξ in A by f(ξ). A logic L is clearly formal iff the
following holds: A1, . . . , An ⊢L B iff, for every such f , f(A1), . . . , f(An) ⊢L f(B).

Logics may obviously be presented in very different ways. Formal logics are
usually presented as sets of rules, possibly combined with the somewhat special
rules that are called axioms (and axiom schemata). Apart from many types of
‘axiomatizations’, logics are standardly characterized by a semantics, which has a
rather different function. Deductive logics are typically Tarski logics. This means
that they are reflexive (Γ ⊆ CnL(Γ)),

3 transitive (if ∆ ⊆ CnL(Γ), then CnL(∆) ⊆
CnL(Γ)), and monotonic (CnL(Γ) ⊆ CnL(Γ ∪ Γ′) for all Γ′). Another interesting
property, which is required if a logic has to have static proofs,4 is compactness (if
A ∈ CnL(Γ) then there is a finite Γ′ ⊆ Γ such that A ∈ CnL(Γ

′)).
This paper follows several conventions that I better spell out from the start.

Classical logic, CL, will be taken as the standard of deduction. This is a purely
pragmatic decision, not a principled one. Next, all metalinguistic statements are
meant in their classical sense. More specifically, the metalinguistic negation will
always be classical. So where I say that A is not a L-consequence of Γ, I rule out
that A is a L-consequence of Γ. Similarly, I shall use “false” in its classical sense;
no statement can be true as well as false in this sense. An inconsistent situation
will be one in which both A and ¬A are true, not one in which A is both true
and false. There is a rather deep divide between paraconsistent logicians on these
matters. There are those who claim that ‘the true logic’ is paraconsistent and
that it should always be used, in particular in its own metalanguage. Some of
these even take it that classical negation is not coherent, lacks sense, and the like.
Other paraconsistent logicians, with whom I side, have no objections against the
classical negation or against its occurrence in the same language as a paraconsistent
negation. This is related to the fact that they are pluralists, either in general or
with respect to contexts. They might argue, for example, that consistent domains,

1See, for example, [16] for many other real-life examples of reasoning forms for which there is no
positive test. The import of a positive test is discussed further in the text.
2Uniform Substitution is rule of propositional logic. Predicative classical logic is traditionally
axiomatized in terms of a finite set of rules and axiom schemata, rather than axioms. So no
substitution rule is then required. Substitution rules in predicate logic have been studied [56]
and the outcome is very instructive.
3The L-consequence set of Γ is defined as CnL(Γ) =df {A | Γ ⊢L A}.
4Just think about usual proofs. Every formula in the proof is a consequence of the premise set
and every proof may be extended into a longer proof by applications of the rules.
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like most paraconsistent logics themselves, are more adequately described by CL
than by a paraconsistent logic.

A warning of a different kind is that the materials discussed in the subse-
quent pages have been studied at the predicative level. That I shall offer mainly
propositional toy examples has a pedagogical rationale.

The last general survey paper that I wrote on adaptive logics was [19]. Mean-
while new results were and are being obtained, some of them are still unpublished.
This may be as expected, but one aspect needs to be mentioned from the start.
Quite a group of people have contributed to adaptive logics and have published in
the field, many more than I shall mention below. While I was always eager to retain
the unity of the domain, not everyone attached the same value to unification. Such
a situation was obviously very useful to prevent that interesting things are left out
of the picture—in principle the aim is to integrate directly or under a translation
all potentially realistic first order defeasible reasoning forms. As we shall see, this
integrating frame is the standard format. Little changes were introduced over the
years in an attempt to make it as embracing as possible. While most were im-
provements or clarifications, there was one development that I now consider as
misguided. In the end it resulted in the systematic introduction of a set of new
symbols to any language. These new symbols had their CL-meaning, whence they
were called classical. They were added even if they duplicated existing symbols. In
the second half of Section 11, I shall discuss the idea of adding classical symbols
and the reasons for not adding them any more today.

The present paper is by no means a summary of all available results on adap-
tive logics. It merely provides an introduction to the central highlights. Moreover,
this paper is explicitly intended as an introduction to inconsistency-adaptive log-
ics, viz. adaptive logics that handle inconsistency. They concern compatibility,
inductive generalization, abduction, prioritized reasoning, the dynamics of dis-
cussions, belief revision, abstract argumentation theory, deontic logic, and so on.
Most adaptive logics in standard format are not inconsistency-adaptive and have
no connection to paraconsistency. Nevertheless, the present paper can also be read
as an introduction to adaptive logics in general, with special attention to handling
inconsistency and with illustrations from that domain. The reference section is not
a bibliography of inconsistency-adaptive logics.

2. The Original Problem

Consider a theory T that was intended as consistent and was given CL as its
underlying logic: T = ⟨Γ,CL⟩, in which Γ is the set of non-logical axioms of T
and CnCL(Γ) is the set of theorems of T , often simply called T . Suppose, however,
that T turns out to be inconsistent. There are several well-documented examples
of such situation, both in mathematics (Newton’s infinitesimal calculus, Cantor’s
set theory, Frege’s set theory, . . . ) and in the empirical sciences [30, 43, 44, 47, 51,
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52, 53, 62]. Actually, it is not difficult to find more examples, especially in creative
episodes, for example in scientists’ notes.

What scientists do in such situations, is look for a consistent replacement for
T . As history teaches, however, they do not look for a consistent replacement from
scratch. To the contrary, they reason from T , trying to locate the problems in it.
This reasoning obviously cannot proceed in terms of CL because CL validates
Ex Falso Quodlibet: A,¬A ⊢CL B. So the theory T , viz. its set of theorems
CnCL(Γ) is trivial; it contains each and every sentence of the language. If CL is
the criterion, all one can do is give up the theory and restart from scratch; but
scientists do not do so. The upshot is that one should reason about T in terms of a
paraconsistent logic, a logic that allows for non-trivial inconsistent theories. Note
that any such logic has a semantics that contains inconsistent models—models
that verify inconsistent sets of sentences.

It is useful to make a little excursion at this point because many people under-
estimate the difficulties arising in inconsistent situations. Time and again, people
argue that one should figure out where the inconsistency resides and next modify
the theory in such a way that the inconsistency disappears. They apparently think
that it is easy to separate the consistent parts of a theory from the inconsistencies.
Next, if they are very uninformed, they will think that one may choose one half
of the inconsistency (or inconsistencies) and add that to the consistent part. If
they are a bit better informed, they will realize that a conceptual shift may very
well be required, that the new consistent theory should only contain the important
statements from the consistent parts, or even a good approximation of them, and
should only contain an approximation of one of the ‘halves’ of the inconsistencies.
What is wrong with this reasoning, even with the sophisticated version, is that
it is in general impossible to identify the consistent parts of a predicative theory.
There is no general positive test for consistency. Being a consistent set of pred-
icative statements is not semi-decidable. The set of consistent subsets of a set of
predicative statements is not semi-recursive. So there is no systematic method, no
Turing machine, that is able to identify an arbitrary consistent set as consistent,
independent of the number of steps that one allows the Turing machine (or the
person who applies the method) to take. So the reasoning from an inconsistent
theory can only be explicated in terms of a paraconsistent logic.

Moving from CL to a paraconsistent logic has some drastic consequences.
Not only Ex Falso Quodlibet, but many other rules are invalidated. Which rules
will be invalidated will depend on the chosen paraconsistent logic. If one chooses
a compact Tarski logic in which negation is paraconsistent but in which all other
logical symbols have the same meaning as in CL, then Disjunctive Syllogism and
several other rules are definitely invalidated. Incidentally, the weakest compact
Tarski logic in which negation is paraconsistent but not paracomplete5 and in

5A logic L is paracomplete (with respect to a negation ¬) iff some A may false together with its
negation ¬A; syntactically: iff there are Γ, A and B such that Γ, A ⊢L B and Γ,¬A ⊢L B, but

Γ 0L B.
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which all other logical symbols have their CL-meaning is CLuN, to which I return
in Section 3.

Let us first have a look at Disjunctive Syllogism (or rather at one of its forms),
for example A ∨ B,¬A/B. Reasoning about the classical semantics one shows: if
A ∨B and ¬A are true, then B is true. Here is one version of the reasoning.

1 A ∨B and ¬A are true supposition
2 A ∨B is true from 1
3 ¬A is true from 1
4 A is true or B is true from 2
5 A is false from 3
6 B is true from 4 and 5

Reasoning about the paraconsistent semantic leads to a very different result be-
cause 5 is not derivable from 3. Indeed, both A and ¬A may be true in a paracon-
sistent model. If that is the case, however, then both A∨B and ¬A are true even
if B is false. So there are models in which A ∨B and ¬A are true and B is false.

Remember that we were considering CLuN and paraconsistent extensions
of it. We have seen that Disjunctive Syllogism is invalid in CLuN. Moreover,
as Addition (in particular the variant A/A ∨ B) is valid, extending CLuN with
Disjunctive Syllogism would make Ex Falso Quodlibet derivable, whence we would
be back at CL. Other CL-rules are also invalid in CLuN, but CLuN may be
extended with them. Double Negation is among those rules, for example the axiom
¬¬A ⊃ A and also its converse. If A is false, ¬A is bound to be true, but ¬¬A
may still be true also. So some paraconsistent models verify ¬¬A and falsify A.
Although ¬¬A ⊃ A is invalid in CLuN, extending CLuN with it results in a
paraconsistent logic. This holds for manyCL-theorems, for example ¬(¬A∧¬B) ⊃
(A ∨ B). However, extending CLuN with several such CL-theorems may again
result in CL.

3. Paraconsistent Tarski Logics

The basic paraconsistent logic CLuN was already mentioned in the previous sec-
tion. It is obtained in two steps. First, full positive logic CL+ is retained. Next,
for the negation, Excluded Middle (⊢ A ∨ ¬A, which is contextually equivalent to
⊢ (A ⊃ ¬A) ⊃ ¬A) is retained, but Ex Falso Quodlibet is not.6 To avoid confusion,
let me characterize CLuN semantically. It is obtained from the CL-semantics by
first removing the clause for negation—the result of this removal is CL+—and
next adding “If vM (A) = 0, then vM (¬A) = . . .”7

That CLuN contains CL+ warrants that, for example, ¬p ⊢CLuN q ⊃ (¬p∧
q) because A ⊢CL+ B ⊃ (A∧B). This is because CL+ theorem schemata hold for
all formulas, formulas of the form ¬A included. However, CL+ does not have any

6In the context of CL+, Excluded Middle together with Ex Falso Quodlibet define the classical
negation.
7So p ∧ ¬q �CL+ ¬q, ∀x¬Px �CL+ ¬Pa, and a = b, Px �CL+ Pb, but a = b,¬Px 2CL+ ¬Pb.
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effect within such formulas, in other words within the scope of a negation symbol.
As a result of this, Replacement of Equivalents is invalid: ⊢CLuN p ≡ (p ∧ p) and
⊢CLuN ¬p ≡ ¬p but 0CLuN ¬p ≡ ¬(p ∧ p). For the same reason, Replacement
of Identicals is invalid: a = b ⊢CLuN Pa ≡ Pb but a = b 0CLuN ¬Pa ≡ ¬Pb.
However, it is easy to extend CLuN with Replacement of Identicals.

