Two type-theoretical approaches to privative modification

Giuseppe Primiero & Bjørn Jespersen

Centre for Logic and Philosophy of Science, Ghent University Section of Philosophy. TU Delft

Giuseppe.Primiero@Ugent.be

November 20, 2009 - LENLS 6 - Tokyo

Outline

- Procedural Semantics
- 2 Modification
- Procedural Semantics for Privative Modification
- Conclusions

Procedural Semantics

Programming languages:

- Denotational semantics: semantics is exhausted by terms denoting extensional entities like sets, individuals and truth-values; the meaning (if any) of a term is its denotation;
- Procedural semantics: the meaning of a term is one or more computational steps whose product is the term's denotation;
- Two approaches to procedural semantics:
 - Realism: Tichý's Transparent Intensional Logic
 - ► Idealism: Martin-Löf's Constructive Type Theory

Property Modification

- Property modification:
 - with M a modifier and F a property, (MF) is the result of the procedure of applying the function M to the argument F;
- A full semantic theory of modification must be able to account for the following variants:
 - Subsective: (M'F)a ∴ Fa;
 - Intersective: (M"F)a ∴ M*a ∧ Fa;
 - ▶ Modal/intensional: (M'''F)a ∴ $Fa \lor \neg Fa$;
 - Privative: (M""F)a ∴ ¬Fa.

Subsective vs. Privative Modification

"a is a prime number"

 given a set of (natural) numbers, the modification of the property of being a number generates the subset of those numbers that have the additional property of being prime numbers;

Conjecture

Subsection exhausts modification for mathematical language.

Subsective vs. Privative Modification (II)

"b is a forged banknote"

• if a privative modifier M is applied to a property F, then the result is a function whose value is always an empty set of F's;

Open Problem

The problem of positive characterization of privation: what do banknotes and forged banknotes have in common?

Modification and Procedural Semantics

Common features of procedural semantics:

- a notion of construction;
- a functional language;
- type theory;
- interpreted syntax.

CTT constructions

Predication: necessary and sufficient conditions for a judgement of the form F type

- Categorical predication: f:F f is an element of the set F (or a proof f of proposition F);
- Identity predication: f = f': F f and f' are equal elements in F (equivalent proofs)
- Hypothetical predication: F' type[x:F] F' is a type provided there is a construction for F (functional abstraction).

TIL constructions

- Composition: [X₀X₁...X_n]
 X₀ is a construction of a function, X₁,...,X_n constructions of its arguments and [] the procedure of functional application;
- Closure: $[\lambda x_1 \dots x_n Y]$ x_1, \dots, x_n construct arguments, Y constructs values of a function and $[\lambda x_1 \dots x_n Y]$ is the procedure of functional abstraction.

CTT as a functional language

- Propositional function F' type[x:F]: is the predication of a type
 F' depending on some predication holding for type F;
- Subsective modification M(F): treated by functional abstraction producing subset formation $\{x: F \mid M(x)\}$ (extensional): for every element in the set F taken as argument, it returns a function M(x);

Privative Modification

M(f): takes as arguments elements in F and ranges over functions from the basic type F to the empty set of F's.

TIL as a functional language

- Ramified type hierarchy where each entity receives a type:
 - ▶ ground types (o-truth values, ι -individuals, τ -reals doubling as times, ω -possible worlds),
 - functional types by induction over ground types
 - **constructions** of order n + 1 constructing constructions of order n;

Privative Modification

(MF)a: functional application of M to a property F; the extensionalization of (MF) is predicated of an individual a.

Privative Subset Formation Rule

Privation: Given x : F as input of a function M, M(x) returns the empty set of f's as its output:

$$\frac{F \text{ set } M(x)[F:El(\{\}) \text{ set}; x:El(\{\}); El(F(x))]}{\{x:F \mid M(x)\}}$$

Privative Subset Formation Rule

Privation: Given x : F as input of a function M, M(x) returns the empty set of f's as its output:

$$\frac{F \ set \ M(x)[F:El(\{\}) \ set; x:El(\{\}); El(F(x))]}{\{x:F \mid M(x)\}}$$

Identity: For any equivalent set taken as argument of the modifier function, the same empty set is obtained:

