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Abstract

In this paper I present a procedure that generates adaptive proofs for finally derivable adaptive logic

consequences. The proof procedure for the inconsistency adaptive logic CLuNr is already presented
in [10]. In this paper the procedure for CLuNm is presented and the results for both logics are

generalized to all adaptive logics, on the presupposition that there exists a total proof procedure for

lower limit logic derivability of the adaptive logic and a finite set of problem relevant abnormalities.
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1 Introduction

In this paper I present a procedure that generates adaptive logic proofs for finally
derivable adaptive logic consequences. Let a proof procedure for an adaptive logic be
a procedure that, if it terminates, returns an adaptive logic proof for some formula G
from a premise set Γ whenever G is a finally derivable consequence of Γ, and returns
a negative answer whenever G is not a finally derivable consequence of Γ. A proof
procedure is partial iff it does not always terminate and total iff it does.

Adaptive logics are logics that formalize defeasible reasoning forms. The first adap-
tive logics were inconsistency adaptive logics (see [4]). These logics can cope with
inconsistent theories by localizing the inconsistencies in the theories. They interpret
these theories as consistently as possible. Nowadays, adaptive logic forms a wide re-
search area, in which logical solutions are developed for different common sense and
scientific reasoning notions: induction (see [9], [11], and [13]), abduction (see [33]
and [34]), compatibility (see [14] and [31]), causality (see [23] and [42]), prioritized
reasoning (see [51], [47], [46] and [52]), relevance ([6]), ambiguity (see [48], [44], and
[45]), vagueness (see [43], [50], and [41]), and diagnosis (see [15]). They all share the
same metatheoretical structure and hence they can be examined in general.

There are logical solutions for defeasible reasoning forms outside of the adaptive
logic framework, but it has been shown for a number of these logics and logical
mechanisms that they can be characterized by an adaptive logic. Moreover, this
characterization led for several systems to an interesting strengthening or variant.
Among the finished results are [5], [7], [17] and [52] for the consequence relations
from [38], [18] and [19]; [29] and [28] for [53]; [34] for [1]; [32] for the notion of
empirical progress from [26]; [30] for [35] and [21]; [22] and [3] for default reasoning
and circumscription respectively (see [2], [20] and [27]).

Adaptive logics have a typical dynamic proof theory. Lines of adaptive proofs are
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conditional. As the proof continues, some lines may get marked, denoting that the
formula of this line is not derived at that stage of the proof. Markings may come and
go. These dynamic proofs explicate the actual defeasible reasoning processes humans
use in the dynamic reasoning contexts for which adaptive logics are developed.

For most interesting adaptive logics, there is also a stable derivability notion. From
some (possibly infinite1) stage of the proof on, some lines are unmarked and will not
be marked in any possible extension of the proof. Adaptive logicians call the formulas
that are derived on these stably unmarked lines the finally derived consequences. They
constitute a consequence relation called final derivability. This stable consequence
relation is the actual adaptive logic consequence relation.

The final derivability consequence set is equivalent to the following semantic notion:
the set of all formulas that are true in all models of the premises that are as normal
as possible. How the ambiguous expression “as normal as possible” is to be specified
depends on the abnormalities and the strategy of the specific logic. An inconsistency
adaptive logic with Minimal Abnormality strategy for example selects the models of
premises that verify as little (in the set theoretic sense) inconsistencies as possible
(the abnormalities are in this case the inconsistencies). The consequence set is the
set of all formulas that are true in all the selected models.

There is no positive test for adaptive logics in general2. Hence, there cannot be a
generally applicable algorithm that constructs adaptive proofs in a finite time in such
a way that some formula is derived if and only if it is finally derivable. This does not
exclude the decidability of a very wide range of concrete adaptive logic problems3. So,
even in these complex problem solving contexts, creating proof procedures is possible
and useful. Evidently, it is sensible to try to solve a decidable problem, but it makes
also sense to try to solve undecidable problems. The reasoner may not be aware
of the undecidability when he starts the process or he may prefer an uncertain but
defendable solution above a purely random guess.

Moreover, it is important to develop procedural approaches to adaptive logic be-
cause adaptive logics are devised as useful tools to understand creative human rea-
soning processes and not as abstract standards of deduction. Adaptive logic proofs
form explications of actual reasoning processes rather than demonstrations of the cor-
rectness of statements. The explicated reasoning processes are often parts of concrete
problem solving processes. Procedures show how an agent is able to solve his problem
in some adaptive logic context and which heuristics he can apply when he is solving
the problem. The procedure I present in this paper, shows how the agent can be
rationally critical towards his own defeasible derivations, and hence, how he is able
to gain certainty about the final derivability of interesting statements.

The procedure I will present uses an existing system for goal directed reasoning
(elsewhere also called prospective dynamics with prospective proofs). It is described
in [37] and [16] and is already developed for several different logics. It can be seen as

1There is an alternative but equivalent notion, that eliminates the fact that some formulas are only finally derived

at infinite stages (see next section).
2In [49] it is shown that usual Minimal Abnormality predicative adaptive logics are Π1

1-complex and in [25] that

usual Reliability predicative adaptive logics are Σ0
3-complex. Usual propositional adaptive logics turn out to be as

complex if one considers infinite premise sets. Usual adaptive logics are adaptive logics in standard format with a

lower limit logic that falls within the same complexity class as classical logic, and that has the ability to express

abnormalities and classical disjunctions in the object language.
3An adaptive logic problem is a question whether some G is a finally derivable consequence of some Γ. Solving

a probem is answering that question.
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a mix of a tableaux method (it forms a decision method for the consequence relation)
and a proof theory (it defines a special type of proofs). It is defined by the so called
goal directed proof format and a goal directed heuristics. A line of a goad directed
proof contains, apart from a normal formula, a condition element. This is a set of
formulas such that the formula of the line is a consequence of this set plus the set
of premises. The heuristics guides the reasoner to the derivation of the goal formula
on an empty condition by starting with a line that contains this goal (with the goal
itself as condition), allowing only for the analysis of formulas, and only introducing
premises and analyzing formulas when this is possibly useful.

It is important to stress that the procedure I will give, does not only generate a
yes/no answer to a problem of the form Γ `AL A, but also gives a proof for this result
and this proof can be seen as the formalization of a reasoning process towards the goal.
In such a way the human reasoner can reconstruct the process towards the solution
of mechanically solved problems and obtain insight in the problem and its solution.
People get to know why the answer is yes or no, rather than only finding out that the
answer is yes or no. When the answer is negative obviously no successful proof can
be returned. Still, also in this case all the failed reasoning steps and reasoning steps
towards the observation of their failure may turn out to be very useful. The human
reasoner is able to obtain insight in the negative conclusion.

The paper is conceived in a modular way. Although I only present a full-blown
proof procedure for two actual logics, the propositional fragments of CLuNm and
CLuNr, my aim is more general. There is a standard format for adaptive logics,
which serves as a generic means to build adaptive logics on lower limit logics. For
many important lower limit logics, it is not difficult to construct a proof procedure.
In what follows, I will assume that one already has such a procedure. This enables me
to describe the proof procedure in a general way. In order to achieve this, the proof
procedure is divided into 3 modules: the proof procedure for the lower limit logic, the
one for conditional derivability, and finally the one for the final derivability relation
of the adaptive logic. Once one has a proof procedure for lower limit logic derivability
and one for conditional derivability of a concrete adaptive logic, the procedure for
final derivability can be obtained using the general procedure in section 5. Next,
for most of the existing adaptive logics, the conditional derivability procedure is also
easily obtainable from the lower limit logic procedure, based on the same ideas as the
procedure for CLuNm or CLuNr in section 4, or by means of a brute force procedure
when a finite set of relevant abnormalities is isolatable.

