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Abstracts

Invited speaker

Kit Fine
New York University

Truthmaker Semantics for Conditional Obligation

I shall discuss some problems involved in providing a truthmaker semantics for

conditional obligation. I shall pay special attention to Chisholm’s contrary-to-

duty puzzle.
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Contributed Talks

Albert Anglberger
Truthmakers and Normative Conflicts

The aim of this talk is to develop an intuitively plausible logic for normative

conflicts. A normative conflict consists of a number of obligations that can be

individually met, but not jointly. A conflict tolerant deontic logic (CTDL) is a

deontic logic in which normative conflicts are consistent. In his recent survey of

CTDLs, Lou Goble gives a list of desiderata for CTDLs [5]:

Consistent Conflicts. At least some normative conflicts should to be con-

sistent, i.e. ` ¬(A1 ∧ . . . ∧ An) doesn’t entail OA1, . . . , OAn ` ⊥ [5, p.

297].

No Deontic Explosion. Normative conflicts should not result in deontic ex-
plosion, i.e. ` ¬(A1 ∧ . . . ∧ An) doesn’t entail OA1, . . . , OAn ` OB [5,

p. 298].

Minimal Deontic Laws. Certain minimal laws of deontic logic, which are

plausible from considerations independent of any particular view of deontic

conflicts, should be validated [5, p. 302]. As examples, Goble explicitly

mentions:

(DDS) O(A ∨B), O¬A ` OB,

(M) O(A ∧B) ` OB, and

(AGG) OA,OB ` O(A ∧B).

A particularly interesting class of CTDLs that Goble discusses are logics that

don’t allow for the substitution of logical equivalents in deontic contexts, i.e.

logics that fail to validate the following rule of replacement [5, p. 315]:

` A↔ B
` OA↔ OB (RE)

Any logic that validates (RE) and (M), will also validate the following rule of
monotonicity [5, p. 244]:

` A→ B
` OA→ OB (RM)

In fact, (RM) is equivalent to (RE) and (M) in the sense that any deontic logic

that has (RM) has (RE) and (M) and vice versa. Having the rule (RM), however,

would disastrous consequences for any CTDLs, since it immediately would give
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us deontic explosion, violating the desideratum No Deontic Explosion. This
observation motivates giving up (RE) as a rule for CTDLs, giving us the class of

CTDLs with limited replacement, c.f. [5, §5.4].
Goble proposes an interesting CTDL with limited replacement, which instead

of using logical equivalence as the condition for replacement, as in the rule (RE),

uses a weaker concept of ‘analytic equivalence’⇔A as the condition for replace-

ment.1 Goble axiomatizes this notion of analytic equivalence in the following

system [5, p. 316]:

Axioms:

A⇔A A A⇔A ¬¬A
A⇔A (A ∧ A) A⇔A (A ∨ A)

(A ∧B)⇔A (B ∧ A) (A ∨B)⇔A (B ∨ A)

(A ∧ (B ∧ C))⇔A ((A ∧B) ∧ C) (A ∨ (B ∨ C))⇔A ((A ∨B) ∨ C)

(A ∧ (B ∨ C))⇔A ((A ∧B) ∨ (A ∧ C)) (A ∨ (B ∧ C))⇔A ((A ∨B) ∧ (A ∨ C))

(¬A ∧ ¬B)⇔A ¬(A ∨B) (¬A ∨ ¬B)⇔A ¬(A ∧B)

(A→ B)⇔A (¬A ∨B)

Rules:

A⇔A B ` B ⇔A A A⇔A B,B ⇔A C ` A⇔A C

A⇔A B ` (A ∧ C)⇔A (B ∧ C) A⇔A B ` (A ∨ C)⇔A (B ∨ C)

A⇔A B ` ¬A⇔A ¬B

Goble defines the system BDL of ‘basic deontic logic’ as having all the rules of

classical logic, plus the rules (DDS), (M), and (AGG) and the following restricted

rule of replacement [5, p. 314]:

