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Turing’s Practical Type Theory

Nested-Type System in [Turing, 1948]: a theory of types with small
use of type themselves, in a way that reflects the practice of proving
by mathematicians.

Hierarchy of types: type n + 1 is the type of functions from type n
to type n (construed from below):

I individuals (type 0): U1, . . . ,Un
I functions (type 1): taking arguments from U1, . . . ,Un and returning

them as values
I . . .

Introduce an individual as the value of undefined functions (to
prevent bad-typing);

Introduce "Interpretability under hypotheses": hypothesis "x is of
type A", satisfied by construction and substitution of the free
variable.
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What do we mean by Practical Reasoning

Focus on the use of hypothetical judgements;

Interpret partially and fully evaluated expressions;

Apply this to reasoning with valid and true (global and local)
assumptions.
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What do we mean by Proofs and Types

(Extensions of the) Provability and Realizability models intended by
the BHK semantics:

modal type theories to express: partial termination and
distributed computing;

The current work (at INI): LP with a notion of dependent
justification.
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ILP

LP provides an explicit reading of modal logic S4 with an
intended provability semantics for the propositional intuitionistic
logic IPC;

knowledge and belief modalities are decrypted as justification
terms;

justifications (e.g. formal proofs) are abstract objects which have
structure and operations on them;

I basic operations: application (for implication) and sum (for adding
proofs to proofs);

I in our minimal setting: application and proof checking;
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(Standard) Intuitionistic Logic of Proofs

Definition (Language)
We denote with ILP a language that contains:

a countable set of symbols A,B, . . . for propositions;
individual variables JxK, JyK, . . . and
constants a,b, . . . for proof terms;
predicative expressions A(x) where x is a bounded variable;
functional symbols for operations on proof terms: ·, !.
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Axioms and Inference Schemes
[Artëmov and Bonelli, 2007]

Definition (Axioms)
Axioms of the system are:
A0. Axioms schemes of minimal logic in the the language of LP
A1. JsKA ⊃ A (Unconditional Evidence)
A2. JsKA ⊃ J!sKJsKA (Proof Checker)
A3. JsK(A ⊃ B) ⊃ (JtKA ⊃ Js · tKB) (Application)
R1. Γ ` A ⊃ B and Γ ` A implies Γ ` B (Modus Ponens)
R2. If A is an axiom A0.− A3. and c is a proof constant, then ` JcKA

(Necessitation)
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Dependent terms in ILP

The notion of dependent term in LP is inspired by its formal
counterpart in theories of dependent types:

I A dependent type is a type expression of the form B[x ] with x a
free variable ranging over A type saying that B is a type whenever
x ∈ A;

I Propositional functions under the props-as-types analogy;
I Σ type: type of all pairs 〈a, b〉 where a ∈ A and b ∈ B[a];
I Π type: type of all functions λx .b[x ] where b[a] ∈ B[a] for any

a ∈ A.
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Tasks

1 Give a notion of dependent proof term in (Intuitionistic) Logic of
Proofs for expressions of the form

“t is a proof term for B, whenever A has a proof term s”

2 Interpret the previous sentence with two distinct readings:
I A actually justified/valid
I A possibly justified/assumed true

3 Translate to derivability in a ND calculus and prove some
metatheoretical results: equality rules, substitution lemmas,
contractions on connectives, normalization.
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Logic of Proofs with Dependent Terms
Definition (Proof Terms)
In ILPdep each proof variable or proof constant is a proof term:

we denote the fact that s is the proof term of proposition A by the
formula JsKA;

we denote the fact that t is the proof term of proposition B
whenever s is the proof term of proposition A by the formula
� s � JtKB[A]

if JsK and JtK are proof terms, so are: Js · tK, J!sKJsK, JsK · JtK,
J(s)tK;

it allows multiple dependencies: � s1 . . . sn � JtKB[A1 . . .An];

we can add quantification over proof terms: ∀JxKA.B(x) and
∃JxKA.B(x);
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Additional Inference Schemes

Definition (Axioms)
Additional rule schemes of the system are:
R3. If JsKA and A ` JtKB, then `� s � JtKB[A] (Dependent Evidence)
R4. If� s � JtKB[A] and JsKA, then JsK · JtKB (Application for

Dependent Evidence)
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Functions in ND

Derivability of a term under valid assumptions (global validity)
defines Unconditional Evidence;

∆; · ` A | s UnEvid

Derivability of a term under true assumptions (local validity)
defines Dependent Evidence;

