
Curry’s study of inverse interpolation on the ENIAC M. Bullynck and L. De Mol

Curry’s study of inverse interpolation
on the ENIAC

From a concrete problem to the problem of

program composition

M. Bullynck1 and L. De Mol2

1 Paris 8, maarten.bullynck@kuttaka.org

2Universiteit Gent, elizabeth.demol@ugent.be

CHOC09, Amsterdam 1

Introduction M. Bullynck and L. De Mol

Introduction

• How a logician got involved with computers...

• 1946: “A study of inverse interpolation of the Eniac”

• 1949: “On the composition of programs for automatic comput-

ing”

• 1950: “A program composition technique as applied to inverse

interpolation”

• Discussion

CHOC09, Amsterdam 2

How a logician got involved with computers... M. Bullynck and L. De Mol

How a logician got involved with computers...

CHOC09, Amsterdam 3

How a logician got involved with computers... M. Bullynck and L. De Mol

How a logician got involved with computers...

Highlights in Curry’s career before 1945

• 1924: Starts PhD on differential equations and switches to PhD in logic

• 1926–1927: Reads Russell and Whitehead’s Principia Mathematica and

starts developing his theory of combinators

• 1927–1928: Discovers Schönfinkel’s paper “Über die Bausteine der mathe-

matischen Logik” (1924)

• 1929: PhD Grundlagen der kombinatorischen Logik, supervised by Hilbert

(actually Bernays)

• September 1929: Appointed at the State College, Pennsylvania

• 1930ies: Publications on combinatory logic

• During World War II, research in applied mathematics (Heaviside opera-

tional calculus)

• 1942–1944: work at Frankford Arsenal and Applied Physics Laboratories
• 1944: moves to Aberdeen Proving Ground → ENIAC

CHOC09, Amsterdam 4

How a logician got involved with computers... M. Bullynck and L. De Mol

How a logician got involved with computers...
Computability, combinators, λ and Curry

• Proposal different models of computability, a confluence of ideas in 1936:

Church, Turing and Post

• Before 1936: development of Church’s set of postulates and ultimately λ-

calculus

• The power of λ ∼ combinators: Curry knows about theory of computabil-

ity

• “[I]t is evident that one can formalize in various ways and that some of

these ways constitute a more profound analysis than others. Although from

some points of view one way of formalization is as good as any other, yet a

certain interest attaches to the problem of simplification [...] In fact we are

concerned with constructing systems of an extremely rudimentary character,

which analyze processes ordinarily taken for granted.” [Curry, 1942]

CHOC09, Amsterdam 5

How a logician got involved with computers... M. Bullynck and L. De Mol

How a logician got involved with computers...

• The Ballistic Research Laboratories (Aberdeen Proving Ground)

had “assembled a ‘Computations Committee’ to prepare for uti-

lizing the machine after its completion”, and the ENIAC was

extensively test-run during its first months.

• The members:

* Leland B. Cunningham (an astronomer)

* Haskell B. Curry (a logician)

* Derrick H. Lehmer (a number theorist)

CHOC09, Amsterdam 6

How a logician got involved with computers... M. Bullynck and L. De Mol

How a logician got involved with computers...

Three reports

• 1946: “A study of inverse interpolation of the Eniac”

• 1949: On the composition of programs for automatic computing

• 1950: A program composition technique as applied to inverse

interpolation

• (1954: “The logic of program composition”, presented at 2e Col-

loque International de Logique Mathématique, Paris, 25-30 août

1952)

CHOC09, Amsterdam 7

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946: “A study of inverse interpolation of the Eniac”

CHOC09, Amsterdam 8

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946:“A study of inverse interpolation of the Eniac”

• In collaboration with Willa Wyatt one of ENIAC’s programmers

• declassified in 1999

• Focus on theoretical aspects of programming besides details of

the wiring

CHOC09, Amsterdam 9

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946:“A study of inverse interpolation of the Eniac”
The problem of Inverse Interpolation

• “The problem of inverse interpolation may be stated as follows. Suppose we

have a table giving values of a function x(t) [...] for equally spaced values

of the argument t. It is required to tabulate t for equally spaced values of

x.”

