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Abstract

In this paper we present an argumentative approach to normative reasoning. Special
attention is paid to normative conflicts, contrary-to-duty and specificity cases. These are
modeled by means of argumentative attacks. For this, we adopt a recently proposed frame-
work for logical argumentation in which arguments are generated by a sequent calculus of a
given base logic (Arieli, CLIMA’2013, pp.69–85), and use an intuitionistic variant of stan-
dard deontic logic as our base logic. Argumentative attacks are realized by elimination rules
that allow to discharge specific sequents. We demonstrate our system by means of various
well-known benchmark examples.

1 Introduction

Normative reasoning concerns reasoning with and about norms such as obligations, imperatives,
permissions, etc. A paradigmatic instance is so-called factual detachment which says: if ϕ
holds, and there is a commitment to ψ conditional on ϕ, then there is a commitment to ψ.
Another instance is aggregation: if there is a norm to bring about ϕ and another norm to bring
about ψ then there should be a norm to bring about ϕ ∧ ψ. Allowing for unrestricted factual
detachment or unrestricted aggregation is problematic in cases in which norms conflict [1]. For
instance, aggregating two conflicting norms leads to a norm that commits us to do the impossible.
Other problematic cases concern specificity: sometimes more specific norms override more general
norms. In such cases we want to block factual detachment from the overridden norms. Logical
accounts of normative reasoning that is tolerant with respect to normative conflicts and/or
specificity cases have been shown to be challenging. This has given rise to a variety of approaches
(e.g., [2, 3, 4, 5, 6, 7]).

In this paper we model normative reasoning by means of logical argumentation. Given a set of
facts and a set of possibly conflicting and interdependent conditional norms we will demonstrate
how this model helps us to identify sets of non-conflicting norms that are apt to guide the actions
of a user. Furthermore, we will show how it offers an elegant tool to deal with specificity cases.
It follows that the entailment relations that are obtained offer conflict-handling mechanisms for
various types of conflicts, and as such they are adaptive to different application contexts.

Our starting point in modeling normative reasoning is concerned with Dung’s well-known
abstract argumentation frameworks [8]. These frameworks consist of a set of abstract objects
(the ‘arguments’) and an attack relation between them. Their role is to serve as a tool to
analyze and reason with arguments. Various procedures for selecting accepted arguments have
been proposed, based on the dialectical relationships between the arguments. Usually, these
methods avoid selecting arguments that conflict with each other and allows to respond to every
possible attack on the argumentative stance with a counter-argument.
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For formalizing normative reasoning we need to enhance abstract argumentation in order to
model the structure of arguments. There are various ways of doing so (e.g., [9, 10]) In this paper,
we settle for the representation in terms of sequents [11]. One advantage of this approach is that
it immediately equips us with dynamic proof procedures in the style of adaptive logics [12, 13]
that allow for automated reasoning [14]. Another advantage is that we can plug in any Tarskian
logic that comes with an adequate sequent calculus as a base logic that produces our arguments.

In this paper we have found it useful to use ISDL (intuitionstic fragment of the standard
deontic logic SDL) as our base logic (see Sec. 2). In this context, the modality O is used to
model obligations and permissions are modeled by P, defined by ¬O¬. Accordingly, arguments
are (proofs of) derivable sequents Γ ⇒ φ (for some finite set of formulas Γ and a formula ψ) in a
sequent calculus for ISDL, based on Gentzen’s LJ proof system [15]. Attacks between arguments
are represented by attack rules that allow to derive elimination sequents of the form Γ 6⇒ φ,
whose effect is the canceling or uncharging of Γ ⇒ φ (see [11]).

The following example illustrates (still on the intuitive level) how the sequent-based argu-
mentation framework described above is useful for modeling normative reasoning.

Example 1. Consider the following example by Horty [16]:

• When served a meal you ought to not eat with fingers.
• However, if the meal is asparagus you ought to eat with fingers.

The statements above may be represented, respectively, by the formulas m ⊃ O¬f and (m∧ a) ⊃
Of . Now, in case we are indeed served asparagus (m∧ a) we expect to derive the (unconditional)
obligation to eat with fingers (Of) rather than to not eat with fingers (O¬f). This is a paradig-
matic case of specificity: a more specific obligations cancels (or overrides) a less specific one.
In our setting this will be handled by an attack rule advocating specificity (SPEC, see Example 5
below), according to which the argument {m ∧ a, (m ∧ a) ⊃ Of} ⇒ Of attacks the argument
{m, m⊃O¬f} ⇒ O¬f , and as a consequence Of will be inferable in this case while O¬f will
not.

2 Intuitionistic SDL

The base logic that we shall use in this paper is an intuitionistic variation of SDL (standard deontic
logic, i.e., the normal modal logic KD), called ISDL. The underlying language LISDL consists
of a propositional constant ⊥ (representing falsity), the standard operators for conjunction ∧,
disjunction ∨, and implication ⊃, and the modal operator O representing obligations. Thus, for
instance, the conditional obligation φ ⊃ Oψ may be intuitively understood as “φ commits to
bring about ψ”.

We shall denote formulas in LISDL by the lower Greek letter ψ, φ, and set of formulas by
the upper Greek letters Γ,∆,Σ. Following the usual conventions, we abbreviate ψ ⊃⊥ by ¬ψ
and incorporate the modality P for representing permissions, where Pψ is defined by ¬O¬ψ.
Other abbreviations that we shall use in the sequel are ⊤ for the formula ⊥⊃⊥, OΓ for the set
{Oψ | ψ ∈ Γ}, and

∧

Γ for the conjunction of the formulas in a finite set Γ.
The reason for choosing intuitionistic logic is to avoid undesirable phenomena caused by

using a contrapositive implication [17].1 Reasoning with ISDL is done by LISDL-sequents (or just
sequents, for short), that is: expressions of the form Γ ⇒ ψ, where Γ is a finite set of L-formulas
and ⇒ is a symbol that does not appear in LISDL. We shall denote Prem(Γ ⇒ ψ) = Γ.

