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This is a technical report; to be replaced by a full-fledged paper in due
course. It is perhaps preliminary, sketchy, incomplete.

The note concerns the well-known topic of the relation between the rightness
of actions for a group and the rightness of actions for that group’s members. We
focus on one direction, asking when every member of the group doing a right
action suffices for the group to do a right action. We moreover approach the
matter from a somewhat more abstract viewpoint than Horty’s in his [1]. That
is, we look at various ways one can define “right actions”, and see under what
conditions the definitions yield certain bridge principles, from member to group
rightness.

Thanks to Jeff Horty, Eric Pacuit, and others at UMD for discussions on
this topic. Also thanks to Hein Duijf and Allard Tamminga for comments on a
previous version.

1 Definition of Models

Definition 1 (Models) A deontic free choice model is a tuple

M = 〈W, 〈∼i〉i∈N , P, V 〉

where

(C1) W 6= ∅
(C2) Every ∼i ⊆W ×W is an equivalence relation
(C3) ∅ 6= P ⊆W
(C4) V : P→ ℘(W ) is a valuation function
(IOA) for all w1, . . . , wn ∈ W , there is a w such that w1 ∼1 w, . . . , and

wn ∼n w

We call W the domain of M .
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Where M = 〈W, 〈∼i〉i∈N , P, V 〉 is given, we define the relations ∼G for G ⊆
N as the intersection of the relations ∼i for all members i of G: ∼G =

⋂
i∈N ∼i.

We define the relation ∼∅ as the total relation over W : ∼∅ = W ×W .
Where G ⊆ N , let ChoiceG(M) = {{v | w ∼G v} | w ∈ W}. We refer to

ChoiceG(M) as the set of choices of G in M .
M is deterministic iff for all w,w′ ∈W , w ∼N w′ iff w = w′.

In the remainder we use G,G′, . . . as metavariables for subsets of N .
When working with only two agents, a finite deontic free choice frame, i.e. a

deontic free choice model without the valuation, can be represented by means
of a matrix, where the rows represent choices of one agent, columns represent
choices of the other agent, and each occurrence of a 1 or 0 represents a single
possible world; 1 indicates that the world in question is permitted, 0 indicates
that it is not permitted. See Figure 1 for a simple example of a deterministic
deontic free choice model.

2 Impossible to have one’s cake and eat it too

Consider an arbitrary property P that can be attributed to choices of (group)
agents in any given model M . So formally, P(M) is a set of choices of various
agents, P(M) ⊆

⋃
G⊆N ChoiceG(M). We say that P is total iff, for every deontic

free choice model M = 〈W, 〈∼i〉i∈N , P, V 〉, and for every group G, there is at
least one X ∈ ChoiceG(M) ∩ P(M). P is safe for aggregation iff, for every
deontic free choice model M = 〈W, 〈∼i〉i∈N , P, V 〉 and all groups G,G′ (with
G∩G′ = ∅): if X ∈ ChoiceG(M)∩P(M) and X ′ ∈ ChoiceG′(M)∩P(M), then
X ∩X ′ ∩ P 6= ∅.

P is aggregative iff, for every deontic free choice modelM = 〈W, 〈∼i〉i∈N , P, V 〉
and all groups G,G′ (with G ∩ G′ = ∅): if X ∈ ChoiceG(M) ∩ P(M) and
X ′ ∈ ChoiceG′(M) ∩ P(M), then X ∩X ′ ∈ P(M).

Finally, P is label-independent iff whether a given choice of a given group G
has property P in a model M depends neither on the labels we attach to the
worlds making up that choice, nor on the labels we attach to the members of
G. Part of this property is sometimes called “anonymity” in the game theoretic
literature; spelling it out in full detail is a bit tedious but feasible (see Appendix
A).

Now one may ask (Jeff Horty, in a discussion at UMD): could there ever be
some property P that satisfies all three of the above defined conditions, hence,
a P that is total, safe for aggregation, and label-independent?

