Accessibility, Matching, Use: on limitations of
computing in a distributed setting

Giuseppe Primiero

FWO - Flemish Research Foundation
Centre for Logic and Philosophy of Science, Ghent University

..........

Giuseppe.Primiero@Ugent.be
http://www.philosophy.ugent.be/giuseppeprimiero/

Colloquium Logicum, Paderborn, 14th September 2012

Logical Approaches to Distributed Computing

@ Task: study of formal issues in (distributed) computing;

G. Primiero (Ghent University) Access, Matching, Use LC12 2/22

Logical Approaches to Distributed Computing

@ Task: study of formal issues in (distributed) computing;

@ Proofs-as-programs isomorphism: a proof of a proposition
derivable in a context corresponds to a program for a
specification executable in a network;

G. Primiero (Ghent University) Access, Matching, Use LC12

2/22

Logical Approaches to Distributed Computing
@ Task: study of formal issues in (distributed) computing;
@ Proofs-as-programs isomorphism: a proof of a proposition

derivable in a context corresponds to a program for a
specification executable in a network;

@ Modalities: more control on resources, their location and
accessibility.

G. Primiero (Ghent University) Access, Matching, Use LC12

2/22

Logical Approaches to Distributed Computing

@ Task: study of formal issues in (distributed) computing;

@ Proofs-as-programs isomorphism: a proof of a proposition
derivable in a context corresponds to a program for a
specification executable in a network;

@ Modalities: more control on resources, their location and
accessibility.

[Bierman and de Paiva, 2000],[Alechina et al., 2001]: CS4;
[Murphy, 2008] and [Murphy et al., 2008]: Lambda5 for Grid
Computing;

[Borghuis, 1994], [Borghuis, 1998], [Pfenning and Wong, 1995]:
modal A-calculi;

[Park, 2006]: safe values vs. safe code.

[Blass and Gurevich, 2010]: Primal Infon Logic.

[Bonelli and Feller, 2009]: code and certificate development;
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.

v

v

v

vy vy VY

G. Primiero (Ghent University) Access, Matching, Use LC12

2/22

Some restrictions of applied computing

Some Interesting issues in safe distributed computing
([Primiero, 2011], [Primiero, forth]).

@ Polymorphism

@ Resources

@ Gilobal vs. Local Validity
@ Mobility

@ Error-states

G. Primiero (Ghent University) Access, Matching, Use LC12 3/22

Language

Definition (Syntax)

The syntax is defined by the following alphabet:
o(Specs) ={a|laxf|la+B|a—B|aDds}
m(Programs) := {x; | a;, fori € .}
((Locations):={1,...,n}
¢(Operations) := {exec(a) | runj(a) | runiyj(a - B) |
runinj(a - B) | synchroj(3(exec(a)))}, where - = {4, x}
Contexts(DataStacks) :={l;| o;[}, where o = {00, &}

G. Primiero (Ghent University) Access, Matching, Use

LC12

4/22

Model

Syntactic expressions are evaluated in a model defined by states of
an abstract machine.

Definition (Operational Model)

S:=(C,ti:a)|C € Contexts;t € Programs;/ € Locations;a € Specs

is an occurrence of an indexed typed term in context evaluated by transition
to some S’ in a Network

Network := (S, +,7)

G. Primiero (Ghent University) Access, Matching, Use LC12 5/22

Polymorphism

Not all formulas are of the same kind (i.e. not all programs are
executed in the same way): exec function for terms of values; run
function for terms of code.

Definition
S— 8
run (F,-, X,'IO[) = (<>,-F, run,-(a))
exec (M, @) — (O;T, exec(«))

corun (s, runi(o) F by B) — (T;T, runinj(c(B))
coexec | (I, exec(a) - bj:) — (O;, runjui(a(B))
synchro | (G;F, runjui(a(B)) — (3,1, synchro;(3(exec(«))))

G. Primiero (Ghent University) Access, Matching, Use LC12 6/22

Resources

Formulas hold in contexts (i.e. programs are executed in networks):

Definition
The set of conditions for formulas are inductively defined by valid and
true assumptions:

Contexts(DataStacks) = {l;|oil'},o ={0O,C}

LC12 7/22

G. Primiero (Ghent University) Access, Matching, Use

Local vs Global

Not all formulas are valid in the same way (i.e. not all programs are
executable under the same conditions):

@ GLOB(O; I, a): o is output everywhere satisfied in 7, j;

@ BROAD(<inl, o) «is code valid by accessing i N j;

G. Primiero (Ghent University) Access, Matching, Use LC12 8/22

Mobility: Call-by-value

Rules for O express mobility of globally valid values:

Definition

S— &

01 | (G;T, exec(a)) — (GLOB(O;T,)
a2 (D,U,-F, a) — (RET(I',-U,-, a))

@ O1: takes value o and make it available everywhere in network
G = {i,j} (induces an operational interpretation as Remote
Procedure Call);

@ O2: sends value « from i, jto G.

G. Primiero (Ghent University) Access, Matching, Use LC12 9/22

Mobility: Call-by-name

Rules for < express mobility of locally valid code:

Definition

=

1 | (O, runi(@)) — (BROAD(GinT, @)
o2 (<>m/-r,) — (SEND(I_,'Q/‘, a))

@ <¢1: take code for v at j and make it valid at i N j; it constructs a
return value for a RPC;

@ <2: from local code for o, send itto iNj.

G. Primiero (Ghent University) Access, Matching, Use LC12 10/22

Safety

Theorem (Progress)

IfS:= (T, ti:a), then either S — S’ or exec(a) is the output value.

’

Theorem (Preservation)
IfS:= (T, ti:a)and S+— &', then S = (I, t:a).

