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Thanks to...

...Martin Carlé and Joulia Strauss and their ENIAC NOMOI project.
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Motivation

⇒ Historically : Understanding the first electronic basically

general-purpose US computer and problems it gave rise to. Pro-

gramming hardware. Start of the necessity to split-up between

hardware/software. Significance of reconstructions. How to pro-

gram a non-logical “behemoth”?

⇒ Philosophically : Understanding the earliest forms of man-

computer communications

“...we cannot fully understand our own conceptual scheme with-

out plumbing its historical roots...” (Judson Webb, 1980)
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Introduction

1. General historical background

2. How a number-theorist got involved with computers

3. A quick tour through the ENIAC

4. Lehmer’s ENIAC program

5. Discussion
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General Historical Background
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General Historical Background.

• ENIAC, The Electronic(!) Numerical Integrator And Computer

• Initial idea to build a large computer using vacuum tubes: Mauchly

who wanted to predict the weather.

• In 1941, Mauchly met Presper J. Eckert at the Moore School at

Penn University. Eckert “was willing and agreeable to talk about

the possibility of electronic computers [...] Nobody else really

wanted to give it a second thought” [Mauchly, 1970].

⇒ Formal proposal to the Navy Ordnance for building an electronic

computer (mainly to compute firing tables). Eckert and Mauchly

started building the ENIAC in 1943.
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General Historical Background (continued)

• ENIAC unveiled to the public on February 15, 1946

• 18.000 vacuum tubes; 1.500 relays and 40 panels to form 30

units; mainly, decentralized control system

• Local programming method: “The ENIAC was a son-of-a-bitch

to program” (Adèle Goldstine)

• Initially the ENIAC was a highly parallel machine, until it was

rewired in 1948:

“The original “direct programming” recabling method can best be

described as analogous to the design and development of a special-

purpose computer out of ENIAC component parts for each new ap-

plication [...] Anyone now doing research in parallel computing

might take a look at ENIAC during this first time period, for in-

deed ENIAC was a parallel computer with all of the problems and

opportunities this entails.” [Fritz, 1994]
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General Historical Background (continued)

• The Ballistic Research Laboratories (Aberdeen Proving Ground)

had “assembled a ‘Computations Committee’ to prepare for uti-

lizing the machine after its completion” [Alt, 1972], and the

ENIAC was extensively test-run during its first months.

• The members:

* Leland B. Cunningham (an astronomer)

* Haskell B. Curry (a logician)

* Derrick H. Lehmer (a number theorist)
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How a number-theorist got involved with comput-

ers...

CHOC09, Amsterdam 9



How a number-theorist got involved L. De Mol and M. Bullynck

How the Lehmers got involved with Computers.

“My father did many things to make me realize

at an early age that mathematics, and especially

number theory, is an experimental science. If one

examines the collected works of Euler, Gauss, Leg-

endre, to name but three, one finds them shame-

lessly and laboriously computing examples of em-

pirical discoveries. Often these efforts led to the establishment of important

theorems. Some of these discoveries remain to this day without logical links to

Peano’s axioms. [...] We should regard the digital computer system as an in-

strument to assist the exploratory mind of the number theorist in investigating

the global and local properties of this universe, the natural numbers and their

algebraic expansions.” [Lehmer, 1974]
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“I spent [...] two days [...] walking around in the

red canyons and exploring the paleontology and

archeology of the region [...] On the floor of the

canyon are little postholes, and if you investigate

one of these you will find a whole little world

of its own, living, until it dries out of course,

in this very restricted environment. That’s the nature of the material I am

presenting here. It is really arcane, exotic, and also ancient. We are discussing

the history of the sieve process. [...] There is a lot to do. A reasonable man, like

myself, wouldn’t spend 12% of his time, maybe, worrying about building sieves,

if there wasn’t any real use for them. It’s very esoteric, of course, and since I

am practically the only man working in this field you can see how widespread

the interest in it is.” [Lehmer, 1980]
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A quick tour through the ENIAC
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A quick tour through the ENIAC. [Goldstine, 1946, Goldstine and Goldstine, 1946,

Burks and Burks, 1981]
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The units of the ENIAC.

• 20 accumulators

• a multiplier, a divider and square rooter

• a constant transmitter and 3 function tables (ENIAC’s main

memory storage units)

• one master programmer (a central programming unit)

• cycling unit

• initiating unit

• a card reader and a printer
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Some general aspects.

• Two kinds of circuits: the numerical circuits for storing and pro-

cessing electric signals representing numbers and programming

circuits for controlling the communication between the different

parts of the machine.

• All units had to be programmed locally, connected through pro-

gram cables

• Synchronization: the central programming pulse (CPP) = one

addition time = 1/5000 second.

