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Abstract

We study a logic for deontic necessity and sufficiency (often inter-
preted as obligation, resp. strong permission), as originally proposed in
[28]. Building on earlier work in modal logic, we provide a sound and
complete axiomatization for it, consider some standard extensions, and
study other important properties. After that, we compare this logic to
the logic of “obligation as weakest permission” from [3].

1 Intro: Deontic Necessity and Sufficiency

Deontic Necessity and Sufficiency Following Anderson [1], let us use the
term deontic logic for any normal modal logic in which the truth axiom, �p ⊃ p,
is invalid. The most well-known example of such a logic is Standard Deontic
Logic (henceforth SDL).1 SDL is often presented as “the logic of ought, per-
mitted, and forbidden”, which are themselves taken to be interdefinable.

In this paper, we will start from a more abstract, and perhaps less ambitious
interpretation of (modal) deontic logics, viz. as logics of deontic necessity – logics
of the necessary conditions for the satisfaction of the obligations that hold in
a given discursive context (defined in terms of a speaker, addressee, normative
system, ...). According to this interpretation, where ϕ is a formula, Nϕ is read
as: “necessarily, if all your obligations are satisfied, then ϕ is the case”. This
view is far from new: it can be seen as the basic intuition behind the well-known
Andersonian-Kangerian reduction of SDL to K, which has been generalized to
a broad class of (normal) modal deontic logics.2

∗Research for this paper was funded by subventions of Flemish Research Foundation (FWO-
Vlaanderen). We are indebted to Huimin Dong, Olivier Roy, Gillman Payette, and two
anonymous referees for comments on and discussions of previous versions.

1SDL is the extension of the minimal modal logic K with the axiom (D): �ϕ ⊃ ¬�¬ϕ.
2See [4] for a general introduction to this topic; see also [19] for a more recent discussion

and formal results.
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This immediately gives rise to the question: what about sufficient conditions
for the satisfaction of our all-things-considered obligations – what about deon-
tic sufficiency? Can we also define an operator for this notion in the object
language, and what should be its formal properties? In more prosaic terms:
what is the logic of expressions such as “ϕ will do” or “it suffices that ϕ”, when
interpreted as assertions about the norms that apply?

The general notion of modal sufficiency – as a counterpart to the necessity
that is modeled by normal modal logics – has been studied in various works.3

The more specific concept of deontic sufficiency under scrutiny here displays
strong links to what is often called “strong permission” or “free choice permis-
sion” in the deontic logic literature.4 In fact, deontic or normative sufficiency is
sometimes thought to be the very core of this concept, which in turn explains
the logical properties that are often attributed to it.5 However, just as is the
case with deontic necessity and obligation, interpreting deontic sufficiency as
a kind of permission gives rise to some well-known paradoxes.6 This is, in our
opinion, not a reason to deny every link between deontic sufficiency and (strong)
permission entirely – just as we would not deny that there is an important link
between obligation and deontic necessity. Rather, one has to distinguish various
senses of obligation and permission, and hence to pinpoint exactly under what
interpretation these concepts have certain properties.7

This paper The starting point of the present paper is a minimal bi-modal
logic for deontic necessity and what we call deliberative (or practical) necessity,
which we extend with an operator for deontic sufficiency. This logic was pro-
posed by van Benthem in the late 1970s [28].8 Our main contribution consists in
studying its formal properties, drawing on earlier work concerning modal logics
of (necessity and) sufficiency. In addition, we provide a detailed comparison of
this logic and the logic of “obligation as weakest permission” from [3].

There are various motivations for this work. First of all, it is interesting from
the perspective of formal semantics of natural language expressions: given that
normative claims about sufficiency are pervasive in everyday discourse and in

3See Section 3.1 and the references provided there.
4See [2, footnote 1] for a brief history of these concepts; a key reference is [18]. In more

recent work, Asher and Bonevac argue that free choice permission should be modeled in terms
of a (weak) default conditional [5], in order to avoid certain paradoxes. We return to the
notion of strong permission in Section 2. However, our aim here is not to propose some (let
alone the right) logic of strong permission, but rather to shed new light on this and similar
notions from the viewpoint of modal logics for sufficiency.

5See e.g. [25, 3].
6See, in particular, [5] where a number of such paradoxes are listed for strong permission.

See also [2] for a more recent discussion of these paradoxes.
7Thus, our overall approach to deontic logic is pluralistic and pragmatic, following Hans-

son’s recent work [15]: deontic logic is a formal tool that allows us to disambiguate between
various interpretations of natural language expressions that concern the normative realm –
it’s aim is not to develop the logic of “ought”, “permitted”, and “forbidden”.

8Even though it received quite a few citations, the exact history of this brief paper has
turned out to be elusive. Most likely, this is the extended abstract of a presentation at the
DLMPS conference held in Hannover (1979) (van Benthem, personal communication).
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ethical theories, it is worthwhile developing exact and unified formal accounts
of them. Second, if we enrich the language of SDL with an operator for deon-
tic sufficiency, we can express and distinguish various well-known concepts of
obligation and permission at the object level. This in turn gives us a unifying
framework within which one can study the interaction between those notions.
Third, if we want to understand an intelligent agent’s ability to check whether
all the norms that apply to a given situation have been satisfied, it is essential
that this agent can handle claims concerning deontic sufficiency.9 And finally, at
a more technical level, the logics to be introduced illustrate several interesting
problems that concern the properties and axiomatic characterization of modal
logics, and thereby show both their virtues and limitations.

The paper is structured as follows. In the next section, we introduce the
language of the logics and their informal interpretation, which will allow us to
explain the motivation for this paper in more detail. Sections 3 and 4 contain
the technical core of the paper: here we provide a formal semantics and axiom-
atization of the base logic and some of its extensions and study their properties.
After that, we compare DNS to the logic of “obligation as weakest permission”
from [3] (Section 5). We end the paper with some concluding remarks and
prospects for future research.

All proofs of theorems can be found in the appendix.

2 Informal interpretation of the language

Formal Language The formal language L is built up from a set S of senten-
tial variables p, q, . . ., (classical) connectives >,⊥,¬,∨,∧,⊃,≡ and three modal
operators: N, S, and �. We treat ⊥,¬,∨ as primitive; the other connectives
are defined from them in the usual way. Let W be the set of formulas in L. We
use ϕ,ψ, . . . as metavariables for members of W and ∆,Γ, . . . for subsets of W.
The set of formulas that do not contain the operator S is denoted by WS.

Informal Interpretation of the Operators As explained in the introduc-
tion, we shall read N and S as operators for deontic necessity, resp. sufficiency.
Hence, Nϕ means that ϕ is a necessary condition for the satisfaction of all obli-
gations, and Sϕ means that ϕ is a sufficient condition for the satisfaction of all
obligations. Moreover, we interpret N and S as operators of relative or practical
deontic necessity and sufficiency, respectively. This requires some clarification.

We assume that whenever we are in a certain context, there is a range A of
deliberative10 alternatives – thought of as possible worlds – which are relevant
to that context.11 The deontic notions we are interested in here are always

9See e.g. [2, pp. 29-30], where it is argued that strong permission allows one to give a
positive test for the legality of an action token.

10This term is borrowed from Thomason [27], who speaks of a deliberative ought in the
context of deontic temporal logic.

11The (important, since more realistic) extension of our framework to cases where the
deliberative alternatives consist of arbitrary sets of worlds is investigated in [31, 30].
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relative to this A. In other words, we want to speak about the alternatives in
A that are acceptable. Let us use O to refer to the subset of A which consists
exactly of those deontically acceptable alternatives. N is then used to express
necessary conditions for membership in O, and S to express sufficient conditions
for membership in O relative to A. In other words, Sϕ means that whenever
something is an alternative, and whenever it makes ϕ true, then it is deontically
acceptable.12

The �-operator is used to speak about properties of all the deliberative
alternatives – in other words, to quantify over A. This has four important
consequences. First, we can distinguish between “trivial” necessary and suf-
ficient conditions for the obligations to be satisfied – expressed by Nϕ ∧ �ϕ
and Sϕ ∧�¬ϕ respectively – and more “significant” conditions – expressed by
Nϕ ∧ ♦¬ϕ and Sϕ ∧ ♦ϕ.

Second, � allows us to model the interaction between deontic necessity and
sufficiency, and deliberative – or, as Hansson [15] calls it, “practical” – necessity.
For instance, the validity of Nϕ ⊃ (�(ϕ ⊃ ψ) ⊃ Nψ) indicates that whenever ϕ
is deontically necessary, and one cannot obtain ϕ without also making ψ true,
then also ψ is deontically necessary.13 Likewise, if ϕ is sufficient (Sϕ), and if
for all deliberative alternatives, ψ implies that ϕ (�(ψ ⊃ ϕ)), then also ψ is
sufficient (Sψ).14

Third, the operator � allows us to express the link between (deontic) suf-
ficiency and deontic necessity in the object language of the logic by a single
principle:

(?) (Nϕ ∧ Sψ) ⊃ �(ψ ⊃ ϕ)

This axiom implies e.g. that if ϕ is necessary (Nϕ) and we know that there is a
deliberative alternative in which ψ holds but ϕ fails (♦(ψ ∧ ¬ϕ)), then ψ is not
sufficient (¬Sψ).

Last but not least, the �-operator allows us to encode properties of the
deliberative alternatives themselves. This requires some clarification. In the
SDL-semantics, the set of deliberative alternatives is in a sense implicit, i.e. it
consists of the entire domain of the model. Making this explicit would imply
that � is a universal modality [14] and yield all the S5-properties for it. We
discuss this option in some detail in Section 4.2

One may also take the set of deliberative alternatives to be the set of those
worlds that are physically possible from the viewpoint of the present world,
which could justify the adoption of S4 for �. As shown in Section 4.1, the
addition of a suitable collection of axioms to our basic logic allows one to char-
acterize such cases. However, we will start from the assumption that � is just
a K-modality.15

12We leave open the possibility that O is empty, so that in our base logic, N is weaker than
the traditional O-operator of SDL. We return to this point in Section 4.1.

13See [15, p. 15]: “The derived norms should include not only that which follows logically
from the basic (or explicit) norms but also that which follows by practical necessity.”

14Note that we omit the adverb “deontically”; we will only do so when it is clear from the
context that deontic necessity or sufficiency is at stake.

15One interesting application for such a weak reading of � is the following: consider an
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Example Let us now illustrate the use of the three operators by means of an
informal example. Suppose it’s Friday morning and John and Roy are contem-
plating what they will do over the weekend. John notes that the fridge is nearly
empty, and hence that they must go shopping at some point. Also, Roy reminds
John of their long-standing promise to visit their parents. Now, given certain
practical considerations, they cannot visit both John’s parents and Roy’s par-
ents in one weekend, but they should at least try to visit either Roy’s parents
or John’s parents. Finally, John also remarks that the lane has to be mown this
weekend. After giving it some more thought, they both settle on the following
plan: Roy will mow the lane while John does the shopping on Saturday morn-
ing; in the afternoon they visit John’s parents. They agree that if they follow
this plan, they can still do whatever they like on Sunday and rest assured that
all their duties have been fulfilled.

Of course, not all the information in this short story can be captured by
means of the abstract language we have just introduced. For instance, we cannot
speak about temporal aspects, involved agents and actions, possible preferences
of those agents, nor do we have the machinery to deal with the dynamics that
is involved in the reasoning of John and Roy. What we want to focus on here
is those parts of the story that can be modeled in L, and the gain in expressive
power this shows in comparison to logics like SDL.

The set of alternatives A in the above story consists of a (possibly infinite)
set of ways in which Roy and John could organize their weekend. The deontic
necessities can be represented as follows: “shopping must be done” (Ns), “either
John’s parents or Roy’s parents must be visited” N(vj ∨vr), and “the lane must
be mown” (Nm). The final sentence of the story indicates that Roy and John
agree that it is sufficient that shopping is done, John’s parents are visited, and
the lane is mown: S(s ∧ vj ∧m). In fact, it indicates that any state of affairs
that makes these three propositions true, is “deontically ok”.

Of course, implicitly, much more information about deontic necessity and
sufficiency is available in this case. For instance, it is usually assumed that one
can mow one’s lane without visiting one’s parents: ♦(m∧¬(vj ∨ vr)), and that
one can do both without shopping: ♦(m ∧ (vj ∨ vr) ∧ ¬s). And hence, given
these background assumptions, our rational agents know that just mowing the
lane, or just mowing the lane and visiting John’s parents will not do: ¬Sm,
¬S(m ∧ vj).

In SDL, we can only express deontic necessities, and hence we are never
able to pinpoint exactly what has to be done in order to make sure everything
is (deontically) “allright”.16 In the present case, this means that we cannot
express the conditions under which a given plan for the weekend is a good plan.
All we can do is point out that a given sketch of a plan does not guarantee the
satisfaction of all obligations; e.g. we can say that Ns and ♦(m∧¬s). But there

indeterministic, discrete temporal order on the set of worlds, and let the set of deliberative
alternatives of some state consist of all its possible “next” states. The operators N and S then
allow us to speak about those next states that are deontically acceptable.

16As we will show below, the logic DNS displays a proper gain in expressive power to SDL,
also at a more technical level.
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is no single formula which allows us to express that m ∧ (vj ∨ vr) ∧ s will do.
This informal claim is made exact by Observation 3 in Section 4.4.