` A⇔A B
` OA↔ OB (RBE)

BDL is an interesting candidate for a CTDL, which, in particular, satisfies the

desiderata Consistent Conflicts and No Deontic Explosion. But, as

Goble remarks:

On the formal front, BDL [. . . ] so far lack any semantics or model

theory, and it is difficult to see how that might be developed, while
1The notion of analytic equivalence is only applied to statements that don’t contain the

obligation operator O.
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respecting the limits necessary to protect their treatment of normative

conflicts. [5, p. 318]

In this paper, we will provide a sound and complete truth-maker semanticsBDL

minus the rule (DDS) (BDL−). The first insight that motivates our approach is

that the system for⇔A that Goble presents is, in fact, deductively equivalent to

the system AC of analytic containment, described by RB Angell [1]. This means

that we can use the following, more simple axiomatization of ⇔A, due to [1,

p. 124]:

Axioms:

A⇔A ¬¬A (Double Negation)

A⇔A A ∧ A (Conjunctive Idempotence)

A ∧B ⇔A B ∧ A (Conjunctive Commutation)

A ∧ (B ∧ C)⇔A (A ∧B) ∧ C (Conjunctive Association)

A ∨ (B ∧ C)⇔A (A ∨B) ∧ (A ∨ C) (Distribution)

Rules:

A⇔A B ` C ↔ C[A/B] (Replacement)

where in the rule of (Replacement) the C[A/B] is the result of replacing arbi-

trarily many instances of A in C by B.

In a recent paper, Kit Fine gives a natural semantics for AC in terms of exact
truth-makers [3]. Roughly, a state (of affairs) is said to be an exact truth-maker

of a statement just in case it necessitates the truth of the statement while be-

ing wholly relevant to it [4, p. 558]. This idea traces back to a paper by Bas

van Fraassen [6], and has recently gotten some traction in philosophical seman-

tics.2 The idea of Fine’s semantics for AC is that two statements A and B are

analytically equivalent, i.e. A ⇔A B is true, just in case every truth-maker of

the one contains a truth-maker of the other, every truth-maker of the other is

contained in a truth-maker of the one, and vice versa. Fine shows that this con-

dition is equivalent to the convex closure of the sets of truth-makers of the two

statements being identical (Lemma 9, [3, p. 208]).3

In another, earlier paper, Fine uses the idea of permitted states to provide
2For an overview of the formal details of and recent developments in (exact) truth-maker

semantics, see [4].
3A set of states S is said to be convex just in case for all states s, t ∈ S and all states u, if

s is part of u and u is part of t, then u ∈ S.
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an intuitive semantics for statements of permission. The idea is as follows [2,

p. 335]:

PA is true iff every exact truth-maker of A is permitted.

Fine argues that this gives us an intuitively plausible semantics for statements of

permission that allows us to take statements of permission to be action guiding.
In this paper, we combine the two previous ideas to obtain what we argue is

an intuitively plausible semantics forBDL−. For this purpose, following Fine [2],

we introduce a distinguished set of permitted states into the set of truth-makers.

As a natural counterpart to Fine’s clause for permission mentioned before, we

obtain the following semantic clause for obligation:

OA is true iff no state in the convex closure of ¬A’s truth-makers is permitted.

The main formal result of our paper is that this construction yields a sound and

complete semantics for BDL−, answering, at least partially, Goble’s challenge

to find a semantics for BDL. On the informal side, we argue that this clause

provides an intuitively plausible semantics for a conflict tolerant notion of obli-

gation. We sustain this claim by means of various examples that get a natural

treatment in our proposed semantics.

We complete our analysis with a discussion of (DDS). We argue, contrary

to Goble, that (DDS) is not a plausible principle for CTDLs. In particular, we

first argue that the reasons that speak for (DDS) outside the contexts of CTDL,

don’t support the principle in the context of CTDL. And we finally conclude

by giving two arguments that strongly suggest that DDS is not a principle a

plausible CTDL should contain.