F set
$$F = F'$$
 set $M(x)[F = F' : El(\{\}) \text{ set}; x : El(\{\}); El(F = F'(x))]]$
 $\{x : F = F' \mid M(x)\}$

Introduction and Elimination Rules

Introduction rule provides an appropriate construction of a set *F* of privatively modified individuals:

$$\frac{f:F \qquad m:M(f)[F:El(\{\}) \; set; f:El(\{\}); El(F(f))]}{f:\{x:F \mid M(x)\}}$$

$$f = f':F \qquad m:M(f)[F:El(\{\}) \; set; f:El(\{\}); El(F(f))]$$

$$f = f':\{x:F \mid M(x)\}$$

Introduction and Elimination Rules

Introduction rule provides an appropriate construction of a set F of privatively modified individuals:

$$\frac{f:F \qquad m:M(f)[F:El(\{\}) \ set; f:El(\{\}); El(F(f))]}{f:\{x:F \mid M(x)\}}$$

$$f = f':F \qquad m:M(f)[F:El(\{\}) \ set; f:El(\{\}); El(F(f))]$$

$$f = f':\{x:F \mid M(x)\}$$

Elimination rule specifies how to extract a modified individual from its corresponding set:

$$\frac{f:\{x:F\mid M(x)[\Delta]\}\qquad f'(x):M'(x)[x:F,m:M(x)]}{f'(f):M'(f)}$$

Iteration of Modifiers

The construction of a (well-made (forged banknote)) is of the following form:

```
\frac{banknote\ set \qquad \textit{forged}(x)[\Delta]}{\{x: banknote \mid \textit{forged}(x)\}} \qquad \textit{well} - \textit{made}(x)[x: banknote \mid \textit{forged}(x)]}{\{x: banknote \mid \textit{well} - \textit{made} \times \textit{forged}(x)\}}
```

The construction of a ((well-made forged) banknote) is an illegitimate one:

$$\frac{\textit{banknote set} \qquad \textit{well} - \textit{made}(x)[\textit{x}:\textit{banknote}] \times \textit{forged}(x)[\Delta]}{\{\textit{x}:\textit{banknote} \mid \textit{well} - \textit{made}(\textit{x}) \land \textit{forged}(\textit{x})[\Delta]\}}$$

TIL Constructions of Modified Properties

 Predication as application of extensionalized property to individual:

$$\lambda w \lambda t$$
 [property_{wt} a]

Composition of a modified property:

[modifier property]

Predication of a modified property:

 $\lambda w \lambda t$ [[modifier property]_{wt} a]

Iteration

Predication of a modified modified property:

 $\lambda w \lambda t \text{ [[modifier' [modifier property]]}_{wt} a]$

Examples:

- "a is a burned forged banknote"
- "a is a well-made forged banknote".

Requisites of Privation

• The essence of the property F is the set of properties p such that p is a *requisite* of F:

$$[essence F] = \lambda p [Req p F]$$

Definition of the requisite relation:

$$[Req \ YX] = \forall w \forall t \ [\forall x \ [[True_{wt} \lambda w \lambda t \ [X_{wt} x]] \rightarrow [True_{wt} \lambda w \lambda t \ [Y_{wt} x]]]]$$

Requisites of Privation (cont.)

• The property *not being a banknote* is a requisite of the property being a forged banknote:

[Req
$$\lambda w \lambda t \neg [banknote_{wt} x][forged banknote]]$$

• This Composition is equivalent to the following Composition:

$$\forall w \forall t \ [\forall x \ [[forged \ banknote]_{wt} \ x] \rightarrow [\neg [banknote_{wt} \ x]]]$$

 No forged banknote is a banknote and some non-banknotes are forged banknotes:

$$\forall w \forall t \ [[[All \ [forged \ banknote]_{wt}][\lambda x \ \neg [banknote_{wt} \ x]]] \land [[Some \ [\lambda x \ \neg [banknote_{wt} \ x]]] \ \lambda x \ [[forged \ banknote]_{wt} \ x]]]$$

Conclusions

- CTT construes privation as dependent typing under condition of a typed empty set;
- 2 TIL produces a modified property by the functional application of a modifier to a property; the resulting modified property is extensionalized for predication.