Different notions of obligation and permission Once we extend the lan-
guage of SDL with an operator for deontic sufficiency, we can distinguish be-
tween different concepts of obligation and permission as they occur in natural
language. Let us start with the notion of obligation. On the one hand, this
term may refer to one of many deontic necessities that an agent faces in a given
situation: e.g. she may have to ensure that she gets to the office in time, but
also that the children have their sandwiches before they go to school. Whatever
the logic of such obligations may be, it seems rather unnatural to assume that
in the end, all of them are just equivalent expressions of one and the same thing.

On the other hand, in some specific cases, the term “obligation” can refer
to a single thing. For instance, in [3], Singer’s example of a kid drowning in a
pond is considered. The authors write that “What the agent ought to do here is
be moral, i.e. save the child in a way that complies with all other requirements
of morality.” [3, p. 7]. Only that which falls under this (admittedly, fairly
abstract) description would then count as the obligation of the agent.17

Whereas SDL explicates one notion of obligation in plural, other systems
from the deontic logic literature – in particular the one from [3] – are rather
based on the second, singular concept of obligation.18 In L, we can express
both concepts at the object-level: obligations in plural can be represented by
N, whereas a unique obligation can be expressed by the combination of N and
S.

The same applies to the concept of permission: at least two notions of per-
mission can be captured within L. On the one hand, there is the notion of
permission from SDL (often called “weak permission”), which is just the dual
of deontic necessity. That is, something is permitted if and only if there is at
least one acceptable alternative which makes it true.

On the other hand, there is the notion of “strong permission” which is cap-
tured by our S-operator. That is, when ϕ is strongly permitted, this means that
any means of making ϕ true is “deontically allright”. But this is exactly how
we interpret deontic sufficiency, as explained above.

3 DNS: formal aspects

In this section, we define an exact formal semantics for �, N and S. This gives us
the base logic DNS. As mentioned in the introduction, this logic was originally
proposed by van Benthem in [28]. Here we study the main technical properties of

17Note that this distinction is orthogonal to the usual distinction in terms of the sources
or grounds of an obligation: one may still have several obligations that derive from one basic
principle – such as “you have to be on time for the meeting, and be on time for dinner” and
given various normative sources, one may still claim that there is a unique obligation (call it
the “overriding obligation”) that has to be fulfilled.

18We return to the work of Anglberger, Roy and Gratzl in Section 5, showing how this logic
relates to our approach.
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this logic: axiomatizations, finite model property, expressive power, Anderson-
Kangerian reductions, and interpolation.

3.1 Semantics

We presuppose that a context coincides with a possible world w, and that at
every such w, the set of deliberative alternatives to w is a set of possible worlds.
This gives us the following definition:

Definition 1. A DNS-frame is a triple F = 〈W,R�, RN, v〉, where:

(i) W is a non-empty set, the domain of F
(ii) R� ⊆W ×W
(iii) RN ⊆ R�

A DNS-model is a quadruple M = 〈W,R�, RN, v〉, where 〈W,R�, RN〉 is a
DNS-frame and v : S → ℘(W ) is a valuation function.

Here, R�(w) represents the set of deliberative alternatives at w, and RN(w)
consists exactly of those alternatives that are deontically acceptable.

Definition 2. Where M = 〈W,R�, RN, v〉 is a DNS-model and w ∈W ,

M,w 6|= ⊥
M,w |= p iff w ∈ v(p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ
M,w |= �ϕ iff M,w′ |= ϕ for all w′ ∈ R�(w)
M,w |= Nϕ iff M,w′ |= ϕ for all w′ ∈ RN(w)
M,w |= Sϕ iff for all w′ ∈ R�(w) such that M,w′ |= ϕ, w′ ∈ RN(w)

Local/global validity in a model, local/global frame validity, and semantic
consequence (denoted by DNS) are defined as usual.

Note that in view of the above semantics, N and � are normal modalities.
This means that e.g. N is not suitable when we want to express conflicting
obligations in a non-trivial way — even if DNS does not trivialize them, they
will lead to deontic explosion, i.e. the property that everything is obligatory.
In order to accommodate such conflicts in a sensible way, one may use non-
standard semantics (e.g. multi-relational or neighbourhood-semantics) for N, or
one may weaken the underlying logic of the connectives – see e.g. [11] for a
recent overview of such strategies. However, in the present paper we focus on
the traditional normal modal logic case, leaving such generalizations for future
work.

One can rephrase the present semantics in terms of a more regular Kripke-
semantics as well.19 Consider a DNS-model M = 〈W,R�, RN, v〉. Define the

19This is not too surprising: it is well-known that the logic of modal sufficiency in the
absolute sense coincides with a normal bi-modal logic – see e.g. [16, 9, 24]. Here, we just show
how this correspondence can be generalized to the case of sufficiency relative to a (variable)
set of alternatives, as given by R�(w).
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accessibility relation RN = R� \RN. We have: M,w |= Sϕ iff for all w′ ∈ R�(w)
such that M,w′ |= ϕ, w′ ∈ RN(ϕ) iff for all w′ ∈ RN(w), M,w′ |= ¬ϕ. Hence,
instead of using a non-standard semantic clause for S, we can just use the
standard clause:

M,w |= Nϕ iff for all w′ ∈ RN(w), M,w′ |= ϕ

and define Sϕ by N¬ϕ.
As this alternative semantics highlights, N and N (S¬) are perfectly sym-

metric in DNS. Whereas the former allows us to quantify over all the states in
RN(w), the latter allows us to speak about the states in R�(w) \ RN(w). As a
result, we obtain the following:

Observation 1. Suppose that Γ DNS ϕ. Let Γ′, ϕ′ be the result of replacing
in Γ, ϕ each occurrence of N with S¬ and each occurrence of S with N¬. Then
Γ′ DNS ϕ

′.

Also, this alternative semantics at once makes it clear that one may treat
� as a defined operator in DNS: simply take RN and RN as primitive, assume

that RN ∩ RN = ∅, and put �ϕ =df Nϕ ∧ Nϕ. Our main reason for not doing
this is that it puts the cart before the horse, conceptually speaking: only once
we specify what the deliberative alternatives are, can we speak about deontic
sufficiency (or equivalently, about necessity relative to RN). Still, it is important
to keep this alternative formulation in mind in what follows.

3.2 Axiomatization

The fragment of DNS without the S-operator is just a normal bi-modal version
of the minimal modal logic K, with the additional bridging axiom �ϕ ⊃ Nϕ.
The interesting part is of course the S-operator. To see why this operator is not
normal, it suffices to note that S> is invalid in any interesting DNS-model (i.e.
in any DNS-model for which RN ⊂ R�). Nevertheless, one can give a sound
and complete, Hilbert-style axiomatization of DNS.

Definition 3. The set of DNS-axioms is obtained by closing the set of all
instances of the following set of axiom schemas under modus ponens (MP) and
necessitation for � (NEC):

(CL) a set of axioms schemas that are complete for Classical Logic (CL)
(K�) �(ϕ ⊃ ψ) ⊃ (�ϕ ⊃ �ψ)
(KN) N(ϕ ⊃ ψ) ⊃ (Nϕ ⊃ Nψ)
(B) �ϕ ⊃ Nϕ
(NS) Nϕ ⊃ (Sψ ⊃ �(ψ ⊃ ϕ))
(UC) (Sψ ∧ Sϕ) ⊃ S(ψ ∨ ϕ)
(OR) S(ϕ ∨ ψ) ⊃ (Sϕ ∧ Sψ)
(EQS) �(ϕ ≡ ψ) ⊃ (Sϕ ≡ Sψ)
(TrivS) S⊥

8



Γ `DNS ϕ iff there are ψ1, . . . , ψn ∈ Γ such that (ψ1 ∧ . . . ∧ ψn) ⊃ ϕ is a
DNS-axiom.

We briefly comment on each of the axioms that are characteristic for the
S-operator. (NS) was already introduced in Section 2; it just states that what-
ever is deontically sufficient always (practically) entails whatever is deontically
necessary. (UC) states that if two propositions are both sufficient, then so is
their disjunction – we will pay closer attention to this axiom in Section 5. Its
converse, (OR) is usually known as the principle of “free choice permission”. In
the presence of replacement of equivalents for S – which is here axiom (EQS) –,
(OR) is equivalent to the axiom (Sϕ ∧�(ψ ⊃ ϕ)) ⊃ Sψ, stating that whenever
something is sufficient, then anything that (practically) entails it is also suffi-
cient. Finally, (TrivS) states that any trivial proposition is always sufficient:
since there are no ⊥-states, every ⊥-state is (vacuously) acceptable.

Let us list a number of properties of `DNS to illustrate the power of these
axioms:

Observation 2. For all ϕ,ψ:20

1. Nϕ,♦(ψ ∧ ¬ϕ) `DNS ¬Sψ
2. Sϕ `DNS S(ϕ ∧ ψ)
3. �ϕ `DNS S¬ϕ
4. Sϕ ∧ Nϕ,Sψ ∧ Nψ `DNS �(ϕ ≡ ψ)
5. Sϕ ∧ ♦ϕ `DNS ¬N¬ϕ
6. Sϕ ∧�(ψ ⊃ ϕ) ` Sψ

Item 1 follows from (NS) by classical logic and the definition of ♦. Item 2
follows from (OR) and (EQS), in view of the theorem �(ϕ ≡ (ϕ ∨ (ϕ ∧ ψ))).
Item 3 follows from (TrivS), (EQS), and S5-properties as follows: suppose �ϕ.
Hence, �(¬ϕ ≡ ⊥). By (TrivS), and (EQS), this yields S¬ϕ.

Items 4 and 5 follow from K-properties of � and (NS). For item 4, suppose
the antecedent holds. By Sϕ and Nψ, using (NS), we can derive �(ψ ⊃ ϕ).
Likewise, from Sψ and Sϕ, we can derive �(ϕ ⊃ ψ) and hence we get �(ϕ ≡ ψ).
For item 5, suppose Sϕ and N¬ϕ. Then by (NS), we get �(ϕ ⊃ ¬ϕ) and hence
�¬ϕ. Finally, item 6 follows from (OR) and (EQS).

The following is proved in the appendix:

Theorem 1 (Soundness and Strong Completeness). Γ `DNS ϕ iff Γ DNS ϕ.

The proof of soundness is a matter of routine; it suffices to check that all the
DNS-axioms are (globally) valid in every DNS-model. For the proof of (strong)
completeness, we need to adapt the standard technique of canonical models. We
make two disjoint copies of the usual canonical model M c, and then “merge”
these copies to form a new model M+ for which we can prove the Truth Lemma.
This can moreover be done in different ways, yielding completeness results for

20We skip set brackets around the premises to simplify notation.
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certain extensions of DNS in turn (see Section 4). See Appendix A for the
details.21

One specific variant of this copy-and-merge method already occurred in ear-
lier work by Passy and co-workers, where they call it the “important construc-
tion” [24, 10, 9]. The main difference with the present paper is that their � is
a universal modality, whereas here it is just a K-modality. In addition, we con-
sider other variants of the same technique and establish a generic truth lemma
for all such constructions (see Theorem 9 in Appendix A).

3.3 Van Benthem’s original characterization of DNS

Van Benthem [28] also proposes an axiomatic characterization of DNS, or, as
he calls it, KD,m. However, he builds up his axiomatization in a more stepwise
fashion, ending up with slightly different axioms. In this section, we briefly show
that the result is equivalent to our characterization in Definition 3, and hence
sound and complete w.r.t. the DNS-semantics.22

Van Benthem’s axiomatization goes as follows:

(i) all theorems of CL
(ii) K for � and N
(iii) our axiom schemas (B), (NS), (UC), and (TrivS)
(iv) the axiom schema �¬ϕ ⊃ Sϕ
(v) the inference rule: if ` ϕ ⊃ ψ, then ` Sψ ⊃ Sϕ

We show first that (iv) and (v) are derivable in DNS, and hence sound.
(iv) follows since �¬ϕ ` �(ϕ ≡ ⊥) (which holds by K-properties of �) and by
axioms (TrivS) and (EQS). (v) follows by from (OR), (EQS), and (NEC) for
�.23 Note that the axiom (TrivS) is redundant in view of van Benthem’s axiom
(iv) and (NEC) for �.

To prove completeness of van Benthem’s axiomatization, we need to show
that it yields both (OR) and (EQS). Let us start with the former: suppose
S(ϕ ∨ ψ). By CL-properties, ` ϕ ⊃ (ϕ ∨ ψ) and ` ψ ⊃ (ϕ ∨ ψ). Hence, we can
use (v) to derive both Sϕ and Sψ, and hence also Sϕ ∧ Sψ. To prove (EQS),
suppose �(ϕ ≡ ψ) and Sϕ. By K-properties, we can derive �¬(ψ∧¬ϕ). Hence
by (iv), S(ψ ∧ ¬ϕ). By (UC), we get S(ϕ ∨ (ψ ∧ ¬ϕ)). By CL-properties,
` ψ ⊃ (ϕ∨ (ψ∧¬ϕ)), and hence by rule (v), we can derive Sψ. By a symmetric
argument in ϕ and ψ, we can derive Sϕ from �(ϕ ≡ ψ) and Sψ.

Thus, van Benthem’s logic is essentially the same as ours. Curiously, this
paper has gone largely unnoticed in the deontic logic literature. Still, the link
between modal sufficiency and permission has received some attention in other

21Roughly speaking, Mc can be seen as a bounded morphic image of M+, in the sense of
[6]. However, spelling out this link in its entirety is a rather tedious task and does not alter
the main ideas behind the technique.

22Van Benthem does not prove completeness in his own paper. Earlier on he claims about
the S-fragment of his logic that one can obtain a completeness proof “using the Henkin method
of Lemmon and Scott as a heuristic device”.