1Yet, it should be noted that this choice is not obligatory, and our setting is adjusted to other deontic logics
such as SDL.
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Given a set Σ of formulas in LISDL, we say that a formula ψ follows from Σ (in ISDL), and
denote this by Σ ⊢ISDL ψ, if there is a subset Γ ⊆ Σ, such that the LISDL-sequent Γ ⇒ ψ is
provable in the sequent calculus CISDL shown in Figure 1. It is easy to verify that ⊢ISDL is a
Tarskian consequence relation (that is, reflexive, monotonic and transitive).

Axioms: ψ ⇒ ψ, ⊥ ⇒ ψ,

Structural Rules:

Weakening:
Γ ⇒ ψ

Γ,Γ′ ⇒ ψ

Cut:
Γ ⇒ ψ Γ′, ψ ⇒ φ

Γ,Γ′ ⇒ φ

Logical Rules:

[∧⇒]
Γ, ψ, ϕ⇒ φ

Γ, ψ ∧ ϕ⇒ φ
[⇒∧]

Γ ⇒ ψ Γ ⇒ ϕ

Γ ⇒ ψ ∧ ϕ

[∨⇒]
Γ, ψ ⇒ φ Γ, ϕ⇒ φ

Γ, ψ ∨ ϕ⇒ φ
[⇒∨]

Γ ⇒ ψ

Γ ⇒ ψ ∨ ϕ

Γ ⇒ ϕ

Γ ⇒ ψ ∨ ϕ

MP:
Γ, φ, φ ⊃ ψ ⇒ ψ

[⇒⊃]
Γ, ψ ⇒ ϕ

Γ ⇒ ψ ⊃ ϕ

KR:
Γ ⇒ φ

OΓ ⇒ Oφ
DR:

Γ ⇒ φ

OΓ ⇒ ¬O¬φ

NEC:
⇒ φ

⇒ Oφ

Figure 1: The proof system CISDL

Note 2. The proof system CISDL is equivalent to Gentzen’s well-known sequent calculus LJ
for intuitionistic propositional logic, extended with the rules for the modal operator O [18]. In
particular, in CISDL the rule [MP] is primitive and the rule

[⊃⇒]
Γ ⇒ ψ Γ, ϕ⇒ φ

Γ, ψ ⊃ ϕ⇒ φ

is admissible (i.e., it is derivable from the rules of CISDL), while in LJ it is the other way around.

3 Logical Argumentation for Normative Reasoning

In what has become the orthodox approach based on Dung’s representation [8], formal argu-
mentation is studied on the basis of so-called argumentation frameworks. An argumentation
framework in its most abstract form is a directed graph, where the nodes present (abstract)
arguments and the arrows present argumentative attacks.
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Definition 3. An (abstract) argumentation framework is a pair 〈Args ,Attack〉, where Args is
an enumerable set of elements, called (abstract) arguments, and Attack is a relation between
arguments whose instances are called attacks.

When it comes to specific applications of formal argumentation it is often useful to provide an
instantiation of (abstract) argumentation frameworks. Instantiations provide a specific account
of the structure of arguments, and the concrete nature of argumentative attacks. There are
various formal accounts available that provide frameworks for instantiating abstract argumenta-
tion such as assumption-based argumentation [9], ASPIC [10], etc. Here we settle for a recently
proposed account based on sequent-based calculi [11].

The basic idea behind our instantiation is that arguments are CISDL-proofs.

Definition 4. Arg(Σ) is the set of CISDL-proofs of sequents of the form Γ ⇒ ψ for some Γ ⊆ Σ.

For specifying the attack relation we complement CISDL with sequent elimination rules . Unlike
the inference (or, sequent introduction) rules of CISDL, the conclusions of sequent elimination rules
are of the form Γ 6⇒ ψ, and their intuitive meaning is the discharging sequent Γ ⇒ ψ.

Example 5. Consider the following sequent elimination rule:

SPEC
Γ, φ ⊃ ψ ⇒ ψ Γ ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′

⊃ ψ′
⇒ ψ′

Γ′, φ′ ⊃ ψ′ 6⇒ ψ′

This rule aims at formalizing the principle of specificity. It states that when two sequents Γ′ ⇒ ψ′

and Γ ⇒ ψ are conflicting, the one which is more specific gets higher precedence, and so the
other one is discarded. Thus, in Example 1 for instance, SPEC allows to discharge the sequent
m, m⊃O¬f ⇒ O¬f in light of the more specific sequent m ∧ a, (m ∧ a)⊃Of ⇒ Of .

Some variations of SPEC are given below (where NN′ ∈ {OO,OP,PO}):2

NN′SPEC

Γ, φ ⊃ Nψ

⇒ Nψ
Γ ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′

⊃ N
′ψ′

⇒ N
′ψ′

Γ′, φ′ ⊃ N′ψ′ 6⇒ N′ψ′

For instance, POSPEC models permission as derogation [19]: a permission may suspend a more
general obligation. Some further sequent elimination rules for handling conflicting sequents are
listed in Figure 2. We will not further discuss them here but we will come back to them in
Section 4.

Attacks between arguments are defined by the following notation and notion, referring to
some A ∈ Arg(Σ):

• Â denotes the top sequent in the proof A.