The goal directed proofs that result from the procedures are in another proof format
than the regular adaptive logic proofs. Nevertheless, they are easily transformable
into adaptive logic proofs.

In section 2, I give the proof theoretical and semantical characterization of adaptive
logic in standard form, and apply this to obtain the inconsistency adaptive logics
CLuNm and CLuNr. In section 3 a proof procedure for CLuN is presented. In
section 4 and section 5 respectively a proof procedure for conditional derivability
and one for final derivability (both for Minimal Abnormality and for Reliability) are
presented. Finally, in section 6 the correctness of the procedures is demonstrated.
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2 Adaptive logics: standard format, CLuNm and CLuNr

2.1 The standard format of AL

In this section adaptive logics are very briefly presented (see [12] for an overview and
[8] for the philosophical basis). An adaptive logic in standard format is defined as a
triple consisting of:

• a LLL: a monotonic, reflexive, transitive and compact extension of classical logic
(CL) which has a characteristic semantics,

• a set of abnormalities: a set of LLL-contingent formulas Ω, characterized by a
(possibly restricted) logical form, and

• a strategy (the most important strategies in AL are ‘Reliability’ and ‘Minimal
Abnormality’).

The standard format demands that the LLL-language, next to its own standard
logical symbols, also encompasses formulas with the standard logical symbols of CL.
They must behave classically, i.e. they should function in a CL-standard manner (e.g.
M � ¬̌A iff M 6� A) and do not need to occur in the conclusion or the premises. In this
paper, I will denote the CL-symbols by means of ¬̌ (negation) and ∨̌ (disjunction).

2.2 The proof theory of AL

The proof theory of an AL consists of a set of inference rules (determined by the LLL
and Ω) and a marking definition (determined by Ω and the chosen strategy). A line
of an annotated AL-proof consists of four elements: (1) a line number i, (2) a formula
A, (3) the name of a rule and the line number of the rule premises, (4) a condition
consisting of a set of abnormalities Θ ⊂ Ω. A stage s of a proof is the subproof that
is completed up to line number s. The inference rules govern the addition of lines.
There are 3 types of rules.

PREM If A ∈ Γ . . . . . .
A ∅

RU If A1, . . . , An `LLL B A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B∨̌Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The classical disjunction of the members of a finite ∆ ⊂ Ω, Dab(∆), is called a Dab-
formula. Dab(∆) is a minimal Dab-formula of stage s iff Dab(∆) is derived at stage
s on the condition ∅ and no Dab(∆′) with ∆′ ⊂ ∆ is derived on the condition ∅. The
most important strategies are Reliability and Minimal Abnormality.
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Definition 2.1
Marking definition for Reliability.
Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived on the condi-
tion ∅ at stage s, Us(Γ) = ∆1 ∪ . . . ∪ ∆n, and ∆ is the condition of line i, line i is
marked at stage s iff ∆ ∩ Us(Γ) 6= ∅.
Definition 2.2
Marking definition for Minimal Abnormality.
Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas derived on the condi-
tion ∅ at stage s, Φ◦s(Γ) is the set of all sets that contain one member of each ∆i,
Φs(Γ) are the ϕ ∈ Φ◦s(Γ) that are not proper supersets of a ϕ′ ∈ Φ◦s(Γ), A is the
formula and ∆ is the condition of line i, line i is marked at stage s iff

(i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩∆ = ∅, or

(ii) for some ϕ ∈ Φs(Γ), there is no line on which A is derived on a condition Θ for
which ϕ ∩Θ = ∅.

Two types of derivability are defined in AL. A formula A is derived at a stage iff A
is derived on an unmarked line at the stage. A formula A is finally derived at stage s
iff A is derived on an unmarked line i at stage s and line i will not be marked in any
extension of the stage. Or alternatively, a formula is finally derived iff it is derived
on an unmarked line and any extension of the proof in which the line is marked, can
be further extended to a proof in which the line is unmarked. This latter definition
is equivalent to the former, but has the advantage that any finally derivable formula
is finally derived at some finite stage of a proof. The finally derivable consequences
of a premise set are independent of the stage and constitute the consequence sets for
ALr and ALm: CnALr(Γ), respectively CnALm(Γ) and their consequence relations
`ALr , respectively `ALm .

2.3 The semantics of AL

Dab(∆) is a minimal Dab-consequence of Γ iff Γ �LLL Dab(∆) and, for all ∆′ ⊂ ∆,
Γ 2LLL Dab(∆′). Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences
of Γ, let U(Γ) =df ∆1∪∆2∪ . . .. Finally, where M is a LLL-model, Ab(M) =df {A ∈
Ω |M |= A}.
Definition 2.3
Reliable model and the corresponding semantical consequence relation �ALr .
A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ). Γ �ALr A iff all reliable models
of Γ verify A.

Definition 2.4
Minimally abnormal model and the corresponding semantical consequence relation
�ALm .
A LLL-model M of Γ is minimally abnormal iff there is no LLL-model M ′ of Γ for
which Ab(M ′) ⊂ Ab(M). Γ �ALm A iff all minimally abnormal models of Γ verify A.

2.4 CLuNm and CLuNr

Let us consider the inconsistency-adaptive logics CLuNm and CLuNr (elsewhere
these names denote predicative logics, but here I only use their propositional frag-
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ments). The lower limit logic is the propositional fragment of the paraconsistent logic
CLuN. CLuN is the full positive fragment of CL with simple gluts for the nega-
tion connective. For any formula A, both A and ¬A may be true in CLuN (yet
they cannot be both false). The set of abnormalities is Ω = {A ∧ ¬A | A ∈ W},
with W the set of well formed formulas. The strategies are respectively Minimal Ab-
normality (resulting in the adaptive logic CLuNm) and Reliability (resulting in the
adaptive logic CLuNr). If the strategy of the logic does not matter, I will refer to it
as ACLuN. In what follows !A will abbreviate A ∧ ¬A. Because the negation is the
only non-classical symbol in CLuN, there is no need to add formulas with symbols
∨̌ and ∧̌ to the language, as they would be equivalent to respectively ∨ and ∧.

2.5 Generic notation

In this paper I give a generally applicable procedure. In order to realize this I use a
minimal amount of properties of the adaptive logics under consideration. Let LLL
denote some LLL-ready logic (cf. the properties of the standard format) with a dis-
junction ∨ and a conjunction ∧ with standard behaviour (M �LLL A∨B iff M �LLL A
or M �LLL B and M �LLL A ∧ B iff M �LLL A and M �LLL B). Let ALm and
ALr denote adaptive logics that use the Minimal Abnormality strategy respectively
the Reliability strategy and have some LLL with the mentioned connectives. If the
strategy does not matter I will simply refer to it as AL.

