
Post’s and Zuse’s forgotten ideas in the Philosophy of Computer Science. L. De Mol

Post’s (and Zuse’s) “forgotten ideas”
in the Philosophy and History of

Computer Science.

Liesbeth De Mol

Boole centre for Research in Informatics, Ireland

Centre for Logic and Philosophy of Science, Belgium

elizabeth.demol@ugent.be

E-CaP09, Barcelona 1



1. The Church-Turing thesis historically L. De Mol

1. The Church-Turing thesis historically.

E-CaP09, Barcelona 2



1. The Church-Turing thesis historically L. De Mol

The Church-Turing thesis

“On computable numbers”. From computor to computer.

⇒ “What are the possible processes which can be carried out in com-

puting a number?”

• “We may compare a man in the process of computing a real number to a

machine which is only capable of a finite number of conditions q1, q2, ..., qR

which will be called m-configurations. ”

• 1-dimensional tape instead of 2-dimensional paper

• Finiteness conditions on (Gandy, 1988; Sieg, 1994):

1. the number of symbols printed (boundedness condition)

2. the number of states (boundedness condition)

3. the number of cells that can be scanned simultaneously (boundedness

condition)

4. the number of symbols that can be changed simultaneously (locality

condition)

5. the number of moves to left or right that can be made in one time step

(locality condition)

⇒ Analysis that results in abstract computor, resulting in Turing machine

E-CaP09, Barcelona 3



1. The Church-Turing thesis historically L. De Mol

Figure 1: A Turing machine

E-CaP09, Barcelona 4



1. The Church-Turing thesis historically L. De Mol

The Church-Turing thesis
“On computable numbers”. Turing’s thesis.

“According to my definition, a number is computable if its decimal expan-

sion can be written down by a machine.”

Turing’s thesis. Any number (anything) that can be computed by a human

being, can be computed by a Turing machine (and conversely)

• This thesis (a definition for Turing!) imposes a fundamental limitation of

what is computable. As a consequence there are uncomputable functions

(e.g. halting problem)

• But “All arguments which can be given are bound to be, fundamentally,

appeals to intuition, and for this reason rather unsatisfactory mathemati-

cally. The real question at issue is ‘What are the possible processes which

can be carried out in computing a number?’ ”

E-CaP09, Barcelona 5



1. The Church-Turing thesis historically L. De Mol

The Church-Turing thesis

The surprise of λ...

• Initial motivation: “Underlying the [formal calculus] which we shall develop

is the concept of a function, as it appears in various branches of mathematics

[...]” (Church, 1941)

• “We [Church and Kleene] kept thinking of specific such functions, and of

specific operations for proceeding from such functions to others. I kept

establishing the functions to be λ-definable and the operations to preserve

λ-definability.” (Kleene, 1981)

• “Before research was done, no one guessed the richness of this subsystem.

Who would have guessed that this formulation, generated as I have de-

scribed to clarify the notation for functions, has implicit in it the notion

(not known in mathematics in 1931 in a precise version) of all functions

on the positive integers (or on the natural numbers) for which there are

algorithms?” (Kleene, 1981)

E-CaP09, Barcelona 6



1. The Church-Turing thesis historically L. De Mol

The Church-Turing thesis
Church’s thesis

• “We now define the notion [...] of an effectively calculable function of pos-

itive integers by identifying it with the notion of a recursive function of

positive integers (or of a λ-definable function of positive integers.)”

• “This definition is thought to be justified by the considerations which follow,

so far as positive justification can ever be obtained for the selection of a

formal definition to correspond to an intuitive notion. [m.i.]”

Church’s Thesis. Every effectively calculable function is general recursive

(λ-definable) and conversely.

E-CaP09, Barcelona 7



2. “Computing” the non-Turing computable L. De Mol

2. “Computing” the non-Turing computable. A
philosophical debate.

E-CaP09, Barcelona 8



2. “Computing” the non-Turing computable L. De Mol

“Computing” the non-Turing computable (Eberbach, Goldin,
Wegner, 2004).