1 0
0 1

Figure 1: A coordination problem for two agents.
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The answer is simply negative. It suffices to take a look at Figure 1 to see
why. Any label-independent property P will either hold for all the actions of the
two agents in question, or for neither (since the frame is completely symmetric,
both in the agents and in the choices they have). If such a P is moreover total, it
follows that all actions have property P. But then P is not safe for aggregation.

3 Preferences and choices

3.1 Preference Relations on Sets and Choices

Fix a deontic free choice model M = 〈W, 〈∼i〉i∈N , P, V 〉. Let X,Y ⊆W . Then1

X � Y iff X = Y or X ⊆ P or Y ∩ P = ∅

[Another way to define � is as follows. Define d : W → {0, 1} as follows:
d(w) = 1 if w ∈ P and d(w) = 0 otherwise. Then X � Y iff X = Y or
∀x ∈ X,∀y ∈ Y , d(x) ≥ d(y).]

Note: Intuitively, X � Y means that X is “better” than Y . I will stick to
this way of representing ranking relations between sets of worlds and actions in
the remainder (so the element that comes before the relational symbol is always
“better”).

Obviously, � is reflexive. It is also transitive when defined over a set of
non-empty sets (so e.g., it is transitive over all sets of the type ChoiceG(M)).
This implies that for finite models (where W is finite, and hence also ℘(W ) is
finite), it will also be smooth (every chain of ever better states has a last/best
element).

Let now X,Y ∈ ChoiceG(M). Then we define:

X v Y iff ∀Z ∈ ChoiceN\G(M), X ∩ Z � Y ∩ Z

X < Y iff X v Y and Y 6v X

3.2 Various concepts of “right” choice

Translated to the present minimalistic setting, Horty’s original account of “dom-
inance act utilitarianism” (Chapter 4, Section 2 of his 2001 book) is based on the
idea that we should consider those actions right that are not strongly dominated
by any other action. This gives us the following definition:2

Definition 2 (Maximal actions) Let X ∈ ChoiceG(M). Then X is maxi-
mal for G in M iff there is no Y ∈ ChoiceG(M) such that Y < X.

1In principle, all the preference relations defined below should be indexed with M . I omit
this index and assume a fixed M that is given by the context.

2I follow terminology by Xavier Parent, who in his turn follows Sen, in distinguishing
between “optimality” and “maximality”. Mind that what Horty calls “optimal” in his 2001
book is what we call “maximal” here; what we call “optimal” is not considered in his book.
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As a property of choices, “maximal” is total (at least when we restrict the
focus to finite models), but it is not safe for aggregation and it is also not
aggregative. This is a well-known fact, cf. [1].

We can however also decide to consider only those actions right that weakly
dominate every other action of the group in question. Formally:

Definition 3 (Optimal actions) Let X ∈ ChoiceG(M). Then X is optimal
for G in M iff for all Y ∈ ChoiceG(M), X v Y .

“Optimal” is aggregative and safe for aggregation (see Section 6), but it
is not total – there is not always an optimal action for a given group G. An
example is the simple coordination problem for two agents given by Figure 1.

Finally, we can also call “right” those choices X of G such that, whatever the
agents in N \G do, if the combination Y of what they do is weakly permitted,
then the combination of Y with X is also weakly permitted. These are the
choices that I called “freely permitted choices” in previous unpublished work;
following Jeff’s remarks I rename them to “safe” actions. Formally:

Definition 4 (Safe actions) X ∈ ChoiceG(M) is safe for G in M iff for all
Z ∈ ChoiceN\G(M), if X ∩ Z ∩ P = ∅, then Z ∩ P = ∅.

“Safe” is aggregative and safe for aggregation. Consequently, “safe” is not
total; again Figure 1 serves as an illustration.

4 Alternative Characterization of “safe” actions

Let

X �′ Y iff X = Y or X ∩ P 6= ∅ or Y ∩ P = ∅

Note that �′ is reflexive and transitive. Also, where X 6= ∅: if X � Y then
X �′ Y (†). Where X is a singleton, (?) X � Y iff X �′ Y .