• “This problem is important in the calculation of firing tables. Suppose the

trajectory calculations have given us the coordinates (x, y) of the projectile

as functions of t (time) and φ (angle of departure). For the tables we want t

and φ as functions of x and y; indeed we wish to determine φ so as to hit a

target whose position (x, y) is known, and t is needed for the fuze setting or

other purposes. This is a problem of inverse interpolation in two variables;

it can be solved by two successive inverse interpolations on one variable.”

• “In this report the problem of inverse interpolation is studied with reference

to the programming on the ENIAC as a problem in its own right.”

CHOC09, Amsterdam 10

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946:“A study of inverse interpolation of the Eniac”
Stages and processes

• “The entire computation procedure can [...] be divided into certain ma-

jor parts which are repeated over and over according to the programming.

These major parts will be called processes.”

• “Each process is broken into pieces called stages which are units in the

following sense. Each stage is a program sequence with an input and one

or more outputs. The input of each stage comes from the output of one or

more other stages of the same or different processes; the ouputs all go to the

input of some other stage or are blank [...]The stages can be programmed as

independent units, with a uniform notation as to program lines, and then

put together; and since each stage uses only a relatively small amount of

the equipment the programming can be done on sheets of paper of ordinary

size.”

CHOC09, Amsterdam 11

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

CHOC09, Amsterdam 12

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

CHOC09, Amsterdam 13

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

CHOC09, Amsterdam 14

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946:“A study of inverse interpolation of the Eniac”
Theoretical considerations in the 1946 report

• Theorem 1 Let the n accumulators A1, A2, ..., An contain initially the n

quantities x1, ..., xn respectively. Then a necessary and sufficient condi-

tion, that y1, ..., yn be such that there exist a series of transfers between the

A1, ..., An without clearing which ends with y1, ..., yn in A1, ..., An respec-

tively is that there exist a matrix of integers C = (Cij) such that:

yi = Ci1x1 + Ci2x2 + ... + Cinxn and i = 1, 2, ..., n and
˛

˛

˛
Cij

˛

˛

˛
= 1

• Basic scheme + modifications: “[The] basic scheme was not designed specifi-

cally for a particular problem, but as a basis from which modifications could

be made for various such problems.” Example: composite interpolation.

“The problem of program composition was a major consideration in a study

of inverse interpolation on the ENIAC [...]; for although that study was made

under stress and was directed primarily towards finding at least one prac-

tical method of programming a specific problem, yet an effort was made to

construct the program by piecing together subprograms in such a way that

modifications could be introduced by changing these subprograms. (Curry,

1950)”

CHOC09, Amsterdam 15

1946: “A study of inverse interpolation of the Eniac” M. Bullynck and L. De Mol

1946:“A study of inverse interpolation of the Eniac”
Theoretical considerations in the 1946 report (continued)

• “In this way we can build up more and more complicated programs. An

examination has been made in this way of the programming of inverse in-

terpolation on functions of two variables. This problem is almost ideal for

the study of programming ;because, although it is simple enough to be ex-

amined in detail by hand methods; yet it is complex enough to contain a

variety of kinds of program compositions. (Curry 1952) ”

CHOC09, Amsterdam 16

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: On the composition of programs for auto-

matic computing

CHOC09, Amsterdam 17

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”

• The problem of composition: “In the present state of development of au-

tomatic digital computing machinery, a principal bottleneck is the planning

of the computation...The present report is an attack on this problem from

the standpoint of composition of computing schedules. By this is meant the

following. Suppose that we wish to perform a computation which is a com-

plex of simple processes that have already been planned. Suppose that for

each of these component processes we have a plan recorded in the form of

what is here called a program, by means of a system of symbolization called

a code. It is required to form a program for the composite computation.

This problem is here attacked theoretically by using techniques similar to

those used in some phases of mathematical logic.”

• New notation and introduction of automated composition“The

present theory develops in fact a notation for program construction than

the “flow charts” of [Goldstine and Von Neumann]. Flow charts will be

used [...] primarily as an expository device. By means of this notation a

composite program can be exhibited as a function of its components in such

a way that the actual formation of the composite program can be carried

out by a suitable machine.”

