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Abstract

In this paper I propose a new approach to the foundation of math-
ematics: non-monotonic set theory. I present two completely different
methods to develop set theories based on adaptive logics. For both the-
ories there is a finitistic non-triviality proof and both theories contain
(a subtle version of) the comprehension axiom schema. The first the-
ory contains only a maximal selection of instances of the comprehension
schema that do not lead to inconsistencies. The second allows for all the
instances, also the inconsistent ones, but restricts the conclusions one can
draw from them in order to avoid triviality. The theories have enough
expressive power to form a justification/explication for most of the es-
tablished results of classical mathematics. They are therefore not limited
by Gödel’s incompleteness theorems. This remarkable result is possible
because of the non-recursive character of the final proofs of theorems
of non-monotonic theories. I shall argue that, precisely because of the
computational complexity of these final proofs, we cannot claim that non-
monotonic theories are ideal foundations for mathematics. Nevertheless,
thanks to their strength, first order language and the recursive dynamic
(defeasible) proofs of theorems of the theory, the non-monotonic theories
form (what I call) interesting pragmatic foundations.

1 Introduction: founding mathematics

The project of the foundation of mathematics concerns the search for a reduc-
tion of mathematics to basic concepts and rules determining the behavior of the
concepts. This is an essential aspect of elaborating a philosophy of mathemat-
ics. It is an important tool for answering questions concerning the epistemic
status of mathematical objects, truths and proofs and thus for giving a justi-
fication or an explanation for the reliability of mathematical knowledge. The
first systematic foundation of (a part of) mathematics was Euclid’s geometry.
He reduced geometry to basic kinds of objects: points, lines, circles and planes
and a number of relations between these objects. His postulates and axioms de-
termined which statements are accepted about these objects and their relations.
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Pure logic determined which conclusions could be drawn from these postulates
and axioms. Assuming that the deductive reasoning done by logic was truth
preserving, the truth of the whole domain of results in Euclidian geometry was
ensured by the truth of the postulates and axioms. The truth of the axioms
and postulates was taken to be self-evident.

Later on, since Frege, the logical part of foundational theories was also for-
malized and made precise. This made it possible to formulate theories in a fully
symbolic way. I shall call such formalized theories formal theories and use the
following (usual) definition for them: a formal theory is a pair consisting of a
recursive set of formulas (axioms) of a formal language and a symbolic logic for
this formal language that determines the consequences of the axioms.

The process of founding mathematics by means of a formal theory would
ideally proceed in the following way. (1) Select a coherent set of basic objects
of a mathematical domain in such a way that all the other objects used by
mathematicians can be defined from them. (2) Select a recursive set of accepted
truths about those objects. (3) Devise a logic that has a proof system such that
every accepted proof in mathematics can (ideally) be translated into a formal
proof of the logic. (4) Make sure that the recursive set of truths selected in
(2) is strong enough to (ideally) prove all accepted results of the mathematical
domain, i.e. all truths about the basic objects. And finally (5): make sure that
the obtained theory is provably non-trivial.

Remark that non-triviality is in fact strictly speaking too weak a require-
ment. A theory is non-trivial iff there is at least one formula of its language that
is not a theorem. In principle, it might be the case that a theory is non-trivial
when the only formulas that are not theorems are in some small fragment of the
theory (e.g. the case where only ⊥ is not a theorem). In that case, most of the
theory is still useless. A theory can only be considered a useful foundation if it
succeeds in distinguishing theorems from non-theorems for the entire domain.
I shall call a theory that succeeds in making this distinction discriminatory.
This is obviously a vague term, but for most theories that are structured by a
formal logic with a meaningful semantics, being discriminatory and non-trivial
are equivalent.

Once one would have obtained such an ideal foundation, the practice of
mathematics would be a more controlled, safer and clearer enterprise. We would
be more certain of the correctness, the meaningfulness and the coherence of
mathematical results. Moreover, the philosophical mission of explaining the
meaning and the epistemic status of mathematical results can now be reduced
to the set of basic objects and truths.

At the beginning of the 20th century, the formalist and the logicist schools
attempted to achieve such an ideal foundation by means of axiomatic calculi.
They tried to reduce a large part of mathematics to the consequences of a simple
set of logical axioms (for the logicists) or logic and theoretical axioms (for the
formalists) formulated in a formal language. Exact rules would determine how
to derive new sentences from the axioms. Thus one hoped to obtain an exact
axiomatic calculus that would be able to replace the existing informal way of
doing mathematics. The calculi would determine the truths of mathematics in
an exact way (although many of them would still be unknown, it would only be
a matter of discovering the already fixed mathematical universe, not of creating
the unfixed universe).

In 1931 Gödel put an end to this foundational dream (cf. [12]). His first
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incompleteness theorem entails that it is impossible to formulate a non-trivial,
complete axiomatic calculus for mathematical domains rich enough to function
as a model for arithmetic. The second shows that it is impossible to prove within
a given theory its own consistency even for relatively simple static mathematical
theories that contain Peano arithmetic.

There are different ways to respond to this drastic result. The most sig-
nificant categories of alternative (non-ideal) foundations taking Gödel’s results
into account can be characterized as partial, relative or revisionist foundations.
These types of foundations are not ideal foundations but attempt to be optimal
foundations. I define a relative foundation as a foundation the non-triviality of
which depends on the non-triviality of other infinitistic (mathematical) systems.
Hence, there is no real guarantee for the non-triviality of relative foundations.
A partial foundation is a foundation which does not cover the whole mathe-
matical domain for which one aims to devise a foundation. From a classical
point of view on mathematical semantics, the partiality comes to the negation
incompleteness of the foundational theories—a constructivist foundation might
be complete and negation-incomplete, as constructivist mathematics does not
require a negation-complete foundation. Finally, a foundation is revisionist iff
it criticizes part of classical mathematics and therefore only needs to found the
part of mathematics that is not criticized.