References

[1] Angell, R.B. 1989. “Deducibility, Entailment and Analytic Containment.” In:

Directions in Relevant Logic, edited by Richard Sylvan and Jean Norman,
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[2] Fine, Kit. 2014. “Permission and Possible Worlds.” Dialectica 68(3): 317–36.
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Michael Deigan
Yale University

A Plea for Inexact Truthmaking

[4] distinguishes between exact truthmaking (
e), which requires that every

part of the truthmaker be relevant to making the sentence true, and inexact
truthmaking (
i), which lacks this requirement (and is akin to situation seman-

ticists’ notion of (persistent) verification). He argues that because we can define

the latter in terms of the former, but not vice versa, we should take exact truth-

making to be the fundamental notion. I argue that this gets things backwards:

inexact truthmaking can be used to define exact truthmaking, but not vice versa.
So truthmaker semanticists should build their theories on a foundation of inexact

truthmaking.

How to Define Exact Truthmaking: Fine considers some ways to define

exact truthmaking using inexact truthmaking, but thinks that “all such attempts

are doomed to failure”, since the exact but not the inexact truthmakers of A and

the logically equivalent A ∨ (A ∧ B) can be distinguished. And this remains so

even if we impose some minimality condition on inexact truthmakers:

s is p-minimal4 =df (s 
i p) ∧ ∀s′(s′ @ s ⊃ s′ 6
i p).

s exemplifies5 p =df s is p-minimal ∨ ∀s′(s′ v s ⊃ s′ 
i p).

If we try either s 
e p =df s is p-minimal, or s 
e p =df s exemplifies p,

we will still fail to make the distinction, as Fine observes.

A A ∨ (A ∧B)

a X X

a t b X

Table 0.1: Exact Verifiers

A A ∨ (A ∧B)

a X X

a t b X X

Table 0.2: Inexact verifiers

The inexact truthmaker semanticist is not doomed, however, she just needs to

do something more complicated. Here’s the start of a more promising definition

of exact truthmaking: Where s, t, and u are states, p and q are sentences, and r

is an atomic sentence,
4See [1] and [5].
5See [6].
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A A ∨ (A ∧B)

a X X

a t b

Table 0.3: (Quasi-)Minimal verifiers

(d.i) s 
e r =df s exemplifies r
(d.ii) s 
e p ∧ q =df t 
e p, u 
e q, and s = t t u
(d.iii) s 
e p ∨ q =df s 
e p or s 
e q

This identifies exact truthmaking with exemplification for the atomic case, then

builds the rest of the definition recursively from there, mimicking the definition

of exact truthmaking for complex sentences from exact truthmakers of atomic

sentences.6 This will not fall prey to the original problematic case: it distinguishes

A and A ∨ (A ∧ B) just as well as primitive exact truthmaking does. More

generally, if (d.i) works for the atomic sentences, the above definition will work

just as well as the exact truthmaker semanticist’s account for the truthmakers of

complex sentences.

In the paper I address doubts about (d.i) due to cases like:

(1) There are infinitely many stars. (from [6])

We can pursue the same strategy: use exemplification for the atomic case, then

recursively define exact truthmakers for quantified sentences from there, in the

same way an exact truthmaker semanticist would define exact truthmakers for

quantificational sentences.

How Not to Define Inexact Truthmaking: Fine proposes that we define
inexact truthmaking as follows: “s inexactly verifies A, if s contains an exact

verifier of A.” But there are structures of state-spaces we may wish to allow

for which there can be inexact truthmaking without exact truthmaking. For

illustration,7 imagine a mixture with the following structure.8

6See [7] and [4].
7Worries about objects being truthmakers can be avoided if we shift to the semantics for

imperatives and consider the notions of exact and inexact compliance, as discussed in [3] and

[?].
8This requires a mereology which allows gunk-like structures and proper parthood without

supplementation, but regardless of our metaphysical views, these seem not to be things our

semantics should rule out.