23That is, suppose ` ϕ ⊃ ψ. Hence, ` (ϕ ∨ ψ) ≡ ψ. By (NEC), ` �((ϕ ∨ ψ) ≡ ψ). Hence,
by (EQS), ` Sψ ⊃ S(ψ ∨ ϕ). Applying CL-properties and (OR), we have ` Sψ ⊃ Sϕ.
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papers. For instance, Humberstone [16] remarks that his so-called “inaccessi-
bility operator” – which corresponds to an absolute version of our operator N
above – has applications in the context of deontic logic, where it can be used
to model strong permission. He refers (as van Benthem does, independently) to
the validity of (OR) for strong permission as a motivation for this idea. In more
recent work, Roy et al. propose a logic of “obligation as weakest permission”
[3]. The relation between their logic and DNS is delicate: we will discuss it at
length in Section 5.

3.4 Further meta-results for DNS

Beside soundness and strong completeness, a number of standard results of
normal (mono)modal logics can be generalized to DNS. We list them here;
their proof is given in Section 4.

(i) DNS has the finite model property and is decidable. See Section 4.3.

(ii) S cannot be defined in the S-less fragment of DNS – see Section 4.4.

(iii) DNS can be reduced to Kd, i.e. the minimal modal logic over a language
extended with a propositional constant d – see Section 4.5.

(iv) DNS satisfies interpolation – see Section 4.6.

4 Extensions of DNS

We now turn to various extensions of DNS. We first show how a number of
these can be axiomatized and discuss the problem of axiomatization of DNS-
extensions more generally (Section 4.1). Next, we briefly discuss these exten-
sions from the viewpoint of their intended application, viz. as deontic logics
(Section 4.2). Finally, we return to the meta-properties mentioned at the end of
the previous section and study these for DNS-extensions in general (Sections
4.3-4.6).

4.1 Axioms for extensions of DNS

Here, we give an overview of some well-known axioms that can be added to
DNS, and the corresponding conditions on DNS-models. Our positive results
are summarized by Theorems 2 and 3 below.

Let (A1), . . . , (An) be axiom schemas from Tables 1 and 2, and let (C1), . . . , (Cn)
be the associated frame conditions. We use `DNS.A1...An

to denote the syntac-
tic consequence relation obtained by adding all instances of (A1), . . . , (An) to
DNS (see Definition 3), and we let DNS.C1...Cn be the semantic consequence
relation obtained by imposing the conditions (C1), . . . , (Cn) on DNS-models.

Theorem 2. Where (A1), . . . , (An) are axiom schemas from Table 1 and (C1), . . . , (Cn)
are the associated frame conditions:
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Γ `DNS.A1...An ϕ iff Γ DNS.C1...Cn ϕ

Theorem 3. Where (A1), . . . , (An) are axiom schemas from Table 2 and (C1), . . . , (Cn)
are the associated frame conditions:

Γ `DNS.A1...An ϕ iff Γ DNS.C1...Cn ϕ

(DN) Nϕ ⊃ ¬N¬ϕ (CDN) RN is serial
(MN) N(Nϕ ⊃ ϕ) (CMN) RN is shift reflexive
(TN) Nϕ ⊃ ϕ (CTN) RN is reflexive
(4N) Nϕ ⊃ NNϕ (C4N) RN is transitive
(BN) ϕ ⊃ N¬N¬ϕ (CBN) RN is symmetric
(C4N) NNϕ ⊃ Nϕ (CC4N) RN is dense
(5N) ¬N¬ϕ ⊃ N¬N¬ϕ (C5N) RN is euclidian
(CN) ¬N¬Nϕ ⊃ N¬N¬ϕ (CCN) RN is convergent

(D�) �ϕ ⊃ ¬�¬ϕ (CD�) R� is serial
(T�) �ϕ ⊃ ϕ (CT�) R� is reflexive
(M�) �(�ϕ ⊃ ϕ) (CM�) R� is shift reflexive

Table 1: Axiom schemas and frame conditions for DNS (part 1).

(D�) �ϕ ⊃ ¬�¬ϕ (CD�) R� is serial
(M�) �(�ϕ ⊃ ϕ) (CM�) R� is shift reflexive
(T�) �ϕ ⊃ ϕ (CT�) R� is reflexive
(4�) �ϕ ⊃ ��ϕ (C4�) R� is transitive
(B�) ϕ ⊃ �¬�¬ϕ (CB�) R� is symmetric
(C4�) ��ϕ ⊃ �ϕ (CC4�) R� is dense
(5�) ¬�¬ϕ ⊃ �¬�¬ϕ (C5�) R� is euclidian
(C�) ¬�¬�ϕ ⊃ �¬�¬ϕ (CC�) R� is convergent

(DN) Nϕ ⊃ ¬N¬ϕ (CDN) RN is serial
(TN) Nϕ ⊃ ϕ (CTN) RN is reflexive
(MN) N(Nϕ ⊃ ϕ) (CMN) RN is shift reflexive

Table 2: Axiom schemas and frame conditions for DNS (part 2).

The proofs of completeness for both theorems proceed by two distinct vari-
ants of the copy-and-merge method that was mentioned in Section 3.2. We refer
to Appendix B for the details.

As an example of a case covered by Theorem 2, consider the models in which
RN is serial, shift reflexive and transitive, and R� is reflexive. The associated
logic is completely axiomatized by adding (DN), (SRN), (4N), and (T�) to DNS.
A case covered by Theorem 3 is the logic DNS.DN.T�.5� of frames where R�

is an equivalence relation and RN is serial. We return to the latter system in

12



Section 5 where it is linked to the logic of “obligation as weakest permission”
from [3].

What then about the other combinations of conditions on RN and R� –
what if we mix conditions from both tables? Here, the results are less pleasing.
Indeed, as we will now show, for at least some such combinations, the associated
logics (obtained by adding the standard axioms to DNS) will be incomplete.
Complete logics can be obtained, but there seems to be no general method for
doing so.

Consider the logic of frames for which R� is euclidian and RN is transitive.24

This logic is not completely axiomatized by adding to DNS all instances of
(5�) and (4N). To obtain a complete logic, on needs to add the following axiom
schema – which is not derivable in DNS.T�.5�.4N:

(TransS) ¬N¬Sϕ ⊃ Sϕ

The soundness proof is relatively straightforward. For completeness, we can
use a variant of the copy-and-merge technique; the additional axiom turns out
crucial for establishing the transitivity of RN. See Appendix B for a proof
outline.

A similar example, though less significant from the viewpoint of deontic
logic, is the one where both R� and RN are symmetric. If we impose these
conditions, all instances of the schema ϕ ⊃ SSϕ become globally valid. Indeed,
suppose that ϕ holds in the present world w and Sϕ holds at some w′ ∈ R�(w).
By symmetry of R�, w ∈ R�(w′) and hence w ∈ RN(w′). But then by the
symmetry of RN, w′ ∈ RN(w). So in order to obtain a complete logic, we need
to add these axioms to DNS. Again, once we have this additional axiom, we
can run the usual completeness proof by means of copy-and-merge.

All in all, this shows that regarding extensions of DNS, more general results
will not be easy to arrive at. This negative conclusion was already drawn in
[16, p. 351] and [13, p. 322]: in the context of modal sufficiency, there seems to
be no general, modular method to obtain complete axiomatizations for certain
conditions.

4.2 Deontic necessity and sufficiency?

Philosophically speaking, not all of the aforementioned extensions of DNS can
count as genuine deontic logics. Some of the frame conditions seem generally
plausible; others seem to make little sense in the context of deontic reasoning.
For still others, whether they should be required depends on the specific inter-
pretation of the logic and hence on its application. Let us discuss each of these
categories one by one.

First, the condition of seriality for RN is usually conceived as the distinctive
feature of deontic logics, as it is valid for Standard Deontic Logic. It is strongly
connected to the Kantian principle that “ought implies can”. Note that in view

24This example is inspired on [13]. In view of Goranko’s proof, (TransS) is not even valid
in the stronger logic obtained by adding (T�), (5�), and (4N) to the axioms of DNS.
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of standard modal logic properties and our axiom (B), (D) is equivalent to the
following:

(OIC) Nϕ ⊃ ♦ϕ

In the deontic logic literature, (D) and (OIC) have been attacked since,
together with other principles of Standard Deontic Logic (or any normal modal
logic for that matter), they trivialize deontic conflicts. However, as we explained
in Section 3.1, even DNS (which invalidates (D)) cannot be said to deal with
deontic conflicts in a proper way. In sum, all logics defined in the present paper
should be applied to situations in which deontic conflicts are absent; if one wants
to take deontic conflicts seriously, weaker variants of the current logics should
be devised.25 Consequently, it seems reasonable to assume the validity of (D)
and hence seriality of RN.

Second, reflexivity and symmetry for RN are highly counterintuitive for de-
ontic logics in general. Regarding reflexivity, it is commonly seen as typical of
deontic logics that they invalidate the truth schema Nϕ ⊃ ϕ, or in semantic
terms, that it is not necessarily the case that the current state is deontically
acceptable. For similar reasons, one should reject symmetry of RN: that w′ is
deontically acceptable from the viewpoint of the current world w by no means
entails that from the viewpoint of w′, w is deontically acceptable.

Third and last, some of the mentioned conditions on RN are controversial,
but not totally absurd in the context of deontic logic: shift reflexivity, transitiv-
ity, density, and the requirement that RN is euclidean. We will not discuss each
of these properties here but refer to [7, Section 6.3] for some arguments for and
against them.26 Toward the end of this section, we will consider one condition
that entails each of these four conditions, viz. “uniformity”.

Regarding properties of �, it seems that the choice of logic depends even
more on the intended application. We already mentioned a few possible inter-
pretations in Section 2. As we explained there, reflexivity and transitivity of R�

can be motivated independently. Seriality of R� is equivalent to the require-
ment that there must be at least one deliberative alternative that is relevant to
the given context. For instance, where we think of R�(w) as the set of potential
states of the world at the next time instant, seriality means that there is no last
point in time.

Alternatively, one can interpret � as a universal or global modality in the
sense of [14]. If we leave the definition of models and semantic clauses unal-
tered, this means we impose the condition that R� = W ×W . Let us call the
resulting logic DNSu; we call models (frames) in which R� is the total relation,
DNSu-models (DNSu-frames). Mind that from a syntactic viewpoint, DNSu

is identical to DNS.T�.5�.27 Adding a global modality to a given modal logic

25See [12] for an excellent survey of conflict-tolerant deontic logics.
26See also [23, footnote 20] for a critical discussion of one of Chellas’ ideas in the cited

passage.
27Indeed, every DNS-model M in which R� is an equivalence relation, can be seen as a

disjoint union of DNSu-models Mi, where the domain of Mi corresponds to one equivalence
class (relative to R�) in the domain of M .
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is quite common – see e.g. [29] where such an operator � is included in a deontic
logic based on a logic of preference, and see [14] for a thorough investigation of
such constructions in general.

In [13], various extensions of DNSu are studied, including the ones where RN

is serial and reflexive. This means that, leaving some notational conventions and
the choice of primitive operators aside, the completeness results from Section
4.1 that concern DNSu and its extensions are not new. However, the general
case where R� is arbitrary (or merely satisfies a number of weaker conditions)
seems to have received little or no attention in the literature, notwithstanding
the fact that van Benthem’s 1979 paper is often cited in the literature on the
“window modality” (which coincides with our S) and inaccessible worlds.

In DNSu, we can express another common frame condition. Say a model
M (a frame F ) is uniform iff for all w,w′ ∈ W , RN(w) = RN(w). The logic
obtained by adding this condition is axiomatized by adding the following axiom
to DNSu (see Appendix B.3):

(U) (Nϕ ≡ �Nϕ) ∧ (Sϕ ≡ �Sϕ)

Theorem 4. The logic obtained by adding (U) to DNSu is sound and strongly
complete w.r.t. the set of all uniform DNSu-models, i.e.,

Γ `DNSu.U ϕ iff Γ |=DNSu.U ϕ

Adding axiom (D) to DNSu.U yields a sound and strongly complete logic
w.r.t. the set of all DNSu.U models in which RN is serial (see again Appendix
B.3). Note that in all DNSu.U-models, RN is shift reflexive and transitive.28

Note also that DNSu.U-models in which RN is reflexive are simply DNSu.U-
models in which RN = R� = W ×W .

The requirement of uniformity (or equivalently, the requirement that RN

be euclidean) is made in several applications of deontic logic. For instance, in
[20], a multi-agent version of such systems is interpreted in terms of “green”
(acceptable) states and “red” (unacceptable, violation) states of a distributed
computing system, where the green and red states jointly exhaust W . In view
of the above results, it is plausible that these systems can be enriched with a
deontic sufficiency-operator.

4.3 Finite model property and decidability

Theorem 5. All DNS-extensions mentioned in Theorems 2 and 3 have the
finite model property.

Since our (finitary) axiomatizations of these logics are sound and complete,
we obtain:

Corollary 1. All DNS-extensions that satisfy the conditions from Theorems 2
and 3 are decidable.

28For shift reflexivity, suppose that (w,w′) ∈ RN. By uniformity, also (w′, w′) ∈ RN. For
transitivity, suppose that (w,w′), (w′, w′′) ∈ RN. By uniformity, also (w,w′′) ∈ RN.
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This result is obtained by a combination of the copy-and-merge constructions
used to prove completeness of the logics with the standard filtration method.
Using another variant of this technique, one can also establish the finite model
property and decidability for DNSu.U and DNSu.U.DN from the previous
section. We refer to Appendix C for the meta-proofs for each of these claims.