The most salient and popular foundation nowadays is ZFC. The theory
ZFC is the most commonly used set theory (cf. [11]). It is an extension of
Zermelo’s set theory (cf. [32]). The underlying logic of ZFC is classical logic.
Everywhere in this paper, classical logic (henceforth CL) is the classical first or-
der consequence relation with the identity symbol and without function symbols.
The axioms of ZFC are presented in Section 3. It is commonly accepted that
most of actual mathematics can be done in ZFC. In the project Metamath
(cf. http://us.metamath.org), for example, many interesting mathematical
theorems of very different domains of mathematics are formally proved from
the axioms of ZFC. So ZFC is rather rich and many mathematical results
can be expressed in it. Nevertheless it is not an ideal foundation of mathe-
matics. ZFC is obviously incomplete, with a large amount of propositions for
which it can be proved that the proposition nor its negation is in ZFC pro-
vided ZFC is consistent. Examples are the Continuum Hypothesis, the Axiom
of Constructibility, Whitehead’s problem and propositions expressing ZFC’s
consistency (cf. [9, 14]). So ZFC is too weak to provide an ideal foundation.
But ZFC is also too rich for this purpose. It is much richer than a theory like
Peano-arithmetic. One has so far not been able to give a convincing consistency
proof for Peano-arithematic, without using proof methods the consistency of
which is as problematic as the consistency of Peano-arithmetic itself. ZFC be-
ing even richer, more abstract and further away from intuitions, the consistency
of it is an even bigger open problem. The most convincing argument for the
consistency of ZFC is the following: we have been extensively working with
this theory for a long time and have not found an inconsistency, so the theory
is unlikely to be inconsistent.

Nevertheless, ZFC can still be considered as a foundation, albeit a relative
and partial one. As long as ZFC does not collapse, it offers a rigorous jus-
tification for many mathematical results, with the certainty that these results
are not based on unclear proofs and do not rely on implicit intuitions or preju-
dices. Its relative character is unlikely to be removed in view of Gödel’s results,
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but mathematicians might find sensible extensions of ZFC that cover more of
mathematics. In that sense, it may be possible to make ZFC ‘less partial’.
Nevertheless it will always remain partial and it will probably always remain as
relative as it is now (unless it collapses).

Another option is to restrict classical mathematics, resulting in revisionist
foundations. Examples are constructive set theory (which uses an intuitionistic
logic and only aims at founding constructive mathematics), strictly finitistic
mathematics (which does not accept references to infinity, and therefore does
not require a theoretic foundation of infinity), etc. This is a way to avoid par-
tiality and relativity. If one rejects part of classical mathematics, the theories
one develops as foundations obviously need not cover the entire classical math-
ematics and need not be strong enough to be susceptible to Gödel’s result. The
retained part of classical mathematics may be foundable by means of a complete
axiomatic calculus, possibly even one with an absolute non-triviality proof. So
Gödel’s incompleteness results might be avoided in such approaches. Of course,
these foundations are not (and do not want to be) foundations for classical
mathematics.

In this paper I propose a new approach to foundation, viz. pragmatic founda-
tion. Pragmatic foundations make use of object proofs that do not warrant that
certain formulas are finally derived–for a precise definition of final derivability
see section 2–from the axioms. Informal mathematical proofs are formalized
into proofs with lines that require pragmatic assumptions. These foundations
are able to provide maximal metatheoretical elegance, but might at the object
level involve the provisional acceptance of pragmatic conclusions, i.e. conclusions
that involve provisional uncertainties at some point.

A simple and clear (but rather sterile) example of a pragmatic foundation is
the theory CZFC defined by the following definition: the axioms of CZFC are
exactly the same as those of ZFC, but the underlying logic is a non-trivializing
version of CL. This logic accepts all CL-consequences of consistent premises,
but accepts no consequences of inconsistent premises. Consequently, A is a
theorem of CZFC iff (A is a ZFC-theorem and ZFC is consistent). This
theory has effectively the same function as plain ZFC: if ZFC is consistent,
CZFC is equivalent to it. If ZFC is inconsistent, ZFC is trivial and none of
the ZFC-consequences is trustworthy, whence, from a practical point of view,
the foundational part of ZFC is empty (none of the theorems of ZFC has the
power to support mathematics in this case). This foundational part of ZFC is
exactly what the theory CZFC formalizes.

Formal proofs for the theory CZFC could be conceived as follows: consider
usual ZFC-proofs. Add to every line of such proofs a condition containing the
formula ∅ ∈ ∅. Mark lines as ‘no longer derived’ from the point on that the
condition of that line is derived on some other line of the proof. So no lines are
marked unless and until the inconsistent formula ∅ ∈ ∅ is derived. Such a proof
is dynamic. At no point in time shall we be certain that any formula is a theorem
of CZFC. Unless an inconsistency is derived from ZFC, every conclusion one
is able to draw within a dynamic, pragmatic CZFC-proof remains defeasible
and essentially uncertain.

Of course this uncertainty is a disadvantage. However, compared to ZFC
itself, CZFC is not worse off. The uncertainty is equally present in ZFC, for if
ZFC would be inconsistent, there would be nothing foundational about ZFC.
In other words, it is unproblematically certain that the conclusions of ZFC-
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proofs are theorems of ZFC. But their foundational strength will always stay
uncertain and conditional.

CZFC is as incomplete as ZFC, so, as a foundation, CZFC is still only
partial. However, CZFC is evidently non-trivial and can therefore function as
an absolute foundation. This makes CZFC a partial, pragmatic but absolute
foundation.

CZFC is what I call a non-monotonic theory, i.e. a theory with a non-
monotonic underlying logic. A non-monotonic logic is a logic for which adding
more premises may result in less consequences. Why is the underlying logic of
CZFC non-monotonic? Well, consider the axioms of ZFC and add the negation
of one of the axioms to it. The resulting set of axioms is inconsistent and hence
the set of theorems of this extension of CZFC is empty.