3 A (partial) proof procedure for the lower limit logic CLuN

In this section, a proof procedure for CLuN is presented. The procedure generates a
special kind of proofs: goal directed proofs. Prospective proofs for CLuN have lines
that contain, apart from the derived formula, a set of formulas called the D-condition:

i [∆]A . . . . . .

A is the formula of the line and ∆ the D-condition. I also add an adaptive condition
Θ called the A-condition. For CLuN this element can remain empty and is thus
obviously useless. It is added in behalf of the procedures for conditional and final
derivability presented in the following sections. These procedures use the lower limit
logic rules as well. I add the useless condition already here, to avoid having to list
the CLuN-rules again, where the extra condition is necessary. With this adjustment,
the lines contain two conditions:

i [∆]A . . . . . . Θ

Referring to this line, I will say that AΘ is derived on line i on D-condition ∆ or that
[∆]AΘ is derived on line i. If ∆ is empty, [∅] is omitted.

It is not of my concern to give an efficient procedure (a really efficient procedures
requires heuristic information with a non formal character). The mere existence of a
procedure suffices. The procedure is defined by a set of ordered rules, a few restrictions
on the application of the rules, and the command “apply to the first line of the proof
to which some rule may be applied, the first permitted rule”. Although the logics
under consideration are decidable, I speak of a partial proof procedure to include the
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case of infinite premises. In this case one will need a procedure that produces for each
possible target A a list of all premises of which A is a positive part4. This is always
possible when the premise set is recursive.

There are several types of rules. The formula analyzing rules and the condition
analyzing rules for CLuN may be summarized by distinguishing a-formulas from b-
formulas (varying on a theme from [40]). To each formula two other formulas are
assigned according to the following table:

a a1 a2 b b1 b2

A ∧B A B ¬̌(A ∧B) ∗A ∗B
A ≡ B A ⊃ B B ⊃ A ¬̌(A ≡ B) ¬̌(A ⊃ B) ¬̌(B ⊃ A)
¬̌(A ∨B) ∗A ∗B A ∨B A B
¬̌(A ⊃ B) A ∗B A ⊃ B ∗A B
¬̌¬̌A A A

The formula analyzing rules for a-formulas and b-formulas are respectively (the ‡
in the name of the rule stands for the logical symbols in the a- or b-formula that are
analyzed, for example when a is ¬̌(A ∨B), ‡ is ¬̌∨):5

‡E [∆] aΘ

[∆] a1
Θ [∆] a2

Θ ‡E [∆] bΘ

[∆ ∪ {∗b2}] b1
Θ [∆ ∪ {∗b1}] b2

Θ

¬̌¬E
[∆] ¬̌¬AΘ

[∆]AΘ

The condition analysing rules for a-formulas and b-formulas are respectively:

C‡E [∆ ∪ {a}]AΘ

[∆ ∪ {a1, a2}]AΘ C‡E [∆ ∪ {b}]AΘ

[∆ ∪ {b1}]AΘ [∆ ∪ {b2}]AΘ

C¬E
[∆ ∪ {¬B}]AΘ

[∆ ∪ {∗B}]AΘ

The other rules are as follows:

Prem If A ∈ Γ, introduce A∅.

Goal Introduce [G]G∅.

EFQ If A ∈ Γ, introduce [∗A]G∅.

Trans

[∆ ∪ {B}]AΘ

[∆′]BΘ′

[∆ ∪∆′]AΘ∪Θ′
EM

[∆ ∪ {B}]AΘ

[∆′ ∪ {¬̌B}]AΘ′

[∆ ∪∆′]AΘ∪Θ′

EM0
[∆ ∪ {¬̌A}]AΘ

[∆]AΘ IC
[∆] Dab(Λ ∪ Λ′)

Θ∪Λ′

[∆] Dab(Λ ∪ Λ′)
Θ

4for the definition of the terms positive part and target, see below
5The rule to the left actually summarizes two rules: both [∆] a1

Θ and [∆] a2
Θ may be derived from [∆] aΘ;

similarly for the rule to the right and for the condition analyzing rule to the right below.
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For the restrictions on applications of the rules, the positive part relation is needed.
That A is a positive part of another formula is recursively defined by the following
clauses:6

1. pp(A,A).

2. pp(A, ¬̌¬A).

3. pp(∗A,¬A).

4. If pp(A, a1) or pp(A, a2), then pp(A, a).

5. If pp(A, b1) or pp(A, b2), then pp(A, b).

6. If pp(A,B) and pp(B,C), then pp(A,C).

Next, some line marking is needed. A-marking is the adaptive logic marking. For
the current procedure no A-marks are needed yet. D-marking (marking in view of
D-conditions) is governed by the following definition.

Definition 3.1
Where [∆]AΘ is derived at line i, line i is D-marked iff one of the following conditions
is fulfilled:

1. line i is not an application of a goal rule and A ∈ ∆,

2. for some ∆′ ⊂ ∆ and Θ′ ⊆ Θ, [∆′]AΘ′
occurs in the proof,

3. no application of EFQ occurs at a line preceding i and B, ¬̌B ∈ ∆ for some B,

4. no application of EFQ occurs at a line preceding i and, for some B ∈ ∆, ¬̌B∅
occurs in the proof.

The members of the D-conditions of unmarked lines of the proof are called the
targets of the proof.

The procedure GPCLuN(Γ, G). The above rules are applied with premise set Γ
and goal G under the conditions below (just apply the first permitted rule to the
first line to which this rule is applicable), until the line G∅ is added to the proof (the
procedure concludes that Γ `CLuN G) or no more lines can be added. In the last case
the procedure concludes that Γ 0CLuN G.

1. The proofs start by applying the goal rule.

2. Premises are introduced and formulas analyzed iff a target is a positive part of
the formula of the added line.

3. Condition analyzing rules are only applied to targets.

4. A formula analyzing rule is never applied to a formula that does not have a premise
in its path.

5. Once [∆]AΘ occurs in the proof, one never adds another line with that same for-
mula, D-condition and A-condition (even if the justification of the line is different).

6. Finally, EFQ is only applied if no other rules are applicable.7

6Unlike what is done in [39] and [16], I do not introduce negative parts because this complicates the predicative

case. Clause 6 is only required in view of clauses 2 and 3.
7It can be shown that, if ¬̌ does not occur in the premises then the premises cannot be ¬̌-inconsistent and hence

the rule EFQ is useless. I nevertheless include it here for the sake of completeness.
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Example8. Consider the problem Γ1 `CLuN s with Γ1 = {¬p ∨ r, p ∧ (¬q ⊃ (r ∧ t)),
¬̌q ∨ r, ¬̌r ∨ s}.

1 [s] s Goal ∅

To start with, the only target is the goal s itself. s is a positive part of premise ¬̌r∨s.
So, this premise is introduced and analyzed in such a way that s becomes the formula
element.

2 ¬̌r ∨ s Prem ∅
3 [r]s 2 ∨E ∅

r is added to the targets and r is a positive part of ¬p∨ r. This premise is introduced
and analyzed. This makes ¬̌¬p a new target. This target is not a positive part of any
formula and can’t be analyzed either. This is a dead end. But, r is also a positive
part of ¬̌q ∨ r. Analyzing this premise results in the new target q.