As regards other DNS-extensions, we encounter the same problems as in
Section 4.1. Hence, for these logics, the finite model property remains an open
issue.

4.4 Expressive power of DNS and its extensions

In this section, we will show that the S-operator adds expressive power to DNS
and many of its extensions. To spell out the exact result in full generality, we
first define two notions that concern conditions (C) on binary relations R.

Definition 4. (C) is preserved by copy iff for all R that satisfy (C): if R′ =
{(wi, vi) | i ∈ {1, 2}, (w, v) ∈ R}, then R′ satisfies (C).

Most of the standard first-order conditions on frames are preserved by copy:
seriality, reflexivity, transitivity, symmetry, etc. One exception is the property
that R is the total relation, i.e. R� = W ×W .

Definition 5. (C) is preserved by copy-merge iff for all R that satisfy (C): if
R′ = {(wi, vj) | i, j ∈ {1, 2}, (w, v) ∈ R}, then R′ satisfies (C).

Most properties that are preserved by copy are also preserved by copy-merge.
In particular, all the conditions that occur in Tables 1 and 2 are both preserved
by copy and by copy-merge. One notable exception is functionality, which states
that every point has exactly one successor. Examples of conditions that are
preserved by copy-merge but not preserved by copy, are the condition that R�

is total and the condition of uniformity (see Section 4.2).
Let in the remainder DNS+ be a metavariable for any logic DNS.CN

1 . . .C
N
n.C

�
1 . . .C

�
m,

where (CN
1 ), . . . , (CN

n ) are conditions on RN that are preserved by copy, and
where (C�

1 ), . . . , (C�
m) are conditions on R� that are preserved by copy-merge.

Then the following holds:29

Theorem 6. Where Γ ∪ {ϕ1, . . . , ϕn} ⊆ WS:

Γ DNS+ Sϕ1 ∨ . . . ∨ Sϕn iff Γ DNS+ �¬ϕ1 ∨ . . . ∨�¬ϕn

In fact, this theorem is obtained in two steps: we first prove it for DNS
simpliciter, using a specific operation on DNS-models (see Appendix D for the
details). Next, by its very definition, this operation preserves all conditions
on RN that are safe for copy and all conditions on R� that are safe for copy-
merge. In view of our earlier remarks in this section, it follows that Theorem

29The restriction that also ϕ1, . . . , ϕn do not contain the operator S has a reason. Consider
e.g. the case where both R� and RN are required to be symmetric. As explained above, this
gives the theorem p ⊃ SSp and hence p  SSp.
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6 applies to all the logics mentioned in Theorems 2 and 3. Using a slightly
different construction, we can also prove this property for the logics DNSu.U
and DNSu.U.DN from Section 4.2.30

As Theorem 6 shows, there is a gap between deontic necessity and deontic
sufficiency in all DNS-extensions we considered in this paper. From the view-
point of the interpretation in terms of obligation and (strong) permission, this
is perhaps problematic: after all, we often do and need to infer claims about
strong permission on the basis of mere claims about obligation, as our toy ex-
ample from Section 2 illustrated. However, from a semantic viewpoint it makes
perfect sense: when we are at w, we can never exclude that there is some world
w′ ∈ R�(w) \RN(w) which satisfies every ϕ that is deontically necessary.

On the basis of the above theorems, we can easily prove that the fragment
of each logic DNS+ without the S-operator is (strictly) less expressive than full
DNS:

Observation 3. There is no ∆ in the language of DNS+ without S such that
∆ DNS+ Sp and Sp DNS+ ϕ for all ϕ ∈ ∆.

To verify this claim, suppose that such a ∆ exists. By Theorem 6, ∆ DNS+

�¬p. However, we can easily see that Sp 6DNS+ �¬p, contradicting our sup-
position.

4.5 The Anderson-Kangerian reduction of DNS

The Anderson-Kangerian reduction of SDL to K belongs to one of the folklore
results within deontic logic. Here, we shall briefly consider the possibility of
similar reductions of DNS and its extensions.

For the base logic, things are pretty straightforward: we can simply reduce
it to K in the expected way.31 More precisely, let Kd denote the minimal modal
logic with � as its (only) necessity-operator and a propositional constant d. Let
the translation function t from the language of DNS to the language of Kd be
defined recursively as follows:

t(p) = p for all p ∈ S
t(¬ϕ) = ¬t(ϕ)
t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ)
t(Nϕ) = �(d ⊃ t(ϕ))
t(Sϕ) = �(t(ϕ) ⊃ d)
t(�ϕ) = �t(ϕ)
t(Γ) = {t(ϕ) | ϕ ∈ Γ}

We have:

30We explain this at the end of Appendix D. Note that the theorem cannot be generalized
to e.g. the logic DNSu.U.TN. Indeed, as we explained above, this is the logic of frames for
which RN = R�. In that logic, we can simply define Sϕ by >.

31Also this result is foreshadowed in [28, Section 4], where van Benthem refers to existing
modal reductions as proposed by “several deontic logicians”.
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Theorem 7 (Reduction of DNS to Kd). Γ DNS ϕ iff t(Γ) Kd
t(ϕ)

Due to the presence of the �-operator in the language of DNS, the proof
for Theorem 7 is slightly more complicated than the usual meta-proofs for the
Anderson-Kangerian reductions of deontic logics, as found e.g. in [4]. This is
explained in Appendix E.

What about stronger logics? Here the results are mixed. On the one hand,
the SDL-variant of DNS, which is just DNS plus the axiom (DN), can be
reduced to Kd plus the axiom ♦d, just as in the standard Andersonian reduction.
On the other hand, for stronger logics, the analogy breaks down. For instance,
it is shown in [4] that the logic SDL.SRN (which is adequate w.r.t. the class of
models with an accessibility relation that is shift reflexive) can be characterized
by adding the (T)-axiom and ♦d to Kd. However, if we take T as the logic for
� and apply the above translation, we get the following validities:

(SRN) N(Nϕ ⊃ ϕ)
(ISRS) S(Sϕ ∧ ϕ)

Whereas (SRN) is just as expected, one can easily construct models that are
shift reflexive but for which (ISRS) fails. In fact, this axiom rather seems to
correspond to a converse of shift reflexivity, i.e. if w′ ∈ R�(w) and w′ ∈ RN(w′),
then w′ ∈ RN(w). Hence, the reduction cannot go through in this simple way.
This result suggests that most of the extensions studied in the previous section
cannot be reduced to a normal (uni)modal logic.

One notable exception is the logic obtained by adding (UNIF) to DNSu

(see our discussion at the end of Section 4.2). This logic can be easily reduced
to S5d (i.e., S5 with a propositional constant d) using the above translation.
The reason is that in this particular case, the conditions imposed on R� are
“backed up” by the condition of uniformity that is imposed on RN. As a result
of this condition, one can identify the truth set of d in a model with the set
of worlds that are acceptable from the viewpoint of an arbitrary world w (and
hence also from the viewpoint of any other world w′). Likewise, DNSu.U.DN

can be reduced to the logic obtained by adding the ♦d to S5d. We explain both
points at the end of Appendix E.

4.6 Interpolation

Interpolation (for an arbitrary consequence relation `, over a propositional lan-
guage) is the property that, whenever ϕ ` ψ, then there is some τ such that (1)
ϕ ` τ , (2) τ ` ψ, and (3) all sentential variables that occur in τ occur both in
ϕ and in ψ. If these conditions hold, we call τ an interpolant for 〈ϕ,ψ〉. It is
well-known that this property holds for many normal modal logics, though not
for all (see e.g. [21] for an overview of some results in this area).

The proof of interpolation for K from [8, Chapter 3, Section 8] can be easily
adapted in order to prove interpolation for DNS. Recall that DNS can be
rewritten as a simple bi-modal version of K, with no interaction principles (see
Section 3.1). So all we need to do is construct a “disjoint copy” of a sequent
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calculus for K (see e.g. [8]), and prove interpolation in the standard way by an
induction on the length of the derivation of a sequent.

Interestingly, interpolation fails as soon as we move to relatively weak ex-
tensions of DNS. Here is an example:32

Sp ∧ p `DNS.T�
Nq ⊃ q

That is, suppose that Sp ∧ p. By simplification, we have Sp. By (NS), we
can derive Nq ⊃ �(p ⊃ q). By (T�), Nq ⊃ (p ⊃ q). And hence, since we also
have p by simplification, we get Nq ⊃ q. However, as we argue in Appendix F,
there is no interpolant for 〈Sp ∧ p,Nq ⊃ q〉 in L. Note that such an interpolant
would allow us to express exactly that a world w is a member of RN(w).33

The fact that DNS.T� does not have the interpolation property can be seen
to follow from a more general claim in [22]. This claim concerns so-called union
logics, which can be described as follows. Consider a multi-modal logic with
a finite number of normal modalities �1, . . . ,�n. Let �ϕ =

∧
1≤i≤n �iϕ (or

equivalently, ♦ϕ =
∨

1≤i≤n ♦iϕ). Then we obtain a union logic from this logic
if we add one of the following axioms:

(T�) �ϕ ⊃ ϕ
(4�) �ϕ ⊃ ��ϕ
(B�) ϕ ⊃ �♦ϕ
(5�) ♦ϕ ⊃ �♦ϕ

Marx and Areces show (by means of a semantic argument) that every union
logic obtained in this way violates interpolation [22, Theorem 4.10]. It can
easily be checked that also DNS.T� corresponds to a union logic. First, letting
Nϕ = S¬ϕ, we can easily show that N is a normal modality (cf. our remarks
in Section 3.1). Second, as explained in that same section, �ϕ is equivalent to
Nϕ∧Nϕ. Third and last, since (T�) is valid in DNS.T�, this logic is an union
logic.

Two further comments are in place. On the one hand, Marx and Areces
only use these axioms to illustrate their deepest results, which are essentially
semantic. Indeed, it can be shown that weaker axioms such as e.g. the axiom
(SR�) already cause interpolation to fail; there is e.g. no interpolant for 〈♦(Sp∧
p),♦(Nq ⊃ q)〉.34 On the other hand, it is not clear whether these results
generalize to all DNS-extensions defined in the present paper – e.g. seriality of
R� does not seem to cause failure of interpolation. We leave a full investigation
of this matter for future work.

32This example is based on one by Humberstone [17]. In Humberstone’s paper, there is
only an operator for “necessary and sufficient”.

33See Lemma 5 in Appendix F.
34We sketch a proof of this claim at the end of Appendix F.
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5 Obligation as weakest permission versus DNS

In [26], [25], and [3] a logic is developed for “obligation as weakest permission”.
This logic is meant to capture the deontic aspects of reasoning in strategic
games, where we speak about properties of the best actions available to a given
agent. Whereas usually in formal models of such games, actions and/or agents
are modeled explicitly at the object level, the present logic only speaks about
action types (which have, formally, the same status as propositions). Let us
explain this briefly – we refer to the cited works for a more elaborate discussion.

Consider a situation in which an agent can choose from a number of distinct
actions, where at least some of these are optimal. Whereas the agent is permit-
ted to perform one of those optimal actions, its sole obligation (if there is one
at all – mind this important caveat) is to just perform one of them. This means
that the concept of obligation that is being used here is the one we referred
to as “obligation in singular”, and the concept of permission is one of “strong
permission” (see Section 2). More specifically, the deontic operators introduced
by Anglberger et al. can be read as follows:

Oϕ: “ϕ is the (only) action type that is obligatory”
Pϕ: “if an action is of type ϕ, then it is (strongly) permitted”

As Anglberger et al. explain, Pϕ means that being of type ϕ is a sufficient
condition for any action to be optimal35, whereas Oϕ means that to be of type
ϕ is a necessary and sufficient condition to be optimal.36

Anglberger et al. moreover introduce an alethic modality �, which they
interpret as a universal modality. That is, � allows us to quantify over all avail-
able actions of the agent. �ϕ thus means that all of those actions are of type ϕ.
They then propose what they call a “minimal logic” called 5HD for these three
operators. In the remainder, we will focus on the axiomatization of this logic as
it is found in [3] and show that, when strengthened in an intuitively plausible
way, it can be reconstructed as a fragment of one of the DNS-extensions defined
in Section 4.1.

Definition 6. The logic 5HD is axiomatized by all propositional tautologies
together with the following axioms and rules:37

(S5�) All of S5 for �
(EQO) �(ϕ ≡ ψ) ⊃ (Oϕ ≡ Oψ)
(EQP ) �(ϕ ≡ ψ) ⊃ (Pϕ ≡ Pψ)
(FCP) P (ψ ∨ ϕ) ⊃ (Pψ ∧ Pϕ)
(Ought-Perm) Oϕ ⊃ Pϕ

35See e.g. [3, p. 2]:“Under the open reading permission statements identify the sufficient
conditions for an action type to be licensed by a given normative system.”

36See [3, p. 6]: “Assuming that obligation implies permission thus means, in the present
setting, that the obligatory action types, i.e. necessary conditions for legality, are also sufficient
ones”.