Although the non-monotonic theory CZFC is an interesting introductory
example to present the possibilities of pragmatic foundations, it does not deliver
any practical new results. The only difference with ZFC is that it is warranted
to be non-trivial. What is essentially realized here is that the metatheoretical
consideration that ZFC would lose its foundational power if it would turn out
to be trivial is taken into account at the object level of CZFC. So by defining
CZFC, we already devised an absolute but pragmatic partial foundation out of
a relative partial foundation.

Non-monotonic theories generally do not have recursive final proofs for their
theorems. Indeed, in order to consider some formulas as theorems of a non-
monotonic theory, one needs to know that other formulas are non-theorems of
it. In terms of the dynamic proofs: in order to be certain that a conditional line
will not be marked in any extension of a dynamic proof, one needs certainty
about an infinity of extensions of the proof. In other words: establishing final
theoremhood sometimes requires logical omniscience. This makes most non-
monotonic theories and pragmatic foundations not semi-recursive. Of course
this not an ideal situation for a foundation. But it is precisely this property
that makes non-monotonic theories not restricted by Gödel’s incompleteness
theorem, which depend on the recursiveness of the proofs for demonstrating
theoremhood of the theory. Rich enough semi-recursive theories will somehow
always be susceptible to Gödel’s limitations. If one wants to get around Gödel
and design theories rich enough to found mathematics, one needs to give up
semi-recursiveness.

It is however far more interesting to devise pragmatic foundations that not
only take problems into account, but also solve them. Adaptive logics (hence-
forth ALs) are good tools to create such foundations. They provide the re-
quired dynamic proofs plus define a fixed and subtle set of consequences for
every premise set. This set can form the set of theorems of the pragmatic foun-
dation. By means of adaptive logics we can make foundations that are stronger
than CZFC and make sure that the foundation does not disappear when an
inconsistency is found in ZFC, but rather isolate that inconsistency and enable
as much of classical mathematics as possible in parts of the theory where the
inconsistency is absent.

Providing a subtle safety net for the case where classical theories would turn
out to be trivial is but one aspect of the promising domain of pragmatic founda-
tions. Pragmatic foundations can in fact be much stronger and expressive than
usual foundations. They can delineate the sensible parts from intuitive but
inconsistent theories, without yielding a weak theory. This will be illustrated
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in this paper for the inconsistent axioms of naive set theory. It is even real-
istic that non-monotonic mathematical theories would be negation-complete,
whereas usual theories are essentially unable to provide this property. This will
be elaborated in a forthcoming paper.

It is generally accepted that the set of all classical mathematical truths (no
matter what one philosophically means by the notion ‘mathematical truth’) is
not semi-recursive. Every usual axiomatic calculus, however, is semi-recursive
by definition. It should not come as a surprise that the known calculi are
essentially insufficiently rich. Non-monotonic theories on the other hand do not
have this restriction. They can be far more complex than usual semi-recursive
theories and so they are more likely to actually fully capture mathematical
truth.

In the present paper I shall give two basic examples of non-monotonic set
theories that show different possible ways to devise pragmatic foundations. I
shall discuss different advantages of choosing these types of foundations. For my
present purposes, I shall not focus on technical details of the systems, but rather
explain the possible formal methods to devise adaptive set theories, present some
problems one is confronted with when constructing them, and propose possible
solutions. I shall also offer a sketch of what the proposed theories may mean
for the foundations of mathematics.

The systems I present here are based on the inconsistent comprehension
axiom. This axiom states that, for every property A(α), the set defined by
{x | A(x)} exists. This is the most intuitive, most natural way to devise the
concept of a set (strong arguments in favor of comprehension are provided in
[30] and [15]): every property of the language defines a set. Of course some
properties are inconsistent (logically false), but this is not a problem: a set
defined by means of an inconsistency is simply an empty set. The problem is that
stating the existence of some sets defined by a consistent property (which refers
to self-membership) leads to inconsistencies. Consequently, if the underlying
logic of a theory with the comprehension axiom is CL, the theory is trivial.

There exist several ways out of this without giving up CL, such as ZFC,
Quine’s New Foundations (cf. [18]), von Neumann-Bernays-Gödel set theory (cf.
[27]) and Morse-Kelley set theory (cf. [13]). All of these restrict the comprehen-
sion axiom in such a way that self membership is avoided. This results in more
complicated axioms, the non-triviality of which is still an open problem.

I shall sketch different methods to devise non-monotonic theories based on
AL that allow for instances of the full comprehension axiom whenever this does
not lead to problems. The non-triviality of all presented theories is finitisticly
provable. If the classical set theories would turn out to be inconsistent, the non-
monotonic theories still give sensible results and suggest how to correct the triv-
ial classical set theories. The methods are all variations on two basic approaches
to adaptive set theory. The first basic theory, called Maximally Consistent Com-
prehension Set Theory (MCC), only allows for the consistent instances of the
comprehension axiom schema. MCC contains all the CL-consequences of the
consistent instances. The second basic theory, called Maximally Rich Universal
Set Theory (MRU), is an inconsistent set theory that is what I call universal :
it proves the existence of all the sets the existence of which is stated by the
comprehension axiom. For the paradoxical sets the logical rules are restricted
in such a way that no trivialities are obtained. For the unproblematic sets all
CL-rules are allowed.
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It is important to emphasize that this paper mainly has a programmatic
purpose. I want to show that non-monotonic theories can have some surpris-
ingly interesting properties and that adaptive logics are particularly good logics
for non-monotonic set theory. I show different techniques one could use when
one devises such adaptive set theories. I definitely do not want to prove that
this is a superior approach to the foundation of mathematics. Neither do I want
to claim that the presented techniques result in properly elaborated and inves-
tigated theories, with all optimal properties. I only aim to convince the reader
that (i) non-monotonic set theory is a fascinating new approach to foundational
questions, (ii) it therefore deserves further investigation and (iii) there are use-
ful techniques available within the adaptive logic framework that might solve
obvious issues in non-monotonic set theory.