10



a1

a2
b1

b2

Every bit of a-stuff in the mixture has a b-part and an a-part. what parts of the

mixture are the exact verifiers for (2)?

(2) There is some a-stuff.

It seems that none of them are. The obvious candidates for truthmakers of (2)

are the a-parts: a1, a2, . . . . But none of these can be (or be parts of) exact
truthmakers, since any an has a part, bn, that is irrelevant to the truth of (2).

And exact truthmakers must be wholly relevant to the statements they verify.

Nevertheless, there are plenty of inexact verifiers (e.g, a1).

References
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Levin Hornischer
University of Amsterdam

Logics of Synonymy

In this talk, we’re concerned with logics describing the notion of synonymy

in the strong sense of content identity (and not just meaning similarity). We

start by observing something paradoxical about this notion of synonymy. The

following two intuitive principles are jointly inconsistent: (i) If we cannot imagine

any scenario whatsoever in which two sentences differ in truth-value, then they

are synonymous, and (ii) if two sentences are synonymous, they have the same

subject matter.

To understand this paradox, we start by looking at logics of synonymy that

satisfy one of the two principles. A famous logic satisfying (ii) is Kit Fine’s

system of analytic containment (AC) with a sound and complete truthmaker

semantics. To get a logic satisfying (i), we develop a formal notion of a scenario

yielding a semantics that is extensionally equivalent to four-valued semantics—

as used for the logic of First Degree Entailment (FDE). We show that the

corresponding notion of synonymy (i.e. FDE-equivalence) is axiomatized by

AC + ϕ ∨ (ϕ ∧ ψ) ≡ ϕ. We see that these two logics are related by moving

one level up in the set-theoretic hierarchy: If we take sentences not to be true

at a scenario but at sets of scenarios, we get a semantics that is extensionally

equivalent to Kit Fine’s truthmaker semantics.

Next, having found a logic that exactly satisfies (i), we want to investigate

the class of logics where synonymy (or equivalence) entails identity in subject

matter in the sense of having the same atomic sentences. We show that AC is

not the most coarse-grained such logic. Instead, this is given by

M := AC + ϕ ∨ (ϕ ∧ ψ) ≡ ϕ ∨ (ϕ ∧ ¬ψ).

In other words,M is the first logic more fine-grained than FDE where equiva-

lence entails having the same atoms. (In AC not only atoms but also, roughly,

literals have to overlap.)

We can resolve the paradox by showing how the above logics of synonymy

come close to satisfying both (i) and (ii). On the one hand, scenario synonymy

exactly satisfies (i) and the instances violating (ii) can be traced back to exactly

one axiom: ϕ ∨ (ϕ ∧ ψ) ≡ ϕ. On the other hand, AC satisfies (ii) andM even

exactly satisfies (ii), and both satisfy a weaker version of (i): If neither scenarios
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nor sets of scenarios can distinguish two sentences, then they are synonymous.

A consequence of the paradox is that it yields an argument for a pluralistic

conception of synonymy and for a certain type of non-compositionality of truth

according to a scenario, logic program or state of a neural network.
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Johannes Korbmacher
Utrecht University

Tableau rules for the logic of exact entailment

In recent years, Kit Fine has championed the use of exact truthmakers in philosophical semantics [3].

A state s is said to be an exact truthmaker of a statement A just in case s necessitates the truth of

A and s is wholly relevant to the truth of A. This concept gives rise to the interesting, non-classical

consequence relation of exact entailment, where a set of premises A1, A2, . . . is said to exactly entail

a conclusion C if and only if every exact truthmaker of each of the premises A1, A2, . . . is also an

exact truthmaker of the conclusion C.