• Each unit takes an integer number of addition times to complete

its operation. If so programmed it emits a programming pulse

after finishing the operation, activating the next (sub)routine.
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The accumulator. The main arithmetic units.

The numerical part

* Each can store a 10-decimal signed number in ten decade ring

counters + PM-counter (for the sign)

* 5 input channels (α to ǫ), two output channels (A and S)to

transmit a number n (through A) or its complement 1010 − n

(through S)
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The accumulator (Continued).

The programming part

* 12 program controls: 4 receivers, 8 transceivers

* The transceiver: a program pulse input and output terminal,

a clear-correct switch (to clear or not clear its content after a

cycle; it could also be used to round off numerical results), an

operation switch (to be set to α to ǫ, A, S, AS or 0, determining

whether the accumulator should receive or transmit a number,

or do nothing) and a repeat switch (with which it could either

receive or transmit up to 9 times). (time = r, with 0 < r ≤ 9)

* The receiver: it has no program pulse output terminal and no

repeater switch
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The master programmer. Centralized programming mem-

ory.

• 10 independently functioning units, each having a 6-stage counter

(called the stepper)

• 3 input terminals for each stepper counter (the stepper input,

direct input and clear input)

• 6 output terminals for each stage of the stepper. Each such stage

s was associated with a fixed number ds by manually setting

decade switches, and with 1 to 5 decade counters.

CHOC09, Amsterdam 21



A quick tour through the ENIAC L. De Mol and M. Bullynck

CHOC09, Amsterdam 22



A quick tour through the ENIAC L. De Mol and M. Bullynck

Figure 1: A Schematic (Reduced) Representation of a stepper

counter of the Master Programmer.
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Branching...

• “magnitude discrimination” or “branching” : possible because 9

digit pulses were transmitted for sign indication M and none for

sign indication P. The fact that digit pulses were transmitted for

every digit except for 0 could be exploited in a similar manner.

• special adaptor for transforming digit pulse into programming

pulse to the program pulse input terminal of an otherwise unused

‘dummy (program) control’

Two methods

• ‘IF’ with two output channels of an accumulator

• ‘IF’ with one output channel and a stepper
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The Lehmers’ ENIAC program
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A weekend off. Lehmer’s ENIAC program

“[Lehmer] had programmed the problem and run it on ENIAC, with J. Mauchly

serving as “computer operator”, during the three-day weekend of July 4, 1946.

The running time of the problem occupied almost the entire weekend, around the

clock, without a single interruption or malfunction. It was the most stringent

performance test applied up to that time, and would be an impressive one even

today. The problem was only a “test problem” from the point of view of the

Army, but it provided an intrinsically important result in the theory of numbers.”

[Alt, 1972]

“[...] yes, an electronic computer could actually do an interesting problem in

number theory – something as sophisticated in number theory – and produce

useful results. There were many people who speculated about this – von Neu-

mann among them – but to actually do it, to demonstrate it, was, I think, impor-

tant to the post-war reputation of electronic computers among mathematicians.”

[Akera, 2006]
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The number-theoretical problem

• A special (but invalid) case of the converse of Fermat’s little theorem

Theorem 1 If n divides 2n − 2 then n is a prime
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How was ENIAC used to compute composite numbers?

• The ENIAC was used to determine a list of exponents e of 2 mod p, i.e., the

least value of n such that 2n ≡ 1 mod p, p prime and e is some divisor of

p − 1

• These exponents can be used to determine composite numbers of the form

2pq − 2 through the theorem:

Theorem 2 If p and q are odd distinct primes, then 2pq − 2 is divisible by

pq if and only if p - 1 is divisible by the exponent to which 2 belongs modulo

q and q - 1 is divisible by the exponent to which 2 belongs modulo p

• A sieve was implemented on the ENIAC to determine primes relative to the

first 15 primes, thus making use of the ENIAC’s parallelism. The last prime

p processed, after 111 hours of computing time, was p = 4538791
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Computing the exponent e
“The method used by the ENIAC to find the exponent of 2 modulo p differs

greatly from the one used by human computer” [Lehmer, 1949]

“In contrast, the ENIAC was instructed to take an “idiot” approach, based di-

rectly on the definition of e, namely, to compute

2n
≡ Γn(modp), n = 1, 2, ....

until the value 1 appears or an until n = 2001, whichever happens first. Of

course, the procedure was done recursively by the algorithm:

Γ1 = 2, Γn+1 =

8

<

:

Γn + Γn if Γn + Γn < p

Γn + Γn − p otherwise

Only in the second case can Γn+1 be equal to 1. Hence this delicate exponential

question in finding e(p) can be handled with only one addition, subtraction, and

discrimination at a time cost, practically independent of p, of about 2 seconds

per prime. This is less time than it takes to copy down the value of p and in

those days this was sensational.” [Lehmer, 1974]
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A Prime Sieve

• making use of the ENIAC’s parallelism

• Minimizing the chance that p = 2n+1 is not a prime relative to

the primes ≤ 47.