37This axiomatization is not equivalent to the one given in [25]. We return to this point
below.
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(Ought-Can) Oϕ ⊃ ♦ϕ
(Weakest-Perm) Oϕ ⊃ (Pψ ⊃ �(ψ ⊃ ϕ))
(MP) Modus Ponens for ⊃
(NEC) Necessitation for �

Consider now the language L of DNS, and define Pϕ =df Sϕ and Oϕ =df

Nϕ∧Sϕ. Hence, strong permission just means deontic sufficiency, and obligation
means deontic necessity and sufficiency. Given the informal reading of P and
O that was described above, this seems to be a very natural move. However,
the resulting operators do not behave in DNS the way they do in 5HD. In
fact, 5HD is in general incomparable to the O/P/�-fragment of DNS. This
requires some explanation.

Two obvious differences with DNS are the strength of the �-operator and
the (Ought-Can) axiom. Recall that in DNS, N and � are only assumed to have
the K-properties in addition to the bridging principle (B). So in order to have
a comparable system at all, we will start from DNSu.D, which is the extension
of DNS with the T-axiom and 5-axiom for � and the D-axiom for N.

It can be easily shown that, given the definitions from the preceding para-
graph, all the 5HD-axioms above are derivable in DNSu.D. However, DNSu.D
yields more validities than 5HD. In particular, the following principles are in-
valid in 5HD:38

(UCP ) (Pϕ ∧ Pψ) ⊃ P (ϕ ∨ ψ)
(TrivP ) P⊥
(Taut-Perm) P> ⊃ O>

Note that, given the above translation, (UCP ) is just our axiom (UC) and
(TrivP ) is our axiom (TrivS). (Taut-Perm) follows (trivially) from the theorem
N> and our definition of O.

How to evaluate these differences? Let us consider them one by one. As
regards (UCP ), it should be noted that the following, weaker axiom is 5HD-
valid:39

(CUCP ) Oτ ⊃ ((Pϕ ∧ Pψ) ⊃ P (ϕ ∨ ψ))

Still, it seems somewhat counterintuitive to let the implication from Pϕ∧Pψ to
P (ϕ∨ψ) depend on whether there is some obligation at all. Given the informal
reading of P , we think that it should be unconditionally valid. Indeed, if every

38The failure of these principles in 5HD can be easily shown in view of the
neighbourhood-semantics from [3]. To falsify (UCP ), we can use a two-state model M =
〈{w1, w2}, Alt, nP , nO, V 〉, where we put nP (w1) = nP (w2) = {{w1}, {w2}, ∅}, nO(w1) =
nO(w2) = ∅, and V (p) = {w1} for all ϕ ∈ S. In this model, Pp and P¬p is true at w1

but P (p ∨ ¬p) is false at w1. For (TrivP ), construct a model with a single state w such
that nP (w) = ∅. To falsify (Taut-Perm), construct a model with a single state w such that
nP (w) = {w, ∅} and nO(w) = ∅.

39Indeed, suppose Oτ, Pϕ, Pψ. By (Weakest-Perm), we have �(ϕ ⊃ τ) and �(ψ ⊃ τ). By
standard modal logic properties, we have �(((ψ ∨ ϕ) ∨ τ) ≡ τ). By (Ought-Perm), we have
Pτ . By (EQP ), we can derive P ((ψ∨ϕ)∨ τ), and hence by (FCP) we have P (ψ∨ϕ). We are
indebted to Olivier Roy for pointing this out (personal communication).
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action of type ϕ is optimal and every action of type ψ is optimal, then it seems
unavoidable that also every action of type ϕ ∨ ψ is optimal – assuming that an
action is of type ϕ ∨ ψ iff it is either of type ϕ or of type ψ or both.

In the earlier versions of the logic spelled out in [26, 25], (UCP ) is valid
whereas (FCP) is invalid. In a still more recent paper [2] (which is co-authored
by two of the three authors from [25, 3]), the authors reconsider (FCP) and
provide some arguments against this principle. However, none of these seem to
count as arguments against (UCP ).

Also for (TrivP ), there is a weakening that is valid in 5HD:

(CTrivP ) Pϕ ⊃ P⊥

Where Anglberger et al. consider (CTrivP ), they argue that, although seemingly
too strong, it is a harmless principle:

[...] Obviously, it is consistent for an impossible action ψ∧¬ψ to
be permitted. Given the open reading, this is even very plausible:
Since there are no tokens of an impossible action type, every token
of that very type is OK. [...]

This argument may just as well be used to argue for the plausibility of the
stronger axiom (TrivP ): after all, what interests us usually are strong permis-
sions that are non-trivial. And again, in the presence of the operator ♦, we can
easily distinguish those permissions from the trivial ones.

Third and last, there is (Taut-Perm). Quite surprisingly, this axiom is valid
in the logic 5HD+ from [3, Section 4.1], which is the extension of 5HD with
the following infinitary rule:

(R-Conv) From {` Pp ⊃ �(p ⊃ ϕ) | p ∈ S}, to infer ` Pϕ ⊃ Oϕ

Indeed, since (trivially) we have Pp ⊃ �(p ⊃ >) for any p, we can derive (Taut-
Perm) using (R-Conv).40 According to [3], the rule (R-Conv) encodes exactly
the idea that if there is a weakest permission, then this is our obligation. In
other words, without this rule, the option is left open that there is no obligation
whatsoever, even if every possible action is (strongly) permitted.

Regarding the validity of (Taut-Perm), there are two different positions one
may take, neither of which are compatible with the logic 5HD. On the one
hand, one may insist that obligation is just the combination of deontic necessity
and sufficiency, and hence that it should be valid. On the other hand, looking at
ordinary uses of “it is obligatory that ϕ”, one may insist that in cases where all
the alternatives are ok, we will usually deny that one has any obligation what-
soever. But in that case, it seems that ϕ’s not being deliberatively necessary
(hence, ♦¬ϕ) is a necessary condition for ϕ’s being obligatory. In this case, one
should either add an axiom like Oϕ ⊃ ♦¬ϕ, or one should distinguish between
“vacuous obligations” and “informative” ones, as we did in Section 2.

40In fact, it suffices to add (Taut-Perm) to the system 5HD in order to obtain a complete
characterization of the semantic consequence relation for 5HD+ from [3, Section 4.1]. This
implies that this consequence relation is compact, in contrast to what is claimed in [3]. See
[32].
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Adding the above three principles to 5HD suffices to characterize theO/P/�-
fragment of DNSu.D. Actually, a more general result can be obtained: we can
characterize the O/P/�-fragment of several of the logics defined in Section 4.1
by an appropriate selection from the above axioms. This requires some prepa-
ration. Let WO be the closure of S ∪ {>,⊥} under the classical connectives
and the operators O, P and � as defined above. We define the base logic
DNSO : ℘(WO)→ ℘(WO) as follows:

Definition 7. The logic DNSO is axiomatized by all propositional tautologies
together with (K�), (NEC�), modus ponens, and the following axiom schemas:

(EQO) �(ϕ ≡ ψ) ⊃ (Oϕ ≡ Oψ)
(EQP ) �(ϕ ≡ ψ) ⊃ (Pϕ ≡ Pψ)
(FCP) P (ψ ∨ ϕ) ⊃ (Pψ ∧ Pϕ)
(UCP ) (Pϕ ∧ Pψ) ⊃ P (ϕ ∨ ψ)
(TrivP ) P⊥
(Taut-Perm) P> ⊃ O>
(Ought-Perm) Oϕ ⊃ Pϕ
(Weakest-Perm) Oϕ ⊃ (Pψ ⊃ �(ψ ⊃ ϕ))

We use `DNSO.A1...An to denote the consequence relation obtained by adding
the axiom schemas (A1), . . ., (An) from Table 3 to DNSO.

(D�) �ϕ ⊃ ¬�¬ϕ (CD�) R� is serial
(T�) �ϕ ⊃ ϕ (CT�) R� is reflexive
(4�) �ϕ ⊃ ��ϕ (C4�) R� is transitive
(B�) ϕ ⊃ �¬�¬ϕ (CB�) R� is symmetric
(C4�) ��ϕ ⊃ �ϕ (CC4�) R� is dense
(5�) ¬�¬ϕ ⊃ �¬�¬ϕ (C5�) R� is euclidian
(C�) ¬�¬�ϕ ⊃ �¬�¬ϕ (CC�) R� is convergent
(DN) Oϕ ⊃ ♦ϕ (CDN) RN is serial

Table 3: Axiom schemas and frame conditions for DNSO.

Theorem 8. Where (A1), . . . (An) are axioms from Table 3, (C1), . . . (Cn) are
the associated conditions on DNS-models, and where Γ ∪ {ϕ} ⊆ WO:

Γ `DNSO.X1...Xn ϕ iff Γ `DNS.X1...Xn ϕ

What about shift reflexivity? It does not seem easy to come up with an
axiom that characterizes it.41 More generally, many standard properties of RN

41Note that adding the axiom O(Oϕ ⊃ ϕ) (where Oψ = Nψ ∧ Sψ) would trivialize the
S-operator, in view of the following derivation:

1 O(O> ⊃ >) (by the additional axiom)
2 S((N> ∧ S>) ⊃ >) (from 1, by the definition of O and ∧-elimination)
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(transitivity, density, . . .) which could be easily axiomatized in the full language
of DNS seem hard to characterize in the restricted language of DNSO. So even
if one assumes that the correct notion of obligation should be one of deontic
necessity and sufficiency, having the notion of deontic necessity in the object
language seems to allow for a much greater expressive power. This is another
argument in favor of an approach which encompasses both deontic necessity and
sufficiency.

6 Summary and Future Work

We re-interpreted van Benthem’s minimal deontic logic KD,m as a logic of deon-
tic necessity and sufficiency DNS, and studied some significant formal aspects
of it. We argued that this logic allows for a rich explication of various concepts
of obligation, permission, and practical necessity in a unifying framework. Fi-
nally, we studied the relationship between DNS and the logic of obligation as
weakest permission from [3].

We mentioned some prospects for future research along our way: e.g. the gen-
eralization of the present framework in order to cover weaker (non-aggregative
and/or non-monotonous, conflict-tolerant) notions of obligation; the develop-
ment of a richer semantics in which alternatives are sets of states, rather than
single states; giving sound and complete axiomatizations for certain first order
conditions on DNS-frames. Another important task is to develop conditional
variants of DNS, which allow us to deal with expressions such as “given that
ϕ is the case, ψ will do”. Such work can merit from existing work on dyadic
deontic logic, even if it will also inherit its major problems.
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A Completeness for DNS: copy-and-merge

A.1 The need for copies

Completeness boils down to the following claim: for every consistent set ∆ ⊆ W,
there is a DNS-model M and a world w such that M,w |= ϕ for all ϕ ∈ ∆.
Below, we prove a slightly stronger claim: there is a DNS-model M such that
for all consistent ∆ ⊆ W, there is a w such that M,w |= ϕ for all ϕ ∈ ∆. This
model M will be called M+.

We first define the canonical model M c = 〈W c, Rc
�, R

c
N, v

c〉 in the standard
way, viz. as follows:

(i) W c is the set of all subsets ofW that are maximally consistent w.r.t. DNS
(ii) Rc

� = {(∆,Θ) | {ψ | �ψ ∈ ∆} ⊆ Θ}
(iii) Rc

N = {(∆,Θ) | {ψ | Nψ ∈ ∆} ⊆ Θ}
(iv) vc(ψ) = {∆ | ψ ∈ ∆} for all ψ ∈ S

It can now be established by standard means that M c is an DNS-model,
and for all formulas ϕ ∈ WS and all ∆ ∈ W c, M c,∆ |= ϕ iff ϕ ∈ ∆. This is
usually called the truth lemma.42 However, this lemma does not hold for the
entire language. Consider a model M that consists of only two worlds, w0 and
w1, such that all ψ ∈ S are true in both worlds, RN is the identity relation,
and R� is the total relation. Let Θ? = {ϕ | M,w0 |= ϕ}. Note that, since
M,w1 |= p and w1 ∈ R�(w0)−RN(w0), M,w0 6|= Sp and hence Sp 6∈ Θ?.

By standard means we can show that Θ? ∈W c. Moreover, Rc
�(Θ?) = {Θ?}.

That is, �ϕ ∈ Θ? iff M,w0 |= �ϕ iff [by the construction and symmetry of M ]
M,w0 |= ϕ iff ϕ ∈ Θ?.43 By the same reasoning, Rc

N(Θ?) = {Θ?}. But then
M c,Θ? |= Sp, whereas Sp 6∈ Θ?.

In other words, if we simply construct the canonical model in the standard
way, then we lack a “witness” for the formula ¬Sp, i.e. a deliberative alternative
in which p holds, but which is not deontically acceptable from the viewpoint of
Θ?.

To solve this problem, we make two disjoint copies M1 and M2 of M c, take
their union, and make some “smart” connections between the points in both.
The idea is that whenever some world in M1 needs a witness for a formula of
the form ¬Sψ, we take it from M2 (and vice versa). This can however be done
in many ways. We will first consider arbitrary ways to copy-and-merge M c and

42See e.g. [6, Section 4.2] for an introduction to the notion of canonical models. We will
assume familiarity with this technique throughout this appendix.

43It is perhaps easier to see that Θ? ∈ Rc
�(Θ), than that Θ? is the only member of Rc

�(Θ?).
Suppose however that ∆ ∈W c,∆ 6= Θ?. Hence, there is a ψ such that ψ ∈ ∆, ¬ψ ∈ Θ?. But
then �¬ψ ∈ Θ? and hence ∆ 6∈ Rc

�(Θ?).
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establish a sufficient condition for the truth lemma to hold in such constructions.
After that, we will consider three specific, concrete ways to copy-and-merge M c.
Whereas the first is aimed at preserving as many properties of RN as possible,
the second and third are aimed at preserving as many properties of R� as
possible.