4 ¬p ∨ r Prem ∅
5 [¬̌¬p]r 4 ∨E ∅
6 ¬̌q ∨ r Prem ∅
7 [q]r 6 ∨E ∅

q is a positive part of p∧(¬q ⊃ (r∧t)) (this may be clarifying: pp(¬q ⊃ (r∧t), p∧(¬q ⊃
(r ∧ t))), pp(¬̌¬q,¬q ⊃ (r ∧ t)), and finally pp(q, ¬̌¬q)). Therefore the premise
p ∧ (¬q ⊃ (r ∧ t)) is introduced and analyzed (lines 8 to 12). The target q is now the
formula element of a line. This enables the application of the transitivity rule. Now
the negation of r is in the condition for r and so ¬̌r can be omitted, resulting in line
14. The target r is now in the formula element of an unconditional line. Hence, the
goal s is derived after one more application of Trans.

8 p ∧ (¬q ⊃ (r ∧ t)) Prem ∅
9 ¬q ⊃ (r ∧ t) 2 ∧E ∅
10 [¬̌(r ∧ t)]¬̌¬q 9 ⊃E ∅
11 [¬̌r]¬̌¬q 10 C¬̌∧E ∅
12 [¬̌r]q 11 ¬̌¬E ∅
13 [¬̌r]r 12, 7 Trans ∅
14 r 13 EM0 ∅
15 s 14, 3 Trans ∅

In this example proof, no marks were necessary.

4 Two (partial) proof procedures for conditional derivability

A proof procedure for conditional derivability is a procedure that, given a premise
set Γ, a candidate conclusion G and a set Υ of finite sets of abnormalities, returns (if
possible) a proof from Γ with G∆ derived on the last line such that for every ∆′ ⊆ ∆,
∆′ 6∈ Υ.

8In the examples I follow a more efficient heuristics than simply applying the first permitted rule to the first

line. This only done to save space.
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Definition 4.1
MinConAL(Γ, A) is the set of all sets of abnormalities ∆ such that Γ `LLL A∨̌Dab(∆)
and if ∆ ∈ MinConAL(Γ, A) then there is no ∆′ such that ∆ ⊂ ∆′ and ∆′ ∈
MinConAL(Γ, A).

If one runs a procedure like this again after every positive answer, starting of with
an empty Υ and adding the resulting ∆ at the end of every procedure to Υ until the
procedure stops with a positive answer, one will obtain a superset of MinConAL(Γ, A)
(if this set is finite).

4.1 A brute force proof procedure

There is an evident way to generate proofs for conditional derivability if one has
a proof procedure for the lower limit logic and a method to select a finite set Ω′ of
abnormalities relevant to the problem. Abnormalities are called relevant to a problem
Γ `AL G iff they occur in MinConAL(Γ, G). If this set is finite, the set Θ = P(Ω′) is
finite as well. The set MinConAL(Γ, A) is a subset of this set Θ. Suppose this Ω′ can
be determined before starting the procedure. Note that this supposition is often true.
Relevant abnormalities are in a lot of cases only constructed with primitive formulas
that do occur in the premises or the candidate conclusion. If there are only finitely
many premises, there are only finitely many subformulas of premises and candidate
conclusions. Hence, there are only finitely many relevant abnormalities.

The procedure EPCAL(Γ, G,Υ). Let Ω′ = R(Γ, G) denote the finite set of all
relevant abnormalities for Γ `AL G and let Θ be the finite set P(Ω′). For every
∆ ∈ Θ − {∆′| there is a ∆′′ ∈ Υ, such that ∆′′ ⊂ ∆′}, run the proof procedure for
Γ `CLuN G ∨Dab(∆), until a proof is found. If a proof is found for a certain ∆, add
the line G∆ to the proof and stop the procedure. If all ∆ ∈ Θ are finished and no
proof is found, the procedure returns no proof and a negative answer.

4.2 A goal directed proof procedure for ACLuN

A finite set Ω′ is not always findable in any logic, for any Γ and any G. For propo-
sitional CLuN, for example, a set Θ is easily constructible whenever Γ is finite, but
when Γ is infinite, it is possible that there is no such finite Θ. Moreover, the above
procedure is a brute force method and is therefore terribly inefficient. In this subsec-
tion I present a more efficient procedure for the ACLuN, that does not presuppose
a set of relevant abnormalities (or in other words: it constructs such a set within the
process in an intelligent way).

The procedure for conditional derivability for ACLuN generates goal directed
proofs and is defined from a set of rules and a recursive positive part function. All
the rules from GPCLuN are valid here, but two more rules are necessary. A formula
analyzing rule and a condition analyzing rule:

¬E
[∆]¬AΘ

[∆] ∗AΘ∪{A∧¬A}

C¬̌¬E
[∆ ∪ {¬̌¬B}]AΘ

[∆ ∪ {B}]AΘ∪{B∧¬B}
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A-marking (marking in view of the A-conditions) is not yet relevant for conditional
derivability. D-marking (marking in view of D-conditions) is governed by the following
definition.

Definition 4.2
Where [∆]AΘ is derived at line i, line i is D-marked iff one of the following conditions
is fulfilled:

1. line i is not an application of a goal rule and A ∈ ∆,

2. for some ∆′ ⊂ ∆ and Θ′ ⊆ Θ, [∆′]AΘ′
occurs in the proof,

3. no application of EFQ occurs at a line preceding i and B, ¬̌B ∈ ∆ for some B,

4. no application of EFQ occurs at a line preceding i and, for some B ∈ ∆, ¬̌B∅
occurs in the proof.

The members of the D-conditions of unmarked lines of the proof are called the
targets of the proof.

The procedure GPCACLuN(Γ, G,Υ). The rules from the procedure GPCLuN to-
gether with the new rules ¬E and C¬̌¬E are applied under the following conditions:

1. The proofs start by applying the goal rule.

2. No rules are applied that result in a line that has a formula element G and an
A-condition ∆, such that it is a superset of some element in Υ.

3. Premises are introduced and formulas analyzed iff a target is a positive part of
the formula of the added line.

4. Condition analyzing rules are only applied to targets.

5. A formula analyzing rule is never applied to a formula that does not have a premise
in its path.

6. Once [∆]AΘ occurs in the proof, one never adds another line with that same for-
mula, D-condition and A-condition (even if the justification of the line is different).

7. Finally, EFQ is only applied if no other rules are possible anymore.9

Example. For an example, see the example for the proof procedure for final derivabil-
ity. This procedure makes extensively use of the conditional derivability procedure.

5 (Partial) proof procedures for final derivability

The two proof procedures for final derivability (one for the Minimal Abnormality
logics and one for the Reliability logics) make use of the proof procedure for the lower
limit logic and the one for conditional derivability. They do not generate new proofs,
but rather combine the proofs that result from different applications of the other
two proof procedures, add markings, and (in the case of Minimal Abnormality) add
some lines. These lines are mere combinations of a number of lines that were the
conclusions of applications of the other procedures. The proof format is obviously the
same as in the aforementioned procedures. For adaptive logics that only differ with

9It can be shown that, if ¬̌ does not occur in the premises, then the premises cannot be ¬̌-inconsistent and hence

phase 1B is useless. I nevertheless include it here for the sake of completeness.
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respect to the strategy, the same lower limit logic- and conditional derivability proof
procedure is used. The procedure I will give is universal; it works for all adaptive
logics in standard format with a classically behaving conjunction and disjunction.