Theorem (Type Safety)

Safety is satisfied by transformations or by terminating expression
(exec(a)):
Q IfS:=(ti:a),and S+ S, then S' := (t.i:a);
Q IfS:= (t.i:a), then either exec(«) is the output value or there is
o forS = (ti:a) st S— S.

G. Primiero (Ghent University) Access, Matching, Use LC12 11/22

Errors

With such a machinery it is possible to represent incorrect states, with
application to analysis of security breaching and failing
communications:

@ Errors in Access
@ Errors in Matching
@ Errorsin Use

G. Primiero (Ghent University) Access, Matching, Use LC12 12/22

Non-safe states: Error Access

An error state obtained by the access of wrong data/locations in the

network.
Definition
S— S
access | (I, access@(t)) — ((Ii, fail®;(t))
fail (T4, fail©;(t)) — (I, error(r))

G. Primiero (Ghent University) Access, Matching, Use

LC12

13/22

Non-safe states: Error Matching

An error state obtained by the execution of the wrong program (no
successive state, no final state exec, no well-typed state):

Definition

S— &
accessyitn | ([, access®;(t')FROM(t)) — ((T;, exec(T)WITH(t'))
failyicn ((Ts, exec(T)WITH(t")) — (T, error(7) WITH(t'))

G. Primiero (Ghent University) Access, Matching, Use LC12 14/22

Non-safe states: Wrong Use

An error state obtained by the execution of the wrong rule:

Definition
S— g
accesseron | (RET(Tinj, T) — [;access@;(t) FROM(7) & fail@;(v)
€rroryith fail®;(v) — (T, synchro;(r(error(v) WITH(T)))

G. Primiero (Ghent University) Access, Matching, Use

LC12

15/22

Non-safe states: Wrong Use (ll)

An error state obtained by the execution of a program for the wrong

goal:
Definition
S— S
accesstron | (RET(Tinj, 7) — Tiaccess@;(t)FROM(7) b fail@;(v)
€rroryith fail©;(v) — (T}, synchroj(r(error(v) WITH(T)))

G. Primiero (Ghent University) Access, Matching, Use

LC12

16/22

Open Questions and Further Research

@ Extend the semantics with functions for determining error cases
and recovering correct ones; does soundness still hold?

@ Simulate implementations (e.g. deadlock cases, followed by
resolving priority functions); it offers a formal and technical study
of malfunctioning in computational artifacts;

@ Use the local properties run, & on processes to model unsafe
and uncertified programs.

G. Primiero (Ghent University) Access, Matching, Use LC12

17/22

(Philosophical) Conclusions

@ In applied computing a novel notion of correctness is at stake,
based on practical limitations and constraints on computing;

@ It offers new insights into logical validity: its model differs from
both standard realistic truth-preserving consequence relation
and anti-realistic knowledge-preserving validity relation;

@ Formal conditions for failing (distributed) processes reveal a new
perspective on the notion of logical system and its limits.

G. Primiero (Ghent University) Access, Matching, Use LC12

18/22

References |

Alechina, N., Mendler, M., de Paiva, V., and Ritter, E. (2001).
Categorical and Kripke Semantics for Constructive S4 Modal
Logic.

In Proceedings of the 15th International Workshop on Computer
Science Logic, volume 2142 of Lecture Notes In Computer
Science, pages 292 — 307.

Artemov, S. and Bonelli, E. (2007).
The intensional lambda calculus.
In Proceedings of the international symposium on Logical
Foundations of Computer Science, LFCS '07, pages 12-25,
Berlin, Heidelberg. Springer-Verlag.

Bierman, G. and de Paiva, V. (2000).
On an intuitionistic modal logic.
Studia Logica, (65):383—416.

[m] = = =

G. Primiero (Ghent University) Access, Matching, Use

References Il

[§ Blass, A. and Gurevich, Y. (2010).
Hilbertian Deductive Systems, Infon Logic and Datalog.
Bulletin of the European Association for Theoretical Computer
Science, 102:122—-150.

[§ Bonelli, E. and Feller, F. (2009).
The logic of proofs as a foundation for certifying mobile
computation.
In Artémov, S. N. and Nerode, A., editors, LFCS, volume 5407 of
Lecture Notes in Computer Science, pages 76—91. Springer.

[§ Borghuis, T. (1994).
Coming to Terms with Modal Logic: On the interpretation of
modalities in typed lambda calculus.
PhD thesis, Eindhoven University of Technology.

[§ Borghuis, T. (1998).
Modal pure type systems: Type theory for knowledge
representation.
Journal of Logic, Language, and Information, 7(3):pp. 265—296.

G. Primiero (Ghent University) Access, Matching, Use LC12 20/22

References llI

@ Murphy, T. (2008).
Modal Types for Mobile Code.
PhD thesis, School of Computer Science, Carnegie Mellon
University.
CMU-CS-08-126.

@ Murphy, T., Crary, K., and Harper, R. (2008).
Type-Safe Distributed Programming with ML5, volume 4912 of
Lectures Notes in Computer Science, pages 108—123.
Springer Verlag.

@ Park, S. (2006).
A modal language for the safety of mobile values.
In In Fourth ASIAN Symposium on Programming Languages and
Systems, pages 217-233. Springer.

[@ Pfenning, F. and Wong, H. C. (1995).
On a modal A-calculus for s4x.
In Proceedings of the Eleventh Conference on Mathematical
Foundations of Programming Sematics. Elsevier.

G. Primiero (Ghent University) Access, Matching, Use LC12 21/22

References IV

@ Primiero, G. (2011).
A multi-modal type system and its procedural semantics for safe
distributed programming.
In Intuitionistic Modal Logic and Applications Workshop
(IMLA11), Nancy.

G. Primiero (Ghent University) Access, Matching, Use LC12 22/22