In the next section, I give a short introduction to AL. In the third section
I introduce the axioms of the relevant existing set theories, ZFC and naive set
theory and list a number of paradoxes of naive set theory. The fourth section
contains a presentation of the set theory MCC. In fifth section I present MRU.
In section 6, I compare the two theories and I conclude the paper with an
overview of the advantages of non-monotonic foundations of mathematics.

2 Adaptive logics

The non-monotonic theories I shall present are based on an AL (cf. [1, 2, 3, 5] for
some general formal and philosophical introductions to AL). ALs are excellent
tools to formalize defeasible reasoning. There is one elegant formal format
for most ALs, called the standard format of AL. A large amount of very
different types of defeasible reasoning have been characterized by means of an
AL in standard format: abductive reasoning, inductive generalization, handling
inconsistencies, reasoning with vagueness, reasoning with ambiguity, reasoning
about compatibility, question raising, coping with theories where statements
are only plausibly true, diagnosis, causal discovery, belief merging and default
reasoning. The dynamic proof theory, the semantics and the meta-theory of
ALs in standard format are generic and intuitive. The dynamic proofs are
intuitive explications for actual reasoning processes.

The standard format of AL is extremely unifying. Because most kinds of
defeasible reasoning can be formalized by means of an AL in standard format,
the format together with its metatheoretic properties reveals the essential formal
structure of defeasible reasoning.

There is a static consequence notion that assigns a fixed set of AL-consequences
to every premise set. It is this notion that we need for the fixed mathematical
theories. The dynamic proofs are used to formalize the informal mathematical
proofs. Of course, this is not a straightforward formalization. The informal
mathematical proofs are meant to be static: when a conclusion is obtained, it is
meant to be a theorem, unconditionally and forever. The dynamic proofs that
formalize the informal proofs cannot assure this unconditional validity. Condi-
tional lines of dynamic proofs are accepted as pragmatic certainties as long as
they are not revoked. This is why I called AL-theories pragmatic foundations.
The certainty their proofs deliver is only pragmatic, not irrevocable.

Adaptive logics take formulas of some predefined type, called abnormalities,
to be false unless and until it is proven that the premises do not allow this
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presupposition. This ‘unless and until’ determines the dynamic and defeasi-
ble character of adaptive logics. Semantically, taking abnormalities to be false
whenever this is compatible with the premises comes to interpreting premise
sets as normally as possible. Adaptive logics do this by selecting those models
of the premises in which as little abnormalities as possible are true.

An AL in standard format is defined as a triple consisting of:

• a LLL: a monotonic, reflexive, transitive and compact logic which has a
characteristic semantics and contains all the CL-symbols.

• a set of abnormalities Ω: a set of LLL-contingent formulas Ω, character-
ized by a (possibly restricted) logical form, and

• a strategy (the most important adaptive strategies are ‘Reliability’ and
‘Minimal Abnormality’).

The lower limit logic is the stable part of the AL; anything that follows
from the premises by the LLL will never be revoked. The LLL should contain
all CL-symbols. This is realized by adding, to a logic with its own standard
symbols, all the CL-symbols with a check ‘̌ ’ above the symbol, e.g. ∨̌, ¬̌, ⊥̌,
>̌, etc. They are superimposed on the standard symbols, i.e. they do not occur
within the scope of the standard symbols. They are semantically defined by
means of their usual classical properties with respect to model verification (e.g
M |= A∨̌B iff M |= A or M |= B, M |= ¬̌A iff M 6|= A, M |= >̌, and M 6|= ⊥̌)
and hence they behave classically. The CL-symbols are added to a usual logic
with its own standard symbols, for purely technical reasons. They occur neither
in the premises nor in the conclusions. In the concrete logics in this paper, the
standard symbols ¬,∨,∧,⊥ etc. already behave exactly classically, so there the
checked symbols are replaced by their standard counterparts.

The abnormalities are the formulas the AL supposes to be false, ‘unless and
until proven otherwise’. Strategies are ways to cope with derivable disjunctions
of abnormalities: an adaptive strategy picks one specific way to interpret the
premises as normally as possible. Apart from Reliability and Minimal Abnor-
mality, several strategies were developed mainly in order to characterize conse-
quence relations from the literature in terms of an AL. All those strategies can
be reduced to Reliability or Minimal Abnormality under a translation.

If the lower limit logic is extended with an axiom that declares all abnor-
malities logically false, one obtains the upper limit logic ULL. If a premise set
Γ does not require that any abnormalities are true, the AL-consequences of Γ
are identical to its ULL-consequences.

2.1 The proof theory of AL

The proof theory of an AL consists of a set of inference rules (determined by
the LLL and Ω) and a marking definition (determined by Ω and the chosen
strategy). A line of an annotated AL-proof consists of four elements: (1) a line
number i, (2) a formula A, (3) a condition consisting of a set of abnormalities
Θ ⊂ Ω and (4) the name of a rule and the line number of the rule’s premises.
A stage s of a proof is the subproof that is completed up to line number s. The
inference rules govern the addition of lines. There are 3 generic rules: a premise
rule (PREM), an unconditional rule (RU), and a conditional rule (RC). These
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rules strongly depend on the rules for LLL and only focus on what the AL
adds to the LLL. In the following table Γ refers to the premises of the proof.
Dab(∆) is a shorthand for the classical disjunction

∨̌
∆ of the members of a

finite ∆ ⊂ Ω (such a formula is called a Dab-formula).