In contrast to the aforementioned procedures, this procedure will A-mark lines.
Remark that these A-marks are not the same as the marks generated by the adaptive
logics marking definition. Nevertheless, they are very similar to the adaptive logic
marks, and they have the same function. To generate adaptive proofs from the goal
directed proofs generated by this procedure, replace every line

i [∆]A j, k R Θ

by a line

i ¬̌
∧

∆ ∨A j, k R’ Θ

where R′ = R if R = Prem and R′ = RC if R = C¬̌¬E or R = ¬E (in case of
proofs for ACLuN) or if R is a similar rule for other logics, otherwise R′ = RU.
The classical negation (¬̌) is added to a logic to become a possible lower limit logic
for an adaptive logic, but does not need to occur in the premises or the conclusion
(see subsection 2.1). Remove all A-marks and D-marks and apply the adaptive logic’s
marking definition to add the right adaptive logic marks.

5.1 Minimal Abnormality

Phase 1.
(1.1) Subphase 1A. To start, let Υ = ∅.
(1.2) Run the conditional derivability procedure with premise set Γ, candidate con-

clusion G and set of conditions Υ. Let Θ be the A-condition of the last line of
the resulting proof (if there is any). Let i be the line number of this line. There
are three possibilities:
- If Θ = ∅, then G∅ is derived. The procedure stops and Γ `ALm G.
- If Θ 6= ∅, add Θ to Υ. Add the line

j G ∨
∧
{Dab(∆)|∆ ∈ Υ} i RU ∅

to the proof. the procedure moves to phase 2 (go to (2.1)) and later returns
to phase 1. There are two possibilities:
• line j is not A-marked. The procedure stops and Γ `ALm G.
• line j is A-marked. Go on, back to (1.2).

- The conditional derivability procedure did not return a result: the procedure
terminates and GΘ is not derived at an unmarked line for any Θ: move to
subphase 1B (go to (1.3)).

(1.3) Subphase 1B. Aim: to derive G∅ by applications of EFQ as well as well of the
other CLuN-rules.

Phase 2.
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(2.1) G ∨
∧
{Dab(∆)|∆ ∈ Υ} was derived in phase 1, say at line j. To start, let

Υ′ = ∅.
(2.2) Run the conditional derivability procedure with premise set Γ, candidate con-

clusion
∧
{Dab(∆)|∆ ∈ Υ} and set of conditions Υ′. Let Λ be the A-condition

of the last line of the resulting proof, if there is any. Let i be the line number
of this line. There are three possibilities:
- If Λ = ∅, then

∧
{Dab(∆)|∆ ∈ Υ}∅ is derived. Line j is A-marked, the

procedure returns to phase 1.
- If Λ 6= ∅, then

∧
{Dab(∆)|∆ ∈ Υ}Λ is derived, say at line k. Add Λ to Υ′.

The procedure moves to phase 3 and later returns to phase 2. There are two
possibilities:
• line k is not A-marked: line j is A-marked. The procedure returns to

phase 1.
• line k is A-marked: go on, back to (2.2).

- The conditional derivability procedure did not return a result: phase 2 ter-
minates and

∧
{Dab(∆)|∆ ∈ Υ}Λ is not derived at an unmarked line for any

Λ: line j is not A-marked and the procedure returns to phase 1.

Phase 3.
(3.1) G∨

∧
{Dab(∆)|∆ ∈ Υ} was derived in phase 1, say at line j, and

∧
{Dab(∆)|∆ ∈

Υ}Λ was derived in phase 2 for some Λ, say at line k. Phase 3 starts by applying
the LLL-proof procedure with premise set Γ and candidate conclusion Dab(Λ).
Either the procedures returns a proof for Dab(Λ) or it returns nothing:
- Dab(Λ) is derived. Line k is A-marked, the procedure returns to phase 2.
- Dab(Λ)∅ is not derived: line k is not A-marked. The procedure returns to

phase 2.

Example10. Consider the problem Γ2 `CLuNm s with Γ2 =!r, s∨!p∨!q, s∨!p∨!r, s∨!q∨!r.

1.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G = s and Υ = ∅. This results in a positive answer and the
following proof:
1 [s] s Goal ∅
2 s ∨ (p ∧ ¬p) ∨ (q ∧ ¬q) Prem ∅
3 [¬̌((p ∧ ¬p) ∨ (q ∧ ¬q))]s 2 ∨E ∅
4 [¬̌(p ∧ ¬p), ¬̌(q ∧ ¬q)]s 3 C∨E ∅
5 [¬̌p, ¬̌q]s 4 C¬̌∧E ∅
6 [¬̌p, ¬̌¬q]s 4 C¬̌∧E ∅
7 [¬̌¬p, ¬̌q]s 4 C¬̌∧E ∅
8 [¬̌¬p, ¬̌¬q]s 4 C¬̌∧E ∅
9 [p, ¬̌q]s 7 C¬̌¬E {!p}
10 [¬̌q]s 5,9 EM {!p}
11 [¬̌p, q]s 6 C¬̌¬E {!q}
12 [¬̌p]s 10,11 EM {!p, !q}
13 [p, q]s 8 C¬̌∧E {!p, !q}

10In the examples in this section, evident lines of the proofs generated by the procedures are omitted. The line

after the omitted block gets no justification and line number n + 1, where n is the line number of the line before

the block.
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14 [q]s 11,13 EM {!p, !q}
15 s 10,14 EM {!p, !q}

The following line is added:
16 s∨!p∨!q ∅

1.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G =!p∨!q and Υ = ∅. This results in a positive answer and
the following proof:
17 [!p∨!q] !p∨!q Goal ∅
18 !p∨!q ∨ (r ∧ ¬r) Prem ∅
19 [¬̌(r ∧ ¬r)]!p∨!q 18 ∨E ∅
20 [¬̌r]!p∨!q 19 C¬̌∧E ∅
21 [¬̌¬r]!p∨!q 19 C¬̌∧E ∅
22 [r]!p∨!q 21 C¬̌¬E {!r}
23 !p∨!q 20,22 EM {!r}

1.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ2, G) is started with
goal G =!r. This results in a negative answer. Line 16 is A-marked.

2.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G = s and Υ = {{!p, !q}}. This results in a positive answer
and a proof with the following last line:
24 s EM {!p, !r}

The following line is added:
25 s ∨ ((!p∨!q) ∧ (!p∨!r)) ∅

2.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G = (!p∨!q) ∧ (!p∨!r) and Υ = ∅. This results in a positive
answer and a proof with following last line:
26 (!p∨!q) ∧ (!p∨!r) 2 ∨E {!q, !r}

2.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ2, G) is started with
goal G =!q∨!r. This results in a negative answer. Line 25 is A-marked.

3.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G = s and Υ = {{!p, !q}, {!p, !r}}. This results in a positive
answer and a proof with the following last line:
27 s {!q, !r}

The following line is added:
28 s ∨ ((!p∨!q) ∧ (!p∨!r) ∧ (!q∨!r)) ∅

3.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is
started with goal G = (!p∨!q) ∧ (!p∨!r) ∧ (!q∨!r) and Υ = ∅. This results in a
positive answer and a proof with following last line:
29 (!p∨!q) ∧ (!p∨!r) ∧ (!q∨!r) {!p, !q, !r}
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3.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ2, G) is started with
goal G =!p∨!q∨!r. This results in a positive answer and a proof with following
last line:
30 !p∨!q∨!r ∅

Line 29 is A-marked.
3.2b Phase 2. The procedure for conditional derivability GPCACLuN(Γ2, G,Υ) is

started with goal G = (!p∨!q) ∧ (!p∨!r) ∧ (!q∨!r) and Υ = {{!p, !q, !r}}. This
results in a negative answer. Phase 2 terminates and line 28 is not A-marked.
Γ2 `CLuNm s.