• We say that a sequent Γ ⇒ ψ is a subsequent of A if it is contained in A, and Prem(Â) ⊢ISDL
∧

Γ (or, equivalently, if Prem(Â) ⇒
∧

Γ ∈ Arg(Σ)).3

According to the next definition, an argument is attacked in some of its subsequents (including
its top-sequent).

Definition 6. Let R = Γ1⇒φ1 ... Γn⇒φn

Γn 6⇒φn
be a sequent elimination rule in Figure 2, and let R be

a set of such elimination rules.

2Note that a ‘PPSPEC’-variant would not be sensible since permissions with incompatible content do not
conflict in any intuitive sense.

3Intuitively speaking, the second condition warrants that the subsequents of a proof A of s = Γ ⇒ ψ are only
those sequents whose premises are charged in the proof of s. Take for instance the proof of ⇒ φ ⊃ φ from φ⇒ φ

by [⇒⊃]. This prevents for instance attacks on A by ¬φ⇒ ¬φ.
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CON
⇒ ¬

∧

Γ Γ,Γ′ ⇒ ψ

Γ′ 6⇒ ψ
NIC

Γ ⇒ ¬φ Γ′ ⇒ Nφ

Γ′ 6⇒ Nφ

CONFU
Γ ⇒ ¬

∧

Γ′ Γ′,Γ′′ ⇒ ψ

Γ′,Γ′′ 6⇒ ψ
CONF

Γ′ ⇒ ψ′ ψ′ ⇒ ¬ψ Γ ⇒ ψ

Γ 6⇒ ψ

NN′CONF
Γ ⇒ Nψ ψ ⇒ ¬ψ′ Γ′ ⇒ N′ψ′

Γ′ 6⇒ N′ψ′

NN′CONFU
Γ, φ ⊃ Nψ ⇒ Nψ Γ ⇒ φ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ N′ψ′ ⇒ ψ′′

Γ′, φ ⊃ N′ψ′ 6⇒ ψ′′

NCONFU′ Γ ⇒ ¬(φ ⊃ Nψ) Γ′, φ ⊃ Nψ ⇒ ψ′

Γ, φ ⊃ Nψ 6⇒ ψ′

NCTD

Γ, φ ⊃ Nψ
⇒ Nψ

Γ ⇒ φ Γ′ ⇒ φ′ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ Oψ′

⇒ Oψ′

Γ′, φ′ ⊃ Oψ′ 6⇒ Oψ′

NN′SPECU

Γ, φ ⊃ Nψ
⇒ ¬(φ′ ⊃ N′ψ′)

Γ ⇒ φ φ⇒ φ′ ψ ⇒ ¬ψ′ Γ′, φ′ ⊃ N′ψ′

⇒ ψ′′

Γ′, φ′ ⊃ N′ψ′ 6⇒ ψ′′

Figure 2: Some sequent elimination rules for normative reasoning (where NN′ ∈ {OO,OP,PO}
and N ∈ {O,P})
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• A sequent s R-attacks a sequent s′, if there is an LISDL-substitution θ such that s = θ(Γ1) ⇒
θ(φ1) and s

′ = θ(Γn) ⇒ θ(φn). We say that s R-attacks s′ if s R-attacks s′ for some R ∈ R.

• An argument A ∈ Arg(Σ) R-attacks an argument B ∈ Arg(Σ) if Â R-attacks some subse-
quent of B. Similarly A R-attacks B if A R-attacks B for some R ∈ R.

Definition 7. A normative argumentation framework induced by a set of elimination rules R
is the logical argumentation framework AFR(Σ) = 〈Arg(Σ), Attack〉 in which (A,B) ∈ Attack
iff A R-attacks B.

Normative Entailments Induced by Argumentation Frameworks

We are ready now to use (normative) argumentation frameworks for normative reasoning. As
usual in the context of abstract argumentation, we do so by incorporating Dung’s notion of
extension [8], defined next.

Definition 8. Let AF = 〈Args ,Attack〉 be an argumentation framework, and let E ⊆ Args.
We say that E attacks an argument A if there is an argument B ∈ E that attacks A (i.e.,
(B,A) ∈ Attack). The set of arguments that are attacked by E is denoted E+. We say that E
defends A if E attacks every argument B that attacks A. The set E is called conflict-free if it does
not attack any of its elements (i.e., E+ ∩ E = ∅), E is called admissible if it is conflict-free and
defends all of its elements, and E is complete if it is admissible and contains all the arguments
that it defends. The minimal complete subset of Args is called the grounded extension of AF ,
and a maximal complete subset of Args is called a preferred extension of AF .

Let AFR(Σ) = 〈Arg(Σ),Attack〉 be a normative argumentation framework.

• Σ|∼grψ if there is A ∈ Arg(Σ) in the grounded extension of AFR(Σ) such that Â = Γ ⇒ ψ.4

• Σ |∼∩
pr ψ [Σ |∼∪

pr ψ] if in every [some] preferred extension of AFR(Σ) there is A ∈ Arg(Σ)

with Â = Γ ⇒ ψ.5

We will use the notation |∼ whenever a statement applies to each of the defined consequence
relations.

4 Some Examples

In this section we will demonstrate our argumentative model for normative reasoning by means
of various examples.

Example 9. Let us recall Example 1, where Σ = {m, a,m ⊃ O¬f, (m ∧ a) ⊃ Of}. Some
arguments in Arg(Σ) are listed in Figure 3 (right). We do not spell out the very simple proofs
given by each argument but only list the top sequents and subsequent relationships. For instance,
arguments A,B,C,D and E are one-liner proofs, argument F is obtained from B and C by
weakening, etc. Figure 3 (left) shows an attack diagram where the only attack rule is OOSPECU.