• About 86 percent of the composites were thus eliminated after

step 3 (sieve). The remaining 14 percent were required to pass a

further test: namely p − 1 must be divisible by e (step 5). This

requirement is so strict that the remaining number of composites

is very small (25 out of 11336). Finally, these were eliminated

by hand through comparison with D.N. Lehmer’s list of primes.

• Eratosthenes’s Sieve:




1 0 1 0 1 0 1 0 1 ...

1 1 0 1 1 0 1 1 0 ...




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The Reconstruction.

Eniac set-up diagram.
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Reconstruction of the Sieve

• One accumulator for each prime 2 < pj ≤ 47, resulting in 14

accumulators for the sieve.

• Initial set-up:

* In each accumulator Apj
, set complement of pj − 1, e.g. Ap14

will contain M 9999999954.

* Initiating program pulse (pp) to (a) first transceiver T1 of

each Apj
, operation switch set to α, plus repeater set to 1 (b)

the constant transmitter. This will send the number two to

each of the Apj
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• The next steps: check for each Apj
in parallel whether P = 2r+1

is divisible by pj

– Checking routine. Use of second branching method, con-

necting the PM lead of the S output of each of the Apj
to

14 dummy controls (T2). If P is divisible by pj , the num-

ber contained in Apj
will be P 0000000000 and thus positive,

while it will be negative in all other cases (this is why we use

complements). If a given Apj
stores P 0000000000, and P is

thus divisible by pj , Apj
has to be reset to the complement

of 2pj .

– The problem of loading 2pj . Only those that contain P

0000000000 should receive a number (Problem 1) and each

must receive a different number (Problem 2).
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Problem 1. Directly connect the program pulse output terminal of

each of the dummy controls (T2) of the Apj
to the program pulse

input terminal of one of the transceivers (T3) of each of the Apj
. This

could be done by using a loaded program jumper [Goldstine, 1946,

11.6.1]. Each T3 of an Apj
is set to receive once through input

channel α, β or γ depending on the group Apj
belongs to.
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Problem 2. Use of the three function tables and special digit adap-

tors. The 14 Apj
’s are divided into three groups: Ap1

– Ap5
, Ap6

– Ap10
, Ap11

– Ap14
. In each group, the PP output terminal of T1

of rsp. Ap1
, Ap6

and Ap11
is connected to three different program

cables. The first of these cables sends a PP to function table 1, the

second to function table 2 and the last to function table 3. Each

of the function tables contains rsp. one of the following values: M

610142226, M 3438465862 and M 64828694 at place 0 (function value

f(0)). Each of these values will be sent through the respective in-

put channels α, β and γ and then be converted in the correct way

through an adaptor connecting a shifter and deleter adaptors.
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Reconstruction of the Exponent Routine
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Reconstruction of the Division Routine
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Outline of the complete program

Step 1. Initiation and preliminary set-up, go to Step 2. Set Apj
and function

tables. Set numbers -2, + 2 and -1 on the CT (manually). Set AP storing 2r +1

to 1. Activation of the 14 Apj
, AP , Ae and the constant transmitter.

Step 2. Increase P by 2, goto Step 3.

Step 3. Sieve on p: Is p divisible by a prime ≤ 47? Y/N, goto Step 2/Step 4.

Step 4. Exponent routine to find e. Is e > 2, 000? Yes/No, goto Step 7/Step 5.

Use of 4 accumulators, i.e., Ae1
, Ae2

, Ae3
, AP , AE ; three stepper counters (for

checking rsp. k > 2000, 2rk − p > 0, 2rk − p − 2 < 0)

Step 5. Does e divide p−1? Yes/No, goto Step 6/Step 7. Use of 5 accumulators,

including AP , AE , Ae1
, A20. A20 receives P from AP and next -1 from the CT.

At the end of the computation, Ae1
will contain f , the number of times e can

be subtracted from p − 1

Step 6. Punch p, e and f (p − 1 = ef), goto Step 7. One way is to use for AP ,

Ae1
and AE accumulators for which there is a static output to the printer.

Step 7. Erase exponent calculation, goto Step 2. Use the selective clear switch

for the accumulators involved (except for AP )
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Conclusion

In fact, the programmer is a kind of engineer.

[Hopper and Mauchly, 1953, p. 1250]

• The reconstruction of historically important computer programs as a histo-

riographic experiment

• Appreciating the difference between algorithms performed by human beings

or those executed by a machine, through the interaction of a human being

and the physical machine

• Significance of studying and reconstructing early computer programs to:

* Clarify the development of programming techniques and computational

methods in correlation with the development of the hardware.

* Understand the evolution of the interaction and interface between the

operator/programmer and the computer.

* Because it’s fun!
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