CHOC09, Amsterdam 18

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Content of the report

I Introduction

II Fundamental definitions and assumptions

A Words, locations and programs

B Operation of the machine

C Classification of orders

D A theorem on type determination

E Special kinds of programs

F Datum and exit locations

G Regular programs

III Transformations

A Definition

B Homomorphic transformations

C Normal program

CHOC09, Amsterdam 19

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Content of the report

IV Program composition

A Simple substitution

B Multiple substitution

C Reduction to a single quantity program

D Loop programs

E Complex programs

F Associativity properties

V Concluding Remarks

CHOC09, Amsterdam 20

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Fundamental definitions and assumptions: words, programs
and orders

Two types of Words: quantities and orders; “The distinction between quantities

and orders is not a distinction of form. GIven a word written out in the

code, it is impossible to tell from its appearance whether it is of type a or

type b. [...]The machine this distinction according tot he situation. Making

this classification of words in advance is a difficult problem” → theorem on

type determination

“An assignment of n + 1 words to the first n + 1 locations will be called a

program.” X = M0M1...Mn

Order = datum number location, exit number location and operator

Classification of Orders: arithmetical, transfer, control, stop orders.

CHOC09, Amsterdam 21

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Assumptions and restrictions “[T]he first stage in a study of program-

ming is to impose restrictions on programs in order that the words in all the

configurations of the resulting calculation can be uniquely classified into orders

and quantities”

Mixed arithmetic order: arithmetical operation involving an order as datum

Type determination Restrictions on the assignment of types and control

on types during calculation; re: distinction between orders and quantities;

typically determinate

Fixed as to type the type of a word in a location never changes

Primary program typically determinate and no mixed arithmetic order

Secondary program at least one mixed arithmetic order

Table condition restriction on mixed arithmetic order and on location subsi-

tution: all within table range

Regular program a primary program or one that satisfies the table condition;

typically determinate; calculation terminates

CHOC09, Amsterdam 22

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Transformations “In forming new programs from combinations of old ones,

two fundamental concepts are those of transformation and replacement.”

Given:

X = M0M1M2...Mp

Y = N0N1N2...Nq

Z = L0L1L2...Lr

T (k) = k′ k ≤ m, k′ ≤ n, T is some numerical function

Transformation of the first kind: reshuffle of the words in a program

(T)(X): gives the Y such that q = p and every Ni is derived from Mi by

replacing every location number k in every order of X by T (k)

Transformation of the second kind: change of datum and exit numbers in

the orders so as to correspond with the reshuffle.

{T}(X) = Y =

8

>

>

<

>

>

:

N0 = M0

NT (i) = Mi if T is defined for i , i > 0(∗)

Ni = J else

CHOC09, Amsterdam 23

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Transformations and replacement

Replacement a program made up from two programs by putting, in certain

locations of one program, words from corresponding locations in the other

program. Let φ ⊂ {0, 1, 2, ..., p}, φ

Y
X = Z with:

Li =

8

>

>

<

>

>

:

Mi if i /∈ φ, i ≤ p

Ni if i ≤ q and i ∈ φ or i > p

J if i ∈ φ, i > q

X

Y
when φ is void : X with spaces

Transformations of the second kind with replacement

{
φ, T

Y
} =

φ

Y
({T}(X))

Transformations of the third kind
8

>

>

>

>

>

<

>

>

>

>

>

:

[T](x) = {T}(T)(x) combination of kind 1 and 2

[T
Y

] = { T
Y
}(T)(x) combination ofkind 1 and 2 and replacement

[φT](x) = {φT

0
}(T)(x) combination of kind 1 and 2and take subprogram from X

S(x) = [φT

Y
](x) = {φT

Y
}(T)(x) combination of kind 1 and 2 and replacement

CHOC09, Amsterdam 24

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Combinators and (*)

8

>

>

<

>

>

:

Cxyz ⇒ xzy

Wxy ⇒ xyy

Kxy ⇒ x

T (k) = i, i > 0(∗)

K-free: (*) always has at least one solution

W-free: (*) has no multiple solutions

C-free: T is monotone increasing

CHOC09, Amsterdam 25

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Homomorphic Transformations and normal programs

“A homomorphic transformation does not change the results of a calculation,

i.e., the successive configurations in the transformed calculation can be de-

rived from those of the original by the same transformation”

Difference condition: T (x) − T (y) = x − y

Theorem: Let X be a regular program and T a numerical transformation

which is W-free and satisfies the difference condition. Then, for any Y, [T
Y

]

is a homomorphic transformation for the calculation initiated by X.