We observe that H OOSPECU-attacks A and E, and since Ê is a subsequent of I, the latter
is also attacked by H. It follows that, as expected, we have the following deductions:

4Recall that by the definition of Arg(Σ), this implies that Γ ⊆ Σ.
5A more cautious approach is to define: Σ |∼⊓

pr ψ [Σ |∼⊔

pr ψ] if there is an A ∈ Arg(Σ) with Â = Γ ⇒ ψ that is

in every [some] preferred extension of AFR(Σ). Similar entailment relations may of-course be defined for other
semantics of abstract argumentation such as [semi-]stable semantics, ideal semantics, etc.
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I H

G

E F

A B C D

Â = m ⊃ O¬f ⇒ m ⊃ O¬f
B̂ = m⇒ m
Ĉ = a⇒ a
D̂ = (m ∧ a) ⊃ Of ⇒ (m ∧ a) ⊃ Of
Ê = m,m ⊃ O¬f ⇒ O¬f
F̂ = m, a⇒ m ∧ a
Ĝ = m, a, (m ∧ a) ⊃ Of ⇒ Of
Ĥ = m, a, (m ∧ a) ⊃ Of ⇒ ¬(m ⊃ O¬f)
Î = m, a,m ⊃ O¬f, (m ∧ a) ⊃ Of ⇒ O⊥

Figure 3: (Part of) the normative argumentation framework of Example 9: dashed arrows are
OOSPECU-attacks, solid black lines indicate subsequents (the top sequents of lower arguments
are subsequents of higher ones) and the gray line merely helps the reader to see which sequents
share premises.

G F

D E

A B C

Â = ⊤ ⊃ O¬k ⇒ ⊤ ⊃ O¬k
B̂ = k ⇒ k
Ĉ = k ⊃ O(k ∧ g) ⇒ k ⊃ O(k ∧ g)
D̂ = ⊤ ⊃ O¬k ⇒ O¬k
Ê = k, k ⊃ O(k ∧ g) ⇒ O(k ∧ g)
F̂ = k,⊤ ⊃ O¬k, k ⊃ O(k ∧ g) ⇒ ⊥
Ĝ = ⇒ ¬(k ∧ (⊤ ⊃ O¬k) ∧ (k ⊃ O(k ∧ g)))

G F

D E

A B C

Figure 4: Forrester’s Gentle Murderer

• Σ 6|∼O¬f . Indeed, one cannot derive O¬f since the application of MP to m⊃O¬f (depicted
by argument E) gets attacked by H.6

• Σ |∼ Of . Indeed, G is not OOSPECU-attackable by an argument in Arg(Σ), thus it is
part of every grounded and preferred extension of the underlying normative argumentation
framework, and so its descendent follows from Σ.7

Example 10. In the next example we take a look at contrary-to-duty (in short, CTD) obligations.
A paradigmatic example is Forrester’s Gentle Murderer scenario [20]: generally, one ought not
to kill (⊤ ⊃ O¬f). However, upon killing, this should be done gently (k ⊃ O(k ∧ g)). Let
Σ2 = {k,⊤ ⊃ O¬k, k ⊃ O(k ∧ g)}.

Van der Torre and Tan [21] distinguish CTD-obligations from cases of specificity. In the
former the general obligations are not canceled or overridden but have still normative force (de-
spite the fact that they are violated), while in cases of specificity the more general conditional
obligations are canceled and thus deprived of normative force. There are various ways in which
in our framework this distinction can be taken into account. One way of doing so is as follows.
Instead of using strong rules such as OOSPECU in Example 9 that ‘destroy’ overridden condi-
tional obligations in the sense that they do not appear in the consequence set, we can make use
of rules such as OCTD (Figure 2) that preserve ‘overshadowed’ conditional CTD obligations de-

6Note that m ⊃ O¬f cannot be derived either, due to the attack of H on A.
7It is important to note that G is OOSPECU-attackable by ISDL-derivable arguments, but none of them is in

Arg(Σ). For instance, since intuitionistic implication allows for strengthening of antecedents (φ ⊃ ψ ⇒ (φ∧φ′) ⊃
ψ), we have that m ⊃ O¬f ⇒ (m ∧ a) ⊃ O¬f is ISDL-derivable, and so G is attackable by an argument with,
say, the ISDL-derivable top sequent m,m ⊃ O¬f,m, a, (m ∧ a) ⊃ O¬f ⇒ ¬((m ∧ a) ⊃ O¬f). Yet, since m ∧ a ⊃
O¬f 6∈ Σ, this argument is not in Arg(Σ). We note, further, that the sequent a,m,m ⊃ O¬f ⇒ ¬((m ∧ a) ⊃ Of)

is derivable, but it does not OOSPECU-attack Ĝ and Ĥ though it is attacked by Ĥ.
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M

I H N

G L

E F

A B C D K J

D̂ = (m ∧ a) ⊃ Pf ⇒ (m ∧ a) ⊃ Pf
Ĝ = m, a, (m ∧ a) ⊃ Pf ⇒ Pf
Ĥ = m, a, (m ∧ a) ⊃ Pf ⇒ ¬(m ⊃ O¬f)
Î = m, a,m ⊃ O¬f, (m ∧ a) ⊃ Pf ⇒ O⊥
Ĵ = c⇒ c
K̂ = (m ∧ a ∧ c) ⊃ O¬f ⇒ (m ∧ a ∧ c) ⊃ O¬f
L̂ = m, a, c⇒ m ∧ a ∧ c
M̂ = m, a, c, (m ∧ a ∧ c) ⊃ O¬f ⇒ ¬((m ∧ a) ⊃ Pf))
N̂ = m, a, c, (m ∧ a ∧ c) ⊃ O¬f ⇒ O¬f

