
On the meaning of decidability issues in dependent types
for the problem of output correctness

Giuseppe Primiero

Giuseppe.Primiero@UGent.be

July 2, 2009
European Conference on Computing and Philosophy

Philosophy of Computer Science Track

GPI - Hertfordshire

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 1 / 27



1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 2 / 27



Introduction

1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 3 / 27



Introduction

The background

B.C. Smith, “Limits of correctness in computers”, (1994): can
computer systems satisfy correctly their designers aim?

1 the use of models in the construction of computer systems;
2 levels of abstractions dealt with by models;
3 partiality of representations by models;
4 the role of feedback in judging models;

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 4 / 27



Introduction

The Question

Syntactic correctness: is it possible to formulate correct structural
procedures to satisfy given specifications?

1 an appropriate language: dependent types (embedded operational
semantics + treatment of information sources);

2 limits of correctness: decidability;
3 useful extensions: accessibility, feedback, multiple sources;

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 5 / 27



Dependent and Subtypes

1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 6 / 27



Dependent and Subtypes

Dependent Types: some known facts

Curry-Howard Isomorphism: propositions-as-types and
proofs-as-terms identities;

Dependent Types: extension to the first-order setting, functional
language (MLTT; LF);

The program-meets-specification variant: dependency as
routine-subroutines relation;

+: description of more complex programs;

+: more precise typing procedure, less bad-behaved terms;

-: increasing of computational information: complicated encoding.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 7 / 27



Dependent and Subtypes

Dependent Types (2)

Definition (Language)

A,B, · · · := types: specifications of possible values computable by a
program;

a, b, · · · := terms: instances of programs;

Γ,∆, · · · := contexts: subroutines;

a :A := typed term declaration;

[x : A] := variable declaration;

b : B[x : A]: dependent terms are interpreted as programs calling
subrotines;

b : B[x/a : A]: substitution is the satisfaction of the call at runtime
for the dependent routine.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 8 / 27



Dependent and Subtypes

The Language

A type Type declaration
A type

a : A type
Value Data formation

A type

x :A[x :A]
Value Assumption formation

A type B type[x :A]

(x :A)B type
Function formation

c : (x :A)B a :A

c(c) :B[x :A]
Application

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 9 / 27



Dependent and Subtypes

The Language (2)

a :A b :B[x :A]

(x)b :B[x :A]
Abstraction

a : A b : B

(a, b) : A ∧ B
Conjunction

a : A

l(a) : A ∨ B

b : B

r(b) : A ∨ B
Disjunction

x : A ` b : B(x)

(x)b : (∀x : A)B(x)
Universal quantification

a : A b : B(a)

(a, b) : (∃x : A)B(x)
Existential quantification

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 10 / 27



Dependent and Subtypes

A simple Example

A typed function to sort lists

sort:NatList => Sortedlist
let Sortedlist:=
match Natlist with
[] => []
l (x::Natlist) => let Sortedlist := <l,p>
l := Natlist insert p:Sorted l

the type of functions mapping lists of natural numbers to sorted lists
of natural numbers

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 11 / 27



Dependent and Subtypes

Subtyping: explicit vs. implicit information (cf. Turner
(2007))

Dependent Types as hidden computational information:

(∀x :A, ∃y :B)S(x , y) – for each unvalued term x one gets a pair
(x , y) depending on x , containing a proof plus related computational
information

Subtypes as explicit counterpart:

the pair (f , p), with program f and proof p that f is of type S(f ),
hence the existential type (∃x : [A]⇒ [B])S(x);

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 12 / 27



Dependent and Subtypes

Language with Subtypes

A type B(x) type[x :A]

{x :A | B} type
Subset Formation

a :A b :B[x/a]

a :{x :A | B(x)} Subset introduction

a :{x :A | B(x)} c(x) :C (x)[x : A; y : B]

c(a) :C (a)
Subset elimination

a :A[Γ] a :{x :A | B(x)}[Γ]

b :B[Γ]
Dependent Subsumption

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 13 / 27



Dependent and Subtypes

Requirements on Program-meets-Specification

1 well-formedness:

each involved value is well-formed
(with subtyping, computation depends predicatively on type formation,
impredicatively by universes or kinding);

2 termination:

β-η-conversion rules are needed on components terms
(termination property for routines);

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 14 / 27



Proof-checking and Type-reconstruction

1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 15 / 27



Proof-checking and Type-reconstruction

Type-checking

The efficiency of the program is based on the evaluation mechanism
for the system. General formulation of the proof-checking problem:

Definition (Type-checking Problem)

Given a context Γ, term a and type A, is Γ ` a :A a derivable expression?