Strong Turing Thesis A Turing machine can do anything a computer can

do (∼ physical Church-Turing thesis)

Church-Turing thesis The formal notions of recursiveness, λ-definability,

and Turing computability equivalently capture the intuitive notion of effec-

tive computability of functions over integers.

E-CaP09, Barcelona 9



2. “Computing” the non-Turing computable L. De Mol

“Computing” the non-Turing computable (Eberbach, Goldin,
Wegner, 2004).

Assumption Turing machines can only model algorithmic computations,

but, not every “computation” is algorithmic (example: distributed client-

server computation).

[I] The TM models closed computation, which requires that all inputs are

given in advance

[II] The TM is allowed to use an unbounded but only finite amount of time

and memory for its computation.

[III] Every TM computation starts in an identical initial configuration; for

a given input, TM behaviour is fixed and does not depend on time.

⇒ Ergo, not every computation is Turing computable, and thus the strong

Turing thesis must be false. “Though the Church-Turing thesis is valid in the

narrow sense that Turing machines express the behavior of algorithms, the

broader assertion that algorithms precisely capture what can be computed

is invalid.”

⇒ Alternatives? Turing’s forgotten ideas in computer science (??) (Copeland,

1999), i.e., oracle machines.

E-CaP09, Barcelona 10



3. Post’s account of computability L. De Mol

3. Post’s account of computability

E-CaP09, Barcelona 11



3. Post’s account of computability L. De Mol

A quick account of Post’s account of an anticipation
Absolutely unsolvable problems and relatively undecidable
propositions. Account of an anticipation (1920-21)

• Posthumuously published by Martin Davis in 1965

• Post’s program in 1920: “Since Principia was intended to formalize all

of existing mathematics, Post was proposing no less than to find a single

algorithm for all of mathematics.” (Martin Davis, 1994)

• Approach: Focus on form rather than meaning. Simplification through

generalization, starting from Principia in order to prove the decidability

of the Entscheidungsproblem (finiteness problem) for restricted functional

calculus!

• The frustrating problem of “tag” and the reversal of Post’s program (De

Mol, 2006)

E-CaP09, Barcelona 12



3. Post’s account of computability L. De Mol

Definition of tag systems

Definition 1 A v-tag system T , consists of a finite alphabet Σ = {a0, a1, ..., aµ−1}

of µ symbols, a deletion number v ∈ N and a finite set of µ words wa0
, ..., waµ−1

∈

Σ∗, called the appendants, where any wai
corresponds with ai.

Computation step on a word A ∈ Σ∗: append the word associated with

the leftmost letter of A and delete its first v symbols.

E-CaP09, Barcelona 13



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101
11101000000110111011101

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000
00110111011101000000

︸ ︷︷ ︸

A0

⇒ Periodicity!

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Definition of tag systems. A (relatively) famous Example

Let TPost be defined by Σ = {0, 1}, v = 3, 1 → 1101, 0 → 00

A0 = 10111011101000000
101110111010000001101
1101110100000011011101
11101000000110111011101
0100000011011101110100
000001101110111010000
00110111011101000000

︸ ︷︷ ︸

A0

⇒ Periodicity!

⇒ Turing machine vs. Abstract form that is hard to “encode” → analysis of

the behavior. Simple forms complex behavior.

E-CaP09, Barcelona 14



3. Post’s account of computability L. De Mol

Experimentation on tag systems

Figure 2: v = 3, 1 → 1101, 0 → 1101

E-CaP09, Barcelona 15



3. Post’s account of computability L. De Mol

A quick account of Post’s account of an anticipation (con-
tinued)

• Development of normal systems and proof of the normal form theorem

• ⇒ “In view of the generality of the system of Principia Mathematica, and

its seeming inability to lead to any other generated set of sequences on a

given set of letters than those given by our normal systems, we are led to

the following generalization”, i.e., Post’s thesis I (Davis, 1982):

Every generated set of sequences on a given set of letters a1, a2, ..., aµ

is a subset of the set of assertions of a system in normal form with

primitive letters a1, a2, ..., aµ, a′

1
, a′

2
, ..., a′

µ, i.e., the subset consist-

ing of those assertions of the normal system involving the letters

a1, a2, ..., aµ.