First some more notation. In the remainder of this appendix, we use i, j, k
to range over {1, 2}. Let W i = {〈∆, i〉 | ∆ ∈ W c}. So the members of W 1 and
W 2 are not sets of formulas, but indexed sets of formulas. In order to enhance
readibility, we will write ∆i to refer to 〈∆, i〉. Also, let W+ = W 1 ∪W 2. Note
that W+ = {∆1,∆2 | ∆ ∈W c}.

We define four accessibility relations on W+ and a valuation over W+:

Ri
� = {(∆i,Θi) | (∆,Θ) ∈ Rc

�}
R∪� = R1

� ∪R2
�

Ri
N = {(∆i,Θi) | (∆,Θ) ∈ Rc

N}
R∪N = R1

N ∪R2
N

vi(ϕ) = {∆i | ∆ ∈ vc(ϕ)} for all ϕ ∈ S

Where X ⊆W+ ×W+, let i(X ) = {(∆,Θ) | (∆i,Θj) ∈ X}.

A.2 A Sufficient Condition for the Truth Lemma

Definition 8. A DNS-model M+ = 〈W+, R+
�, R

+
N , v

+〉 is a smart copy-merge
of M c iff each of the following hold:

1. for all ϕ ∈ S, v(ϕ) = v1(ϕ) ∪ v2(ϕ)
2. i(R+

�) = Rc
�

3. i(R+
N ) = Rc

N

4. i(R+
� \R

+
N ) = {(∆,Θ) ∈ Rc

� | {¬σ | Sσ ∈ ∆} ⊆ Θ}

Theorem 9. If M+ is a smart copy-merge of M c, then for all i ∈ {1, 2},
∆ ∈W c, and ψ ∈ W: M+,∆i |= ψ iff ψ ∈ ∆.

Proof. Suppose that the antecedent holds. We prove the consequent by an
induction on the complexity of ψ. The base case (ψ ∈ S) is immediate in view
of Definition 8.1. For the induction step, the connectives are routine and hence
safely left to the reader. This leaves us with the three modal operators:
Case 1: ψ = �τ . We have: M+,∆i |= �τ iff for all Θj ∈ R+

�(∆i), M+,Θj |= τ
iff [by the induction hypothesis] for all Θj ∈ R+

�(∆i), τ ∈ Θ iff [by Definition
8.2] (†) for all Θ ∈ Rc

�(∆), τ ∈ Θ. Suppose now that (†) holds. Hence by item
(ii) of the construction of M c, every maximally consistent set Θ ⊇ {ϕ | �ϕ ∈ ∆}
contains τ . By a standard proof (relying on the compactness of DNS and the
axioms and rules for �), we can derive that �τ ∈ ∆.

For the other direction, suppose that �τ ∈ ∆. Hence, every maximal con-
sistent set Θ ⊇ {ϕ | �ϕ ∈ ∆} contains τ . By item (ii) of the construction of
M c, (†) holds.
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Case 2: ψ = Nτ . Analogous to the preceding case: replace � with N, (ii) with
(iii) and Definition 8.2 with Definition 8.3.
Case 3: ψ = Sτ . (⇒) Suppose that M+,∆i |= Sτ . Hence, for all Θj ∈ R+

�(∆i)
such that M+,Θj |= τ , Θj ∈ R+

N (∆i). By Definition 8.4 there is no Θ ∈ R�(∆)
such that τ ∈ Θ and {¬σ | Sσ ∈ ∆} ⊆ Θ. Hence, there is no maximal consistent
extension of {ξ | �ξ ∈ ∆} ∪ {τ} ∪ {¬σ | Sσ ∈ ∆}. By the compactness of DNS
and CL-properties, this means that there are ξ1, . . . , ξn and σ1, . . . , σn such that
each of the following hold:

(a) �ξ1, . . . ,�ξn ∈ ∆
(b) {ξ1, . . . , ξn} ∪ {τ} `DNS σ1 ∨ . . . ∨ σn
(c) Sσ1, . . . ,Sσn ∈ ∆

By Observation 2.7 and (c),

S(σ1 ∨ . . . ∨ σn) ∈ ∆ (1)

By (Nec) and (a),

�((ξ1 ∧ . . . ∧ ξn ∧ τ) ⊃ (σ1 ∨ . . . ∨ σn)) ∈ ∆ (2)

By (a) and (2),
�(τ ⊃ (σ1 ∨ . . . ∨ σn)) ∈ ∆ (3)

By axiom (OR), (1) and (3), Sτ ∈ ∆.
(⇐) Suppose that Sτ ∈ ∆. Let Θj ∈ R+

�(∆i) be arbitrary such that
M+,Θj |= τ — we need to prove that Θj ∈ R+

N (∆i). By the induction hy-
pothesis, τ ∈ Θ. Hence, ¬τ 6∈ Θ. It follows that {¬σ | Sσ ∈ ∆} 6⊆ Θ. By
Definition 8.4, (∆,Θ) 6∈ i(R+

� \ R
+
N ), and hence (∆i,Θj) 6∈ R+

� \ R
+
N . It follows

that (∆i,Θj) ∈ R+
N and hence Θj ∈ R+

N (∆i).

A.3 Copy-and-merge version 1

As promised, we will now define three concrete ways to copy-and-merge M c in
a smart way. For the first, put

(a) R+
� = R∪� ∪ {(∆i,Θj) | (∆,Θ) ∈ Rc

� and {¬σ | Sσ ∈ ∆} ⊆ Θ}
(b) R+

N = R∪N

To see that M+ is an DNS-model, it suffices to check that R+
N ⊆ R+

�. So
suppose that (∆i,Θj) ∈ R+

N . By (b), (∆,Θ) ∈ Rc
N and i = j. Let τ be arbitrary

such that �τ ∈ ∆. By axiom (B) and (MP), also Nτ ∈ ∆. Hence, by (iii),
τ ∈ Θ. So we have shown that {τ | �τ ∈ ∆} ⊆ Θ. Hence, by (ii), (∆,Θ) ∈ Rc

�.
Finally, by (b) and since i = j, (∆i,Θj) ∈ R+

�.
So it remains to check that M+ is a smart copy-merge of M c. But this is

obvious in view of the way we defined R+
� and R+

N . So by Theorem 9 we get the
truth lemma for M+, and hence we obtain a model for every DNS-consistent
set Γ ⊆ W.
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A.4 Copy-and-merge version 2

For the second version of copy-and-merge, we put

(a’) R+
� = {(∆i,Θj) | (∆,Θ) ∈ Rc

�}
(b’) R+

N = R∪N ∪ {(∆i,Θj) ∈ R+
� | {¬σ | Sσ ∈ ∆} 6⊆ Θ}

The main difference with the previous construction is that here, we connect
every ∆i with Θj whenever (∆,Θ) ∈ R+

�. This allows us to preserve a great
number of properties of Rc

�. However, to make sure that formulas of the form Sψ
are respected, we need to enlarge the relation RN in such a way that whenever
some τ is sufficient at ∆i, then every R�-accessible world at which τ holds is
also RN-accessible.

Checking that M+ is a DNS-model is again easy in view of the (B)-axiom
and the construction. Also, in view of (a’) and (b’) we can easily verify that
M+ is a smart copy-merge of M c. So we can again infer by Theorem 9 that the
truth lemma holds for M+, which finishes the proof of completeness.

A.5 Copy-and-merge version 3

The third and last copy-merge operation is defined as follows:

(a”) R+
� = {(∆i,Θj) | (∆,Θ) ∈ Rc

�}
(b”) R+

N = {(∆i,Θj) | (∆,Θ) ∈ Rc
N and j = 1 or {¬σ | Sσ ∈ ∆} 6⊆ Θ}

We leave it to the reader to check that once more, every M+ obtained in this
way is a smart copy-merge of M c and is a DNS-model. Note that, in contrast
to the two previous constructions, this one is asymmetric w.r.t. the indices 1 and
2. This will turn out instrumental in proving that transitivity and uniformity
of RN transfers to R+

N (see Section B.2 and B.3 respectively).

B Extensions of DNS

B.1 Proof of Theorems 2 and 3

To prove the left-right direction of Theorems 2 and 3, it suffices to check that
the validity of axioms is preserved in the richer setting of DNS-models – we
safely leave this to the reader. For the other direction, we need to apply the
two techniques of copy-merge from Section A to the stronger logics obtained by
adding the axioms. In the remainder, we first illustrate how this works for some
cases covered by Theorem 2; the reasoning is completely analogous for the other
cases and Theorem 3.

Let DNS.4N be the logic obtained by adding the axiom (4N) to DNS. We
need to prove that this is the logic of DNS-models in which RN is transitive. The
proof proceeds in two steps: first, we define the model M c as in Section A. We
prove that, due to this definition and the axiom (4N), Rc

N is transitive. This is
done in the standard way as for the logic K4: suppose that (∆,Θ), (Θ,Λ) ∈ Rc

N.
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By the construction of M c, {ϕ | Nϕ ∈ ∆} ⊆ Θ and {ψ | Nψ ∈ Θ ⊆ Λ. Let
Nϕ ∈ ∆. Hence by (4N), NNϕ ∈ ∆. It follows that Nϕ ∈ Θ and hence ϕ ∈ Λ.
So we have that {ϕ | Nϕ ∈ ∆} ⊆ Λ and hence by the construction of M c,
(∆,Λ) ∈ Rc

N.
For the second step, let M+ be defined according to the first method of copy-

merge – see Section A.3. Then we have: R+
N = R1

N ∪R2
N. It follows immediately

that also R+
N is transitive. Hence, we obtain a canonical model for DNS.4 in

which R+
N is transitive.

The same reasoning can be applied to the other conditions on RN: we first
prove that the construction of M c and the axioms ensure that Rc

N satisfy them,
and next we observe that these conditions are preserved in R+

N in view of its
definition.

We now consider the conditions on R� that are covered by Theorem 2.
Again, we prove these in the same basic steps: first prove that they hold for
Rc

�, and second show that this transfers to R+
�. Since the reasoning in the

second step is slightly more intricate here, we summarize the main points here:

(CD�) Suppose that Rc
� is serial. Let ∆i ∈W+ be arbitrary. Hence, ∆ ∈W c

and hence by seriality, there is a Θ such that (∆,Θ) ∈ Rc
�. But then by

the construction, (∆i,Θi) ∈ R+
�. Hence, R+

� is serial.
(CT�) Suppose that Rc

� is reflexive. Let ∆i ∈W+. Hence, ∆ ∈W c and hence
by reflexivity, (∆,∆) ∈ Rc

�. By the construction, (∆i,∆i) ∈ R+
�. Hence,

R+
� is reflexive.

(CM�) Suppose that Rc
� is shift reflexive and that (∆i,Θj) ∈ R+

�. By the
construction, (∆,Θ) ∈ Rc

�. Hence, by shift reflexivity, (Θ,Θ) ∈ Rc
�. But

then, by the construction, (Θj ,Θj) ∈ R+
� and we are done.

To prove Theorem 3, we use the second construction of copy-and-merge –
see Section A.4. Otherwise, the reasoning is the same: first prove that Rc

N

(Rc
�) satisfy the respective conditions, and next show how those conditions are

transferred to R+
N (R+

�).

B.2 Transitivity of RN

We now prove that the logic of frames with R� euclidian and RN transitive is
completely axiomatized by DNS plus the following axioms:

(5�) ♦ϕ ⊃ �♦ϕ
(4N) Nϕ ⊃ NNϕ
(TransS) ¬N¬Sϕ ⊃ Sϕ

The proof of soundness is again safely left to the reader. For completeness,
we use the third type of copy-and-merge (see Appendix A.5). This gives us the
DNS-modelM+ which is a smart copy-merge ofM c for the logic DNS.5�.4N.TransS.
To show that M+ satisfies the right conditions, we again proceed by two steps:
first, show that Rc

� is euclidian and that Rc
N is transitive. This is done in the

standard way, relying on (respectively) the axioms (5�) and (4N). Second, show
that (1) R+

� is euclidian and (2) R+
N is transitive.
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Proving (1) is straightforward in view of (a”) and (b”) in the definition of
M+. For the proof that R+

N is transitive, suppose that (∆i,Θj), (Θj ,Λk) ∈ R+
N .

Hence (∆,Θ), (Θ,Λ) ∈ Rc
N and hence, since Rc

N is transitive, (†) (∆,Λ) ∈ Rc
N.

We distinguish the following cases:

k = 1. By (b”) and (†), we know at once that (∆i,Λk) ∈ R+
N .

k = 2. By (b”), there is a ψ such that Sψ ∈ Θ and ψ ∈ Λ. Hence by the
construction of M c, ¬N¬Sψ ∈ ∆ and hence, by (TransS), Sψ ∈ ∆. But then
also (∆i,Λk) ∈ R+

N .

B.3 Completeness for DNSu.U and DNSu.U.DN

To prove strong completeness for DNSu.U, we again use the third copy-and-
merge technique (see Section A.5). Starting from a canonical model M c for
DNSu.U. This gives us a new model M+. It can be easily checked that R+

� is
an equivalence relation.