Let X v′ Y iff ∀Z ∈ ChoiceN\G(M), X ∩ Z �′ Y ∩ Z.
We can now define the set of safe actions equivalently in terms of the pref-

erence relation v′ over the actions of G:

Theorem 1 Let X ∈ ChoiceG(M). Then X is safe for G in M iff for all
Y ∈ ChoiceG(M), X v′ Y .

Note that this alternative characterization is obtained by replacing v with
v′ in the definition of optimal actions. In Section 6 we investigate a property
of the class of all conceptions of “right” that can be defined in this way.
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1 1
1 0

0 0
0 0

Table 1: A non-deterministic deontic (free) choice frame for two agents, where the
choice “right” is safe but not maximal, and hence also not optimal for the column-
choosing agent.

5 Relations between the various concepts

The following can easily be checked (and it relies on no specific properties of
the relations � and v):

Theorem 2 If G has any optimal actions in M , then X is an optimal action
for G in M iff X is a maximal action for G in M .

By Theorem 1 and (†) from the previous section, we have:

Theorem 3 If X is an optimal action for G in M , then X is a safe action for
G in M .

Relying on Theorem 1 and (?) from the previous section, we can also derive
the following:

Theorem 4 If M is deterministic, then X is a safe action for G in M iff X
is an optimal action for G in M .

In general, not every safe action for G in M is also maximal for G in M . We
illustrate this by means of Table 1. In this table, we use 0 and 1 to refer to worlds
in a choice cell; so if e.g. there is a 1 and a 0 in one cell, this means that cell
contains both an acceptable world and one that is not acceptable (deontically
speaking). In Table 1, both “left (column)” and “right (column)” are safe, but
only “left” is maximal and optimal. “Right” is neither maximal nor optimal for
the column-choosing agent.

In view of the preceding, one might expect that the optimal actions are
exactly the ones that are both maximal and safe. But this is also not true, in
view of the example from Table 2. In that example, all actions of all agents are
both maximal and safe, but none of those actions are optimal.

However, for deterministic models it can easily be shown that the optimal
actions are exactly the ones that are both maximal and safe. This is a simple
corollary of Theorems 4 and 2.

Next, one may wonder whether it can ever be the case that a model has safe
actions for a given group G, but that nevertheless, none of its safe actions are
maximal. This turns out to be impossible, at least for finite models:
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1 1
1 0

1 1
0 1

Table 2: A non-deterministic deontic (free) choice frame for two agents, where all
actions are maximal and safe, but no actions are optimal.

1 1
1 0

0 1
0 0

Table 3: A non-deterministic deontic (free) choice frame for two agents. Here, “left
column” is maximal for the colmun-choosing agent, but not safe, and yet there are
safe (and maximal) actions for that agent, viz. “right column”.

Theorem 5 Let M be finite. If there are safe actions for G in M , then there
are also actions that are both safe and maximal for G in M .

Proof. Let X be a safe action for G in M . Since G has only finitely many actions,
we can easily show that there is a maximal action X ′ ∈ ChoiceG(M) such that
X ′ < X. Consider now an arbitrary Y ∈ ChoiceN\G such that Y ∩ P 6= ∅. By
the supposition, Y ∩X ∩ P 6= ∅ (‡). Note that, since X ′ < X, X ′ ∩ Y = X ∩ Y
or X ′ ∩ Y ⊆ P or X ∩ Y = ∅. The first disjunct is excluded since X and X ′

must be disjoint in order to be distinct, and since by (IOA), X ′ ∩ Y 6= ∅ and
X ∩ Y 6= ∅. The third disjunct is excluded in view of (‡). From this we can
infer by (IOA) that X ′ ∩ Y ∩ P 6= ∅. Since Y was arbitrary, it follows that also
X ′ is safe for G in M .

A final question that remains is: if there are safe actions (and hence there are
also actions that are both safe and maximal), does it follow that every maximal
action is also safe? The answer is negative – see Table 3.