PREM If A ∈ Γ . . . . . .
A ∅

RU If A1, . . . , An `LLL B A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B ∨Dab(Θ) A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The strategies determine when lines are marked in adaptive proofs and thus
they determine when formulas are considered as derived in a proof. The most
important strategies are Reliability and Minimal Abnormality. I only mention
the Reliability strategy as I shall not consider Minimal Abnormality adaptive
logics as the underlying logics of the adaptive theories I shall present. Minimal
Abnormality adaptive logics are far more complex than Reliability adaptive
logics (cf.[23]) and it is unclear what this strategy would add to the set theories.

Dab(∆) is a minimal Dab-formula of stage s iff Dab(∆) is derived at stage
s on the condition ∅ and no Dab(∆′) with ∆′ ⊂ ∆ is derived at stage s on
the condition ∅. Where Dab(∆1), . . . , Dab(∆n) are the minimal Dab-formulas
derived on the condition ∅ at stage s of an adaptive proof, the set of unreliable
abnormalities at this stage, denoted as Us(Γ), is defined as ∆1 ∪ . . . ∪∆n. The
abnormalities that are not unreliable at a stage are called reliable at that stage.

Definition 1 Marking definition for Reliability. Where ∆ is the condition of
line i, line i is marked at stage s iff ∆ ∩ Us(Γ) 6= ∅.

Two types of derivability are defined for ALs. A formula A is derived at a
stage iff A is derived on an unmarked line at the stage. This notion will formalize
the pragmatic results of (conditional) mathematical object proofs. A formula A
is finally derived at stage s iff A is derived on an unmarked line i at stage s and
any extension of the proof in which line i is marked can be further extended
to a proof in which line i is unmarked. The finally derivable consequences of a
premise set Γ are independent of the stage and constitute the AL-consequence
sets for Γ, denoted by CnAL(Γ). If A ∈ CnAL(Γ) then I shall write Γ `AL A.
This final derivability notion will formalize the set of theorems of the adaptive
theories.

2.2 The semantics of AL

Semantically, adaptive logics select LLL-models of the premises with respect to
their normality. In the case of Reliability, we first define when a LLL-model is
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reliable and then we select all the reliable LLL-models of the premises. Adaptive
logics validate the formulas that are verified by all selected models.

Dab(∆) is a minimal Dab-consequence of Γ iff Γ �LLL Dab(∆) and, for all
∆′ ⊂ ∆, Γ 2LLL Dab(∆′). Where Dab(∆1), Dab(∆2), . . . are the minimal
Dab-consequences of Γ, let U(Γ) =df ∆1 ∪ ∆2 ∪ . . .. The members of U(Γ)
are called the unreliable formulas of Γ. Finally, where M is a LLL-model,
Ab(M) =df {A ∈ Ω |M |= A}.

Definition 2 Reliable model and the corresponding semantical consequence re-
lation �AL. A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ). If AL uses
the Reliability strategy, Γ �AL A iff all reliable models of Γ verify A.

2.3 Non-triviality of AL

The following theorem shows that the adaptive consequence set of a premise set
Γ is non-trivial whenever the lower limit consequence set of Γ is non-trivial.

Theorem 1 For every set of formulas Γ: if there is a formula A such that
Γ 0LLL A, then there is a formula B such that Γ 0AL B.

Proof. Suppose that the antecedent is true. Then Γ 0LLL ⊥̌. It suffices to prove
that Γ 0AL ⊥. If a formula A is derived in an adaptive proof on a condition
∆ then, by the Derivability Adjustment Theorem from [2], this proof can be
extended to a proof in which A ∨ Dab(∆) is derived on an empty condition.
Consequently, every proof from Γ in which a conditional line i occurs on which
⊥̌ is derived on the condition ∆, can be extended to a proof in which ⊥̌∨̌Dab(∆)
is derived on the empty condition. Hence, by classical logic, it can be further
extended to a proof in which also Dab(∆) is derived on the empty condition. In
this proof, line i is marked given the marking definition, both in case of the Reli-
ability Strategy and in case of the Minimal Abnormality strategy. Consequently,
⊥̌ cannot be finally derived on an empty condition (otherwise Γ `LLL ⊥̌) nor
on a non-empty condition, whence Γ 0AL ⊥̌.

3 Axioms of set theory

In what follows I denote a (formal) theory as a pair 〈A1 + . . .+An,L〉, where Ai

are axioms or axiom schemata and L is a logic1. A is a theorem of the theory
〈A1 + . . .+ An,L〉 (A ∈ Th(〈A1 + . . .+ An,L〉) for short) iff A ∈ CnL(Γ) where
Γ = Γ1 ∪ . . . ∪ Γn and for all i ≤ n, Γi = {Ai} if Ai is an axiom, and Γi is the
set of instances of Ai if Ai is an axiom schema.

In this paper, a set theory is a theory that formalizes the use of the mem-
bership relation ‘∈’. The only predicate in the language of the set theories
presented in this paper is the binary membership predicate ∈. Consequently,
the only formulas without logical symbols will be of the form ∈αβ, which I shall
always write with the more common infix notation: α ∈ β. As I use lowercase
letters from the beginning of the Greek alphabet only as metavariables for con-
stants and (object) variables, there should be no confusion with respect to the
scope of the logical symbols when combined with formulas of the form α ∈ β
(e.g. ¬α ∈ β always means ¬(α ∈ β)).

1The ‘+’-symbol is here used as an otherwise meaningless separator in a finite list of strings.
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3.1 Naive set theory

Naive set theory is the theory 〈COMP + EXT,CL〉, where EXT and COMP are
defined as follows2:

EXT ∀x∀y(∀z(z ∈ x ≡ z ∈ y) ⊃ x = y)
COMP ∃x∀y(y ∈ x ≡ A(y))

Naive set theory is known to be trivial. This is due to the famous paradoxes
of naive set theory. Of course, from an inconsistent set theory every single
contradiction of the language is CL-derivable and so all formulas are actually
paradoxical. But we want to correct naive set theory and are therefore interested
in the origin of the inconsistency problems. The problems originate in the
following primitive paradoxes (among other paradoxes).