In the previous section, I referred several times to CLuN-models. The reader
may wonder what these models precisely look like. For all that was said until now,
the CLuN-semantics is indeterministic. Excluded Middle is retained, vM (¬A) = 1
whenever vM (A) = 0, but the converse obviously cannot hold because, if it did, Ex
Falso Quodlibet would be valid. It is not difficult to restore determinism and the
method is interesting because it can be applied rather generally. Two functions play
an important role in connection with models. The assignment v is part of the model
itself: M = ⟨D, v⟩.8 The assignment fixes the ‘meaning’ of non-logical symbols.
Next, the valuation vM fixes the ‘meaning’ of logical symbols. A decent semantics
presupposes a complexity ordering < which is such that if A < B, then all non-
logical symbols that occur in A also occur in B. If the semantics is deterministic,
the valuation function defines the valuation value vM (A) in terms of the assignment
function and in terms of valuation values vM (B1), . . . , vM (Bn) such that B1 < A,
. . . , Bn < A. So every valuation value vM (A) is a function of assignment values
of formulas B such that B < A and of non-logical symbols that occur in those
B. Actually, a deterministic semantics is the standard. If two models are identical
M = ⟨D, v⟩ = ⟨D′, v′⟩ = M ′, whence D = D′ and v = v′, then they better verify
the same formulas. If they don’t, then we should describe a semantics in terms of
model variants rather than models. Nevertheless, indeterministic semantic systems
have been around for more than thirty years, never caused any confusion, and were
the subject of several interesting systematic studies [3, 4, 5, 6].

The official deterministic semantics for CLuN is obtained from the indeter-
ministic one by replacing the clause “if vM (A) = 0, then vM (¬A) = 1” by

vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1 .

Obviously, for this to work, v needs to assign a value to formulas of the form ¬A.
Note that vM (¬A) is still not a function of vM (A) in the deterministic CLuN-
semantics. Determinism does not entail truth-functionality.

A useful observation is the following. Precisely because, in the two-valued
semantics of paraconsistent logics, vM (¬A) is not a function of vM (A), the truth-
value of ¬A depends on information not contained in the truth-value of A. Informa-
tion of this type must naturally be conveyed by the assignment v. Indeed, a model
itself, viz. M = ⟨D, v⟩, represents a possible situation (or possible state of the
world, etc.), whereas the valuation describes the conventions by which we define
logical symbols in order to build complex statements—formulas at the schematic
level—that enable us to describe the situation. So all information should obviously
come from the model itself—the situation, the world, or however you prefer to call

8Names and notation may obviously be different and the model may be more complex.
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it. Moreover, in order to handle not only negation gluts, viz. inconsistencies, but
gluts and gaps with respect to any logical symbol, one better lets the assignment
map every formula of the language to the set of truth values {0, 1}.9

Incidentally, the view on models presented in the previous paragraph throws
some doubt on claims to the effect that classical negation is not a sensible logical
operator, among other things because it would be tonk-like. Unless a different
approach to logic and models is elaborated, such claims seem not to refer to the
situation or world, but to the way in which we handle language. If that is so,
one wonders why a modification to our logical operators (for example banning
classical negation) is more legitimate than modifying the way in which we handle
language.10

As already suggested in the previous section, several CL-theorems (as well as
the corresponding rules) are lost in CLuN. Moreover, some of these are such that
if CLuN is extended with them, even separately, then Ex Falso Quodlibet is deriv-
able, whence we are back to CL, or Ex Falso Quodlibet Falsum (A,¬A ⊢ ¬B) is
derivable, whence we are back to something almost as explosive as CL. Disjunctive
Syllogism is such a rule. Other examples of such rules are (full) Contraposition,
Modus Tollens, Reductio ad Absurdum, and Replacement of Equivalents. Let me
illustrate the matter for Modus Tollens. In view of A ⊢CLuN B ⊃ A and reflex-
ivity, B ⊃ A,¬A ∈ CnCLuN({A,¬A}). So extending CLuN with Modus Tollens
results in A,¬A ⊢CLuN ¬B in view of transitivity.

As was also suggested in the preceding section, some CL-theorems and CL-
rules are invalid in CLuN, but adding them (separately) to CLuN results in a
richer paraconsistent logic. Among the striking examples are ¬¬A/A; de Morgan
properties; A,¬A ⊢ B for non-atomic A; Replacement of Identicals; and so on.
Note that some combinations of such CL-theorems and CL-rules still result in the
validity of Ex Falso Quodlibet or of Ex Falso Quodlibet Falsum.

It still seems useful to mention a result from an almost 35 years old publica-
tion [7]. There is an infinity of logics between the propositional fragments ofCLuN
and CL. These logics form a mesh. Some of them are maximally paraconsistent
in that every extension of them is either propositional CL or the trivial logic Tr,
characterized by Γ ⊢Tr A, in other words CnTr(Γ) = W. Many propositional para-
consistent logics have a place in this mesh—exceptions are extensions of CLuN
that validate non-CL-theorems like ¬(A ⊃ ¬A).11 Other paraconsistent logics are
fragments of logics in this mesh, for example Priest’s LP, which has no detachable
implication. Other paraconsistent propositional logics are obviously not within the

9Take conjunction as an example. The clause allowing for gluts: vM (A ∧B) = 1 iff (vM (A) = 1
and vM (B) = 1) or v(A∧B) = 1; the one allowing for gaps: vM (A∧B) = 1 iff (vM (A) = 1 and
vM (B) = 1) and v(A ∧B) = 1; the one allowing for both: vM (A ∧B) = v(A ∧B).
10I heard the claim that restricting the formation rules of natural language so as to classify “this
sentence is false” as non-grammatical is illegitimate because the sentence is ‘perfect English’. I
also heard the claim that invalidating Disjunctive Syllogism is illegitimate because this reasoning
form is ‘perfectly sound’.
11This formula is CL-equivalent to A but not CLuN-equivalent to it.
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mesh, for example relevant logics, modal paraconsistent logics, logics that display
other gluts or gaps, and so on.

An example of a maximal paraconsistent logic is the propositional fragment
of a logic which is called CLuNs in Ghent because Schütte [59] was the first to
describe that propositional fragment. CLuNs, fragments of it, and slight variants
of it were heavily studied and are known under many names [1, 2, 7, 25, 33,
35, 36, 37, 38, 39, 40, 57, 61]. CLuNs is obtained by extending CLuN with
axiom schemas to ‘drive negations inwards’ as well as with an axiom schema that
restores Replacement of Identicals: ¬¬A ≡ A, ¬(A ⊃ B) ≡ (A∧¬B), ¬(A∧B) ≡
(¬A ∨ ¬B), ¬(A ∨ B) ≡ (¬A ∧ ¬B), ¬(A ≡ B) ≡ ((A ∨ B) ∧ (¬A ∨ ¬B)),
¬(∀α)A ≡ (∃α)¬A, ¬(∃α)A ≡ (∀α)¬A, and α = β ⊃ (A ⊃ B), in which B is
obtained by replacing in A an occurrence of α by β. CLuNs has a nice two-valued
semantics and several other semantic systems, among which a three-valued one,
are adequate for it. I refer the reader elsewhere [25] for this. Priest’s LP is obtained
from CLuNs by removing the axioms and semantic clauses for implication and
equivalence and defining the symbols in a non-detachable way: A ⊃ B =df ¬A∨B
and A ≡ B =df (A ⊃ B) ∧ (B ⊃ A).

Several paraconsistent logics having been described, we may now return to
the original problem and phrase things in a more precise way.

4. The Original Problem Revisited

We considered a T = ⟨Γ,CL⟩ that turned out inconsistent. T itself is obviously
too strong, viz. trivial, to offer a sensible view on ‘what T was intended to be’.
But we know a way to avoid triviality: replace CL by a paraconsistent logic. So
let us pick CLuN or any other paraconsistent Tarski logic. For nearly all sensible
Γ, T ′ = ⟨Γ,CLuN⟩ offers a non-trivial interpretation of ‘what T was intended to
be’. A little reflection reveals, however, that this T ′ is too weak.

A toy example will be helpful. Specify the Γ in T to be Γ1 = {p, q,¬p ∨
r,¬q ∨ s,¬q}. Note that Γ 0CLuN s and Γ 0CLuN r. However, there seems to
be a clear difference between p and q. Intuitively speaking, Γ1 obviously requires
that q behaves inconsistently but does not require that p behaves inconsistently.
However, and this is interesting, CLuN leads to exactly the same insight. Indeed,
Γ1 ⊢CLuN q ∧ ¬q whereas Γ1 ⊢CLuN p but Γ1 0CLuN ¬p. Let us see whether
something interesting can be done with the help of this apparently interesting
distinction.

As p and ¬p∨r are T -theorems, r was intended as a T -theorem. Similarly, as
q and ¬q∨s are T -theorems, s was intended as a T -theorem. However, s better be
not a T -theorem. Indeed, intuitively and by CLuN, q and ¬q ∨A are T -theorems
for every A. So if, relying q, we obtain the conclusion s from ¬q ∨ s, then, by
exactly the same move we obtain the conclusion A from ¬q ∨A. The justification
for deriving s justifies deriving every formula A because ¬q ∨A is just as much a
CLuN consequence of Γ1 as is ¬q∨s. In other words, this kind of reasoning leads to
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triviality. The matter is very different in the case of r. Indeed, r can be a T -theorem.
Relying on p one obtains the conclusion r from¬p∨r and there is no other formula
of the form ¬p∨A to which the same move might sensibly be applied.12 A different
way to phrase the matter is by saying that applications of Disjunctive Syllogism
of which q is the minor result in triviality, but that applications of Disjunctive
Syllogism of which p is the minor do not result in triviality. The reason for the
difference is clear: Γ1 requires q to behave inconsistently, but does not require p
to behave inconsistently.

One might take that the preceding paragraphs led to the following insight:
what was intended as a T -theorem and can be retained as a T -theorem, should
be retained as a T -theorem. Alas, this will not do. Consider another toy example
for the non-logical axioms: Γ2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}. Clearly r
was intended as a theorem and indeed it can be retained. However, then q, which
was also intended as a theorem, should by the same reasoning also be retained.
Moreover, if q is retained, then so is q ∨ A for every formula A. So, although s
was also intended as a theorem, it cannot be retained because, relying on ¬q we
cannot only obtain s from q ∨ s, but we can obtain every formula A from q ∨A.