• “Establishing this universality [the universality of the thesis] is not a matter

of mathematical proof, but of psychological analysis of the mental processes

involved in combinatory mathematical processes.”

E-CaP09, Barcelona 16



3. Post’s account of computability L. De Mol

A quick account of Post’s account of an anticipation (con-
tinued)
Given thesis I:

“There is no finite method which would uniformly enable us to tell of an ar-

bitrary normal system and arbitrary sequence on the letters thereof whether

that sequence is or is not generated by the operations of the system from

the primitive sequence of the system”

“(Theorem) No normal-deductive-system is complete, there always exist-

ing a normal system S and enunciation P thereof such that P is not in S

while b(S, P ) is not in the normal-deductive system.”

“(Theorem) Given any normal-deductive-system there exists another which

second proves more theorems (to put it roughly) than the first.”

⇒ Informal proofs of the fact that there are absolutely unsolvable decision prob-

lems and relatively undecidable propositions.

• 1936: thesis II, identifying solvability and formulation I (similar to Turing

machines)

E-CaP09, Barcelona 17



3. Post’s account of computability L. De Mol

Significance of Post’s work I: focus on absolutely unsolvable
decision problems (the limitation implied by the thesis)

• Possible reason? Experience with own limitations to solve problem of “tag”

• “We offer this conclusion at the present moment as a working hypothesis.

[...] The success of the above program would, for us, change this hypothesis

not so much to a definition or to an axiom but to a natural law. (Post,

1936)

• “But to mask this identification under a definition hides the fact that a

fundamental discovery in the limitations of the mathematicizing power of

Homo Sapiens has been made and blinds us to the need of its continual

verification.” (Post, 1936)

• “the creativeness of human mathematics has a counterpart inescapable lim-

itation thereof witness the absolutely unsolvable (combinatory) problems.

Indeed, with the bubble of symbolic logic as universal logical machine finally

burst, a new future dawns for it as the indispensable means for revealing

and developing those limitations. For [...] Symbolic Logic may be said to

be Mathematics become self-conscious.”

• ⇒ Question: how do the so-called models that claim to go beyond the

Turing limit deal with this problem?

E-CaP09, Barcelona 18



3. Post’s account of computability L. De Mol

Significance of Post’s work II: Focus on form and generated
(possibly infinite) sets of sequences of letters

• Generality of the notion of computability. Computations are not only about

algorithms and functions on integers.

• Infinite time and space. “TM computations are allowed to use an unbounded

but only finite amount of time and memory” (Eberbach, Goldin, Wegner,

2004)

• Unpredictability and evolution over time. “TM behavior is fixed and does

not depend on time” (Eberbach, Goldin, Wegner, 2004) Computability and

computational processes!

• Weak universality and tag systems (or normal systems): finite vs. infinite

input, computational power of the process vs. computational power of the

input?

E-CaP09, Barcelona 19



4. Zuse’s account of computability L. De Mol

4. Zuse’s account of computability

E-CaP09, Barcelona 20



4. Zuse’s account of computability L. De Mol

A very quick account of the work of one of the first com-
puter pioneers, Konrad Zuse

• “I became aware of the tremendous number of monotonous calculations

necessary for the design of static and aerodynamic structures. Therefore, I

decided to design and construct calculating machines suited to solving these

problems automatically.” (Zuse, 1980)

• Overall plan for computing machine ∼ plan modern general-purpose com-

puter

E-CaP09, Barcelona 21



4. Zuse’s account of computability L. De Mol

A very quick account of one of the first computer pioneers,
Konrad Zuse

• Use of the binary system (from the pragmatic point of view of the engineer

to build a simple machine) → switch off/on mechanism of relays 6= ENIAC’s

“simulation” of decimal system with on/off vacuüm tubes

• Development of Bedingungskombinatorik (Conditional Combinatoric) and

Dyadik ⇒ The theoretical basis for building switching circuits and ulti-

mately a computer (∼ Shannon’s A Symbolic Analysis of Relay and Switch-

ing Circuits)

• Construction of Z1, Z2, Z3 (the first universal general-purpose computer)

and Z4 from 1936 – 1945.

