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Logical Approaches to Distributed Computing

@ Task: study of formal issues in (distributed) computing;

@ Proofs-as-programs isomorphism: a proof of a proposition
derivable in a context corresponds to a program for a
specification executable in a network;

@ Modalities: more control on resources, their location and
accessibility.

[Bierman and de Paiva, 2000],[Alechina et al., 2001]: CS4;
[Murphy, 2008] and [Murphy et al., 2008]: Lambda5 for Grid
Computing;

[Borghuis, 1994], [Borghuis, 1998], [Pfenning and Wong, 1995]:
modal A-calculi;

[Park, 2006]: safe values vs. safe code.

[Blass and Gurevich, 2010]: Primal Infon Logic.

[Bonelli and Feller, 2009]: code and certificate development;
[Artemov and Bonelli, 2007]: operational interpretation for remote
calls.
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Some restrictions of applied computing

Some Interesting issues in safe distributed computing
([Primiero, 2011], [Primiero, forth]).

@ Polymorphism

@ Resources

@ Gilobal vs. Local Validity
@ Mobility

@ Error-states
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Language

Definition (Syntax)

The syntax is defined by the following alphabet:
o(Specs) ={a|laxf|la+B|a—B|aDds}
m(Programs) := {x; | a;, fori € .}
((Locations):={1,...,n}
¢(Operations) := {exec(a) | runj(a) | runiyj(a - B) |
runinj(a - B) | synchroj(3(exec(a)))}, where - = {4, x}
Contexts(DataStacks) :={l;| o;[}, where o = {00, &}
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Model

Syntactic expressions are evaluated in a model defined by states of
an abstract machine.

Definition (Operational Model)

S:=(C,ti:a)|C € Contexts;t € Programs;/ € Locations;a € Specs

is an occurrence of an indexed typed term in context evaluated by transition
to some S’ in a Network

Network := (S, +,7)
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Polymorphism

Not all formulas are of the same kind (i.e. not all programs are
executed in the same way): exec function for terms of values; run
function for terms of code.

Definition
S— 8
run (F,-, X,'IO[) = (<>,-F, run,-(a))
exec (M, @) — (O;T, exec(«))

corun (s, runi(o) F by B) — (T;T, runinj(c(B))
coexec | (I, exec(a) - bj: ) — (O;, runjui(a(B))
synchro | (G;F, runjui(a(B)) — (3,1, synchro;(3(exec(«))))
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Resources

Formulas hold in contexts (i.e. programs are executed in networks):

Definition
The set of conditions for formulas are inductively defined by valid and
true assumptions:

Contexts(DataStacks) = {l;|oil'},o ={0O,C}
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Local vs Global

Not all formulas are valid in the same way (i.e. not all programs are
executable under the same conditions):

@ GLOB(O; I, a): o is output everywhere satisfied in 7, j;

@ BROAD(<inl, o) «is code valid by accessing i N j;
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Mobility: Call-by-value

Rules for O express mobility of globally valid values:

Definition

S— &

01 | (G;T, exec(a)) — (GLOB(O;T, )
a2 (D,U,-F, a) — (RET(I',-U,-, a))

@ O1: takes value o and make it available everywhere in network
G = {i,j} (induces an operational interpretation as Remote
Procedure Call);

@ O2: sends value « from i, jto G.
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Mobility: Call-by-name

Rules for < express mobility of locally valid code:

Definition

=

1 | (O, runi(@)) — (BROAD(GinT, @)
o2 (<>m/-r, ) — (SEND(I_,'Q/‘, a))

@ <¢1: take code for v at j and make it valid at i N j; it constructs a
return value for a RPC;

@ <2: from local code for o, send itto iNj.
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Safety

Theorem (Progress)

IfS:= (T, ti:a), then either S — S’ or exec(a) is the output value.

’

Theorem (Preservation)
IfS:= (T, ti:a)and S+— &', then S = (I, t:a).

Theorem (Type Safety)

Safety is satisfied by transformations or by terminating expression
(exec(a)):
Q IfS:=(ti:a),and S+ S, then S' := (t.i:a);
Q IfS:= (t.i:a), then either exec(«) is the output value or there is
o forS = (ti:a) st S— S.

G. Primiero (Ghent University) Access, Matching, Use LC12 11/22



Errors

With such a machinery it is possible to represent incorrect states, with
application to analysis of security breaching and failing
communications:

@ Errors in Access
@ Errors in Matching
@ Errorsin Use
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Non-safe states: Error Access

An error state obtained by the access of wrong data/locations in the

network.
Definition
S— S
access | (I, access@(t)) — ((Ii, fail®;(t))
fail (T4, fail©;(t)) — (I, error(r))
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Non-safe states: Error Matching

An error state obtained by the execution of the wrong program (no
successive state, no final state exec, no well-typed state):

Definition

S— &
accessyitn | ([, access®;(t')FROM(t)) — ((T;, exec(T)WITH(t'))
failyicn ((Ts, exec(T)WITH(t")) — (T, error(7) WITH(t'))
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Non-safe states: Wrong Use

An error state obtained by the execution of the wrong rule:

Definition
S— g
accesseron | (RET(Tinj, T) — [;access@;(t) FROM(7) & fail@;(v)
€rroryith fail®;(v) — (T, synchro;(r(error(v) WITH(T)))
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Non-safe states: Wrong Use (ll)

An error state obtained by the execution of a program for the wrong

goal:
Definition
S— S
accesstron | (RET(Tinj, 7) — Tiaccess@;(t)FROM(7) b fail@;(v)
€rroryith fail©;(v) — (T}, synchroj(r(error(v) WITH(T)))
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Open Questions and Further Research

@ Extend the semantics with functions for determining error cases
and recovering correct ones; does soundness still hold?

@ Simulate implementations (e.g. deadlock cases, followed by
resolving priority functions); it offers a formal and technical study
of malfunctioning in computational artifacts;

@ Use the local properties run, & on processes to model unsafe
and uncertified programs.
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(Philosophical) Conclusions

@ In applied computing a novel notion of correctness is at stake,
based on practical limitations and constraints on computing;

@ It offers new insights into logical validity: its model differs from
both standard realistic truth-preserving consequence relation
and anti-realistic knowledge-preserving validity relation;

@ Formal conditions for failing (distributed) processes reveal a new
perspective on the notion of logical system and its limits.
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