That may seem all right at first sight, but it is not. If you take a closer
look at Γ2, you will see that p and q are strictly on a par. The reasoning in the
preceding paragraph relied on the consistent behaviour of p to derive s and q and
hence to find out that q behaves inconsistently. However, one may just as well
start off by relying on the consistent behaviour of q to obtain s as well as p and
hence to find out that p behaves inconsistently. So the insight mentioned at the
outset of the previous paragraph should be corrected. Here is the correct version:
what was intended as a T -theorem and can be retained as a T -theorem in view
of a systematic and formal account, should be retained as a T -theorem. A little
reflection on the part of the reader will readily reveal that neither r nor s can be
retained as consequences of Γ2, but that u can be so retained.

What is the upshot? We want to replace T by a consistent theory. Obviously,
there is no point in pursuing a consistent replacement for a trivial theory—every
consistent theory is equally qualified. Moreover, T ′, in which CL is replaced by
CLuN will be non-trivial for most Γ, but is clearly too weak. However, for most Γ
one may strengthen T ′ by adding certain instances of applications of CL-rules that
are CLuN-invalid. These instances of applications may be added to T ′ in view of
the fact that a systematic distinction can be made between formulas that behave
consistently with respect to Γ and others that do not. In this way one obtains T
“in its full richness, except for the pernicious consequences of its inconsistency”;
one obtains an ‘interpretation’ of T that is as consistent as possible, and also as
much as possible in agreement with the intention behind T .

12As q is CLuN-derivable from the premises, so is ¬p ∨ q. However, relying on p to repeat the
move described in the text delivers a formula that was already derivable, viz. q. The same story
may be retold for every CLuN-consequence of Γ1 and each time the move will be harmless

because nothing new will come out of it.
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Of course the matter should still be made precise. This will be done in the
next section, but a central clue is the following:

¬A,A ∨B 0CLuN B but ¬A,A ∨B ⊢CLuN B ∨ (A ∧ ¬A) .

In view of this, one may consider formulas of the form A∧¬A as false, unless and
until proven otherwise—unless it turns out that the premises do not permit to
consider them as false on systematic grounds. In the first toy example Γ1 requires
that q∧¬q is true, but not that p∧¬p is true: Γ1 ⊢CLuN q∧¬q whereas Γ1 0CLuN

p∧¬p. Relying on the presumed falsehood of p∧¬p, we may take r to be true. The
second toy example shows that the matter is slightly more complicated: Γ2 ⊢CLuN

(p ∧ ¬p) ∨ (p ∧ ¬p) whereas neither Γ2 ⊢CLuN p ∧ ¬p nor Γ2 ⊢CLuN p ∧ ¬p. We
shall deal with this in the next section.

In order to avoid circularity, it is essential to distinguish between CLuN-
consequences of a premise set and defeasible consequences derived in view of
CLuN-consequences. Which formulas behave consistently with respect to a given
premise set, will typically be decided in terms of the CLuN-consequences of Γ.

5. Dynamic Proofs

Dynamic proofs are a typical feature of adaptive logics. The logics were ‘discovered’
in terms of the proofs. In the first paper written on the topic [9], not the first
published, only a rather clumsy semantics was available. The semantics for what
became later known as the Minimal Abnormality strategy was described in an
article [8] that was written six years later but published earlier. A decent semantics
for the Reliability strategy appears only in [11]. Dynamic proofs are also typical for
adaptive logics because nearly no other approaches to defeasible reasoning present
proofs and certainly not proofs that resemble Hilbert proofs. A theoretic account
of static proofs as well as dynamic proofs, which turn out to be a generalization
of the former, is published [20]; a more extensive account is available on the web
[23, §4.7].

Let us, very naively, have a look at some examples of dynamic proofs. More
precise definitions follow in Section 7, but obtaining a clear and intuitive insight
may be more important for the reader. Let us start with a dynamic proof from
Γ1. First have a look at stage 7 of the proof—a stage is a sequence of lines; think
about stage 0 as the empty sequence and let the addition of a line to stage n result
in stage n+ 1.

1 p Prem ∅
2 q Prem ∅
3 ¬p ∨ r Prem ∅
4 ¬q ∨ s Prem ∅
5 ¬q Prem ∅
6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q}
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So the premises were introduced and next two conditional steps were taken. Line
6 informs us that r is derivable on the condition that p ∧ ¬p is false and line 7
that s is derivable on the condition that q ∧ ¬q is false. Incidentally, a line with
a non-empty condition corresponds nicely and directly with a line from a static
proof—in the present case a Hilbert-style CLuN-proof. The condition, ∆, of a
line is always a finite set of contradictions. Where a line of the dynamic proof
contains a line at which A is derived on the condition ∆, the corresponding static
CLuN-proof contains a line at which A ∨

∨
(∆) is derived—as expected,

∨
(∆) is

the disjunction of the members of ∆. So in a sense stage 7 of this dynamic proof
is nothing but a static proof in disguise. Note that the rule applied at lines 6 and
7 is called RC (conditional rule) because, as explained, a formula A ∨

∨
(∆) is

CLuN-derivable from previous members of the proof, but ∆ is pushed into the
condition.

The way in which dynamics is introduced appears from the continuation of
the proof. I do not repeat 1–5, which merely introduce the premises.

6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q} X
8 q ∧ ¬q 2, 5; RU ∅

At stage 8 of the proof, q ∧ ¬q is unconditionally derived, viz. at line 8. So the
supposition of line 7, viz. that {q∧¬q} is false, cannot be upheld. As a result, line
7 is marked, which means that its formula is considered as not derived from the
premise set Γ1.

13 Incidentally, the rule applied at line 8 is called RU (unconditional
rule) because (the formula of) 8 is a CLuN-consequence of (the formulas of) 2
and 5.

So the dynamics is controlled by marks. Which lines are marked or unmarked
is decided by a marking definition, which is typical for a strategy. More information
on this follows in Section 7. For now, it is important that the reader understands
why line 7 is marked and other lines are unmarked. As far as this specific proof
stage is concerned, nothing interesting happens when the proof is continued. No
mark will be removed or added to any of these 8 lines.14 Incidentally, the only line
that might become marked is line 6. The formulas derived on lines with an empty
condition are CLuN-consequences of the premises. These are the stable conse-
quences of the premise set. The marks pertain to the supplementary, defeasible
consequences of the premise set.

How can I be so sure that the marks of lines 1–8 will not be changed in an
extension of the proof from Γ1? The example is propositional and propositional
CLuN is decidable in the same sense as propositional CL. It is easy enough to

13Do not read the “not derived” as “not derivable”. Indeed, a formula may be derivable in several

ways from the same premise set.
14A more accurate wording requires that one adds: in a proof from Γ1 that extends the present
stage 8. Indeed, the logic we are considering is non-monotonic. So extending the premise set may

result in line 6 being marked.
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prove that q ∧ ¬q is the only contradiction that is CLuN-derivable from Γ1.
15

Beware. As is the case for CL, only some fragments of CLuN are decidable. So
arguing that a predicative proof is stable with respect to certain lines will often
be much more complicated than in the present case.

Before we proceed, allow me to summarize that the two components govern-
ing dynamic proofs are rules (of inference) and the marking definition. The rules
are applied at will by the people who devise the proof—if they are smart, they
will follow a certain heuristics. As we shall see, the marking definition operates
independently of any human intervention. In view of the stage of the proof, the
marking definition determines which lines are marked.

When we consider more examples, a little complication will catch our atten-
tion. Here is a dynamic proof from Γ2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}.
1 ¬p PREM ∅
2 ¬q PREM ∅
3 p ∨ r PREM ∅
4 q ∨ s PREM ∅
5 ¬t PREM ∅
6 u ∨ t PREM ∅
7 p ∨ q PREM ∅
8 r 1, 3; RC {p ∧ ¬p}

√

9 s 2, 4; RC {q ∧ ¬q}
√

10 u 5, 6; RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7; RC ∅
At stage 10 of the proof—when the proof consists of lines 1–10 only—no line is
marked. At stage 11, however, lines 8 and 9 are both marked. Why is that? Line
11 gives us the information that either p or q behaves inconsistently on Γ2, but
does not inform us which of both behaves inconsistently. So a natural reaction is to
consider both p∧¬p and q∧¬q as unreliable. This is the reaction that agrees with
the Reliability strategy—we shall come across other strategies later. According to
the Reliability strategy a line is marked if one of the members of its condition
is unreliable. At this point in the paper, consider the unreliable formulas as the
disjuncts of the minimal disjunctions of contradictions. If the “minimal” was not
there, Addition would cause every contradiction to be unreliable as soon as one
contradiction is unreliable.

In both example proofs, some lines were unmarked at a stage and marked at
a later stage. The converse move is also possible, as is illustrated by a proof from
Γ3 = {(p ∧ q) ∧ t,¬p ∨ r,¬q ∨ s,¬p ∨ ¬q, t ⊃ ¬p}.
1 (p ∧ q) ∧ t PREM ∅
2 ¬p ∨ r PREM ∅
3 ¬q ∨ s PREM ∅
4 ¬p ∨ ¬q PREM ∅

15The reader might think that, as p is also a CLuN-consequence of Γ1, (p∧ q)∧¬(p∧ q) is also
a CLuN-consequence of Γ1. This however is mistaken. ¬q 0CLuN ¬(p ∧ q).
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5 t ⊃ ¬p PREM ∅
6 r 1, 2; RC {p ∧ ¬p}

√

7 s 1, 3; RC {q ∧ ¬q}
√

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
Both lines 6 and 7 are marked at stage 8 because (p ∧¬p) ∨ (q ∧¬q) is a minimal
disjunction of contradictions that is derived at the stage. However, look what
happens if stage 9 looks as follows—I do not repeat 1–5.

6 r 1, 2; RC {p ∧ ¬p}
√

7 s 1, 3; RC {q ∧ ¬q}
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
9 p ∧ ¬p 1, 5; RU ∅
At stage 9 of this proof, (p ∧ ¬p) ∨ (q ∧ ¬q) is not a minimal disjunction of ab-
normalities because (the ‘one disjunct disjunction’) p ∧ ¬p was derived. We knew
already that either p∧¬p or q∧¬q was unreliable and now obtain the more specific
information that it is actually p ∧ ¬p that is unreliable. So q ∧ ¬q is off the hook,
whence line 7 is unmarked. Stage 9 of this proof is stable: no mark will be removed
or added to lines 1–9 if the stage is extended. Actually nothing interesting happens
in any such extension.

It is time to make the marking more precise. Dynamic proofs need to explicate
the dynamic reasoning. So, at the level of the proofs, the dynamics needs to be
controlled. The central features for this control are the conditions and the marking
definition. The way in which conditions are introduced should be clear by now—
precise generic rules follow in Section 7. However, how does one precisely figure
out which lines are marked?

Only some adaptive logics are inconsistency-adaptive. So allow me to use a
slightly more general terminology. The formulas that occur in conditions of lines—
in the previous examples these were contradictions—are called abnormalities and
Ω is the usual name for the set of abnormalities.