The resulting logic of exact entailment is relatively weak. While we have, for example, the law

of conjunction introduction—A and B together exactly entail A ∧ B—we do not have the law of

conjunction elimination—A ∧ B neither exactly entails A nor exactly entails B. But at the same

time, the logic is of great philosophical interest. Exact truthmakers are closely related to important

philosophical concepts, like the concept of metaphysical ground [1, p. 71–74], for example, and so we

would like to know what their logic looks like.

In a recent manuscript, Kit Fine and Mark Jago provide an in-depth study of the logic of exact

entailment [4]. They give a syntactic characterization of exact entailment (Theorem 4.8), they show

that the logic enjoys a compactness theorem (Theorem 5.2),9 they show that the logic is decidable

(Theorem 5.3),10 and they give a sound and complete sequent calculus for the logic (Theorems 9.1 and

9.5), which enjoys the cut-elimination property (Theorem 9.6).11 So, I think it’s fair to say that the

logic of exact entailment is relatively well understood.

In this paper, I develop an alternative tableau system for the logic of exact entailment. The system

is easy to use and algorithmic in nature. In fact, it is an alternative decision procedure for the question

whether ∆ exactly entails C, given that ∆ is finite, giving us an alternative proof for the decidability

theorem. Furthermore, the system can be used even if ∆ is infinite. In such a situation, the system

allows us to give a simpler proof of the compactness theorem. The soundness and completeness proofs

for the system are straight-forward and provide further insight into the workings of exact truthmakers.

The tableau system has many interesting applications in truthmaker semantics. For example, it

allows us to determine what it means for A1, A2, . . . to have a shared exact truthmaker. Moreover, it

can easily be modified to accommodate additional operators that have a semantics in terms of exact

truthmakers. I show how this can be done for the weak ground operator ≤ from [1]. The truth-

conditions for A1, A2, . . . ≤ C are that every fusion of exact truthmakers of A1, A2, . . . also has to

be an exact truthmaker of C. I determine a tableau rules for this connective and sketch the procedure

for obtaining tableau rules for truthmaker connectives in general.

Finally, let me point out the tableau system is of the same kind as the tableau systems that Graham

Priest provides for various non-classical logics in [5]. In this way, the results of the paper will help to

incorporate the logic of exact entailment into the canon of non-classical logics.
9The theorem states that if ∆ exactly entails C, then there is a finite subset of ∆ that exactly entails C.

10The logic is decidable in the sense that there is an effective method for determining if ∆ exactly entails C, for finite

∆.
11A proof system has the cut-elimination property if everything that can be proven in the system can be proven

without the cut rule, which allows us to infer from ∆ exactly entailing C and {C} ∪ Γ exactly entailing D that ∆ ∪ Γ

exactly entails D.
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Stephan Krämer
University of Glasgow

Exact Truthmaking and The Whole Truth

My talk investigates the logic and semantics of totality statements T (P ) – to

be read “P , and that’s it ” or “it is the whole truth that P ”. Such statements,

and the notions of totality they invoke, are of interest partly in virtue of the role

they play in ordinary, non-philosophical discourse, and partly in virtue of certain

theoretical roles they have been put to within philosophy. For instance, it has

been proposed that the best way to understand physicalism is as the claim that

every truth, and only the truths, are entailed by T (PHY S), where PHY S is

the conjunction of all physical truths. The T operator is needed because PHY S

on its own does not imply certain negative (putative) truths such as that there

are no (non-physical) angels. We may close this loophole, the thought goes, by

saying that PHY S and that’s it (cf. [1, 317]).

Extant approaches to this topic operate within the intensional framework of

standard possible worlds semantics (cf. e.g. [3]), and are variations on the idea

that T (P ) is true with respect to a world w iff w is a minimal P -world —

metaphorically speaking, the only way to obtain another world at which P is

true is to add some stuff on top of w. The first aim of my talk is to show, against

this tradition, that under its most natural construal, T is a hyperintensional
operator, which is sensitive to what parts of worlds are wholly relevant, exact
verifiers of the proposition to which it is applied.