We start with Russell’s paradox.

∃x∀y(y ∈ x ≡ ¬y ∈ y)

Less famous variants of the Russell paradox are the following generalizations,
which are discovered by Quine (cf. [19]): for every n,

∃x∀y(y ∈ x ≡ (¬∃z1 . . . ∃zn(y ∈ z1 ∧ z1 ∈ z2 ∧ . . . ∧ zn ∈ y))) .

One could interpret this axiom as follows. It states that the set of sets {x|x
is not part of a loop of n sets} exists, where a loop of m sets is a series of
sets a1, a2, . . . am with the property a1 ∈ a2, a2 ∈ a3, . . . , am−1 ∈ am and
am ∈ a1. Each CL-based theory (in the sense that CL is the underlying logic
of the theory) of which this axiom is a theorem is trivial because the classical
negation of this axiom is a CL-theorem 3. Remark that, for every theory that
has CL as its underlying in logic, the set of CL-theorems is a subset of the set
of theorems of the theory.

Curry’s paradox (cf. [8]) shows that one can also express Russell’s paradox
without a negation:

∃x∀y(y ∈ x ≡ (y ∈ y ⊃ A)) . (1)

The negation of formulas of this form is not always a CL-theorem, however
∃x∀y(y ∈ x ≡ (y ∈ y ⊃ A)) ⊃ A is a CL-theorem, whence CL allows us to
derive any formula A from an appropriate instance of axiom schema (1).

Also Quine’s variants of Russell’s paradox are expressible without a negation:

∃x∀y(y ∈ x ≡ (∃z1 . . . ∃zn(y ∈ z1 ∧ z1 ∈ z2 ∧ . . . ∧ zn ∈ y) ⊃ A)) .

I did not find these paradoxes in the literature, but let us call this last series
of paradoxes the Quine-Curry-paradoxes (QCP). Again, the negations of these
paradoxes are not always CL-theorems but formulas of the form ∃x∀y(y ∈ x ≡
(∃z1 . . . ∃zn(y ∈ z1 ∧ z1 ∈ z2 ∧ . . . ∧ zn ∈ y) ⊃ A)) ⊃ A are CL-theorems. This
means that stating the existence of all of these sets trivializes a CL-based set
theory. All of the former paradoxes can be considered as instances of (QCP).

2I sometimes use a simplified notation for axioms and axiom schemas: the formulas I write
represent the axioms that are the universally closed versions of the written formulas.

3A L-theorem is a formula A such that `L A.
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3.2 ZFC-set theory

As explained in the first section, mathematicians have proposed several solutions
for the problems of naive set theory. The most famous and most popular (but
probably not the best) solution is ZFC-set theory.

ZFC-set theory is the theory 〈EXT + UNION + POWER + INF + REPL +
FOUND + CHOICE,CL〉, where EXT, UNION, POWER, INF, REPL, FOUND,
and CHOICE are defined as follows (I follow the rather elegant formulation of
the axioms that is found in the Metamath project, cf. page 3):

EXT ∀x(x ∈ y ≡ x ∈ z) ⊃ y = z
REPL ∀w∃y∀z(∀vA ⊃ z = y) ⊃ ∃y∀z(z ∈ y ≡ ∃w(w ∈ x ∧ ∀vA))
UNION ∃y∀z(∃u(u ∈ x ∧ z ∈ u) ⊃ z ∈ y)
POWER ∃y∀z(∀w(w ∈ z ⊃ w ∈ x) ⊃ z ∈ y)
INF ∃y(x ∈ y ∧ ∀z(z ∈ y ⊃ ∃w(z ∈ w ∧ w ∈ y)))
FOUND ∃y(y ∈ x) ⊃ ∃y(y ∈ x ∧ ∀z(z ∈ x ⊃ ¬z ∈ y))
CHOICE ∃y∀z∀w((z ∈ w ∧ w ∈ x) ⊃

∃v∀u(∃t((u ∈ w ∧ w ∈ t) ∧ (u ∈ t ∧ t ∈ y)) ≡ u = v))

4 Maximally Consistent Comprehension Set The-
ory

The first adaptive set theory, Maximally Consistent Comprehension Set Theory
(MCC), is a theory that selects a maximal consistent set of instances of the
comprehension schema. Its theorems are the CL-consequences of the consis-
tent selection together with extensionality. I start by presenting the underlying
adaptive logic AM.

4.1 The adaptive logic AM

I first define the logic M, which will serve as the LLL of the logic AM. It is
a rather simplistic modal logic. It can be characterized by means of only two
possible worlds, but here I give an even simpler characterization. The language
of M is the CL-language to which a ♦-symbol is added with to restrictions: ♦-
symbols are not nested and no ♦ occurs in the scope of a quantifier. For example,
where A is a CL-formula, A, ♦A, ¬♦A, and ♦A ∨ ¬♦¬A are M-formulas, but
♦♦A and ∀x♦A are not M-formulas. W is the set of closed formulas of CL and
WM is the set of closed formulas of M.

Let a M-model be defined as a triple 〈v,D,Ψ〉, where 〈v,D〉 is a CL-model
and Ψ is a set of M-formulas. All CL-formulas get the same truth values in
a M-model 〈v,D,Ψ〉 as in the corresponding CL-model 〈v,D〉. Where M =
〈v,D,Ψ〉, M |= ♦A iff A ∈ Ψ or A is true in 〈v,D,Ψ〉. For the formulas A
that have another logical symbol than ♦ as their outmost connective, M ` A is
recursively as usual (for example M ` A ∨ B iff M ` A or M ` B) Finally, we
can define the consequence relation Γ �M A iff M |= A for every M-model such
that M |= Γ.