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 16 / 27



Proof-checking and Type-reconstruction

Type-checking (2)

In a dependent type format, accessibility of all x ′ :A′ in Γ is formally
expressed as Type-reconstruction

Definition (Type-reconstruction Problem)

Given a term a, there exists a type A and a dependency context Γ such
that ` a : A[Γ] is a derivable expression?

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 17 / 27



Proof-checking and Type-reconstruction

Typability and Type-checking in Simple Types

Typability and type-checking equivalent to unification, decidable
properties:

ex. let a : A and b : B, any typing of x(yb)(y(fa)) forces f : A→ B.

Inhabitation: to answer Γ `? : A, apply one of the following tactics:

For A = B → C , ask if Γ,B `? : C ;
For A = C pick B1 → · · · → Bk → C from Γ, where k ≥ 0, then ask if
Γ `? : Bi , for all i .

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 18 / 27



Proof-checking and Type-reconstruction

Typability and Type-checking in Dependent Types

Type-inhabitation and Type-reconstruction are undecidable properties:
require explicit accessibility on contextual data;

Type-checking not perfomed on the type of variables: soundness
presupposes well-formed contexts – examples: Cayenne,
DependentML;

Typability is decidable with β-reduction on all formulas plus a lemma
on the reducibility of contexts or dependency-erasing functions
(example: λP);

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 19 / 27



(Modal) Correctness & Interaction

1 Introduction

2 Dependent and Subtypes

3 Proof-checking and Type-reconstruction

4 (Modal) Correctness & Interaction

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 20 / 27



(Modal) Correctness & Interaction

Modal Correctness

Correctness on input is characterized by a full treatment of
computational information;

reconstruction on abstracted information / termination on procedures
example: the model of completely presented types in Turner (1993)

further solution: expressing correctness of an algorithm wrt its
subroutines accessibility:

can all the subroutines be executed at runtime?
at which level of subprocesses does the program fail?

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 21 / 27



(Modal) Correctness & Interaction

Using modal contexts: labelling formulas

a : A[�(x ′ : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated at runtime in any context
(and can be used safely by any other routine);

a : A[♦(x : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated only in the present context
(cannot be used safely by other routines).

Here “safely” means “without risk of incurring in loops”.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 22 / 27



(Modal) Correctness & Interaction

Using modal contexts: labelling formulas

a : A[�(x ′ : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated at runtime in any context
(and can be used safely by any other routine);

a : A[♦(x : A′)] = the program a satisfies specification A by calling
subroutine for specification A′ evaluated only in the present context
(cannot be used safely by other routines).

Here “safely” means “without risk of incurring in loops”.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 22 / 27



(Modal) Correctness & Interaction

Remarks on using modal contexts

the judgmental interpretation of �/♦J is not trivial (non
propositional);

meaning dependent on introduction/elimination rules for modalities;

modalities from context are preserved to index construction of a
staged program;

growing formal literature (ex: Pfenning 2001); applications to code
mobility (Moody 1993) and staged computation (Nanevski et al.
2008).

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 23 / 27



(Modal) Correctness & Interaction

Levels of failure (1)

Internal information failure: “which step in the program
execution (routines, calls for sub-routines) fails?”

Definition (Internal Levels Of Failure)

IL1 correctness by subcalls recursion (accessibility);

IL2 correctness by termination procedures (evaluation at runtime).

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 24 / 27



(Modal) Correctness & Interaction

Levels of failure (2)

External information failure: “which data is missing or fails on
dependency, so that the termination process fails?”

Definition (External Levels Of Failure)

IL3 correctness by data dependency (well-formedness on dependency);

IL4 correctness by data retrieval (failure-with-world).

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 25 / 27



(Modal) Correctness & Interaction

Interaction

prevention of program failure is syntactically based on completeness
of data;

control on modal format triggers the issue of human-machine
connection as an higher level of reliability;

further extension: priority relations on terminations.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 26 / 27



(Modal) Correctness & Interaction

Conclusion

“no [...] social process can take place among program verifiers” (De
Millo et al. 1979)

dependent programming offers ways to implement them.

Primiero (CLPS,UGent) Dependent Types and Output Correctness ECAP09 27 / 27


	Introduction
	Dependent and Subtypes
	Proof-checking and Type-reconstruction
	(Modal) Correctness & Interaction