The basic argument is as follows. Let ANGELS be the proposition that

there are angels, so PHY S implies neither ANGELS nor ¬ANGELS. Sup-
pose T (PHY S) is true at a world w. Then intuitively, T (PHY S ∨ (PHY S ∧
ANGELS)) is not true at w. But since PHY S and PHY S ∨ (PHY S ∧
ANGELS) are logically equivalent, they are true at the same worlds (and hence

have the same minimal verifying worlds). So the intensional approach conflicts

with our intuition.

What, though, is the difference between PHY S and PHY S ∨ (PHY S ∧
ANGELS) to which T reacts? I argue it is roughly this: a world verifying

PHY S ∧ ANGELS is wholly relevant to the truth of PHY S ∨ (PHY S ∧
ANGELS), but not to the truth of PHY S. (Crucially, being a wholly relevant

verifier does not imply being a minimal verifier.) This observation suggests that

a more satisfactory account of the totality operator T may be obtained by em-
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ploying an exact truthmaker semantics of the sort developed in [2]. The second

aim of my talk is to offer a sketch of how this might go, and to point out some

of the distinctive implications of the resulting logic, most notably the failure of

the monotonicity principle that if T (P ) ∧Q then T (P ∧Q).
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Robert van Rooij & Katrin Schulz
ILLC, University of Amsterdam

Truthmakers for Generics

Descriptive analysis of generics. Generic sentences (which we take to have the form ‘Gs are f ’)

are sentences that, by their very nature, express useful generalizations. But they express generalizations

that allow for exceptions: although not all birds fly (Penguins don’t), ‘Birds fly’ is a good generic.

Generics like ‘Birds lay eggs’ show that it also need not be the case that almost all, or most Gs have

feature f in order for the generic ‘Gs are f ’ to be true. Moreover, even if most Gs are (or are taken to

be) f , the corresponding generic sentence still doesn’t have to be true, as exemplified by ‘*Italians are

right-handed’. According to a natural alternative quantificational proposal, the generic is true exactly

if all, or most, normal Gs are f . But without an independent analysis of what it is to be a normal

G, such an analysis hardly makes any empirical predictions. Second, such an analysis cannot account

for the intuition that both ‘Ducks lay eggs’ and ‘Ducks have colorfull feathers’ are both true, because

a normal duck cannot be both female and male. Van Rooij (2017) argued that all of these problems

can be accounted for by demanding that for a generic ‘Gs are f ’ to be true, the measure ∆∗P f
g has to

be significantly higher than 0, or significantly higher than ∆∗P h
g , with h any (contextually) relevant

alternative feature to f , and with ∆∗P f
g =df

P (f/g)−P (f/¬g)
1−P (f/¬g)

with ¬g =
⋃
Alt(g): the natural

alternatives to g, and g 6∈ Alt(g). Notice that (i) P (f/g)− P (f/¬g) = ∆P f
g has to be positive for

‘Gs are f ’ to be true (which explains why ‘Italians are right-handed’ is a bad generic), which means

that the generic has to be true on what Cohen (1996) calls the ‘relative reading’ of generics, and (ii)

that in contrast to ∆P f
g , for ∆∗P f

g the value of P (f/g) counts for more than the value of P (f/¬g),

as intuitively it should be.

Causal powers as truthmakers. Now assume (with Cheng, 1997) that objects of type g have

unobservable causal powers to produce features of type f , denoted by pgf . It is the probability with

which g produces f in the absence of any alternative cause. We denote by a the union of alternative

potential causes of f , and by paf the causal power of a to produce f . We will assume that pgf
is independent of paf , and that both are independent of P (g) and P (a). The latter independence

assumptions are crucial: by making them we can explain the stability and context-independence of

generic statements.