∆; Γ ` A || s DepEvid
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LPnd3

Definition (Language)
The syntax is defined by the following alphabet:

Proof Terms
s := x | s · s |!s | XTRT s AS v :A IN s |?s | ASSM s AS a :A INs
Propositions
A := P | A ⊃ B | B[A] | JsKA |� s � A |� s � JtKB[A]

Truth Contexts Γ := · | Γ,a :A
Validity Contexts ∆ := · | ∆, v :A
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LPnd3

Definition (The Logic LPnd3)
LPnd3 is defined by the following schemes:

ValVar
∆; v :A,∆′ ` A | v

∆, v :A; · ` B | s
⊃ I

∆; Γ ` A ⊃ B | λv :A.s
∆; · ` A ⊃ B | s ∆; · ` A | t

⊃ E
∆; Γ ` B | s · t

TruVar
∆; a :A; · ` A || a

∆; a :A ` B || t
DepEvidence Formation

∆; · `� s � JtKB[A]

∆; Γ `� s � JtKB[A] ∆; Γ ` JsKA |!s
DepEvidence Application

∆; Γ ` B |!(JsK · JtK)
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LPnd3

Now modalities can be used to internalise dependencies:

Definition

∆; · ` A | s
2I

∆; Γ ` JsKA |!s
∆; · ` JrKA |!s ∆, v :A ` C | t

2E
∆; Γ ` Cv

r | XTRT s AS v :A IN t

∆; Γ ` A || s
3I

∆; Γ; · `� s � A |?s

∆; Γ `� r � A |?s ∆, a :A; · ` C || t
3E

∆; Γ; · ` Ca
r || ASSM s AS a :A IN t
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What the system satisfies

Properties
The system satisfies:

structural properties for unconditional and dependent evidence
(restricted Exchange)
substitution on terms
context equivalence
reflexivity on unconditional and dependent evidence
symmetry on unconditional and dependent evidence
transitivity on unconditional and dependent evidence
equivalence on λ-terms and application for implication
equivalence on β/η redexes for 2, 3
equivalence on Introduction/Elimination Rules for 2, 3
equivalence on Functional Terms and Application
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What is the problem with Normalization?
(Weak and Strong) Normalisation require detour imposed by the
newly added dependent evidence, as βη equivalent redexes might
not reduce to each other.

∆; · `� s � JtKB[A] ⇒Eqβ ∆; Γ ` B | sv
t ≡ s · t

⇓Eqη ⇑

∆; Γ ` A ⊃ B | s · t ⇒Eq2β ∆; Γ ` Bv
s | tv

s ≡ XTRT !s AS v :A IN t

∆; · `� s � JtKB[A] ⇒Eqβ ∆; Γ ` B | sv
t ≡ s · t

⇓Eqη

∆; Γ ` A ⊃ B | s · t ⇒Eq3β ∆; Γ; · ` Ba
s | ta

s ≡ ASSM ?s AS a :A IN t
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A strategy of two Normal Forms ([Abel et al., 2007])

Definition (Predicates INF and FNF )

The normal form predicates INF and FNF are defined according to
the following schemes:

∆; · ` A | s
∆; Γ ` FNF (s)

Γ ` A || s
Γ; · ` INF (s)

∆; · ` FNF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` FNF ([a/v ] · t)

Γ; · ` INF (A) ∆; a :A ` FNF (t)
∆; Γ; · ` INF (t [a :A])
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TO DO

1 Define η-expansion rewriting rules for INF/FNF predicates;
2 show that every INF/FNF reduction ends in a β normal redux;
3 equivalence preserves beta reduction.
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TO PROVE

Lemma (Normalisation)

If ∆; Γ ` FNF (t), then t is in normal form.

Lemma (Confluence)

1 →INF/FNF -normal forms are unique;
2 confluence: every term reduces to a normal formal;
3 reductions on→ηINF/FNF preserve β-normal forms;
4 normalisation of→INF/FNF is reduced to normalisation of
→ηINF/FNF .
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TO PROVE

Lemma (Strong Normalization)

There are no infinite sequences of reductions
∆; Γ ` t →ηINF/FNF t ′ →ηINF/FNF t ′′ . . .
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Summary

We introduced functional expressions over evidences as in LP;

Defined a natural deduction calculus which distinguishes
between unconditional and dependent evidence;

Extended it to extensional equivalence;

MAIN TASK: prove that this extension is conservative w.r.t. the
calculus with simple evidence from [Artëmov and Bonelli, 2007]
by showing (Strong) Normalization.
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