Note that by a standard argument (relying on the axiom (U)), we can show
that (?) if (∆,Θ) ∈ Rc

N, then for all Λ ∈ Rc
�(∆), (Λ,Θ) ∈ Rc

N.
Suppose now that (∆i,Θj) ∈ R+

N and let Λk ∈ R+
�(∆i) be arbitrary. It

follows that (∆,Θ) ∈ Rc
N and (∆,Λ) ∈ Rc

�. By (?), (Λ,Θ) ∈ Rc
N. If j = 1,

then (Λk,Θj) ∈ R+
N by the construction. If j 6= 1, this means that there is a σ

such that Sσ ∈ ∆ and σ ∈ Θ. Hence in view of the axiom (U), �Sσ ∈ ∆ and
hence Sσ ∈ Λ. But then by the construction, (Λk,Θj) ∈ R+

N . So we have shown
that

(??) if (∆i,Θj) ∈ R+
N , then for all Λk ∈ R+

�(∆i), (Λk,Θj) ∈ R+
N .

Next, consider an arbitrary maximal DNSu.U-consistent set Ξ. We know
that Ξ ∈W and hence Ξ1 ∈W+. Consider now the generated submodel MΞ of
M+, which consists of the following four elements:

(i) WΞ = {∆i | (Ξ1,∆i) ∈ R+
�}

(ii) RΞ
� = R+

� ∩ (WΞ ×WΞ) = WΞ ×WΞ

(iii) RΞ
N = R+

N ∩ (WΞ ×WΞ)
(iv) vΞ(ψ) = v+(ψ) ∩WΞ for all ψ ∈ S

It can be easily observed that M+ and MΞ are pointwise equivalent for all
∆i ∈ WΞ, and that RΞ

� = WΞ ×WΞ. Moreover, in view of (??), we can derive
that MΞ is uniform. Hence, we have obtained a DNSu.U-model which verifies
all the members of Ξ in at least one world.

The completeness proof for DNSu.U.DN is entirely analogous; one just needs
to observe that Rc

N is serial and hence so is R+
N and RΞ

N.

C Finite Model Property

For the proof of the finite model property, we combine the standard technique of
filtration with the copy-and-merge variants that we used for strong completeness
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of DNS and its extensions. Below, we give the outline of the proof for all three
types of construction. We start from the supposition that 6DNS ϕ. Hence,
there is an DNS-model M = 〈W,R�, RN, v〉 and t ∈ W such that M, t 6|= ϕ.
We then construct a finite model Mf from M , such that also Mf falsifies ϕ at
some state.

The three different variants defined below can be used to establish the finite
model property for three different groups of extensions of DNS, which in turn
correspond to three groups of frame conditions. The three groups of frame
conditions are:

1. all frame conditions in Table 1
2. all frame conditions in Table 2
3. uniformity and seriality for RN.

It then suffices to show that whenever M satisfies one or more conditions within
one of these groups, so does Mf , when constructed according to the correspond-
ing variant of the copy-and-merge technique. We safely leave this part of the
proof to the reader.

Some notation: let Σ be the set of all subformulas of ϕ.44 For all w ∈ W ,
let |w| = {v ∈W | for all ψ ∈ Σ : M,w |= ψ iff M,v |= ψ}.

C.1 Filtration plus copy-and-merge version 1

Let Mf = 〈W f , Rf
�, R

f
N, v

f 〉, where

(i) W f = {|w|1, |w|2 | w ∈W}
(ii) Rf

� = {(|w|i, |v|i) | (w, v) ∈ R�}∪{(|w|i, |v|j) | (w, v) ∈ R� and there is no ψ ∈
Σ : M,w |= Sψ,M, v |= ψ}

(iii) Rf
N = {(|w|i, |v|i) | (w, v) ∈ RN}

(iv) For all ψ ∈ Σ, vf (ψ) = {|w|i, |w|j |M,w |= ψ}
(v) For all ψ ∈ S − Σ, vf (ψ) = W f .

Since Σ is finite, W f is also finite (it contains at most 2 × 2|Σ| nodes). To

see that Mf is a DNS-model, suppose that (|w|i, |v|j) ∈ Rf
N. By (ii), i = j and

there are w′ ∈ |w|, v′ ∈ |v| with (w′, v′) ∈ RN. Hence, since M is a DNS-model,

(w′, v′) ∈ Rf
�. So by (iii) and since i = j, (|w|i, |v|j) ∈ Rf

�. We now prove the
following crucial lemma:

Lemma 1. Where i ∈ {1, 2}, ψ ∈ Σ and w ∈W : M,w |= ψ iff Mf , |w|i |= ψ.

Proof. We proceed by an induction on the complexity of ψ. The base case (ψ
is a propositional variable) and the induction step for the classical connectives
are safely left to the reader. It remains to prove the induction step for the three
modal operators:

44Hence, ϕ ∈ Σ, and each of the following hold: if ¬ψ ∈ Σ, then ψ ∈ Σ; if ψ ∨ τ ∈ Σ, then
ψ, τ ∈ Σ; if †ψ ∈ Σ then ψ ∈ Σ for † ∈ {N,�, S}.
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Case 1 ψ = �τ . (⇒) Suppose that M,w 6|= �τ . So there is a v ∈ R�(w) such

that M, v 6|= τ . By the definition of Rf
�, |v|i ∈ R�(|w|i) and by the induction

hypothesis, Mf , |v|i 6|= τ . It follows that Mf , |w|i 6|= �τ .

(⇐) Suppose that Mf , |w|i 6|= �τ . Hence, there is a |v|j ∈ Rf
�(|w|i) such

that Mf , |v|j 6|= τ . By the symmetry of the construction, Mf , |v|i 6|= τ . By the

induction hypothesis, M, v 6|= τ . By the definition of Rf
�, there are v′ ∈ |v| and

w′ ∈ |w| such that v′ ∈ R�(w′). Since τ ∈ Σ, M,v′ 6|= τ and hence M,w′ 6|= �τ .
Since �τ ∈ Σ, M,w 6|= �τ .
Case 2 ψ = Nτ . Analogous to case 1; just replace every occurrence of � (also
in subscripts) with N.

Case 3 ψ = Sτ . (⇒) Suppose that M,w |= Sτ . Let |v|j ∈ Rf
�(|w|i) be arbitrary

such that Mf , |v|j |= τ — we need to prove that |v|j ∈ Rf
N(|w|i). Note that by

the induction hypothesis, M,v |= τ and hence by the construction i = j. By

the definition of Rf
�, there is a v′ ∈ |v|, w′ ∈ |w| such that v′ ∈ R�(w′). Since

w′ ∈ |w|, M,w′ |= Sτ . It follows that v′ ∈ RN(w′) and hence (|w′|i, |v′|i) =

(|w|i, |v|i) = (|w|i, |v|j) ∈ Rf
N.

(⇐) Suppose that M,w 6|= Sτ . Hence, there is a v ∈ R�(w) \ RN(w) such
that M, v |= τ . It follows that, for no τ ′ ∈ W, M,w |= Sτ ′ and M, v |= τ ′.

Let i 6= j. By the induction hypothesis and the construction of Rf
� and Rf

N,

Mf , |v|j |= τ and |v|j ∈ Rf
�(|w|i) \Rf

N(|w|i). Hence, Mf , |w|i 6|= Sτ .

C.2 Filtration plus copy-and-merge version 2

Let Mf = 〈W f , Rf
�, R

f
N, v

f 〉, where

(i) W f = {|w|1, |w|2 | w ∈W}
(ii) Rf

� = {(|w|i, |v|j) | (w, v) ∈ R�}
(iii) Rf

N = {(|w|i, |v|j) | (w, v) ∈ RN and i = j or there is a ψ ∈ Σ : M,w |=
Sψ,M, v |= ψ}

(iv) For all ψ ∈ Σ, vf (ψ) = {|w|i, |w|j |M,w |= ψ}
(v) For all ψ ∈ S − Σ, vf (ψ) = W f .

Again, it is easily verified that Mf is a DNS-model. So we are left proving:

Lemma 2. Where i ∈ {1, 2}, ψ ∈ Σ and w ∈W : M,w |= ψ iff Mf , |w|i |= ψ.

Proof. Analogous to the proof for Lemma 1, except for the case where ψ = Sτ :
(⇒) Suppose that M,w |= Sτ . Let |v|j ∈ Rf

�(|w|i) be arbitrary such that

Mf , |v|j |= τ — we need to prove that |v|j ∈ Rf
N(|w|i). Note that by the

induction hypothesis, M,u |= τ for all u ∈ |v|. Also, by the definition of Rf
�,

there is a v′ ∈ |v|, w′ ∈ |w| such that v′ ∈ R�(w′). Since w′ ∈ |w|, M,w′ |= Sτ .
It follows that (†) v′ ∈ RN(w′). We now distinguish two cases:

3.1 j = i. By (†) and the definition of Rf
N, |v|j ∈ RN(|w|i).

3.2 j 6= i. By (†) it suffices to note that, for all v′ ∈ |v| and all w′ ∈ |w|,
M,v′ |= τ and M,w′ |= Sτ .
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(⇐) Suppose that M,w 6|= Sτ . Hence, there is a v ∈ R�(w) \ RN(w) such

that M, v |= τ . By the induction hypothesis and the construction of Rf
� and

Rf
N, Mf , |v|j |= τ and |v|j ∈ Rf

�(|w|i) \Rf
N(|w|i). Hence, Mf , |w|i 6|= Sτ .

C.3 Filtration plus copy-and-merge version 3

Let Mf = 〈W f , Rf
�, R

f
N, v

f 〉, where

(i) W f = {|w|1, |w|2 | w ∈W}
(ii) Rf

� = {(|w|i, |v|j) | (w, v) ∈ R�}
(iii) Rf

N = {(|w|i, |v|j) | (w, v) ∈ RN and j = 1 or there is a ψ ∈ Σ : M,w |=
Sψ,M, v |= ψ}

(iv) For all ψ ∈ Σ, vf (ψ) = {|w|i, |w|j |M,w |= ψ}
(v) For all ψ ∈ S − Σ, vf (ψ) = W f .

We leave the proof of the following to the reader (it proceeds wholly analo-
gously to the proof of Lemma 2):

Lemma 3. Where i ∈ {1, 2}, ψ ∈ Σ and w ∈W : M,w |= ψ iff Mf , |w|i |= ψ.

D Proof of Theorem 6

We will first prove the theorem for the base case where DNS+ = DNS. So
suppose that S does not occur in Γ or in ϕ1, . . . , ϕn. We need to prove:

Γ DNS Sϕ1 ∨ . . . ∨ Sϕn iff Γ DNS �¬ϕ1 ∨ . . . ∨�¬ϕn

The right to left direction is easy, in view of the fact that �¬ϕ ⊃ Sϕ is a
theorem in DNS. For the other direction, we will need some more work.

Suppose that Γ 6DNS �¬ϕ1∨. . .∨�¬ϕn. Let M = 〈W,R�, RN, v〉 and w0 ∈
W be such that M,w0 |= ψ for all ψ ∈ Γ and M,w0 |= ¬�¬ϕ1, . . . ,¬�¬ϕn.
We construct M ′ = 〈W ′, R′�, R′N, v′〉 as follows:

(i) W ′ = {w1, w2 | w ∈W}
(ii) R′� = {(wi, vj) | i, j ∈ {1, 2}, (w, v) ∈ R�}
(iii) R′N = {(wi, vi) | (w, v) ∈ RN}
(iv) v′(ψ) = {w1, w2 | w ∈ v(ψ)} for all ψ ∈ S

We need to show that (a) for all ψ that do not contain S and all w ∈ W ,
M,w |= ψ iff M ′, wi |= ψ and (b) for all ψ ∈ WS and wi ∈ W ′ such that
M ′, wi |= ¬�¬ψ, M ′, wi 6|= Sψ. By (a) and the supposition, M ′, w1

0 |= ψ for all
ψ ∈ Γ. By (b), M ′, w1

0 6|= Sϕ1 ∨ . . . ∨ Sϕn. Hence, Γ 6DNS Sϕ1 ∨ . . . ∨ Sϕn.
Ad (a) This is shown by an induction on the complexity of ψ. The base case
(ψ ∈ S) is trivial in view of (iv). So is the inductive step for the classical
connectives. For ψ = �τ , it suffices to observe that v ∈ R�(w) iff v1, v2 ∈
R′�(wi), and hence, by the induction hypothesis, M,w |= �τ iff M ′, wi |= �τ .
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For ψ = Nτ , it suffices to observe that v ∈ RN(w) iff vi ∈ RN(wi) and hence, by
the induction hypothesis, M,w |= Nτ iff M ′, wi |= Nτ .
Ad (b) Suppose that M ′, wi |= ¬�¬ψ where ψ contains no occurrences of S.
Hence, there is a vj ∈ R′�(wi) such that M ′, vj |= ψ. Let k 6= i. By the
construction, vk ∈ R′�(wi) \ R′N(wi). By (a), M,v |= ψ and hence M ′, vk |= ψ.
Hence, M,wi 6|= Sψ.

The generalization of this proof to obtain a proof for Theorem 6 is straight-
forward: we just need to note that whenever a condition on RN (R�) is pre-
served by copy (preserved by copy-merge), and whenever it holds for the model
M of Γ ∪ {¬�¬ϕ1, . . . ,¬�¬ϕn}, then it will also hold for the model M ′ we
constructed. But this is just what Definitions 4 and 5 tell us.

Note that in the above construction, RN is not uniform. Hence, proving
the same theorem for DNSu.U and DNSu.U.DN requires a slightly different
construction. Here we define M ′ = 〈W ′, R′�, R′N, v′〉 as follows:

(i) W ′ = {w1, w2 | w ∈W}
(ii) R′� = {(wi, vj) | i, j ∈ {1, 2}, (w, v) ∈ R�} (= W ′ ×W ′)
(iii) R′N = {(wi, v1) | (w, v) ∈ RN}
(iv) v′(ψ) = {w1, w2 | w ∈ v(ψ)} for all ψ ∈ S

Note that this construction is not symmetric. We can now prove each of (a) and
(b) as before, with two minor differences. For (a), the case ψ = Nτ , one needs
to observe that v ∈ RN(w) iff v1 ∈ RN(wi). For (b), we need to take k = 2
instead of k 6= i.