A classical disjunction of abnormalities will be called a Dab-formula—it goes
without saying that a disjunction of formulas is always a disjunction of finitely
many formulas. I shall often write Dab(∆) to refer to the classical disjunction of
the members of a finite ∆ ⊂ Ω. A Dab-formula that is derived in a proof stage
by RU at a line with condition ∅ will be called a inferred Dab-formula of the
proof stage. Note that a Dab-formula introduced by Prem is not an inferred Dab-
formula in the sense of this definition. Dab(∆) is a minimal inferred Dab-formula
of a proof stage if it is an inferred Dab-formula of the proof stage and there is no
Θ ⊂ ∆ such that Dab(Θ) is an inferred Dab-formula of the proof stage. Where
Dab(∆1), . . . ,Dab(∆n) are the minimal inferred Dab-formulas of stage s, the set
of unreliable formulas of stage s is Us(Γ) = ∆1∪. . .∪∆n. Where Θ is the condition
of line i, line i is marked iff Θ ∩ Us(Γ) ̸= ∅. This is the marking definition for the
Reliability strategy—every strategy has its own marking definition.

Marks come and go. As they determine which formulas are considered as
derived, derivability seems to be unstable; it changes from stage to stage. Let
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this unstable derivability be called derivability at a stage. Apart from it, we want
a stable form of derivability, which is called final derivability and is noted as
Γ ⊢CLuNr A. There are several ways to define final derivability. At this point in
my story, the following seems most handy. If A is derived at an unmarked line i
of a stage of a proof from Γ and the stage is stable with respect to i—line i is not
marked in any extension of the stage—then A is finally derived from Γ.

Just as we wanted the stable entity called final derivability, we also want to
have some further entities that refer to what is CLuN-derivable from the premise
set Γ rather than referring to a stage of a proof from Γ.

Definition 1. Dab(∆) is a minimal Dab-consequence of Γ iff Γ ⊢CLuN Dab(∆)
and, for all ∆′ ⊂ ∆, Γ 0CLuN Dab(∆′).

Definition 2. Where Dab(∆1), . . . ,Dab(∆n) are the minimal Dab-consequences
of Γ, U(Γ) = ∆1 ∪ . . . ∪∆n.

The set U(Γ) is defined in view of the Reliability strategy. A very different
set will be introduced later in view of Minimal Abnormality.

The reader may expect a section on semantics at this point, but I shall only
deal with the semantics as defined by the standard format.

6. The Standard Format SF

There is a large diversity of adaptive logics. Every new adaptive logic requires that
one delineates its syntax (proof theory), its semantics (models), and, what is the
hard bit, its metatheory (study of properties of the system). This suggested the
search for a common structure for a large set of adaptive logics, if possible for
all of them. The idea was that the structure would take care of most of the work
beforehand, that the proof theory and semantics would be defined in terms of the
common structure and that the metatheoretic properties would be provable from
the structure. The common structure would be a function of certain parameters
and specifying these would result in a specific adaptive logic with all required
features available. This common structure is called the standard format.

An adaptive logic AL in Standard Format is defined as a triple comprising:16

· a lower limit logic LLL: a logic that has static proofs and contains classical
disjunction,

· a set of abnormalities Ω, a set of formulas that share a (possibly restricted)
logical form or a union of such sets,

· a strategy (Reliability, Minimal Abnormality, . . . ).

That the lower limit logic contains a classical disjunction means that one of
the logical symbols is implicitly or explicitly defined in such a way that it has the
meaning of the CL-disjunction. Explaining the notion of static proofs goes beyond

16Names like LLL, AL, ALr , and ULL are used as generic names to define the standard format
and to study its features. The names refer to arbitrary logics that stand in a certain relation to

each other.
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the scope of the present paper, but the reader may for all useful purposes replace
the requirement by: a formal and compact Tarski logic.

“Abnormality” is a technical term, different adaptive logics require that dif-
ferent formulas are seen as abnormalities. Only the abnormalities of corrective
adaptive logics—those with LLL weaker than CL—are CL-falsehoods. In nearly
all inconsistency-adaptive logics, existentially closed contradictions are abnormal-
ities. Also other formulas may belong to the Ω, for example Universally closed
contradictions or formulas of the form A∧¬(A∨B). Some examples of restricted
and unrestricted logical forms will be presented below.

Adaptive strategies will be discussed at some length later in this section.
If the lower limit logic LLL is extended with a set of rules or axioms that

trivialize abnormalities (and no other formulas), then one obtains a logic called
the upper limit logic ULL. Examples follow but it should be clear by now that,
for all A ∈ Ω and for all B ∈ W, A/B should be a derivable rule in ULL. As Ω is
characterized by a logical form, it is in possible to obtain ULL by extending LLL
with a set of rules.

I shall suppose that a characteristic semantics of LLL is available. This will
enable me to define the semantics of AL in terms of the standard format. The
LLL-models that verify no member of Ω form a semantics for ULL.17 A premise
set that has ULL-models is often called a normal premise set ; it does not require
that any abnormality is true.

It is instructive to have a closer look at the difference between ULL and AL.
ULL extends LLL by validating some further rules of inference. AL extends LLL
by validating certain applications of ULL-rules. The point is easily illustrated
in connection to Disjunctive Syllogism. CL validates this rule, while in the (not
yet precise) toy examples of proofs from Section 5, some but not all applications
of Disjunctive Syllogism were sanctioned as correct. As those examples clarify,
it depends on the premises—or should one say on the content of the premises—
which applications turn out valid. In other words, adaptive logics display a form
of content guidance.18 A different way of phrasing the matter is that CnAL(Γ)
comes to CnLLL(Γ) extended with what is derivable if as many abnormalities are
false as the premises permit. This phrase is obviously ambiguous, but strategies
disambiguate it, as we shall see.

An important supposition on the language L of AL is that it contains a
classical disjunction. It may of course contain several disjunctions, but one of
them should be classical. In the sequel of this paper, the symbol ∨̂ will always
refer to this disjunction.19 Similarly, ∼ will always refer to a classical negation.
This is not supposed to occur in every considered language schema.

17Similarly for those models together with the trivial model—the model that verifies all formulas.
18The notion played a rather central role in discussions on scientific heuristics. A very clear and

argued position was for example proposed by Dudley Shapere [60].
19This obviously does not mean that ∨̂ is a symbol of the language. It is a conventional name to
refer to a symbol of the language that has the meaning of classical disjunction. It may even refer

ambiguously: if there are several classical disjunctions, ∨̂ need not always refer to the same one.
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As we already have seen in Section 5, we need ∨̂ for Dab-formulas—but see
Section 11 for an alternative. In Section 5, I also introduced inferred Dab-formulas
and minimal inferred Dab-formulas of a proof stage as well as the notation Dab(∆).

Let us consider some examples of adaptive logics. Expressions ∃A will denote
the existential closure of A, viz. A preceded by an existential quantifier over every
variable free in A.

The adaptive logic CLuNm is defined by the following triple:

· lower limit logic: CLuN,
· set of abnormalities Ω = {∃(A ∧ ¬A) | A ∈ Fs}
· strategy: Minimal Abnormality.

The upper limit logic is CL, obtained by extending CLuN with, for example, the
axiom schema (A∧¬A) ⊃ B.20 It is not difficult to prove that the CLuN-models
that verify no abnormality form a semantics of CL.

The logic CLuNsm is defined by:

· lower limit logic: CLuNs,
· set of abnormalities Ω = {∃(A ∧ ¬A) | A ∈ Fa

s }
· strategy: Minimal Abnormality,

in which Fa
s is the set of atomic (open and closed) formulas of Ls—atomic formulas

are those in which no logical symbols occur except possibly for identity =. The
upper limit logic is CL, obtained by extending CLuNs with, for example, the
axiom schema (A ∧ ¬A) ⊃ B.21 Semantically: the CLuNs-models that verify no
abnormality form a CL-semantics.

Some further examples are easy variants.CLuNr is likeCLuNm , except that
Minimal Abnormality is replaced by Reliability. LPm is like CLuNsm except that
CLuNs is replaced by Priest’s LP—see Section 3 for the relation between CLuNs
and LP.

In these examples LLL or the strategy are varied. What about the difference
between the set of abnormalities of CLuNm as opposed to CLuNsm? In a sense
this is just a variation. Yet, if the Ωs are exchanged, the resulting variant of
CLuNm is still an inconsistency-adaptive logic, but its ULL is weaker than CL—
a feature that is difficult to justify with respect to applications. If the Ω are
exchanged, the resulting variant of CLuNsm is also still an inconsistency-adaptive
logic, but it is a flip-flop logic—see Section 12, where also more variation will be
considered.

If an adaptive logic is in standard format, this fact (not specific properties of
the logic) provides it with:

• its proof theory,
• its semantics (models),
• most of its metatheory (including soundness and completeness).

20Axioms are suppose to be closed formulas. So A ∈ Ws. The idea is that CLuN-valid rules are
fully retained in the extension. One of these rules is: from ⊢ A(a) ⊃ B to derive ⊢ ∃xA(x) ⊃ B

provided a does not occur in B.
21The axiom schema may be restricted to A ∈ Wa

s , but there is no need to do so.
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So the standard format provides guidance in devising new adaptive logics. More-
over, once a new adaptive logic is phrased in standard format, most of the hard
work is over.

7. SF: Proof Theory

As we already know, every adaptive logic requires a set of rules of inference and
a marking definition. The rules of inference are determined by LLL and Ω; the
marking definition is determined by Ω and by the strategy. We also know that
the dynamics of the proofs is controlled by attaching conditions (finite subsets of
Ω) to derived formulas, or, if you prefer, to lines at which formulas are derived.
We also have seen what is special about annotated dynamic proofs: their lines
consist of four rather than three elements: a number, a formula, a justification,
and a condition. The rules govern the addition of lines, the marking definition
determines for every line i at every stage s of a proof whether i is unmarked or
marked— this means that it is respectively IN or OUT—in view of (i) the condition
of i and (ii) the minimal inferred Dab-formulas of stage s.

The rules of inference can be presented as three generic rules. Let Γ be the
premise set and let

A ∆

abbreviate that A occurs in the proof on the condition ∆.

Prem If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An ⊢LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An ⊢LLL B ∨̂Dab(Θ): A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

Only RC introduces new non-empty conditions (adds a non-empty set to the con-
ditions of the local premises). Prem introduces empty conditions and RU merely
carries conditions over and adds them up in a union.

Easy illustrations: RU may be applied in view of p, p ⊃ q ⊢CLuN q; RC may
be applied in view of p,¬p ∨ q ⊢CLuN q ∨̂ (p ∧ ¬p). In view of the formulation
of the antecedent of RU and RC, all rules are finitary—have a finite number of
local premises. This formulation does not in any way affect the adaptive logic AL
because LLL is a compact logic anyway. Incidentally, it is instructive to review
the toy examples in terms of the precise formulation of the rules.
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Marking definitions proceed in terms of the minimal inferred Dab-formulas
at the proof stage. Where Dab(∆1), . . . , Dab(∆n) are the minimal inferred Dab-
formulas at stage s, Us(Γ) = ∆1 ∪ . . . ∪∆n.