5.2 Reliability

Phase 1.
(1.1) Subphase 1A. To start, let Υ = ∅.
(1.2) Run the conditional derivability procedure with premise set Γ, candidate con-

clusion G and set of conditions Υ. Let Θ be the A-condition of the last line of
the resulting proof (if there is any). Let i be the line number of this line. There
are three possibilities:
- If Θ = ∅, then G∅ is derived. The procedure stops and Γ `ALr G.
- If Θ 6= ∅, add Θ to Υ. The procedure moves to phase 2 (go to (2.1)) and later

returns to phase 1. There are two possibilities:
• line j is not A-marked. The procedure stops and Γ `ALr G.
• line j is A-marked. Go on, back to (1.2).

- The conditional derivability procedure did not return a result: the procedure
terminates and GΘ is not derived at an unmarked line for any Θ: move to
subphase 1B (go to (1.3)).

(1.3) Subphase 1B. Aim: to derive G∅ by applications of EFQ as well as well of the
other LLL-rules.

Phase 2.
(2.1) GΘ was derived in phase 1, say at line j. To start, let Υ′ = ∅. Repeat the

following instructions.
(2.2) Run the conditional derivability procedure with premise set Γ, candidate con-

clusion Dab(Θ) and set of conditions Υ′. Let Λ be the A-condition of the last
line of the resulting proof, if there is any. Let i be the line number of this line.
There are three possibilities:
- If Λ = ∅, then Dab(Θ)∅ is derived. Line j is A-marked, the procedure returns

to phase 1.
- If Λ 6= ∅, then Dab(Θ)Λ is derived, say at line k. Add Λ to Υ′. The procedure

moves to phase 3 and later returns to phase 2. There are two possibili-
ties:
• line k is not A-marked: line j is A-marked. The procedure returns to

phase 1.
• line k is A-marked: go on, back to (2.2).

- The conditional derivability procedure did not return a result: phase 2 ter-
minates and Dab(Θ)Λ is not derived at an unmarked line for any Λ: line j is
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not A-marked and the procedure returns to phase 1.

Phase 3.
(3.1) GΘ was derived in phase 1, say at line j, and Dab(Θ)Λ was derived in phase 2

for some Λ, say at line k. Phase 3 starts by applying the LLL-proof procedure
with premise set Γ and candidate conclusion Dab(Λ). Either the procedures
returns a proof for Dab(Λ) or it returns nothing:
- Dab(Λ) is derived. Line k is A-marked, the procedure returns to phase 2.
- Dab(Λ)∅ is not derived: line k is not A-marked. The procedure returns to

phase 2.

Example. Consider the problem Γ3 `CLuNr s with {Γ3 =!p∨!q∨!r, s∨!p∨!q, s∨!p∨!r,
s∨!q∨!r, t, s ∨ ¬t}.

1.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G = s and Υ = ∅. This results in a positive answer and a
proof with the following last line:
1 s {!p, !q}

1.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G =!p∨!q and Υ = ∅. This results in a positive answer and a
proof with the following last line:
2 !p∨!q {!r}

1.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ3, G) is started with
goal G =!r. This results in a negative answer. Line 1 is A-marked.

2.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G = s and Υ = {{!p, !q}}. This results in a positive answer
and a proof with the following last line:
3 s {!p, !r}

2.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G =!p∨!r and Υ = ∅. This results in a positive answer and a
proof with following last line:
4 !p∨!r {!q}

2.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ3, G) is started with
goal G =!q. This results in a negative answer. Line 3 is A-marked.

3.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G = s and Υ = {{!p, !q}, {!p, !r}}. This results in a positive
answer and a proof with the following last line:
5 s {!q, !r}

3.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G =!q∨!r and Υ = ∅. This results in a positive answer and a
proof with following last line:
6 !q∨!r {!p}
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3.3 Phase 3. The procedure for CLuN-derivability GPCLuN(Γ3, G) is started with
goal G =!p. This results in a negative answer. Line 6 is A-marked.

4.1 Phase 1. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G = s and Υ = {{!p, !q}, {!p, !r}, {!q, !r}}. This results in a
positive answer and a proof with the following last line:
7 s {!t}

3.2 Phase 2. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is
started with goal G =!t and Υ = ∅. This results in a positive answer and a
proof with following last line:
8 !t {!p, !q, !r}

3.3 Phase 3. The procedure for CLuN derivability GPCLuN(Γ3, G) is started with
goal G =!p∨!q∨!r. This results in a positive answer and a proof with the fol-
lowing last line:
9 !p∨!q∨!r ∅

Line 8 is A-marked.
3.2b Phase 2. The procedure for conditional derivability GPCACLuN(Γ3, G,Υ) is

started with goal G =!t and Υ = {{!p, !q, !r}}. This results in a negative answer.
Phase 2 terminates and line 7 is not marked. Γ3 `CLuNr s

6 Metatheory

In this section I prove that the procedures in this paper return the expected output.

Theorem 6.1
If Γ is finite, the procedure GPCLuN(Γ, G) terminates. If this procedure terminates,

G∅ is derived on the last line of the generated proof iff Γ `CLuN G.

Proof. The procedure is exactly the same as the procedure in [10], without the
conditional rules C¬̌¬E and ¬E. One can easily check that the (outlined) proofs for
the two following theorems in that paper do not depend on these two rules.

Theorem 2 from [10]. If Γ is finite, every prospective proof for Γ `CLuN A
terminates.

Theorem 3 from [10]. If a prospective proof for Γ `CLuN G stops with G
being derived, then Γ `CLuN G. If a prospective proof for Γ `CLuN G stops
without G being derived, then Γ 0CLuN G.

This proves the theorem.

Theorem 6.2
If a finite Ω′ of Γ `AL G-relevant abnormalities is available, then the procedure
EPCAL(Γ, G,Υ) that uses a total LLL-procedure terminates. If this procedure ter-
minates, GΘ is derived on the last line of the generated proof iff ∆ /∈ Υ, where ∆ ⊆ Θ,
and Γ `LLL G ∨

∨
Θ

Proof. Immediate in view of theorem 6.1 and the Derivability Adjustment Theorem
on adaptive logic (see [12])
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Theorem 6.3
If Γ is finite, the procedure GPCACLuN(Γ, G,Υ) terminates. If this procedure termi-

nates, GΘ is derived on the last line of the generated proof iff ∆ /∈ Υ, for any ∆ ⊆ Θ,
and Γ `CLuN G ∨

∨
Θ

Proof. The procedure for conditional derivability in this paper is equivalent to the
application of the rules in [10]. I use a set Υ of already derived conditions. This
is not present in [10]. Batens did not care for the construction of a conditional
derivability procedure and in his paper all necessary conditions are derived within one
final derivability proof. The D-marking of lines with a condition that is a superset of
the condition of a line with the same formula has the same function as my set Υ. In
view of this remark, the following theorem for Batens’ final derivability procedure is
equivalent to my theorem 6.3.