Figure 5: A normative argumentation framework for Example 11 (arguments A,B,C,E, F are
as in Figure 3)

spite the fact that detachment is blocked, or incorporate OIC that blocks detachment from violated
norms. This is illustrated in Figure 4 (left) with the attack rules OCTD (dashed arrow), OIC

(dotted arrow) and CON (solid arrow). Alternatively, we could model overshadowing by means
of OOCONF instead of OCTD. This is illustrated in Figure 4 (right) with attack rules OOCONF

(dotted arrows) and CON (solid arrow). Where Ξ = {A,B,C,G}, we have two preferred exten-
sions: Ξ∪ {D} and Ξ∪ {E}. Hence, Σ2 |∼

∪
pr O¬k and Σ2 |∼

∪
pr O(k ∧ g). In the skeptical approach

we get Σ2 |∼
∩
pr O(¬k ∨ (k ∧ g)) and Σ2 |∼

∩
pr O¬k ∨ O(k ∧ g). Yet another option is to use a very

liberal approach with CON only. This will block arguments with inconsistent premises such as
F but otherwise allows e.g., to derive both O¬k and O(g ∧ k) even via the grounded approach:
Σ2 |∼gr O¬k and Σ2 |∼gr O(k ∧ g).

Example 11. Let us consider a variant of Example 9. Suppose that beside the obligation not
to eat with your fingers we have the permission to do so in case asparagus is served, but it is
considered impolite to eat asparagus with fingers if there is guest who considers this rude. The
enriched set of premises may look as follows: Σ3 = {a,m, c,m ⊃ O¬f, (m∧a) ⊃ Pf, (m∧a∧c) ⊃
O¬f}. The situation is depicted in Figure 5, where the attack rules OPSPECU (dotted arrows)
and POSPECU (dashed arrows).

It follows that Σ3 |∼O¬f (as expected), since N is defended, while G cannot be defended.
Note that arguments A and E are also defended, since their only attacker H is attacked by the
defended M . In argumentation theory A and E are said to be reinstated.8

Example 12. Next we take a look at a simple conflict that is neither a specificity nor a CTD-
case. Let Σ4 = {a, b, a ⊃ O(c ∧ d), b ⊃ O(¬c ∧ d)}. Figure 6 shows the situation for the attack
rule OOCONFU (dotted arrows).

We have the following preferred extensions: {A,B,E,G} and {C,D,F,H}. Note that we
have the ‘floating conclusion’9 Σ4 |∼

∩
pr Od since one of G and H is in every preferred extension.

Example 13. The next example illustrates a conflict between three obligations. Let Σ5 = {c, c ⊃
O(a ∨ b), c ⊃ O(¬a ∨ b), c ⊃ O¬a}. It is interesting to note that modeling this scenario with
OOCONFU is problematic. In this case no conflicts are triggered since the triple-conflict is not
reducible to a binary conflict that fits the attack rule OOCONFU. This may be avoided by using
OCONFU’ instead of OOCONFU, as we get for instance Σ5 |∼

∩
pr Oa∨O(¬a∧b)∨O(¬a∧¬b). This

example shows that elimination rules should be carefully chosen.10

8In the full version of the paper we will discuss how Reinstatement may be avoided (if necessary) by altering
the attack rules.

9In nonmonotonic reasoning floating conclusions are conclusions that are obtained from each of a set of
otherwise conflicting arguments.

10In Section 5 we will prove that OCONFU’ is rather well-behaved and can be used to give an argumentative
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I

G H

E F

B A D C

Â = a ⊃ O(c ∧ d) ⇒ a ⊃ O(c ∧ d)
B̂ = a⇒ a
Ĉ = b⇒ b
D̂ = b ⊃ O(¬c ∧ d) ⇒ b ⊃ O(¬c ∧ d)
Ê = a, a ⊃ O(c ∧ d) ⇒ O(c ∧ d)
F̂ = b, b ⊃ O(¬c ∧ d) ⇒ O(¬c ∧ d)
Ĝ = a, a ⊃ O(c ∧ d) ⇒ Od
Ĥ = b, b ⊃ O(¬c ∧ d) ⇒ Od
Î = a, b, a ⊃ O(c ∧ d), b ⊃ O(¬c ∧ d) ⇒ O⊥

Figure 6: A simple conflict

5 Some Meta-Theory

We start with two basic observations which can easily be verified by the reader:

1. For any set of attack rules previously defined: whenever Σ is ISDL-consistent (i.e., Σ 6⊢ISDL

⊥) then Σ ⊢ISDL ψ iff Σ |∼ψ. It is easy to verify that in this case all arguments in Arg(Σ)
are selected since no argumentative attacks occur.

2. Where CON is part of the attack rules, (i) Σ |∼φ implies that φ is ISDL-consistent (i.e.,
φ 6⊢ISDL ⊥) and, consequently, (ii) |∼ is strongly paraconsistent (i.e., for all Σ, Σ 6 |∼⊥).

The main goal of this setion is to provide a link between of our approach to Input/Output
logic [22] (see Theorem 20, Corollary 21, and Note 23 below). For this, we first recall the following
semantic characterization of ISDL by means of a Kripkean possible worlds semantics [23].11

Definition 14. An IL-model M is a tuple 〈W,≤, v,@〉, where W is a nonempty set (of so-called
worlds), ≤ is a partial order on W , @ ∈ W is the so-called actual world, and v : W → ℘(A)
(where A is the set of atomic formulas) is an assignment function that satisfies:

(Fd) if a ≤ b then v(a) ⊆ v(b).