To derive pgf , we will first define P (f) assuming that f does not occur without a cause and that

there are only two potential causes, g and a and that g and a are independent: P (f) = P (g) ×
pgf + P (a) × paf − P (g) × pgf × P (a) × paf . Then we can derive P (f/g) = pgf + (P (a/g) ×
pag) − pgf × P (a/g) × paf and P (f/¬g) = P (a/¬g) × paf . As a result, ∆P f

g = P (f/g) −
P (f/¬g) = pgf + (P (a/g) × paf ) − (pgf × P (a/g) × paf ) − (P (a/¬g) × paf ) and thus ∆P f

g =

[1 − (P (a/g) × paf )] × pgf + [P (a/g) − P (a/¬g)] × paf . From this last formula we can derive

pgf =
∆P f

g −[P (a/g)−P (a/¬g)]×paf
1−P (a/g)×paf .

Because a is taken to be probabilistically independent of g, P (a/g) − P (a/¬g) = 0. Moreover,

P (a/g)× paf = P (f/¬g). As a result, pgf comes down to ∆P f
g

1−P (f/¬g)
= ∆∗P f

g . We have explained
the above descriptive analysis of generics, and grounded it by providing truth-makers for it: the

causal powers.

The pros and cons of the causal power analysis of generics. As for the pros, (i) the

causal power theory is explanatory where the frequency analysis using ∆∗P is not; (ii) the theory

can distinguish good generics from accidental generalizations, (iii) having truth-makers means
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that generics have stable, context-independent meanings and can thus express propositions as

well when embedded, (iv) the analysis is more general. For the latter, notice that using pgf one is

not required to assume independence of a from g. For instance, if g and a (the assumed alternative

cause of f ) are incompatible, one can show that pgf = P (f/g) 6= ∆∗P f
g . This explains, we will

argue, why people assume generics to come with a high conditional probability (cf. the similarity with

Adam’s thesis for the analysis of conditionals). We’ll argue that this is relevant especially once powers

are associated with essences of kinds. As for the cons, in contrast to an analysis using ∆∗P f
g , the causal

power analysis has to assume that even if all and only all Gs are F , at most one of the two generics ‘Gs

are F ’ and ‘F s are G’ can be true on the standard reading, because in contrast to frequency measure

∆∗P f
g , the causal measure pgf is essentially asymmetric.
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Relevant logic and grounding: a pluralistic approach to hyperintensionality

In this talk, I investigate the relation between relevance logic on the one hand and grounding

(GR), non-causal explanation (NCE), and hyperintensionality (HI) on the other hand. This relation has

largely been overlooked in the literature, although there are some striking connections. One of the most

important issues in GR, NCE and HI is that usual modal strict implications or strict equivalences are

too coarse grained to explicate the subtle differences involved in these concepts. Relevant implications

and equivalences allow for a much more fine-grained analysis. Moreover, a non-causal explanation is

by definition always relevant for its explanandum, a ground is always relevant for its consequent, and

sentences expressing the same hyperintension are always relevant for one another (an intuitive notion

of “relevant” suffices here).

In the second part of the lecture I will first present a logic independent notion of relevance: X-

relevance. An implication or equivalence relation is said to be X-relevant iff it is of some type such

that (all) antecedent(s) and consequent(s) are necessarily present for the type relation to hold (in the

given logic). Given this notion of relevance, I will explain how the apparent “relevance” aspects present

in GR, NCE and HI can be characterized. I will also show that traditional relevance logics fall short

in doing this, due to their unnecessarily weak negation connective.

By means of an intuitive goal directed diagrammatic proof method for X-relevance developed by

Inge De Bal and myself, I will finally illustrate how X-relevance can help to better understand logical

aspects of GR, NCE and HI. The proof diagrams are conceived as trees in which one tries to find

formulas in a goal node (the root) by recursively trying to find subgoals that are represented in

descendant nodes. Analytic descendants of a node could be said to ground that node, and the leafs of

the tree could be said to non-causally explain the main goal. I will argue that these notions of GR and

NCE, while still very preliminary, shed a promising new light on the existing literature.
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