6 “optimal” is aggregative

Fix an arbitrary preference relation �⊆ ChoiceN (M) × ChoiceN (M) that is
transitive:

for all X,Y, Z ∈ ChoiceN (M), if X � Y and Y � Z, then X � Z

We generalize Definition 3 as follows:

Definition 5 (�-Optimal actions) Let X ∈ ChoiceG(M). Then X is �-
optimal for G in M iff for all Y ∈ ChoiceG(M) and for all Z ∈ ChoiceN\G,
X ∩ Z � Y ∩ Z.
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Theorem 6 “�-optimal” is aggregative. That is, where G ∩ G′ = ∅: if X ∈
ChoiceG(M) is �-optimal for G in M and X ′ ∈ ChoiceG(M) is �-optimal for
G′ in M , then X ∩X ′ is �-optimal for G ∪G′ in M .

Proof. Suppose the antecedent holds. Let Y ∈ ChoiceG∪G′(M) and Z ∈
ChoiceN\(G∪G′)(M) be arbitrary. Let YG be the unique element of ChoiceG(M)
that is a superset of Y ; let YG′ be the unique element of ChoiceG′(M) that is a
superset of Y .

Note that X ′ ∩ Z ∈ ChoiceN\G. So by the �-optimality of X for G,

X ∩ (X ′ ∩ Z)� YG ∩ (X ′ ∩ Z) (1)

Note that YG ∩ Z ∈ ChoiceN\G′ . So by the �-optimality of X ′ for G′,

X ′ ∩ (YG ∩ Z)� YG′ ∩ (YG ∩ Z) (2)

Note that the right hand side of (1) and the right hand side of (2) refer to
the same set. Since � is transitive over ChoiceN (M) and since Y = YG ∩ YG′ ,
we obtain that (X ∩X ′)∩Z � Y ∩Z. Since Y and Z were arbitrary, it follows
that X ∩X ′ is �-optimal for G ∪G′.

As an immediate corollary of this theorem, it can be inferred that if every
agent in a group does an �-optimal action, then the group as a whole is doing
an �-optimal action.

Note that the above proof relies only on the transitivity of �. So it applies
to our original notion of “optimal”, to our notion of “safe” (using Theorem 1)
and to a great many other notions of “right (action)”. In particular, one can
easily start from a richer semantics (e.g. with deontic preference relations over
worlds), define a transitive � on ChoiceN (M), giving us a notion of “right”
that is aggregative.

Some readers may wonder whether the possibility of redefining a given notion
“right” in terms of optimality for some transitive preference relation � is also
a necessary condition for that notion to be aggregative (perhaps, under certain
conditions such as determinism). The answer is negative. Consider the two-
player game in Figure 2. To feed intuitions, one may interpret the numbers
in this game as payoffs, and the “rightness” function as a combination of risk-
averseness and maximizing: for each group, one first considers only those actions
that avoid the worst outcome, and then out of these, one picks the ones that
maximize pay-off, whatever the other agents do.

If that is how we reason, then “left column” and “upper row” are the only
right actions for the individual agents, but that both “upper row+left column”
and “middle row+midle column” are the only right actions for the group of both
agents. The resulting property P will be aggregative (at least in this model; cf.
infra), but it cannot be defined from a transitive preference relation on the
choices of the grand coalition. That is, such a transitive preference relation
would have to satisfy each of the following properties:

“middle row + right column” � “middle row + middle column”
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“middle row + middle column” � X for all X ∈ ChoiceN (M); hence by
transitivity,

“middle row + right column” � X for all X ∈ ChoiceN (M)

Making “middle row + right column” right for the grand coalition, counter
to what we started with.

2 1 1
1 2 0
1 0 0

Figure 2: A coordination problem for two agents.

(Some may worry that this example fails to show that the rightness condi-
tion under consideration is aggregative in general, for any model M . However,
formally speaking, we can just enforce this by stipulating that the rightness
condition behaves exactly like “optimal” for all models that are not isomorphic
to the one under consideration. This is of course an artificial construction, but
formally it is well-defined. The question is whether there is some way we can dis-
tinguish between “artificial” and other rightness conditions, and whether some
non-artificial rightness conditions are not representable in terms of a transitive
�.)