For some a ∈W , we define:

(M1) M,a |= ρ where ρ ∈ A iff ρ ∈ v(a)
(M2) M,a |= ψ ∨ φ iff M,a |= ψ or M,a |= φ
(M3) M,a |= ψ ∧ φ iff M,a |= ψ and M,a |= φ
(M4) M,a |= ¬ψ iff for all b ≥ a, M, b 6|= ψ
(M5) M,a |= ψ ⊃ φ iff for all b ≥ a, M, b |= ψ implies M, b |= φ

We say that M is an IL-model of ψ (M |= ψ) iff M,@ |= ψ. M is an IL-model of Σ if it is
an IL-model of every ψ ∈ Σ. The set of all IL-models of Σ is denoted MIL(Σ). We also write
CnIL(Γ) =df {ψ | Γ ⊢IL ψ}.

Definition 15. An ISDL-model M is a tuple 〈W,R,≤, v,@〉〉, where 〈W,≤, v,@〉 is an IL-model
and R is a serial accessibility relation on W . In addition to (M1)–(M5) we have (where Rc =df

{d ∈W | (c, d) ∈ R}):

(MO) M,a |= Oψ iff for all c ≥ a and all b ∈ Rc, M, b |= ψ.

account of a specific Input/Output logic.
11In [23] the reader can also find refinements of this semantics by frame-conditions and by letting P be primitive

to get e.g. P(φ ∨ ψ) ⊢ Pφ ∨ Pψ or ¬Pφ ⊢ O¬φ. With Definition 15 and Pφ =df ¬O¬f we get e.g. Oφ,Pψ ⊢ISDL

P(φ ∧ ψ), Pφ ⊢ISDL P(φ ∨ ψ).
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Again, we write M |= ψ iff M,@ |= ψ and say that M is an ISDL-model of ψ. MISDL(Σ) is the
set of all ISDL-models of Σ.

In the following we focus on premise sets Σ that consist of non-modal formulas (representing
‘facts’ or ‘input’) and formulas of the type φ ⊃ Oψ (representing conditional obligations). For this
let ΣF be a set of non-modal propositional formulas, ΣO a set of pairs of non-modal formulas
(ψ, φ) (‘I/O-pairs’) and Σ∗

O = {ψ ⊃ Oφ | (ψ, φ) ∈ ΣO}. The following definitions describe
intuitionistic versions of the ‘out’ and the ‘out2’-function in [24]:

Definition 16. out(ΣF ,ΣO) = {ψ | (φ, ψ) ∈ ΣO, ΣF ⊢IL φ}.

Let M = 〈W,≤, v,@〉. We write w↑ = {w′ ∈ W | w ≤ w′}, VM = {ψ | M |= ψ} and
where w ∈ W , Vw = {φ | M,w |= φ}. We say that M is consistent with ΣO iff for all w ∈ @↑,
out(Vw,ΣO) is IL-consistent.

Definition 17. φ ∈ out2(ΣF ,ΣO) iff φ ∈ CnIL(out(VM ,ΣO)) for all M ∈ MIL(ΣF ) that are
consistent with ΣO. If there are no M ∈ MIL(ΣF ) that are consistent with ΣO then define
out2(ΣF ,ΣO) to be CnIL({ψ | (ψ′, ψ) ∈ ΣO}).

12

Theorem 18. ΣF ∪ Σ∗
O ISDL Oφ iff φ ∈ out2(ΣF ,ΣO).

Sketch. We will make use of the following simple fact (the proof of which is left to the reader):
(†) Let M = 〈W,≤, v,@〉 be an IL-model and M ′ = 〈@↑,≤|(@↑×@↑), v|@↑,@〉 its submodel,

restricted to @↑. Then M |=ψ iff M ′ |=ψ.

(⇒) Suppose φ /∈ out2(ΣF ,ΣO). We show that ΣF ∪ Σ∗
O 6ISDL Oφ by constructing a model

M∗ ∈ MISDL(ΣF ∪ Σ∗
O) for which M∗ 6|= Oφ. By the supposition there is an M ∈ MIL(ΣF )

that is consistent with ΣO and for which φ /∈ CnIL(out(VM ,ΣO)). By (†), we can suppose that
M = 〈@↑,≤, v,@〉 (where ≤ and v are restricted to @↑). Since φ /∈ CnIL(out(VM ,ΣO)), there is
an M@ ∈ MIL(out(VM ,ΣO)) such that M@ 6|= φ. With (†) we suppose that M@ is of the form
〈@↑,≤@, v@,@〉. Where a ∈ @↑ \ {@}, let Ma ∈ MIL(out(Va,ΣO)) of the form 〈a↑,≤a, va, a〉.
We suppose that (‡) @↑, a↑ and b↑ (where a 6= b ∈ @↑) are distinct sets of worlds. We define an
ISDL-model M∗ = 〈W ∗, R∗,≤∗, v∗,@〉 as in Figure 7.13 We now show that M∗ |= ΣF ∪ Σ∗

O and
M∗ 6|= Oφ.

W ∗= @↑ ∪
⋃

a∈@↑ a↑,
v∗ = v ∪

⋃

a∈@↑ va,

R∗ =
⋃

a∈@↑

(

{(a, a), (a, a)} ∪
⋃

b∈a↑{(b, b)}
)

,

≤∗ = ≤ ∪
⋃

a∈@↑ ≤a.

b b

a a

@ @

M M@ Ma Mb

Figure 7: The construction of M∗

12According to the original definition of out2 relative to classical logic, φ ∈ out2(ΣF ,ΣO) iff for all classical
models M of ΣF for which out(VM ,ΣO) is (classically) non-trivial, φ ∈ out(VM ,ΣO) (for the non-degenerated
case). Our requirement that M ∈ MIL(ΣF ) is consistent with ΣO is slightly more complicated. One (common)
way to think about worlds in @↑\{@} is in terms of possible increased information states accessible from the actual
world. In this reading the requirement that M is consistent with ΣO says that the output remains consistent for
each possible increased information state. Take e.g., ΣO = {(ρ,⊥), (¬ρ,⊥)} (where ρ is an atom) and ΣF = ∅.
There are no M ∈ MIL(ΣF ) that are consistent with ΣO (for the same reason that MIL({ρ ⊃ ⊥,¬ρ ⊃ ⊥}) = ∅).
Clearly, there are M ∈ MIL(ΣF ) such that out(VM ,ΣO) is IL-consistent. However, in each such M there is a w
accessible from the actual world such that out(Vw,ΣO) is IL-trivial.