Theorem 7 from [10]. If Γ `CLuN G ∨ (A1 ∧ ¬A1) ∨ . . . ∨ (An ∧ ¬An) and
Γ 0CLuN ∆ for every ∆ ⊂ {G,A1∧¬A1, . . . , An∧¬An}, then, G{A1∧¬A1,...,An∧¬An}

is derivable in every prospective proof for Γ `ACLuN1 G.

The proof that the final derivability procedure is correct requires more metatheory.
I introduce some new definitions and lemmas on choice sets (the crucial mathematical
object involved in the marking definition for Minimal Abnormality). Let Π(Υ) denote
the set of choice sets of a set of sets of formulas Υ and Πm(Υ) = {π|π ∈ Π(Υ); there
is no π′ ∈ Π(Υ) such that π′ ⊂ π}. Let CΓ(A) denote the set of sets of abnormalities,
such that ∆ ∈ CΓ(A) iff Γ `LLL A ∨Dab(∆)

Lemma 6.4∧
{
∨
A|A ∈ Υ} a`LLL

∨
{
∧
A|A ∈ Π(Υ)} a`LLL

∨
{
∧
A|A ∈ Πm(Υ)} and∨

{
∧
A|A ∈ Υ} a`LLL

∧
{
∨
A|A ∈ Π(Υ)} a`LLL

∧
{
∨
A|A ∈ Πm(Υ)}.

Proof. The proofs (using the truth tables for ∨ and ∧) are easy but a little bit long
winding.

I first show that whenever the procedure for final derivability stops with a positive
answer, the candidate conclusion is indeed a correct conclusion from the premises.
The basic idea behind the procedure is that a consequence G is Minimal Abnormality
finally derivable iff the disjunction of G and some conjunction of Dab-formulas A is
LLL-derivable, and the disjunction of A and a Dab-formula B is only LLL-derivable if
B is LLL-derivable. Remark that this fact does not always hold when the conclusion
is LLL-derivable on infinitely many conditions, because infinite conjunctions are not
allowed in LLL.

Lemma 6.5
When the final derivability procedure for Minimal Abnormality ends phase 2 without
A-marking G, Γ `ALm G

Proof. I will derive an inconsistency from the hypothesis that the procedure ends
phase 2 without A-marking G in phase 2 and Γ 0ALm G. Remark that the set of
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minimal conditions on which G is derivable is finite, otherwise phase 2 would not have
terminated. Formally this comes down to:

There is a Θ ⊆ CΓ(G) such that for all ∆ ⊂ Ω:

if Γ `LLL

∧
{
∨
θ|θ ∈ Θ} ∨Dab(∆), then Γ `LLL Dab(∆). (6.1)

AND (this is obtained by combining definition 2.2 and the first definition of final
derivability)

For some φ ∈ Φ(Γ), there is no θ ∈ CΓ(G) for which φ ∩ θ = ∅. (6.2)

6.2 entails:

For some φ ∈ Φ(Γ), for all θ ∈ CΓ(G): φ ∩ θ 6= ∅. (6.3)

From 6.3 we know that at least one φ must be a superset of at least one choice set of
CΓ(G), or:

For some φ ∈ Φ(Γ) and some π ∈ Π(CΓ(G)): π ⊆ φ. (6.4)

Because of the fact that in view of lemma 6.4
∨
{
∧
φ′|φ′ ∈ Φ(Γ)} is LLL-equivalent

to
∧
{Dab(∆1), . . . ,Dab(∆n)}, where Dab(∆1), . . ., Dab(∆n) are all the minimal Dab-

formulas derivable from Γ, Γ `LLL

∧
φ∨

∨
{
∧
φ′|φ′ ∈ Φ(Γ)−φ}. And hence, because,

in view of 6.4,
∧
π is a consequence of

∧
φ, the following holds11:

For some φ ∈ Φ(Γ) and some π ∈ Π(CΓ(G)):

Γ `LLL

∧
π ∨

∨
{
∧
φ′|φ′ ∈ Φ(Γ)− φ}. (6.5)

Hence:

For some φ ∈ Φ(Γ):

Γ `LLL

∨
{
∧
π|π ∈ Π(CΓ(G))} ∨

∨
{
∧
φ′|φ′ ∈ Φ(Γ)− φ} (6.6)

and with lemma 6.4:

For some φ ∈ Φ(Γ):

Γ `LLL

∧
{
∨
θ|θ ∈ CΓ(G)} ∨

∧
{
∨
φ′|φ′ ∈ Π(Φ(Γ)− φ)}. (6.7)

Since φ is a minimal choice set of {∆1, . . . ,∆n} and ∆1,. . .,∆n are minimal Dab-
consequences of Γ, there is a choice set ∆ of Φ(Γ)−φ, such that Γ 0LLL Dab(∆), 6.7
leads to:

For some φ ∈ Φ(Γ), and some ∆ ∈ Π(Φ(Γ)− φ):

Γ `LLL

∧
{
∨
θ|θ ∈ CΓ(G)} ∨Dab(∆) and Γ 0LLL Dab(∆). (6.8)

11If the set of all minimal Dab-formulas derivable from Γ is infinite, the conjunction of the members of this set

is of course also infinite and thus not a well formed formula. However, the case that is investigated here, is the

case that the procedure has terminated. One can easily proof that the procedure would not have terminated if the

mentioned set would have been infinite.
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But then,

For some finite∆ ⊂ Ω:

Γ `LLL

∧
{
∨
θ|θ ∈ CΓ(G)} ∨Dab(∆) and Γ 0LLL Dab(∆). (6.9)

If, for some formula A, Γ `LLL

∧
{
∨
θ|θ ∈ CΓ(G)} ∨A and Γ 0LLL A then also for

all Θ ⊆ CΓ(G) Γ `LLL

∧
{
∨
θ|θ ∈ Θ} ∨A and Γ 0LLL A

For all Θ ⊆ CΓ(G), there is a ∆ ⊂ Ω:

Γ `LLL

∧
{
∨
θ|θ ∈ Θ} ∨Dab(∆) and Γ 0LLL Dab(∆). (6.10)

This is clearly in contradiction with hypothesis 6.1.

The negative part of theorem 6.7 still needs to be proven: if the final derivability
procedure stops with a negative answer, the candidate conclusion is not a conclusion
of the premises.

Lemma 6.6
When G is A-marked after phase 1 in the final derivability procedure for Minimal
Abnormality, Γ 0ALm G

Proof. Let Υ = 〈∆1, . . . ,∆n〉 be the finite set of all minimal conditions on which
G is derived. Γ `LLL G ∨

∧
{Dab(∆)|∆ ∈ Υ} and Γ `LLL

∧
{Dab(∆)|∆ ∈ Υ} or

(Γ `LLL

∧
{Dab(∆)|∆ ∈ Υ} ∨Dab(Λ) and Γ 0LLL Dab(Λ) for some Λ ⊂ Ω).

