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Introduction

The background

B.C. Smith, “Limits of correctness in computers”, (1994): can
computer systems satisfy correctly their designers aim?

1 the use of models in the construction of computer systems;
2 levels of abstractions dealt with by models;
3 partiality of representations by models;
4 the role of feedback in judging models;
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Introduction

The Question

Syntactic correctness: is it possible to formulate correct structural
procedures to satisfy given specifications?

1 an appropriate language: dependent types (embedded operational
semantics + treatment of information sources);

2 limits of correctness: decidability;
3 useful extensions: accessibility, feedback, multiple sources;

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 5 / 27



Dependent and Subtypes

1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 6 / 27



Dependent and Subtypes

Dependent Types: some known facts

Curry-Howard Isomorphism: propositions-as-types and
proofs-as-terms identities;

Dependent Types: extension to the first-order setting, functional
language (MLTT; LF);

The program-meets-specification variant: dependency as
routine-subroutines relation;

+: description of more complex programs;

+: more precise typing procedure, less bad-behaved terms;

-: increasing of computational information: complicated encoding.
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Dependent and Subtypes

Dependent Types (2)

Definition (Language)

A,B, · · · := types: specifications of possible values computable by a
program;

a, b, · · · := terms: instances of programs;

Γ,∆, · · · := contexts: subroutines;

a :A := typed term declaration;

[x : A] := variable declaration;

b : B[x : A]: dependent terms are interpreted as programs calling
subrotines;

b : B[x/a : A]: substitution is the satisfaction of the call at runtime
for the dependent routine.
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Dependent and Subtypes

The Language

A type Type declaration
A type

a : A type
Value Data formation

A type

x :A[x :A]
Value Assumption formation

A type B type[x :A]

(x :A)B type
Function formation

c : (x :A)B a :A

c(c) :B[x :A]
Application
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Dependent and Subtypes

The Language (2)

a :A b :B[x :A]

(x)b :B[x :A]
Abstraction

a : A b : B

(a, b) : A ∧ B
Conjunction

a : A

l(a) : A ∨ B

b : B

r(b) : A ∨ B
Disjunction

x : A ` b : B(x)

(x)b : (∀x : A)B(x)
Universal quantification

a : A b : B(a)

(a, b) : (∃x : A)B(x)
Existential quantification
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Dependent and Subtypes

A simple Example

A typed function to sort lists

sort:NatList => Sortedlist
let Sortedlist:=
match Natlist with
[] => []
l (x::Natlist) => let Sortedlist := <l,p>
l := Natlist insert p:Sorted l

the type of functions mapping lists of natural numbers to sorted lists
of natural numbers
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Dependent and Subtypes

Subtyping: explicit vs. implicit information (cf. Turner
(2007))

Dependent Types as hidden computational information:

(∀x :A, ∃y :B)S(x , y) – for each unvalued term x one gets a pair
(x , y) depending on x , containing a proof plus related computational
information

Subtypes as explicit counterpart:

the pair (f , p), with program f and proof p that f is of type S(f ),
hence the existential type (∃x : [A]⇒ [B])S(x);
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Dependent and Subtypes

Language with Subtypes

A type B(x) type[x :A]

{x :A | B} type
Subset Formation

a :A b :B[x/a]

a :{x :A | B(x)} Subset introduction

a :{x :A | B(x)} c(x) :C (x)[x : A; y : B]

c(a) :C (a)
Subset elimination

a :A[Γ] a :{x :A | B(x)}[Γ]

b :B[Γ]
Dependent Subsumption
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Dependent and Subtypes

Requirements on Program-meets-Specification

1 well-formedness:

each involved value is well-formed
(with subtyping, computation depends predicatively on type formation,
impredicatively by universes or kinding);

2 termination:

β-η-conversion rules are needed on components terms
(termination property for routines);
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Proof-checking and Type-reconstruction

Type-checking

The efficiency of the program is based on the evaluation mechanism
for the system. General formulation of the proof-checking problem:

Definition (Type-checking Problem)

Given a context Γ, term a and type A, is Γ ` a :A a derivable expression?
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Proof-checking and Type-reconstruction

Type-checking (2)

In a dependent type format, accessibility of all x ′ :A′ in Γ is formally
expressed as Type-reconstruction

Definition (Type-reconstruction Problem)

Given a term a, there exists a type A and a dependency context Γ such
that ` a : A[Γ] is a derivable expression?
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Proof-checking and Type-reconstruction

Typability and Type-checking in Simple Types

Typability and type-checking equivalent to unification, decidable
properties:

ex. let a : A and b : B, any typing of x(yb)(y(fa)) forces f : A→ B.

Inhabitation: to answer Γ `? : A, apply one of the following tactics:

For A = B → C , ask if Γ,B `? : C ;
For A = C pick B1 → · · · → Bk → C from Γ, where k ≥ 0, then ask if
Γ `? : Bi , for all i .
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Proof-checking and Type-reconstruction

Typability and Type-checking in Dependent Types

Type-inhabitation and Type-reconstruction are undecidable properties:
require explicit accessibility on contextual data;

Type-checking not perfomed on the type of variables: soundness
presupposes well-formed contexts – examples: Cayenne,
DependentML;

Typability is decidable with β-reduction on all formulas plus a lemma
on the reducibility of contexts or dependency-erasing functions
(example: λP);
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(Modal) Correctness & Interaction

Modal Correctness

Correctness on input is characterized by a full treatment of
computational information;

reconstruction on abstracted information / termination on procedures
example: the model of completely presented types in Turner (1993)

further solution: expressing correctness of an algorithm wrt its
subroutines accessibility:

can all the subroutines be executed at runtime?
at which level of subprocesses does the program fail?
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(Modal) Correctness & Interaction

Using modal contexts: labelling formulas

a : A[�(x ′ : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated at runtime in any context
(and can be used safely by any other routine);

a : A[♦(x : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated only in the present context
(cannot be used safely by other routines).

Here “safely” means “without risk of incurring in loops”.
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(Modal) Correctness & Interaction

Remarks on using modal contexts

the judgmental interpretation of �/♦J is not trivial (non
propositional);

meaning dependent on introduction/elimination rules for modalities;

modalities from context are preserved to index construction of a
staged program;

growing formal literature (ex: Pfenning 2001); applications to code
mobility (Moody 1993) and staged computation (Nanevski et al.
2008).
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(Modal) Correctness & Interaction

Levels of failure (1)

Internal information failure: “which step in the program
execution (routines, calls for sub-routines) fails?”

Definition (Internal Levels Of Failure)

IL1 correctness by subcalls recursion (accessibility);

IL2 correctness by termination procedures (evaluation at runtime).
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(Modal) Correctness & Interaction

Levels of failure (2)

External information failure: “which data is missing or fails on
dependency, so that the termination process fails?”

Definition (External Levels Of Failure)

IL3 correctness by data dependency (well-formedness on dependency);

IL4 correctness by data retrieval (failure-with-world).
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(Modal) Correctness & Interaction

Interaction

prevention of program failure is syntactically based on completeness
of data;

control on modal format triggers the issue of human-machine
connection as an higher level of reliability;

further extension: priority relations on terminations.
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(Modal) Correctness & Interaction

Conclusion

“no [...] social process can take place among program verifiers” (De
Millo et al. 1979)

dependent programming offers ways to implement them.
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