Definition 3. Marking for Reliability: where ∆ is the condition of line i, line i is
marked at stage s iff ∆ ∩ Us(Γ) ̸= ∅.

The idea behind the definition consists of two steps. First, the minimal in-
ferred Dab-formulas of stage s of a proof from Γ provide, at stage s, the best
available estimate of the minimal Dab-consequences of Γ. So their disjuncts, which
are abnormalities, cannot be safely considered as false. Next, the formula of a line
can only be considered as derived (by present insights) if the abnormalities in the
condition of the line can be considered as false. If they cannot, the line is marked.

However sensible this may sound, Minimal Abnormality offers a more refined
approach. A choice set of Σ = {∆1,∆2, . . .} is a set that contains one element out
of each member of Σ. A minimal choice set of Σ is a choice set of Σ of which no
proper subset is a choice set of Σ. Where Dab(∆1), . . . , Dab(∆n) are the minimal
inferred Dab-formulas of stage s, Φs(Γ) is the set of the minimal choice sets of
{∆1, . . . ,∆n}.

Definition 4. Marking for Minimal Abnormality: where A is the formula and ∆ is
the condition of line i, line i is marked at stage s iff (i) there is no φ ∈ Φs(Γ) such
that φ ∩∆ = ∅, or (ii) for some φ ∈ Φs(Γ), there is no line at which A is derived
on a condition Θ for which φ ∩Θ = ∅.

The set Φs(Γ) is the best estimate, at stage s, of Φ(Γ), which is the set
of minimal choice sets of the minimal Dab-consequences of Γ. The φ ∈ Φ(Γ)
are the minimal sets of abnormalities that are true if Γ is true. On the Minimal
Abnormality strategy, a formula A is an adaptive consequence of Γ iff A is a
consequence for every φ ∈ Φ(Γ). So, for every φ ∈ Φ(Γ), there should be a Θ such
that A ∨̂ Dab(Θ) is a LLL-consequence of Γ and all members of Θ can be false,
viz. none of them is a member of φ.

The difference between Minimal Abnormality and Reliability can be nicely
illustrated by means of a toy proof. Considering again Γ2 = {¬p,¬q, p ∨ r, q ∨
s,¬t, u ∨ t, p ∨ q}, let us continue the second proof from Section 5. The premise
lines 1–7 are not repeated.

8 r 1, 3; RC {p ∧ ¬p}
√

9 s 1, 4; RC {q ∧ ¬q}
√

10 u 5, 6; RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7; RC ∅
12 r ∨ s 8; RC {p ∧ ¬p}
13 r ∨ s 9; RC {q ∧ ¬q}
Obviously Φ13(Γ) = Φ11(Γ) = {{p∧¬p}, {q∧¬q}}. So, on the Minimal Abnormal-
ity strategy, lines 12 and 13 are unmarked. Indeed, if p∧¬p is the case and q ∧¬q
is not, then r ∨ s is in view of line 13. If q ∧ ¬q is the case and p ∧ ¬p is not, then
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r ∨ s is in view of line 12. It follows that, on the Minimal Abnormality strategy,
r∨ s is an adaptive consequence of Γ2. The matter is very different for Reliability.
Indeed, U13(Γ) = {p ∧ ¬p, q ∧ ¬q}, whence lines 12 and 13 are marked. As the
displayed proof stage is stable for both strategies and r∨s is not CLuN-derivable
from Γ2 on any other condition, Γ2 ⊢CLuNm r ∨ s but Γ 0CLuNr r ∨ s.

In Section 5, I delineated final derivability in terms of a stable proof stage.
This is not very handy as a general definition. Indeed, for some adaptive logics
AL, premise sets Γ, and formulas A, only infinite AL-proofs of A from Γ are stable
[11, §7]. But one obviously cannot write down infinite proofs. For this reason, the
official definition of final derivability goes as follows.

Definition 5. A is finally derived from Γ at line i of a finite proof stage s iff (i) A
is the second element of line i, (ii) line i is not marked at stage s, and (iii) every
extension of the proof in which line i is marked may be further extended in such
a way that line i is unmarked.

Definition 6. Γ ⊢AL A (A is finally AL-derivable from Γ) iff A is finally derived
at a line of a proof stage from Γ.

Establishing final derivability requires (i) a finite proof stage and (ii) a
metatheoretic reasoning about extensions of the stage and extensions of these.
Some comments on these definitions follow in Section 10.

8. SF: Semantics

The syntactic definition of minimal Dab-consequences of Γ was presented in Def-
inition 1. As this proceeds in terms of LLL and an adequate semantics of this
logic is supposed to be known, Dab(∆) is a minimal Dab-consequence of Γ iff
Γ �LLL Dab(∆) and, for all ∆′ ⊂ ∆, Γ 2LLL Dab(∆′).

Definition 7. Where M is a LLL-model, Ab(M) = {A ∈ Ω | M 
 A}.

Consider first adaptive logics ALr that follow the Reliability strategy. Let
MLLL

Γ be the set of LLL-models of Γ.

Definition 8. M ∈ Mr
Γ (M is a reliable model of Γ) iff M ∈ MLLL

Γ and Ab(M) ⊆
U(Γ).

So the reliable models of Γ are the models of Γ that verify at most reliable
abnormalities. Note that there are no reliable models, but only reliable models of
a set of formulas Γ. The same holds for adaptive models in general.

Definition 9. Γ �ALr A (A is anALr -consequence of Γ) iffM 
 A for allM ∈ Mr
Γ.

So the ALr -semantics selects some LLL-models of Γ as ALr -models of Γ.
The selection depends on Ω and on the strategy.

For adaptive logics ALm that follow the Minimal Abnormality strategy, one
may proceed in a very different way.



20 Diderik Batens

Definition 10. M ∈ Mm
Γ (M is a minimally abnormal model of Γ) iff M ∈ MLLL

Γ

and no M ′ ∈ MLLL
Γ is such that Ab(M ′) ⊂ Ab(M).

Definition 11. Γ �ALm A (A is an ALm -consequence of Γ) iff M 
 A for all
M ∈ Mm

Γ .

Lemma 14 below greatly clarifies the relation between the minimal abnormal
models and the marking definition for Minimal Abnormality.'
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Figure 1. Comparison of Models

Have a look at Figure 1. For a normal premise set Γ, an adaptive logic simply
selects the upper limit models of Γ, and hence delivers the same consequence set
as the upper limit logic. Abnormal Γ have no ULL-models. Still, some exceptions
aside,22 adaptive logics select a proper subset of the set of LLL-models and hence
deliver a larger consequence set than LLL.

9. SF: Metatheory

What follows is a selection of theorems. They are selected in view of their impor-
tance or in view of the insights they reveal in the context of the present introduc-
tion. They are all provable from the standard format [19, 23]. This means that
they are provable from the common structure of all adaptive logics in standard
format, independent of further specific properties.

Theorem 12. Γ �ALr A iff Γ �LLL A ∨̂ Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite
∆ ⊂ Ω.

22The exception may be caused by the logic, which is then called a flip-flop, or by the premise

set—for example if the premise set comprises the formulas verified by a LLL-model.
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Corollary 13. Γ ⊢ALr A iff Γ �ALr A. (Soundness and Completeness for Reliabil-
ity)

Lemma 14. M ∈ Mm
Γ iff M ∈ MLLL

Γ and Ab(M) ∈ Φ(Γ).

Theorem 15. Γ ⊢ALm A iff Γ �ALm A. (Soundness and Completeness for Minimal
Abnormality)

Strong Reassurance, also called Stopperedness or Smoothness, refers to the
following property: if a model of the premises is not selected, this is justified by the
fact that a selected model of the premises is less abnormal. If Strong Reassurance is
absent, there are infinite sequences of models of a certain Γ in which each member
of the sequence is less abnormal than its predecessor. This absence sometimes
results in very odd consequence sets [12].

Theorem 16. If M ∈ MLLL
Γ −Mm

Γ , then there is a M ′ ∈ Mm
Γ such that Ab(M ′) ⊂

Ab(M). (Strong Reassurance for Minimal Abnormality.)

Theorem 17. If M ∈ MLLL
Γ −Mr

Γ, then there is a M ′ ∈ Mr
Γ such that Ab(M ′) ⊂

Ab(M). (Strong Reassurance for Reliability.)

All of the following theorems highlight important features of adaptive logics.
The reader may find some more fascinating than others. This will depend on
the reader’s familiarity with certain aspects of non-monotonic reasoning and of
defeasible reasoning in general.

Theorem 18. Each of the following obtains:

1. Mm
Γ ⊆ Mr

Γ. Hence CnALr (Γ) ⊆ CnALm (Γ).
2. If A ∈ Ω − U(Γ), then M 1 A for all M ∈ Mr

Γ, whence ∼A ∈ CnALr (Γ) if
∼ is in L.

3. If Dab(∆) is a minimal Dab-consequence of Γ and A ∈ ∆, then some M ∈
Mm

Γ verifies A and falsifies all members (if any) of ∆− {A}.
4. Mm

Γ = Mm
CnALm (Γ) whence CnALm (Γ) = CnALm (CnALm (Γ)). (Fixed Point

for Minimal Abnormality.)
5. Mr

Γ = Mr
CnALr (Γ) whence CnALr (Γ) = CnALr (CnALr (Γ)). (Fixed Point for

Reliability.)
6. For all ∆ ⊆ Ω, Dab(∆) ∈ CnAL(Γ) iff Dab(∆) ∈ CnLLL(Γ). (Immunity.)
7. If Γ′ ⊆ CnAL(Γ) then CnAL(Γ ∪ Γ′) ⊆ CnAL(Γ). (Cautious Cut.)
8. If Γ′ ⊆ CnAL(Γ), and CnAL(Γ) ⊆ CnAL(Γ ∪ Γ′). (Cautious Monotonicity.)

Theorem 19. Each of the following obtains:

1. If Γ is normal, then MULL
Γ = Mm

Γ = Mr
Γ whence CnALr (Γ) = CnALm (Γ) =

CnULL(Γ).
2. If Γ is abnormal and MLLL

Γ ̸= ∅, then MULL
Γ ⊂ Mm

Γ and hence CnALr (Γ) ⊆
CnALm (Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ whence CnLLL(Γ) ⊆ CnALr (Γ) ⊆ CnALm (Γ)
⊆ CnULL(Γ).
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4. Mr
Γ ⊂ MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω− U(Γ).
5. CnLLL(Γ) ⊂ CnALr (Γ) iff Mr

Γ ⊂ MLLL
Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that Γ ∪ ∆ is
LLL-satisfiable and there is no φ ∈ ΦΓ for which ∆ ⊆ φ.

7. If there are A1, . . . , An ∈ Ω (n ≥ 1) such that Γ ∪ {A1, . . . , An} is LLL-
satisfiable and, for every φ ∈ ΦΓ, {A1, . . . , An} * φ, then CnLLL(Γ) ⊂
CnALm (Γ).