In the first case (Γ `LLL

∧
{Dab(∆)|∆ ∈ Υ}), every conditional derivation of Γ,

say on condition Θ, can be marked in view of the derivable formula Dab(Θ), because
Θ must be a superset of a set in Υ and Γ `LLL Dab(∆) for any ∆ ∈ Υ. In the second
case, there is a series of minimal Dab-formulas LLL-derivable from Γ: 〈∆′1, . . .∆′n〉
with ∆′i ⊆ ∆i ∪ Λ and ∆′i 6⊆ Λ (otherwise Γ `LLL Dab(Λ), which was not the case)
for all i ≤ n. So there is a φ ∈ Φ(Γ) such that {A1, . . . , An} ⊆ φ and Ai ∈ ∆i for
all i ≤ n. This set φ will have an element in common with every condition in Υ. All
lines on which G can be derived, will be marked.

Theorem 6.7
If the procedure PAm(Γ, G) procedure terminates, for some Θ1 ⊂ Ω,Θ2 ⊂ Ω, . . . ,
and Θn ⊂ Ω, G ∨

∧
(
∨

Θ1,
∨

Θ2, . . .
∨

Θn) is derived on a line in the generated proof
that is not A-marked iff Γ `ALm G.

Proof. Immediate in view of the two preceding lemmas.

Theorem 6.8
If the procedure PAr(Γ, G) terminates, for some Θ ⊂ Ω, GΘ is derived on a line in
the generated proof that is not A-marked iff Γ `ALr G.

Proof. The procedure results essentially in the same proof as the one in [10]. So
theorem 6.10 is correct in view of the following theorems from [10].

Theorem 4 from [10]. If Γ is finite, every prospective proof for Γ `ACLuN1 G
terminates.
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Theorem 8 from [10]. For all finite Γ and for all G, the procedure forms a
decision method for Γ `ACLuN1 G.

Theorem 6.9
If total procedures are available for respectively lower limit logic and conditional deriv-
ability of an adaptive logic AL, and MinConAL(Γ, G) is finite, then the procedures
PAr(Γ, G) and PAm(Γ, G) that use these procedures are total.

Theorem 6.10
If Γ is finite, then the procedures PAr(Γ, G) and PAm(Γ, G) for the positive fragments
of respectively CLuNr and CLuNm are total.

7 Conclusion

In this paper I have presented a proof procedure for the actual adaptive consequence
relation: final derivability. I have done this for CLuNm and CLuNr, and thanks to
a modular approach, these results are immediately generalizable to all adaptive logics
with a lower limit logic with a classically behaving disjunction and conjunction and
for which a proof procedure for conditional derivability is devisable.

The procedure for Minimal Abnormality puts the Minimal Abnormality strategy
in a different light. The strategy was often seen as much more complicated then the
Reliability strategy. To people who are not very familiar with adaptive logics, the
marking definition seemed rather abstract. The procedure I have presented shows that
there is not such a big difference between the two strategies, and that the resulting
Minimal Abnormality proofs are not more complicated or unrealistic than the Relia-
bility proofs. The Minimal Abnormality strategy is an elegant formal tool, that gives
in some contexts more accurate results then the marking definition for Reliability.

The proofs generated by the procedures have a realistic character. Especially in
two aspects. First, the goal directed proof method defines a realistic problem solving
method (already for classical logic). The combination of logical analysis and condi-
tional assumptions typical for the goal directed proofs is often observed in human
deductive argumentation, and is a natural way to solve logical problems. A logi-
cal and philosophical elaboration of the concept logical analysis in this connection is
forthcoming.

Secondly, also the actual proof procedures for final derivability in section 5 have a
realistic character. In both the Reliability procedure and the Minimal Abnormality
procedure, one can observe an interesting manner to cope with the typical adaptive
dynamics. In the first permissive or careless phase of the procedure one tries to derive
the goal on the assumption that everything (that is needed for this derivation) is
normal, i.e. on the assumption that some conjunction of disjunctions of abnormalities
is not derivable from the premises. For example, in the case of inconsistency adaptive
logics, this means trying to obtain the goal by applying classical logic rules on the
condition that the relevant subformulas are not inconsistent in view of the premises.

In the next, sceptic phase, the procedure tries to refute these careless reasoning
steps, by deriving the conjunction of disjunctions of abnormalities that was taken
to be not derivable in the first phase. When a refutation is derived in a careful
sense, one should look for other ways to derive the goal. Hence, one returns to the
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permissive phase. If no careful refutation is found within the sceptic phase, one still
has the possibility that the refutation can be derived in a conditional (careless) way.
The critical attitude is also allowed to be careless. This implies of course that the
criticism itself can be refuted as well. So, one needs to go through a last phase.

The last phase consists of the attempt to criticize the criticism in a careful way. If
this succeeds, the criticism is useless and the sceptic phase has to look for another
attempt to criticize the careless derivations from the first phase. The goal is derived
if no sensible criticism can be found to the careless derivation of the goal. Or: the
goal is derived if every criticism to its derivation can be carefully criticized. This does
not sound weird at all from a dialectical point of view.

I have shown that the procedure is decisive for the propositional fragment of the
logics CLuNm or CLuNr with finite premise sets. Moreover, adaptive logics that
have a decidable lower limit logic (such as predicative CLuNm with maximally unary
predicates and finite premise sets), and a finite list of problem relevant abnormalities
are decidable as well. So, for an important proportion of the realistic problem solving
contexts there is an algorithm that will, within finite time, give an answer.

But a lot of adaptive logic problems are undecidable. Also in these cases the pro-
cedure is quite important. It enables the reasoner to obtain a provisional solution to
the problem as well as more insights in the premises. These insights are immediately
relevant to the solution of the problem. This contrasts sharply with non goal directed,
random reasoning from premises: the reasoner gains information, but has no guaran-
tee at all that this is of any use. Relevant information is crucial in view of the creation
of alternative interesting statements and in view of other reasoning methods towards
the solution (intuitive guessing, doing new empirical research, considering conceptual
and/or (methodo)logical changes).

Standard adaptive proofs do not serve as a demonstration for the final derivability
of formulas from the premise set. The reasoner can only obtain finality of conviction
about the final derivability of formulas derived in the proof, by a reasoning at the
metalevel. So, it is important to have a generally applicable procedure that (if it
returns an answer) can serve as a means to decide whether lines of a proof are stably
marked or unmarked. If the procedures in this paper terminate, they do provide
the reasoner with finality of conviction about the final derivability of formulas from
premises, because of the general reasoning at the metalevel that proves the correctness
of the presented procedures for all premises and conclusions.

Moreover, thanks to the typical proof format, the interesting information that is
gained during the problem solving process is also explicitly available in the actual
output of the procedure. Both if the answer of the procedure is positive and if it is
negative, a proof is obtained in which, in most cases, the goal is the formula element
of some (possibly marked) lines of the proof. So, on these lines the goal is derived
on two types of conditions: sets of usual formulas and sets of abnormalities. Those
conditions are very useful. If the procedure has terminated and failed to derive the
conclusion, the failed proof can serve as the basis for further research that can change
the premise set. For example, some parts of inconsistent theories can be dropped
in order to remove some inconsistencies. Also, if the procedure was not decisive (it
did not terminate) after a reasonable time, one can still affirm the goal provisionally.
Several lines on which this goal is derived tell us how this affirmation can be falsified.

The presented procedure narrows the gap between the abstract logical rules of
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dynamic proofs and the actual ability of the reasoner to solve problems by means of
it. It is a rational method to cope with defeasible inferences in every day and scientific
contexts.12
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