Proof theoretically, this logic can be characterized by adding the axiom
A ⊃ ♦A to an axiomatic characterization of classical logic, restricting it to

12



the formulas of the language4.
The adaptive logic AM is defined as the triple 〈M, {♦A∧¬A | A ∈ WM},Reliability〉.

The abnormalities are formulas of the form ♦A∧¬A, so they enable the condi-
tional derivation of A from ♦A.

4.2 The tentative theory WMCC

I first present a tentative adaptive set theory, which will turn out to be too
weak.

Where COMP♦ is the axiom schema

COMP♦ ♦∃x∀y(y ∈ x ≡ A(y)) ,

the tentative adaptive set theory WMCC is defined as follows:

Definition 3 WMCC = 〈COMP♦ + EXT,AM〉

In this theory, one is able to derive instances A of the normal comprehen-
sion schema COMP (without the modality) on the condition that ♦A ∧ ¬A is
not derivable. If the negation of an instance of COMP or the disjunction of
such negations is CL-derivable (and therefore also M-derivable) and there is no
smaller disjunction derivable of this form, the involved instances are paradoxical
and the corresponding abnormalities are unreliable. This causes the marking of
the lines on which the ♦-free versions of the problematic axioms and their conse-
quences are derived. Because they are derived on marked lines (that are bound
to stay marked in every extension of the proof), these formulas do not count
as AL-consequences of the axioms. The instance of comprehension that states
the existence of the Russell set is a typical example of a problematic instance
and the corresponding abnormality is unreliable. The theorems of this simple
tentative definition of an adaptive set theory would be the CL-consequences
of the extensionality axiom together with all the unproblematic instances of
comprehension.

This theory is non-trivial. The set of theorems of the theory 〈COMP♦ +
EXT,M〉 is not trivial, because there is a finite model for the axioms, more
particularly the (finite) M-model M = 〈v,D,Ψ〉, where 〈v,D〉 is some arbitrary
CL-model and Ψ is the set of all instances of COMP. By Theorem 1, we know
then that also the adaptive theory WMCC is non-trivial.

Given that Ψ is obviously an infinite set, one may object that the M-model
M is not really finite. It is true that there is an infinite aspect to it, but
the domain is finite and one does not need to rely on theoretic properties of
infinite sets to prove that this model is a model for the theory. Compare this
to ZFC. We can only give infinite models of ZFC, for example the cumulative
hierarchy. Defining this model and proving that it is a model for the axioms,
requires a theory at least as strong as ZFC itself. Suppose ZFC would be
inconsistent, then the model would be incoherent. Hence, the existence of this
kind of models does not give us arguments for the consistency of the theory.
The M-model presented here, on the other hand, is presentable without strong
theoretic instruments. To see this, consider the fact that the elements of Ψ

4Proving completeness for this proof theory is safely left to the reader in view of the fact
that M can be translated into CL by translating every (sub)formula ♦A into A ∨ pA, where
pA is an atomic propositional letter.
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could be seen as empty strings. The only requirement is that these strings
are exactly the instances of COMP. Defining the (uninteresting) model M for
〈COMP♦ + EXT,M〉 is therefore not harder than defining the comprehension
axiom schema itself.

This way of making naive set theory non-trivial could be quite sensible and
applicable to many other potentially inconsistent axiomatic systems. However,
there is a problem. Suppose A is a harmless instance of the comprehension
axiom schema (for example the instance stating the existence of the empty set).
Consider the following proof, in which B abbreviates ∃x∀y(y ∈ x ≡ (y ∈ y ⊃
¬A)). Slightly abusing notation, I introduce an auxiliary constant in line 5 (in
a natural deduction style). This is harmless, as the constant disappears in lines
9-11.

1 ♦A ∅ PREM
2 A {♦A ∧ ¬A} RC; 1

√

3 ♦∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬A)) ∅ PREM
4 ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬A)) {♦B ∧ ¬B} RC; 3

√

5 ∀y(y ∈ o ≡ (y ∈ y ⊃ ¬A)) {♦B ∧ ¬B} RU; 4
√

6 (o ∈ o ≡ (o ∈ o ⊃ ¬A)) {♦B ∧ ¬B} RU; 5
√

7 o ∈ o ⊃ ¬A {♦B ∧ ¬B} RU; 6
√

8 o ∈ o {♦B ∧ ¬B} RU; 6, 7
√

9 ¬A {♦B ∧ ¬B} RU; 8
√

10 A ∧ ¬A {♦A ∧ ¬A,♦B ∧ ¬B} RU; 2,9
√

11 (♦A ∧ ¬A) ∨ (♦B ∧ ¬B) ∅ RU; 1,3

At the end of this proof all conditional lines are marked and there is no
extension of the proof in which the lines can become unmarked, for ♦B ∧ ¬B
nor ♦A ∧ ¬A are themselves unconditionally derivable (by the harmlessness of
A). Nevertheless, we did not put any conditions on the axiom A. Hence, this can
be done for every sensible instance of the comprehension axiom, which results
in the complete idleness and uselessness of our tentative adaptive set theory.

Obviously comprehension instances of the form ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬A))
are responsible for this behavior. However, by itself an axiom of this type does
not lead to triviality. It only leads to problems when combined with another
comprehension instance A, which makes the abnormality corresponding to A
unnecessarily unreliable.

What is special about comprehension instances of the form ∃x∀y(y ∈ x ≡
(y ∈ y ⊃ ¬A)) that they cause this problem? In other words, what kind of
reliable abnormalities do we need to make unreliable in order to prevent them
from infecting the other axioms? Indeed, if we could make ♦B ∧ ¬B unreliable
by itself, the abnormalities in its weakening (♦A ∧ ¬A) ∨ (♦B ∧ ¬B) are no
longer considered unreliable.