13It is easy to see that M∗ is an ISDL-model: First, in view of (‡) it is easy to check that the resulting relation
v∗ is right-unique and left-total and hence a function. (Fd) is fulfilled since ≤ and ≤a (where a ∈ @↑) fulfill (Fd)
and the latter relations partition ≤∗ by (‡). Finally, R∗ is serial by the construction.
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First notice that by the definition of ≤∗ and (‡), for every non-modal formula ψ: (i)M∗,@ |=
ψ iff M,@ |= ψ and (ii) where a ∈ @↑, Ma, a |= ψ iff M∗, a |= ψ. An immediate consequence
of (i) is that M∗ |= ΣF . Also, by (ii), since R@ = {@} and M@ 6|= φ, we have M∗ 6|= Oφ.

We now show that M∗, a |= Oψ for all ψ ∈ out(Va,ΣO) and all a ∈ @↑. Let for this b ∈ W ∗

such that a ≤∗ b. By the construction of M∗ this means that b ∈ @↑ and Rb = {b}. By (Fd),
v(b) ⊇ v(a) and hence out(Va,ΣO) ⊆ out(Vb,ΣO). Thus, ψ ∈ out(Vb,ΣO) and by (ii), M∗, b |= ψ.
Altogether, this shows that M∗, a |= Oψ. This immediately shows that M∗ |= Σ∗

O.
(⇐) Suppose ΣF ∪Σ∗

O 6ISDL Oφ. Hence, there is an M = 〈W,R,≤, v,@〉 ∈ MISDL(ΣF ∪Σ∗
O),

for which M 6|= Oφ. Thus, there is an a ∈ R@, such that M,a 6|= φ. Let Ma = 〈W,≤, v, a〉
and M@ = 〈W,≤, v,@〉. Since M ∈ MISDL(ΣF ∪ Σ∗

O), it is easy to see that M@ ∈ MIL(ΣF )
is consistent with ΣO. Then, Ma ∈ MIL(out(VM@

,ΣO)) and Ma 6|= φ. This shows that φ /∈
out2(ΣF ,ΣO).

In order to deal with situations in which out(ΣF ,ΣO) is inconsistent, Makinson and Van
Der Torre [22] ‘contextualize’ their output-functions to maximal sets of conditionals that are
consistent with ΣF , so-called maxfamilies:14

Definition 19.

• ΓO ∈ maxfamily(ΣF ,ΣO) iff out2(ΣF ,ΓO) is IL-consistent and
for all (ψ, φ) ∈ ΣO \ ΓO, out2(ΣF ,ΓO ∪ {(ψ, φ)}) is not IL-consistent.

• ψ ∈ out∪2 (ΣF ,ΣO) iff ψ ∈
⋃

ΓO∈maxfamily(ΣF ,ΣO) out2(ΣF ,ΓO).

• ψ ∈ out∩2 (ΣF ,ΣO) iff ψ ∈
⋂

ΓO∈maxfamily(ΣF ,ΣO) out2(ΣF ,ΓO).

We now show that in our argumentative approach the Input/Output logics in Definition 19
can be characterized by means of the attack rule OCONFU’.

Theorem 20.
{

Arg(ΣF ∪ Γ∗
O) | ΓO ∈ maxfamily(ΣF ,ΣO)

}

is the set of all preferred extensions
of AFOCONFU′(ΣF ∪ Σ∗

O).

Sketch. Let ΓO ∈ maxfamily(ΣF ,ΣO). By Theorem 18, ΣF ∪ Γ∗
O is ISDL-consistent and hence

Arg(ΣF ∪ Γ∗
O) is conflict-free. Thus, each argument A attacking any argument in Arg(ΣF ∪ Γ∗

O)
is such that A /∈ Arg(ΣF ∪ Γ∗

O). Let A ∈ Arg(ΣF ∪ Σ∗
O) \ Arg(ΣF ∪ Γ∗

O). This means that there

is a ψ ⊃ Oφ ∈ Prem(Â)∩ (Σ∗
O \Γ∗

O). Since out2(ΣF ,ΓO ∪ {(ψ, φ)}) is IL-inconsistent we have by
Theorem 18 that ΣF ∪Γ∗

O ∪ {ψ ⊃ Oφ} is ISDL-inconsistent. Thus, there is a finite Θ ⊆ ΣF ∪Γ∗
O

such that Θ, ψ ⊃ Oφ⇒ ⊥ is CISDL-provable. By [⇒⊃], we derive s = Θ ⇒ ¬(ψ ⊃ Oφ). Let C be
the corresponding proof with Ĉ = s. Then C ∈ Arg(ΣF ∪ Γ∗

O) and C OCONFU’-attacks A. We
have shown that Arg(ΣF ∪ Γ∗

O) is defended and that it is maximally so.
Now assume there is an admissible extension Ξ of AFOCONFU′(ΣF ∪Σ∗