8. CnALm (Γ) and CnALr (Γ) are non-trivial iff CnLLL(Γ) is non-trivial. (Reas-
surance)

Theorem 20. If Γ′ ⊆ CnAL(Γ), then CnAL(Γ ∪ Γ′) = CnAL(Γ). (Cumulative
Indifference.)

Theorem 21. If Γ ⊢AL A, then every AL-proof from Γ can be extended in such a
way that A is finally derived in it. (Proof Invariance)

Theorem 22. If Γ′ ∈ CnAL(Γ) and Γ ∈ CnAL(Γ
′), then CnAL(Γ) = CnAL(Γ

′).
(Equivalent Premise Sets)

10. SF: Decidability Matters And A Philosophical Comment

We have seen in Section 7 that final derivability is established by a finite proof
stage and a metatheoretic reasoning about extensions of the stage and extensions
of these. It is provable that, if Γ ⊢AL A, then A is derived on an unmarked line i of
an AL-proof stage from Γ that is stable with respect to line i. The inconvenience
is that the stage may be infinite,23 whence Definition 5 is superior.

The need for a metatheoretic argument reveals an ambiguity in the notion of
a proof. On the one hand, there are proofs in the sense of constructions obtained
by correct applications of the rules of inference. On the other hand, a proof in the
strong sense establishes by itself that a certain formula is derivable from a certain
premise set. For compact Tarski logics, there are metatheoretic arguments that
show that the existence of a proof in the weak sense warrants the existence of a
proof in the strong sense—or that a proof in the weak sense constitutes a proof
in the strong sense. For adaptive logics that matter is more sophisticated, as we
shall see.

Definition 5 has a nice game-theoretic interpretation, actually several related
such interpretations. As one might expect, the Proponent’s task is to establish the
proof, the Opponent’s task to defeat it. In the simplest variant, the first move is for
the Proponent who should produce a finite proof stage in which A is derived from
Γ, say at line i. The next move is for the Opponent, who should extend the proof
stage from Γ in such a way that i is marked. In the third move, the Proponent has to
further extend the result in such a way that line i is unmarked. The Proponent has
a winning strategy if, whatever the second move of the Opponent, the Proponent

23Infinite stages can be extended by inserting lines in the sequence.
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is able to carry out the third move successfully. Please check that this literally
follows Definition 5.

For the propositional fragment (and for other decidable fragments of LLL),
final derivability from finite premise sets is decidable. For the full predicative logics,
however, there is not even a positive test. Nevertheless, even at the predicative
level, there are criteria for final derivability. Such criteria were developed by several
means, for example a ‘block analysis’ of proofs [10], specific tableau methods [27,
28], and a specific prospective dynamics [15, 17, 71]. Some of these need some
reworking in view of the present standard format. The third approach results in
the formulation of proof procedures that provide a criterion. If the procedure stops,
the state of the proof reveals whether a certain formula is or is not finally derivable
from the premise set; however, it is also possible that the procedure does not stop.

What if no criterion applies? All one can do is act on present insights as
revealed by a proof at a stage. This leads to two questions. The first is whether
the dynamics of the proofs goes anywhere. In view of the block analysis of proofs
(and of the connected block semantics), the following can be established. A stage
of a proof provides an insight in the premises and every step of the proof can be
either informative or non-informative—this is defined in a precise way. If the step
is informative, more insight in the premises is gained; if the step is non-informative,
no insight is gained but no insight is lost either.

Sensible proofs contain only informative steps and it is not difficult to avoid
uninformative steps. There is, however, no guarantee on convergence because the
computational complexity of some adaptive consequence sets, viz. where the logic
follows the Minimal Abnormality strategy, is Π1

1.
24 Let me be more explicit on

convergence. There is convergence with respect to the set of Dab-consequences of
the premise set. There is also convergence with respect to the set of minimal Dab-
consequences of the premise set Γ. Both sets are recursively enumerable. However,
there is no convergence with respect to final derivability from Γ. Suppose that A
is derived on a condition, respectively a set of conditions, that warrants its final
derivability with respect to U(Γ), respectively Φ(Γ). As long as not all minimal
Dab-consequences of Γ are derived, it is possible that the derivation of a non-
minimal Dab-consequence of Γ causes A not to be derived at the stage. Needless
to say, there is convergence with respect to final derivability whenever the set of
minimal Dab-consequences of Γ is finite.

If no criterion applies, there is, as announced, a second question: Does the
application context require final derivability? Not always. Reconsider the role of
inconsistency-adaptive logics with respect to (what I called) the original problem.
After certain abnormalities are located and perhaps some abnormalities are nar-
rowed down in view of personal constraints and the like—see Section 12—one may
have a clear idea for replacement and this may be sufficient to launch a hypothesis

24It is ironic that the study of the computational complexity of adaptive logics started with a
paper arguing that they are too complex [41]. The philosophical complaints and misunderstand-

ings in that paper were answered in [26]; a mistaken theorem was corrected in [68]. Extremely
interesting and more detailed studies followed [54, 55].
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for a replacement of the inconsistent theory. Several people may launch several
hypotheses, but the located problems will usually be common. Even if these are
far from complete, some of the launched hypotheses may be successful, for a while
or forever. A good example is Frege’s set theory. The Russell paradox was known
and led to proposals for replacements. Several of these were not shown to be in-
consistent until now. So, as far as we can tell, they are worthwhile proposals for
consistent set theories. Only after most of these proposals were formulated, the
Curry paradox was discovered. So the proposals were made without a full analy-
sis of the inconsistencies in Frege’s theory. A similar story may be told, although
perhaps less convincingly, about Clausius’ removal of an inconsistency from ther-
modynamics. The aim of applications with respect to creative processes is to arrive
at sensible hypothetical proposals for consistent replacements. The means to reach
this end is the analysis provided by the inconsistency-adaptive logic(s). In that re-
spect CnAL(Γ) is merely an ideal. This ideal is studied in order to show that
the applied mechanism is coherent and conceptually sound. To the extent that
our estimate of CnAL(Γ) is better, we may arrive at better proposals. We know
that, for some AL and Γ, the set CnAL(Γ) is beyond our reach. All we can do
is go by present insights and hope that they are not too bad an estimate of the
final consequence set. That’s life. The only alternatives are dogmatic belief and
gardening.

11. Variants To The Standard Format

The first versions of the standard format were published in [14] and [16]. It soon
became clear that especially a universal formulation of the proof theory required
the presence of a classical disjunction. Other classical logical symbols also proved
very useful. If the abnormalities are contradictions or existentially closed contra-
dictions, one better has a classical conjunction around. Having classical negation
around also turned out attractive.

Let me illustrate the attractiveness of classical negation in terms ofCLuNr—
the subsequent illustration may be adjusted to any inconsistency-adaptive logic
mentioned so far. If p∧¬p /∈ U(Γ), then each of the following obtain: (i) if ¬p, p∨
q ∈ CnCLuNr (Γ), then q ∈ CnCLuNr (Γ), (ii) if ¬p, q ⊃ p ∈ CnCLuNr (Γ), then
¬q ∈ CnCLuNr (Γ), (iii) if ¬p ∈ CnCLuNr (Γ), then ¬(p ∧ q) ∈ CnCLuNr (Γ), and
so forth and so on. Suppose, however, that CLuN is extended with the classical
negation ∼.25 As p ∧ ¬p /∈ U(Γ), we now obtain: if ¬p ∈ CnCLuNr (Γ), then
∼p ∈ CnCLuNr (Γ). Note, however, that this is a very basic step. Once we have
derived ∼p by the rule RC, all other steps follow by the rule RU. Indeed, in
the version of CLuN that contains a classical negation, (i) ∼p, p ∨ q ⊢CLuN q,
(ii) ∼p, q ⊃ p ⊢CLuN ¬q, (iii) ∼p ⊢CLuN ¬(p∧ q), and so forth and so on. So once

25Stepwise: the language Ls of CLuN is extended with the symbol ∼ and CLuN is extended
with axioms or rules that give ∼ its classical meaning—for example the schemas A ⊃ (∼A ⊃ B)

and (A ⊃ ∼A) ⊃ ∼A.
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the classical negation of p is derived, there is no further need to apply RC. This
made classical negation quite interesting.

The situation became even more attractive when it turned out that, in certain
combinations of adaptive logics—like in CnAL2(CnAL1(Γ))—not all information
is carried over to the second logic unless CnAL1(Γ) contains a classical negation.
Moreover, the formulation of the standard format turned out more elegant if clas-
sical connectives were around. I tried to avoid ∼ in Section 9—actually, ∼ only
occurs in Item 2 of Theorem 18. However, many transparent and clarifying state-
ments may be phrased as soon as classical negation is around. Just to mention
one example: CnALr(Γ) = CnLLL(Γ ∪ {∼A | A ∈ Ω − U(Γ)}). Note that, thanks
to the presence of ∼, this defines the ALr -consequences of Γ in terms of its LLL-
consequences—even U(Γ) is so defined. All this, and actually more, suggested the
usefulness of classical symbols in general and of classical negation in particular.
Moreover, adding the classical logical symbols (in a specific way) turned out to be
easy and seemed philosophically unobjectionable. Over the years, this led to the
view that, given a premise set Γ ⊆ W, it is advisable to formulate adaptive logics
handling Γ in terms of the extension of the native L with the classical symbols
that do not belong to L. In the interest of the elegance of the standard format,
this was modified to: add classical symbols, even when they duplicate symbols of
L, and refer to them by specific ‘checked’ logical symbols ¬̌, ∨̌, etc.26

It later turned out that it was important to distinguish, with respect to proofs,
between (what is now called) Dab-formulas and inferred Dab-formulas.27 As the
added symbols were around anyway, the distinction was originally introduced in
terms of the checked disjunction ∨̌.

There are mainly three reasons why I described a standard format without
‘checked’ logical symbols. First, the introduction of those symbols is rather tire-
some. It requires a motivation and a lengthy and careful formulation. A standard
format with checked symbols is definitely more complicated than one without,
and one wonders whether the advantages of extending the language outweighs the
complication. Next, the addition of classical negation will definitely raise suspicion
from the side of dialetheists. So, as the addition is avoidable, it better is avoided—
the formulation of a logic should refrain from taking a philosophical stance. Finally,
the checked symbols led to confusion, for example to the mistaken claim that adap-
tive logics are in a sense incomplete because not all semantic consequences would
be derivable from premise sets in which occur checked symbols [63, 64].28

All that we really need in the standard format is a classical disjunction, to
which I refer by ∨̂. The classical disjunction will occur in Dab-formulas and in
disjunctions like B ∨̂ Dab(Θ) in applications of RC. And even the requirement

26The classical symbols were actually superimposed on L: in the extended language, they never
occur within the scope of the original logical symbols of L.
27The distinction warrants that the reference to a finite proof stage in Definition 5 is all right.
28The mistake is caused by a confusion between symbols and concepts. If ∨̌ occurs in a premise,
and so in L, then ∨̌ is not a new symbol of the extended language. So one needs to extend the

language with another symbol, say ∨̃, and call that the checked disjunction.
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that a classical disjunction should occur in L may be dropped, as we shall see
after the next paragraph.