Normal Program: X = AC, A is an order program and C a quantity program

CHOC09, Amsterdam 26

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Program composition Basic concept: substitution: “A program Z will be

said to be formed by substitution of Y for a certain output in X, when Z carries

on a calculation homomorphic to X until the control reaches that output, then

starts a calculation homomorphic to Y using the quantities calculated by X as

quantity program”

Five types of substitution:

A. Simple substitution

B. Multiple substitution

C. Reduction to a single quantity program

D. Loop programs

E. Complex programs

CHOC09, Amsterdam 27

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-
puting”
Simple substitution

X = AC

Y = BC

X and Y are normal

m is the location number of M ∈ A to be substituded, then

T1(k) =

8

>

>

<

>

>

:

k for 0 < k < m

m + n − 1 for k = m

k + |B| − 1 for m < k ≤ |A| + |C|

T2(k) =

8

<

:

m + k − n for n ≤ k ≤ n + |B|

|A| + k − n for n + |B| < k ≤ n + |B| + |C|

Then:

Z = [
φT1

[T2](Y)
](x)

Notation:Z = X → Y

CHOC09, Amsterdam 28

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-

puting”

Notations...

Flow charts

CHOC09, Amsterdam 29

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-

puting”

Notations...

Curry Notation:

Polish notation:

CHOC09, Amsterdam 30

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-

puting”

Notations...

Peano notation:

CHOC09, Amsterdam 31

1949: On the composition of programs for automatic computing M. Bullynck and L. De Mol

1949: “On the composition of programs for automatic com-

puting”

Notations...

Begriffschrift:

“Frege’s notation, it must be remembered, died with him”

CHOC09, Amsterdam 32

1950: A program composition technique applied M. Bullynck and L. De Mol

1950: A program composition technique as applied

to inverse interpolation

CHOC09, Amsterdam 33

1950: A program composition technique applied M. Bullynck and L. De Mol

1950: “A program composition technique as applied to in-
verse interpolation”
Some highlights

Synthesis of program of inverse interpolation (re: analysis ’49)

Analysis into basic programs: “This analysis can, in principle at least, be car-

ried clear down until the ultimate constituents are the simplest posible pro-

grams [...] Of course, it is a platitude that the practical man would not be

interested in composition techniques for programs of such simplicity, but i

is a common experience in mathematics that one can deepen ones insight

into the most profound and abstract theories by considering trivially simple

examples.”

Synthesis of programs (in general):

arithmetic programs: compiler for arithmetic procedures, i.e., “com-

plete theory for the construction of an arbitrary such program. This

program will not always be the shortest one possible to attain the re-

quired result; but, at least, it will be automatic as soon as certain deci-

sions are made.”

Discrimination programs

Secondary programs

CHOC09, Amsterdam 34

1950: A program composition technique applied M. Bullynck and L. De Mol

1950: “A program composition technique as applied to in-

verse interpolation”

One example in the new notation

Y → (It(m, i) → I and O2)

It(m, i) = {i : A} → {A + 1 : A} → {A : i} → {m : A} → {A − i : A} → {A < 0}

n! = {1 : A} → {A : x} → {A : i} → Y → It(n, i)

Y = {ix : x}

CHOC09, Amsterdam 35

Discussion M. Bullynck and L. De Mol

Discussion

CHOC09, Amsterdam 36

Discussion M. Bullynck and L. De Mol

Discussion

“The objective was to create a programming technique based on a systematic

logical theory. Such a theory has the same advantages here that it has in

other fields of human endeavor. Toward that objective a beginning has been

made.” (Curry,1950)

“This automatic proramming is anticipated by the author (Patterson in a review

on Curry, 1957)

“Now it is an important fact that the actual construction of a program

indicated in the above symbolism is a mechanical process. It can be carried

out, at least in principle, by non-technical personnel or by a machine. The

main machine itself may also be used for that purpose.”

“When these processes [of composition] are combined with one another, there

will be evidently be equivalences among the combinations. There will thus

be a calculus of program composition. This calculus will resembles, in many

respects the ordinary calculus of logic. It can be shown, for example, that

the operation “→” is associative. But the exact nature of the calculus has

not, so far as I know, been worked out.”

⇒ Work in progress!

CHOC09, Amsterdam 37