7 A loose end

One can also ask whether the availability of �-optimal actions is not just a suf-
ficient, but also a necessary condition for ensuring group maximality by means
of member maximality. The results I have so far seem to be mixed:

(i) with only two agents and determinism, only one agent having an optimal
action, and the other agent doing something that is weakly permitted (i.e.,
some X ∈ Choicej(M) with X ∩P 6= ∅), is already sufficient to end up in
a permitted state.

(ii) with three agents, we can easily construct a deterministic model where α
does an optimal action, β and γ each do a maximal action, but we still end
up in an impermissible state (just put the standard coordination problem
left, and a game with only 0s right; α is the agent that chooses between
the left and right table; β and γ are agents that choose the rows, resp.
columns within the tables)

(iii) without determinism we can construct an example with two agents, one
having an optimal action, the other not, where, if they both take a max-
imal action, the group ends up not doing a maximal action: row1 =
{{0, 1}, {1}}, row2 = {{0, 1}, {0}}. The columns are both maximal but
not optimal, (only) the upper row is optimal.
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8 Concluding remarks

This final section is a bit more tentative. In view of Theorem 2, we can conclude
that in the lucky case where you happen to have optimal actions, those actions
will in fact be the only maximal ones. Hence, in such cases the best advice one
can give is: take one of your maximal actions. A further conclusion would be:
the concept of an optimal action is actually quite useless, since the only cases
where it may be useful are already covered by the old concept of a maximal
action. However, it is useful as a way to point out in which situations exactly
one can ensure that group maximality is inherited from each member doing an
individually maximal action.

If there are no optimal actions, there are two possibilities.
First, there are no safe actions, only maximal ones. In that case the only

sensible advice one can give (without changing the rules of the game) is: do a
maximal action, fully aware that if everyone does so we might still end up in
disaster. This is just the best to do given the unlucky circumstances.

Second, there are safe actions. In view of Theorem 5, it follows that some of
these safe actions are also maximal (assuming that the model is finite). Then
it seems the best thing to do is to pick actions that are both maximal and
safe. Note that these need not be optimal (see again Table 1). However, they
are among the best actions each one can do individually (they are not strongly
dominated), and they are moreover such that if we combine them with safe
actions of the other agents, we can be sure that at least the possibility of per-
missibility is left open.

However, we might also be in a situation like in Table 3. In such a situation,
there seems to be a genuine conflict of intuitions. Should we go for an option
where we know that, whatever the other agents do, the grand coalition at least
leaves open the possibility that we end up in a permissible state? Or should we
rather go for an option where we know that, if we luckily happen to coordinate
with all other agents, we in fact guarantee ending up in a permissible state?
Who is to blame for what, in such cases? Or can’t we blame anybody?

One might think the problem is solved by noting that in the example from
Table 3, the row choosing agent should just go for “top”, and hence this is a
reason for the column choosing agent to pick “left”. But that is not a satisfying
answer. Table 4 shows that sometimes even this will not be of much help.
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A Label-independence

Fix a function f : W →W, f : N → N that is one-one. Let M be a deontic free
choice model. Define the model Mf from M and f as follows:
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1 0 1
1 0 0

0 1 1
0 1 0

Table 4: A non-deterministic deontic (free) choice frame for two agents. Here, “left
column” is maximal for the colmun-choosing agent, but not safe, and yet there are
safe (and maximal) actions for that agent, viz. “right column”. Moreover, both “top”
and “bottom” are maximal for the row-choosing agent, whereas neither of these two
are safe.

Mf = 〈W, 〈∼f
i 〉i∈N , P f , V f 〉

where for all i ∈ N , ∼f
i = {(f(w), f(w′)) | (w,w′) ∈ ∼f(i)}, P f = {f(w) | w ∈

P} and V f (p) = {f(w) | w ∈ V (p)}. So Mf is structurally isomporhic to M .
Let f(G) =df {f(i) | i ∈ G}.

P is label-independent iff for any deontic free choice model M = 〈W, 〈∼i

〉i∈N , P, V 〉 and any isomorphism f : W → W,N → N , the following holds: for
all G ⊆ N , X ∈ ChoiceG(M) ∩ P(M) iff {f(w) | w ∈ X} ∈ Choicef(G)(M

f ) ∩
P(Mf ).
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