Do all adaptive logics that fit in the version of the standard format with
added classical symbols also fit in the version without such added symbols? Not
quite. However, the adaptive logics that do not belong to the standard format in
the present (actually restored original)29 version can be integrated by a single and
simple strike. We shall see so in Section 13.

The requirement that classical disjunction should be a symbol of L may be
dropped by moving to a multiple-conclusion standard format. This fact was first
seen and used by Sergei Odintsov and Stanislav Speranski [55]; they formulated
this version of the standard format for propositional logics, but the generalization
to predicative logics is straightforward.

Where L is a logic, I shall write Γ ⊢mc
L ∆ to express that, according to L,

one of the members of ∆ is true if all members of Γ are true. LLL should be
specified to be left compact as well as right compact; so if Γ ⊢mc

L ∆, then there
is a finite Γ′ ⊆ Γ and a finite ∆′ ⊆ ∆ such that Γ′ ⊢mc

L ∆′. Next, the condition
of the rule RC can now be phrased as “If A1, . . . , An ⊢mc

LLL {B} ∪ Θ”, in which
Θ is a finite set as in the original RC. The multiple-conclusion standard format
is also handy and interesting from a metatheoretic point of view. Remember the
characterization of ALr in terms of LLL phrased with the help of ∼: CnALr(Γ) =
CnLLL(Γ∪{∼A | A ∈ Ω−U(Γ)}). This can be phrased without classical negation
in multiple-conclusion terms: Γ ⊢mc

ALr ∆ iff Γ ⊢mc
LLL ∆ ∪ (Ω− U(Γ)). The multiple

conclusion version of Theorem 12 follows from this by right compactness.

12. Variation

As adaptive logics are not deductive logics but formal characterizations of methods,
a multiplicity of adaptive logics is required for every purpose. It is not up to the
logician to decree which methods a scientist should use. This choice is up to the
user, viz. the scientist, and perhaps to some extent to philosophers of science. The
choice cannot be justified in terms of logical features. It depends on what one
learned about how to learn (Shapere), and more precisely about learning within
a specific domain. So the logician should provide a multiplicity of adaptive logics.
Variation may have two sources. On the one hand, the logician should look at the
facts, historical facts most of the time. As the saying justly goes, the facts often
outdo our phantasy. On the other hand, the logician is well placed to devise a set
of variations in terms of features of the formal machinery.

Let us first have a look at LLL-variation. In principle, the lower limit logic
can be every formal paraconsistent logic that is reflexive, transitive, monotonic,
and compact, for which there is a positive test, and that contains a classical
disjunction—the latter is not even required in view of the multiple-conclusion
standard format. So a multitude of potential lower limit logics is available. Logics

29All that is new in the restored version is the notion of an inferred Dab-formula.
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between CLuN and CL (CLuNs, da Costa’s Cn, . . . ), fragments of the former,
such as LP, all LFI that have a classical disjunction, Jaśkowski’s D2,30 practically
all relevant logics, etc. Each of these can be combined with several Ω and with
several strategies. Some LLL behave in an unexpected way if they are combined
with an unsuitable Ω. However, a suitable Ω is usually easily located.

The set of abnormalities Ω may also be varied. We have already seen {∃(A∧
¬A) | A ∈ Ws} as well as a restricted version {∃(A ∧ ¬A) | A ∈ Wa

s }, which is
adequate for CLuNs, LP, and similar logics. At first sight, not much room seems
to be left as the lower limit logic CLuN combined with Ω = {∃(A∧¬A) | A ∈ Wa

s }
results in adaptive logics of which CL is not the upper limit, whereas the lower
limit logic CLuNs combined with Ω = {∃(A∧¬A) | A ∈ Ws} results in a flip-flop
logic—see below.

And yet, some variation is known. One example is that the set of abnormal-
ities is extended as follows: Ω = {∃(A ∧ ¬A) | A ∈ Fs} ∪ {∀(A ∧ ¬A) | A ∈ Fs}.
The effect is rather transparent. Although ∀(A∧¬A) ⊢CLuN ∃(A∧¬A), it makes
a difference whether, next to minimizing ∃(A∧¬A) one also minimizes ∀(A∧¬A).
Again, this Ω is suitable for CLuN; for CLuNs one needs to replace Fs by Fa

s .
Other variations require symbols not in Ls—but CL-definable in Ls. A nice exam-
ple is the consistency operator from logics of formal inconsistency [32]. If LLL is a
compact such logic (and ∨̂ is present in its language schema), it may be combined
with {¬ ◦ A | A ∈ W}, possibly restricted to, for example, {¬ ◦ A | A ∈ Wa}.
A few more suitable sets of abnormalities for inconsistency-adaptive logics are
known, but it seems wiser to postpone their introduction for a few paragraphs.

So let us turn to variations to the strategy. Reliability and Minimal Abnor-
mality are the oldest and still central strategies. A few others are worth being
mentioned. The first strategy that comes to the mind of people new in the domain
is the Simple strategy.

Definition 23. Marking for Simple: where ∆ is the condition of line i, line i is
marked at stage s iff some A ∈ ∆ is an inferred Dab-formula of s.

This strategy is suitable iff, in view of properties of LLL or of the specific
premise set Γ, every minimal Dab-consequence of Γ has only one disjunct and so
is just an abnormality. It is easily seen that, if this is the case, Reliability, Minimal
Abnormality, and Simple define the same adaptive logic. Where Simple is suitable,
its semantics is like that of Reliability or Minimal Abnormality—the semantics for
those coincide whenever Simple is suitable.

The Normal Selections Strategy was mainly developed in order to characterize
some non-monotonic logics known from the literature in terms of an adaptive
logic—see Section 13. The relation with Minimal Abnormality is obvious in view
of Section 8.

Definition 24. Marking for Normal Selections: where ∆ is the condition of line i,
line i is marked at stage s iff φ ∩∆ = ∅ for all φ ∈ Φs(Γ).

30Adaptive versions of D2 and other Jaśkowski logics were extensively studied [48, 49, 50].
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The following theorem shows that the computational complexity of adaptive
logics that follow the Normal Selections strategy is less complex than the definition
suggests.

Theorem 25. Where ALn is an adaptive logic following the Normal Selections
strategy, ALn -final consequence sets are identical to the final consequence sets
assigned by an adaptive logic AL1 that is exactly like ALn except that marking is
defined as follows:
where ∆ is the condition of line i, line i is marked at stage s iff, for a Θ ⊆ ∆,
Dab(Θ) is an inferred Dab-formula of stage s.

Definition 26. Γ �ALn A iff, for some φ ∈ Φ(Γ), M 
 A for all M ∈ Mm
Γ with

Ab(M) = φ.

Some adaptive logics AL are called flip-flops. For normal premise sets Γ,
CnAL(Γ) = CnULL(Γ), which is as desired and holds for all adaptive logics. For
abnormal Γ—those that have no ULL-models—CnAL(Γ) = CnLLL(Γ), which is
usually not what one wants. As was explained in Section 4, a central aim of adap-
tive logics is to isolate the abnormalities in abnormal Γ and to validate applications
of ULL-rules whenever no abnormality is involved. Flip-flops do this only in the
crudest possible way. In the case of inconsistency-adaptive logics, for example,
flip-flops deliver the full CL-consequence set of normal Γ and nevertheless avoid
triviality in the case of abnormal Γ. Unlikely as it may appear, there are applica-
tion contexts in which a flip-flop is precisely what one wants. For such cases, it is
useful to have a strategy around to define flip-flops.

Definition 27. Marking for Flip-Flops: where ∆ is the condition of line i, line i is
marked at stage s iff ∆ ̸= ∅ and there is at least one inferred Dab-formula of s.

The Blindness strategy handles abnormal premise sets as if they were normal.
Replacing the strategy of any of the aforementioned inconsistency-adaptive logics
by Blindness results in CL.

Definition 28. Marking for Blindness: mark no lines.

By varying the strategy, one may also define some logic-like entities. A first
example is the Single Selection Strategy. It consists in choosing a φ ∈ Φs(Γ) and in
marking lines with condition ∆ iff φ∩∆ = ∅. The result is not a logic because there
is an element of choice that is not specified in the premise set. There are several
ways in which the consequence set may be characterized in terms of an adaptive
logic. I mention the most obvious one. Let ALs have the same lower limit and
set of abnormalities as the logic-like object but the Simple strategy instead. The
intended consequence set is provably identical to CnALs (Γ ∪ φ).31

Another logic-like entity is defined by the All Selections Strategy. The entity is
at best logic-like because it maps premise sets to sets of consequence sets, rather

31The low computational complexity of the consequence set is rather artificial. We suppose that

at least one φ ∩∆ = ∅ is given, but precisely locating a φ may be a very complex task.
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CLuNm CLuNm
c CLuNsm LPm

p p p p
¬p ¬p

¬¬p ¬¬p ¬¬p ¬¬p
¬r ¬r ¬r

q q
s s s

Table 1. Comparison for Γ = {p, ¬p ∨ q, ¬(p ∨ r), ¬¬p ⊃ s}

than to consequence sets: ℘(W) → ℘(℘(W)). Each of the consequence sets is
associated with a φ ∈ Φ(Γ). One also needs to associate a mark to each φ ∈ Φ(Γ).
A line with condition ∆ is φ-marked iff ∆ ∩ φ ̸= ∅.32

Leaving strategy variations, let us have a look at some more drastic ‘variants’.
A first variant comes in a sense to digging deeper in abnormalities. The point
is that an inconsistency like (p ∨ q) ∧ ¬(p ∨ q) may have several ‘causes’ and
that the causes themselves may be considered as abnormalities. The inconsistency
(p ∨ q) ∧ ¬(p ∨ q) may be derivable from the premises because p ∧ ¬(p ∨ q) is
derivable, or because q ∧ ¬(p ∨ q) is derivable. It is also possible that neither of
the two is derivable, but that (p ∨ q) ∧ ¬(p ∨ q) still is. So this leaves us with
three different sorts of (non-independent) abnormalities rather than one. What
is fascinating in this approach? Let me explain in terms of Reliability. Even if
(p ∨ q) ∧ ¬(p ∨ q) ∈ U(Γ), it is possible that r is derivable on the condition
{p∧¬(p∨ q)} and that p∧¬(p∨ q) /∈ U(Γ). On the one hand this approach forms
an Ω-variant. On the other hand, a net gain is obtained if one applies this approach
to, for example, CnCLuNm (Γ) rather than to Γ itself. I refer to a published paper
[21] for the precise (but rather lengthy) definition of the new set of abnormalities.
It is instructive to compare the new combined logic—call it CLuNm

c —with the
well studied CLuNm , CLuNsm , and LPm . I present one example of a premise
set in Table 1. The consequence set of the combined logic is rather fascinating. On
the one hand, it extends the CLuNm -consequence set. On the other hand, where
a member of the CLuNsm -consequence set is absent (¬p in the example), this
results in a more interesting consequence (q in the example); an inconsistency is
avoided in order to obtain a different consequence.