E Reducing DNS to Kd

The left-right direction of the reduction theorem is straightforward: it suffices
to check that for every DNS-axiom ϕ, t(ϕ) is a K-axiom. We safely leave this
to the reader.

For the other direction, a more elaborate argument is needed. Suppose that
Γ 6DNS ϕ. Hence, there is an DNS-model M = 〈W,R�, RN, v〉 and w0 ∈ W
such that M,w0 |= Γ and M,w0 6|= ϕ. The proof now proceeds in two steps.

First, we unravel the model M around the node w0, obtaining a model
M ′ = 〈W ′, R′�, R′N, v′〉, where

(i) W ′ = {〈w0, . . . , wn〉 | (w0, w1), . . . , (wn−1, wn) ∈ R�}
(ii) R′� = {(〈w0, . . . , wi〉, 〈w0, . . . , wi, wi+1〉) | (wi, wi+1) ∈ R�}
(iii) R′N = {(〈w0, . . . , wi〉, 〈w0, . . . , wi, wi+1〉) | (wi, wi+1) ∈ RN}
(iv) v′(ψ) = {〈w0, . . . , wn〉 | wn ∈ v(ψ)

By standard means, we can prove that (a.1) for all wn ∈ W and all ψ,
M ′, 〈w0, . . . , wn〉 |= ψ iff M,wn |= ψ; and (a.2) for all x ∈ W ′, there is at most
one y ∈W ′ with x ∈ R�(y).45

45See [6] for a general discussion of the technique of unraveling, including the means to
derive (a.1) and (a.2).
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In the second step of the proof, we transform M ′ into a Kd-model M ′′ =
〈W ′′, R′′�, v〉, as follows: W ′′ = W ′, R′′� = R′�, for all ψ ∈ S, v′′(ψ) = v′(ψ),
and v(d) = {x ∈ W ′ | there is a y ∈ W ′ : x ∈ R′N(y)}. By induction on the
complexity of ψ, we can show that for all ψ and all x ∈ W ′, M ′, x |= ψ iff
M ′′, x |= t(ψ). In view of (a.1), M ′′, 〈w0〉 verifies all members of t(Γ ∪ {¬ϕ})
whence we are done.

The unraveling is a necessary step in this proof – even if for the standard
proof of the Andersonian reduction as spelled out e.g. in [4], this is not needed.
The reason for this complication is that the present theorem concerns the entire
language of DNS, which includes the operator �. As a result, we cannot just
define the accessibility relation of our Kd-model ad libitum: we have to take
it over from the original DNS-model. This in turn makes it impossible to
simply make d true at all worlds w that are deontically acceptable from some
world. Instead, we first make sure by the unraveling that whenever a world w is
deontically acceptable for a world, then it is deontically acceptable for exactly
one such world. Only then do we apply the usual trick, viz. making d true in
those worlds that are acceptable for their (unique) predecessor.

As promised, we also briefly outline the proof for the reduction of DNSu.U
to S5d. The translation proceeds in the same way as before. We leave it to the
reader to check that, under this translation, all DNSu.U-axioms are valid in
S5d.

For the other direction, suppose that Γ 6|=DNSu.U ϕ. Let M = 〈W,R�, RN, v〉
be an DNSu.U-model and w ∈ W , such that M,w |= ψ for all ψ ∈ Γ and
M,w 6|= ϕ. Construct the S5d-model M ′ = 〈W,R�, v

′〉, putting v′(τ) = v(τ)
for all τ ∈ S and v′(d) = {w′ ∈W | RN(w,w′)}. Then prove by induction that,
for every τ and every u ∈W , M,u |= τ iff M ′, u |= t(τ). The only difficult cases
are τ = Nψ and τ = Sψ; for these, we rely on the fact that RN(u) = RN(w) for
all u ∈W .

For the reduction of DNSu.U.DN to S5d + {♦d}, we can run the same
argument. Observe that, since RN is serial in M , v′(d) 6= ∅.

F No Interpolation for DNS.T�

As we argued in the main text, Sp∧p DNS.T�
Nq ⊃ q. Assume now that there

is an interpolant for 〈Sp ∧ p,Nq ⊃ q〉 — let us call it ϕ. Note that ϕ contains
no propositional variables. We prove two lemmas about every such ϕ:

Lemma 4. For every DNS-frame F = 〈W,R�, RN〉, for all w ∈ W , and for
all valuations v, v′ : S → ℘(W ): 〈F, v〉, w |= ϕ iff 〈F, v′〉, w |= ϕ.

Proof. By an induction on the complexity of ϕ. Note that the base case is
ϕ = ⊥. For the induction step, we simply rely on the induction hypothesis and
the semantic clauses for the various connectives and modal operators.

Lemma 5. Where F = 〈W,R�, RN〉, w ∈W , and v : S → ℘(W ): 〈F, v〉, w |= ϕ
iff w ∈ RN(w).
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Proof. (⇒) Suppose that w 6∈ RN(w). Let v′ : S → ℘(W ) be such that v′(q) =
RN(w). It follows that 〈F, v′〉, w |= Nq ∧ ¬q and hence 〈F, v′〉, w |= ¬(Nq ⊃ q).
Since ϕ is an interpolant for 〈Sp ∧ p,Nq ⊃ q〉, this means that 〈F, v′〉, w 6|= ϕ.
Hence by Lemma 4, 〈F, v〉, w 6|= ϕ.

(⇐) Suppose that w ∈ RN(w). Let v′ : S → ℘(W ) be such that v′(p) = w.
It follows that 〈F, v′〉, w |= Sp∧ p. Since ϕ is an interpolant for 〈Sp∧ p,Nq ⊃ q〉,
this means that 〈F, v′〉, w |= ϕ. By Lemma 4, 〈F, v〉, w |= ϕ.

Consider now two modelsM1 = 〈W 1, R1
�, R

1
N, v

1〉 andM2 = 〈W 2, R2
�, R

2
N, v

2〉,
which are defined as follows:

1. where i ∈ {1, 2}: W i = {w,w′} and Ri
� = W i ×W i

2. where i ∈ {1, 2} and ϕ ∈ S: vi(ϕ) = W i

3. R1
N = {(w,w), (w′, w′)}

4. R2
N = {(w,w′), (w′, w)}

Note that these models only differ in one respect, viz. the relation RN. In M1

this relation is reflexive; in M2 it is not. We can now prove the following (by
induction on the complexity of ψ):

Lemma 6. For all ψ and u ∈ {w,w′}: M1, u |= ψ iff M2, u |= ψ.

But this means that, in particular, M1, w |= ϕ iff M2, w |= ϕ. Since R1
N is

reflexive, we can derive by Lemma 5 that M1, w |= ϕ. But then also M2, w |= ϕ,
which contradicts the fact that R2

N is not reflexive and Lemma 5.
The proof for the failure of interpolation for DNS.SR� proceeds in a sim-

ilar way; the only real difference concerns Lemma 5. The idea here is that ϕ
expresses exactly that there is a w′ ∈ R�(w) such that w′ ∈ RN(w′). In the
proof of the lemma, we define v′(q) =

⋃
w′∈R�(w)RN(w′) for the left to right

direction, and v′(p) = {w′} for the right to left direction. The construction of
M1 and M2 can just as well be used for this case, since R1

N is shift reflexive and
R2

N is not.

G Proof of Theorem 8

We will first give the outline of our proof for the base logic DNSO, which
proceeds along the same lines as the soundness and completeness proof for
DNS. One direction (soundness of DNSO with respect to DNS) is easy and
has been discussed in the main text. For the other direction (completeness w.r.t.
the O/P/�-fragment of DNS), we rely on the soundness and completeness of
DNS, so that it suffices to show that every DNSO-consistent set Γ is satisfiable
at a point in a DNS-model. In order to arrive there, we use once more the copy-
and-merge technique, adapting it to present needs.

Let M = 〈W,R�, RN, v〉, where

(i) W is the set of all maximal consistent (w.r.t. DNSO) subsets of WO.
(ii) (∆,Θ) ∈ R� iff {ϕ | �ϕ ∈ ∆} ⊆ Θ
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(iii) (∆,Θ) ∈ RN iff (∆,Θ) ∈ R� and there is a ϕ such that Pϕ ∈ ∆, ϕ ∈ Θ
(iv) v(p) = {∆ ∈W | p ∈ ∆} for all p ∈ S

Let M = 〈W+, R+
�, R

+
N , v

+〉 where

(i’) W+ = {∆1,∆2 | ∆ ∈W}
(ii’) R+

� = {(∆i,Θj) | (∆,Θ) ∈ R�, i, j ∈ {1, 2}}
(iii’) R+

N = {(∆i,Θj) | (∆,Θ) ∈ RN | i = j or {ϕ | Oϕ ∈ ∆} ⊆ Θ}
[iv’) v+(p) = {∆1,∆2 | ∆ ∈ v(p)} for all p ∈ S

The first step in the proof is to check that M+ is a DNS-model. It suffices
to check that R+

N ⊆ R
+
�, which is immediate in view of the construction.

Next, we need to establish the following version of the truth lemma:

Lemma 7. For all ϕ ∈ WO and where i ∈ {1, 2}: M+,∆i |= ϕ iff ϕ ∈ ∆i.

Proof. The base case and the induction step for the connectives and � are a
matter of routine – we safely leave this to the reader. So we are left with two
cases:
Case 1: ϕ = Pψ = Sψ. (⇒) Here, we can follow exactly the same reasoning as in
the proof of Theorem 9, left-right direction of Case 3. (⇐) Suppose that Sϕ ∈ ∆.
Let Θj ∈ R+

�(∆i) be such that M+,Θj |= ϕ. By the induction hypothesis,
ϕ ∈ Θ. Hence by items (iii) and (iii’) of the construction, Θj ∈ R+

N (∆i). Hence,
M+,∆i |= Sϕ.
Case 2: ϕ = Oψ = Nψ ∧ Sψ. (⇒) Suppose that Oψ 6∈ ∆. If Pψ 6∈ ∆, then we
can infer at once (relying on case 1 of the present proof) that M+,∆i 6|= Pψ
and hence M+,∆i 6|= Oψ. So suppose moreover that Pψ ∈ ∆. It follows that
�ψ 6∈ ∆ — otherwise, we can use (EQP ), (Taut-Perm) and (EQO) to derive
that Oψ ∈ ∆, contradicting our initial supposition.46 Hence, ♦¬ψ ∈ ∆.

We now distinguish two cases:

(a) there is no τ such that Oτ ∈ ∆. Let Θ ∈ R�(∆) be such that ψ 6∈ Θ.47

By item (iii’) of the construction and Θi ∈ R+
N (∆i). Hence, M+,∆i 6|= Nψ

and hence M+,∆i 6|= Oψ.
(b) there is a τ such that Oτ ∈ ∆. By axiom (Weakest-Perm), �(ψ ⊃ τ) ∈ ∆,

but by (EQO) and since Oψ 6∈ ∆, �(ψ ≡ τ) 6∈ ∆. Hence, ♦(τ ∧ ¬ψ) ∈ ∆.
We can infer that there is a Θ ∈ R�(∆) such that τ ∈ Θ, ψ 6∈ Θ. Note that
for all τ ′ such that Oτ ′ ∈ ∆, also �(τ ′ ≡ τ) ∈ ∆, and hence τ ′ ∈ Θ. In
view of item (iii’) of the construction, Θi ∈ R+

N (∆i). Hence, M+,∆i 6|= Nψ
and hence M+,∆i 6|= Oψ.

(⇐) Suppose that Oψ ∈ ∆. Hence, Nψ,Sψ ∈ ∆ and hence by case 1 of
the present proof, M+,∆i |= Sψ. Also, by axiom (Weakest-Perm), for all τ ,
Sτ ⊃ �(τ ⊃ ϕ) ∈ ∆. Assume now that M+ 6|= Nψ. Hence by the induction
hypothesis, there is a Θj ∈ R+

N (∆i) such that ψ 6∈ Θ. In view of item (iii’) of
the construction, this can only mean two things:

46This may go a little fast. Suppose that Pψ,�ψ ∈ ∆. Hence, �(ψ ≡ >) ∈ ∆. Hence by
(EQP ), P> ∈ ∆ and hence by (Taut-Perm), O> ∈ ∆. Finally, by (EQO), Oψ ∈ ∆.

47We can prove by standard means that there is such a Θ – this is usually called “the
existence lemma”. The same applies mutatis mutandis to the Θ that is used in case (b).
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(c) There is a τ such that Sτ ∈ ∆, τ ∈ Θ. It follows that �(τ ⊃ ψ) ∈ ∆ and
hence τ ⊃ ψ ∈ Θ and hence ψ ∈ Θ — contradiction.

(d) For all τ such that Oτ ∈ ∆, τ ∈ Θ. But then ψ ∈ Θ — contradiction again.

So we have shown that M+,∆i |= Nψ and hence M+,∆i |= Oψ.

The extension of the above proof to cover the additional frame conditions,
resp. axioms, is straightforward. For completeness, it suffices to check that
whenever the axioms are added, the resulting canonical model will be one that
satisfies the associated frame conditions. For soundness, it suffices to check that
the axioms are valid whenever the conditions are in place.
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