O) such that there is no
ΓO ∈ maxfamily(ΣF ,ΣO) for which Ξ ⊆ Arg(ΣF∪Γ

∗
O). Hence, there is no ΓO ∈ maxfamily(ΣF ,ΣO)

for which ΓΞ =
⋃

A∈Ξ{(ψ, φ) | ψ ⊃ Oφ ∈ Prem(Â)} ⊆ ΓO. This means out2(ΣF ,ΓΞ) is IL-
inconsistent. By Theorem 18, ΣF ∪ Γ∗

Ξ is ISDL-inconsistent. Hence, there are finite ΘF ⊆ ΣF

and Θ∗
O ⊆ Γ∗

Ξ such that ΘF ,Θ
∗
O ⇒ ⊥ is CISDL-derivable. With Weakening and [⇒⊃] we have an

argument C, with Ĉ = ΘF ,Θ
∗
O \ {ψ ⊃ Oφ} ⇒ ¬(ψ ⊃ Oφ). By the subformula property we can

suppose that:15

(†) for all γ ⊃ Oγ′ that occur in subsequents of C, (γ, γ′) ∈ ΘO.

Then C OCONFU’-attacks A. Also, by (†), the only way to attack C leads to an attack on Ξ as
well. Thus, Ξ cannot be defended from C.

14The approach in [22] is more general since it takes into account sets of additional constraints beside our
requirement of consistency.

15Similar considerations to those in [18] (where cut elimination has been shown for the modal enrichment of
LK) show that CISDL has the subformula property.
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Corollary 21. Where the only attack rule is OCONFU’, for every λ ∈ {∪,∩} it holds that

ψ ∈ outλ2 (ΣF ,ΣO) iff ΣF ∪ Σ∗
O |∼λ

pr Oψ.

Example 22. Let us look once more at Example 10. Let ΣO = {(⊤,¬k), (k, k ∧ g)} and
ΣF = {k}. We have maxfamily(ΣF ,ΣO) = {{(⊤,¬k)}, {k, k ∧ g}}. Since ¬k ∨ (k ∧ g) ∈
out2(ΣF , {(⊤,¬k)})∩ out2(ΣF , {(k, k ∧ g)}), also ¬k ∨ (k ∧ g) ∈ out∩2 (ΣF ,ΓO). In the normative
argumentation framework AFOCONFU′(ΣF ,Σ

∗
O) we have two preferred extensions: one with e.g.

arguments with top sequents k, k ⊃ O(k ∧ g) ⇒ ¬(⊤ ⊃ O¬k), k, k ⊃ O(k ∧ g) ⇒ O(k ∧ g),
and k, k ⊃ O(k ∧ g) ⇒ O(¬k ∨ (k ∧ g)); and another one with e.g. arguments with top sequents
k,⊤ ⊃ O¬k ⇒ ¬(k ⊃ O(k ∧ g)), ⊤ ⊃ O¬k ⇒ O¬k, and ⊤ ⊃ O¬k ⇒ O(¬k ∨ (k ∧ g)). Thus,
ΣF ∪ Σ∗

O |∼∩
pr O(¬k ∨ (k ∧ g)).

Note 23. It is well-known that, by Glivenko’s transformation A ❀ ¬¬A, classical logic is
embedded in IL. By Corollary 21, then, the translation of ΣF to {¬¬ψ | ψ ∈ ΣF } and ΣO to
{(¬¬φ,¬¬ψ) | (φ, ψ) ∈ ΣO} gives a characterization of classical Input/Output logic within our
account.

Further investigations of entailment relations resulting from the application of attack rules
other than OCONFU’ will be considered in a future work.

6 Discussion and Outlook

The idea to use argumentation and abstract argumentation in particular to model normative
reasoning is not new. Two examples are [25, 26]. The approach in [25] is based on bipolar
abstract argumentation frameworks: beside an attack arrow a support arrow is used to express
conditional obligations. Also in [26] Dung’s framework is enhanced by a support relation this
time signifying evidential support. Prolog-like predicates are used to encode argument schemes
of normative reasoning and an algorithm is provided to translate them into an argumentation
framework. One of the main differences in our approach based on logical argumentation is that
we use a base logic (ISDL) that generates all the given arguments (on the basis of a premise set).
As a consequence an additional support relation is not needed since argumentative support is
intrinsically modeled by considering arguments as proofs in ISDL. A by-product of this is that
our approach is closer linked to deontic logic.

Deontic logicians mainly agree that modeling conditional obligations on the basis of SDL and
material implication is futile due to problems with CTD-norms and specificity [1]. Therefore
more research interest has been directed towards bi-conditionals. Specificity cases for instance
call for weakened principles of strengthening the antecedent which are still strong enough to
support many intuitively valid inferences. E.g., the principle of Rational Monotonicity has been
challenged in [27] and replaced by a weakened version which itself has been criticized in [28].
In contrast, our base logic uses the standard implication of IL to model conditional obligations
and allows for full strengthening of the antecedent. Unwanted applications of the latter are
avoided by means of argumentative attacks that are triggered e.g. in cases of specificity. As
a consequence, our consequence relations are non-monotonic. There are other non-monotonic
accounts of normative reasoning such as [6] based on default logic, Input/Output logic [22], or
adaptive logics [2, 29, 4, 5]. Due to space restrictions we postpone a more elaborate comparison
with these frameworks to future work.

In future work we also plan to investigate ways to combine and prioritize among attack rules,
to distinguish preferences/priorities among norms, and to relate our work to different accounts
of permission [30, 19]. Finally, we will investigate whether other nonmonotonic approaches and
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non truth-functional logics can be expressed in our framework.16 Also, we shall examine base
logics that are obtained from ISDL by removing some of the inference rules in CISDL, and so such
logics may not have deterministic matrices. There is also forthcoming work on dynamic proofs
for sequent-based argumentation [14], which may be useful to automatize normative reasoning
as modeled in this paper.
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