• The logistic machine and the Plankalkül (forerunner of today’s programming

languages: ”The result of these developments will be the general calcula-

tion machine, that solves general combinatorial problems and mechanical

thinking problems on the basis of applied logistic. I call this development

the logistic calculation machine”

E-CaP09, Barcelona 22



4. Zuse’s account of computability L. De Mol

A very quick account of one of the first computer pioneers,
Konrad Zuse
The bit as the only primitive object

• S0 ⇒ L or 0

• Composite objects, e.g., positive integers: n × S1.4 = n × 4 × S0

• E.g. 83 = (L000, 00LL)

• Selection of components

V V

V 3 V 3

K K i

S m × 2 × 1 · n S 2 × 1 · n

K(omponenten index), S(truktur Index), V(ariablen Index)

E-CaP09, Barcelona 23



4. Zuse’s account of computability L. De Mol

Zuse’s “thesis” (1945)

• “Calculation is: to form out of given “data” (Angaben) new “data” accord-

ing to some rule (Vorschrift) ∼ information-processing”

• “Data can be many things like, for example, numbers, statements, names,

addresses, military degrees, messages, coordinates,...They are differentiated

through their structure. The most simple such structure has a yes-no-

value. It appears that any complicated information can be constructed out

of yes/no- values. Thus one is in need of a carefully constructed Structural

Calculus (Strukturenkalkül)”

• “A calculation rule can be any schematical operation, deduction, formula,

algorithm, command, ... The Plankalkül is developed as an exact formula-

tion of such rules.”

E-CaP09, Barcelona 24



4. Zuse’s account of computability L. De Mol

Significance of Zuse’s “thesis”: Generality of Computability

• Explicit differentiation between input/output and the process of the com-

putation.

• Generality of the thesis: “In the following we want to develop a theory

to mechanically solve schematic thinking tasks [..] Calculating with num-

bers belongs to the lowest level; the process of calculating is so schematic

and clear that mechanical solutions are already applied to a considerable ex-

tent. ”There is a steady way from simple numerical calculation to high-level

thinking processes.”

• ”General considerations concerning the relations between calculating and

thinking followed. I realized that there is no border line between these two

aspects and by 1938 it was already perfectly clear to me that the develop-

ment would progress in the direction of the artificial brain.”

• Basic problem: “The extension of machine calculating beyond the fields

hitherto known depends on the competence to convert [m.i.] general schematic

thinking procedures into a form, suited to deliver the operational instruc-

tions for calculating machines”

• Notes going from computers used for bureaucratic tasks to assistance in

more “artistic” work. “[...] we must find the courage to consider [the com-

puter] not as a subordinate tool, but as a key to surmounting difficulties.

E-CaP09, Barcelona 25



4. Zuse’s account of computability L. De Mol

• (“evolutionary” programming (the germ cell that solves engineering prob-

lems); the calculating space; cellular automata.)

E-CaP09, Barcelona 26



5. Discussion L. De Mol

5. Discussion

E-CaP09, Barcelona 27



5. Discussion L. De Mol

Discussion

• Computations have led to a conceptual, mathematical and technological

“revolution” ⇒ slow historical process that changed the concept of com-

putability as computing functions over integers to something far more gen-

eral.

• “we cannot fully understand our own conceptual scheme without plumbing

its historical roots, but in order to appreciate those roots, we may well have

to filter them back through our own ideas.” (J. Webb, 1981)

• If the world computes 6= the world is computable

• re: On going beyond the Turing limit. Theory vs. practice.

• The thesis is and as a thesis.

• Significance of different (historical) models of and views on computability

(even though they are logically equivalent) We cannot start and end with

Turing machines!

E-CaP09, Barcelona 28



5. Discussion L. De Mol

References

E-CaP09, Barcelona 28