A very different variant concerns the reduction of abnormalities in terms of
plausibilities or preferences. Suppose that A1, . . . , An ∈ Ω and that A1 ∨̂ . . . ∨̂An

is a minimal inferred Dab-formula at stage s of a proof from Γ. One may have
reasons not to consider the n abnormalities Ai as equally affected, but to opt for or
against a specific abnormality Ai. Of course, the choice should be made defeasibly
to avoid triviality on the one hand and superfluous inconsistency on the other.
So one will add the premise ♢Ai or ♢¬Ai, in which ♢ functions as a plausibility

32The logic-like entity has a rather limited application field. For some Γ, Φ(Γ) is not only infinite

but also uncountable.
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operator. Abnormalities may be the formulas of the form ♢A∧∼A and those of the
form ♢∼A ∧ A. So, for example, from ♢∼A one may derive ∼A on the condition
{♢∼A∧A}. The upshot will be that plausible statements will be defeasibly turned
into full premises and that Dab-formulas from the inconsistency-adaptive logic
will be reduced. If A1 ∨̂ . . . ∨̂An is a minimal inferred Dab-formula at stage s and
A1 came out of the plausibility logic, then A2, . . . , An are off the hook. If, to the
contrary, ∼A1 came out of the plausibility logic, then A2∨̂. . .∨̂An is LLL-derivable
and hence is a minimal inferred Dab-formula. It is often more appropriate to have
different degrees of plausibility available: ♢A for very plausible, ♢♢B for a bit less
plausible, and so on. Technically speaking, one first adds the layers of plausibility
statements—as much as possible of the most plausible statements, next as much as
possible of the second-most plausible statements, and so on, and finally one applies
the inconsistency-adaptive logic. This approach to weeding out abnormalities was
studied along with several variants for expressing and handling plausibilities or
preferences [18].

And now to a third type of variant, and again a completely different one:
other gluts, gaps, and ambiguities. Remember that, in the original problem, the
aim was to obtain minimally inconsistent theories that may serve as a starting
point to devise a consistent theory. Until now, I have followed the official line of
thought: as the theory under consideration is inconsistent, one has to replace CL
by a paraconsistent logic. This, however, is not the only way out. Inconsistencies
may be seen as negation gluts: the classical condition for ¬A to be false is present
(in that A is true), but nevertheless ¬A is true. Negation gaps may be understood
in a similar way. Moreover, gluts as well as gaps with respect to other logical
symbols may also be understood along the same line. We are for example con-
fronted with an existential gap if ∃xPx is false although Pa is true. Furthermore,
non-logical symbols may be ambiguous in that different occurrences of the same
symbol may have a different meaning, whence different occurrences of the same
formula may have different truth values. Sundry gluts or gaps may be allowed,
possibly along with ambiguities, in order to avoid triviality; next, the gluts and
gaps and ambiguities may be minimized in order to interpret the premise set as
much as possible in the way CL interprets it—the first ambiguity-adaptive logics
were devised by Guido Vanackere [65, 66, 67].

The premise set Γ4 = {p, r, (p∨ q) ⊃ s, (p∨ t) ⊃ ¬r, (p∧ r) ⊃ ¬s, (p∧ s) ⊃ t}
may serve as an illustration. Γ4 has models (i) of logics that allow for negation
gluts, (ii) of logics that allow for negation gaps, (iii) of logics that allow for con-
junction gaps as well as disjunction gaps, (iv) of logics that allow for implication
gluts, (v) of logics that allow for ambiguities in the non-logical symbols, and of
course of logics that allow for several of the mentioned gluts and gaps and am-
biguities. Each of these possibilities defines a different adaptive theory. Each of
these theories is a sensible solution of the original problem. So, again, a multiplic-
ity of approaches is available and this is as it should be. All those abnormalities
surface as inconsistencies when one applies CL to premise sets, but this does not
mean that paraconsistency is the only possible answer. The combinations lead up
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to adaptive zero logic CL∅m . In this logic, all meaning is contextual. According
to CL∅ nothing is derivable from any premise set, not even the premises. Never-
theless, the adaptive CL∅m assigns to normal premise sets the same consequence
set as CL. Apart from its own interest, CL∅m was shown to have an important
heuristic value for determining which combinations of gaps or gluts or ambiguities
lead to maximally normal interpretations of a given premise set. A detailed study
is available [24].

13. Integration

Once the standard format was described, it was not difficult to devise many new
logics and this pragmatic attitude led to useful work. However, it is also important
to unify the domain of ‘defeasible logics’. It is important to find out whether
all defeasible logics can be subsumed under the same schema or, if that turns
out impossible, whether the number of schemas can be reduced. Needless to say,
it cannot be settled today which schemes have most unifying power. However,
studying the unifying power of adaptive logics seems sensible because there is a
clear underlying concept. This is why a lot of attention was given to integrating
existing mechanisms into adaptive logics. There is a book [63] that contains many
relevant results and a list of papers that I shall not add to the references.

As I see it, the aim should be to integrate the realistic and potentially realistic
defeasible reasoning forms. It goes without saying that truckloads of defeasible
mechanisms may be defined, especially in semantic terms. It goes equally without
saying that many of them cannot be integrated in any finite set of unifying schemas.
This is as unimportant as it is obvious. Among the possible sources for potentially
realistic reasoning forms are (i) defeasible reasoning forms described by different
approaches, (ii) old and ‘unusual’ adaptive logics that are not in standard format,
(iii) new defeasible reasoning forms that are useful in view of the philosophy of
science, the philosophy of mathematics, and everyday reasoning.

Two examples of integration follow, one ‘external’ and one ‘internal’. The ex-
ternal one concerns the Strong Consequence Relation devised by Nicholas Rescher
[58]. Consider a version of CLuN with classical negation ∼—the variant will not
be given a different name. Let Γ′ comprise the members of Γ with ¬ replaced
by ∼ and let Γ¬∼ = {¬∼A | A ∈ Γ′}. It was proven [13] that Γ ⊢Strong A iff
Γ¬∼ |=CLuNm A. So the corrective consequence relation Strong is characterized by
(the variant of) the adaptive logic CLuNm under a translation. The character-
ization in adaptive terms reveals at once a whole set of properties of the Strong
consequence relation. It also enables one to devise so-called direct proofs: adequate
dynamic proofs that proceed in the original language (with one negation symbol)
[29].

By internal integration I mean that adaptive logics that are not in stan-
dard format are characterized in terms of an adaptive logic in standard format. It
may be shown, for example, that adaptive logics following the Normal Selections
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strategy can be characterized in terms of adaptive logics that follow the Minimal
Abnormality strategy. The example I shall use as an illustration here is the one
promised in Section 11: adaptive logics that fall under the standard format with
checked logical symbols but not under the standard format without, may (all and
in one sweep) be characterized in terms of adaptive logics that fall under the new
standard format.

Let AL1 be the adaptive logic that requires integration because it requires
the presence of checked symbols whereas some (or even all) classical symbols are
absent from its native language. One simply proceeds as follows. First, the native
language L of AL1 is extended to L+ by superimposing ∨̂33 as well as all other
classical symbols. Next, define AL2 like AL1 except that AL2 is defined over
L+. So, whatever classical symbols were required for defining AL1 are available
in the native language of AL2, which is in the present standard format. Finally,
define CnAL(Γ) = CnAL+(Γ)∩W—obviously no translation function is required,
or rather, the translation function is such that tr(A) = A. The reader should
not be misled by this example. Here integration is nearly obvious. In other cases,
however, integration may require quite some ingenuity.

14. In Conclusion: Applications

From the very first ideas on, my motivation for developing adaptive logics was
always guided by the aim to handle sensible applications in a sensible way. More-
over, this aim was to understand and explicate the actual defeasible reasoning.
Attention for models and for formal properties came only afterwards, as a means
rather than as an end.

We have seen that the ‘original problem’ was to construct minimally abnormal
interpretations of mathematical or empirical theories that were intended as consis-
tent but turned out to be inconsistent. This was the central application context for
inconsistency-adaptive logics as well as for combinations of inconsistency-adaptive
logics with other adaptive logics.

In the previous paragraph, “theory” should not be taken too literally. There
are many cases in which one deals with inadvertently inconsistent premise sets
the content of which is much more disparate than are the theorems of a theory.
A nice example is that inconsistency-adaptive logics allow one to incorporate the
inconsistent case in belief revision [34]. This broadens an existing approach, making
room for inconsistency. A similar move may be made with respect to many other
approaches, for example question evocation [45]. A different matter is that existing
mechanisms that are able to handle inconsistency have more attractive adaptive
versions [46].

Graham Priest, who edited my oldest paper on the topic, was fascinated
by the application of adaptive logics to a very different problem. Inconsistency-
adaptive logics offer the possibility to understand most of classical reasoning and

33That is (i) W ⊆ W+ and (ii) if A,B ∈ W+, then (A ∨̂B) ∈ W+.
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actually to understand it as correct. Not as correct by logical standards, but as
correct by logical standards extended with the presumption that inconsistencies
are false. For dialetheists the presumption is justified by the low frequency of
true inconsistencies. That a person with so different a view on logic saw a use in
inconsistency-adaptive logics has been a great source of encouragement.

Recently a very different type of application turned out to be fascinating.
In view of the limitative theorems in mathematics, (i) the axiomatic method is
known to have a rather limited scope and (ii) some of our present mathematical
theories may very well turn out to be inconsistent and hence, as their underlying
logic is CL, trivial. In view of each of these facts, it became attractive to phrase
theories that have an adaptive logic as their underlying logic. These theories,
viz. their set of theorems, are obviously not semi-recursive. That is precisely one
of the advantages. Notwithstanding their finitary rules and notwithstanding the
simplicity of dynamic proofs-at-a-stage, adaptive logics enable one to axiomatize
Π1

1-complex theories. So although it is too complex, for either humans or Turing
machines, to figure out whether some formula is or is not a theorem of the theory,
the theory at least defines correctly a certain complex consequence set.34

With respect to the possible triviality of classical mathematical theories,
the advantage of adaptive theories is similar. Well-wrought inconsistency-adaptive
theories display the following feature: if the classical theory is consistent, then the
adaptive theory defines exactly the same set of theorems; if the classical theory is
inconsistent, it is trivial and so pointless, but the adaptive theory, which we may
phrase today, will still define a non-trivial consequence set that is ‘as close to’ the
intended consequence set ‘as is possible’.

Until now only a few adaptive theories have been formulated and studied
[22, 69, 70], but the results seem fascinating.
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