4.3 Solving the weakness of WMCC

One elegant solution concerns the observation that comprehension instances like
the Curry paradox can allow for the derivation of arbitrary formulas indepen-
dent of the truth of these formulas, simply by introducing the arbitrary formulas
in the comprehension axioms themselves. Although the negation of axioms of
this form is not always derivable, the negation of a very similar comprehension
instance is derivable. ¬A follows from ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬A)) and there-
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fore, if we substitute A by >, then the negation of the result of the substitution
is derivable (`CL ¬∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬>))). The fact that a very similar
comprehension instance is explicitly CL-inconsistent, justifies the claim that we
better do not trust the instance itself.

Let Insts(A), where A is an axiom schema, be the set of instances of A. Let
VarA(A), where A ∈ Insts(A), be the set of formulas B such that B ∈ Insts(A)
and B is the result of substituting in A one or more open or closed subformulas of
A by> or⊥. For example, the following set is the set Var∃x∀y(y∈x≡A(y))(∃x∀y(y ∈
x ≡ (y ∈ y ⊃ ∃z(z ∈ y)))):

{∃x∀y(y ∈ x ≡ ⊥), ∃x∀y(y ∈ x ≡ >),

∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ⊥)), ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ >)),

∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ∃z⊥)), ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ∃z>)),

∃x∀y(y ∈ x ≡ (⊥ ⊃ ∃z(z ∈ y))), ∃x∀y(y ∈ x ≡ (> ⊃ ∃z(z ∈ y))),

∃x∀y(y ∈ x ≡ (> ⊃ ∃z⊥)), ∃x∀y(y ∈ x ≡ (> ⊃ ∃z>)),

∃x∀y(y ∈ x ≡ (⊥ ⊃ ∃z⊥)), ∃x∀y(y ∈ x ≡ (⊥ ⊃ ∃z>)),

∃x∀y(y ∈ x ≡ (> ⊃ ⊥)), ∃x∀y(y ∈ x ≡ (> ⊃ >)),

∃x∀y(y ∈ x ≡ (⊥ ⊃ ⊥)), ∃x∀y(y ∈ x ≡ (⊥ ⊃ >))}

The idea is now the following: if ♦B ∧¬B is unreliable, where B ∈ VarA(A)
for some formula A ∈ Insts(A), then also consider the abnormality ♦A ∧ ¬A as
unreliable.

The effect of this is that, where ∆ is a set of abnormalities, ♦B ∧ ¬B is
unconditionally derivable, B ∈ VarCOMP(A) and ♦A ∧ ¬A ∈ ∆, even if Dab(∆)
is a minimal Dab-consequence of our theory, ∆ does not contribute to the set of
unreliable abnormalities. By means of this mechanism, all lines on which Quine-
Curry-paradoxical comprehension instances are introduced become marked and
our problem is solved. There are different ways to formalize this idea. I present
the three most important ones.

4.3.1 Explicitly making abnormalities unreliable by adding axioms:
the theory MCCa

One solution for this problem is making the infecting axioms explicitly derivable.
This can be done by adding the extra axiom schema (♦A ∧ ¬A) ⊃ (♦B ∧ ¬B),
for every A ∈ VarCOMP(B), where B ∈ Insts(COMP) (call this schema SPR).
The resulting adaptive theory is defined by

Definition 4 MMCa = 〈COMP♦ + EXT + SPR,AM〉.

By adding this schema, the innocent abnormalities will no longer be a part
of a minimal disjunction of abnormalities, because the infecting abnormality
is unconditionally derivable and therefore forms a shorter Dab-consequence.
Hence, the innocent abnormalities are no longer unreliable and the problem is
solved.

One might, however, object against the fact that axioms are added without
a motivation for their truth, only to better localize the problems of the original
theory.

15



4.3.2 A different adaptive strategy: the theory MCCs

A second solution, without adding extra axioms, involves changing the adaptive
strategy. Basically, we define the same set of unreliable abnormalities as in
proposal 1, without adding extra axioms. This requires some technicalities. We
define the alternative Reliability strategy as follows. Let an alternative for an
abnormality ♦A∧¬A be an abnormality ♦B∧¬B such that A ∈ {B}∪VarB(B),
where ♦B is an axiom schema and B ∈ Insts(B). Let an alternative for a set of
abnormalities ∆ be the smallest set ∆′ such that for each member of ∆ there
is in ∆′ exactly one alternative. Where ξs is the set of all sets ∆ such that
Dab(∆) is unconditionally derived at stage s, define ξas as the set containing all
the alternatives for members of ξs. Let ξ′as be the set of all members of ξas for
which there is no proper subset in ξas . Let Ua

s (Γ) be the set
⋃
ξ′as .

Analogously define Ua(Γ): where ξ(Γ) is the set of sets such that Γ �LLL

Dab(∆), define ξa(Γ) as the set containing all the alternatives for members of
ξ(Γ). Let ξ′a(Γ) be the set of all members of ξa(Γ) for which there is no proper
subset in ξa(Γ). Let Ua(Γ) be the set

⋃
ξ′a(Γ). Replace in the definition of

the normal semantic and proof theoretic Reliability strategy U(Γ) by Ua(Γ)
resp. Us(Γ) by Ua

s (Γ) to obtain the Reliability strategy for Axiom schemata.
The underlying logic for our adaptive theory would then be the adaptive logic
AMa = 〈M, {♦A ∧ ¬A | A ∈ WM},Reliability for Axiom schemata〉.

The adaptive theory is then defined by

Definition 5 MCCs = 〈COMP♦ + EXT,AMa〉.

This solution avoids adding new weakly motivated axioms, but involves a
non-standard strategy. This strategy is non-standard but by no means ad hoc
or idiosyncratic. A variant of the strategy can be applied to every case where
the unreliability of abnormalities needs to be spread to some specific set of
similar abnormalities in order to avoid them from making too many abnormal-
ities unreliable. For different cases just replace Var♦A∧¬A in the definitions of
Ua
s (Γ) en Ua(Γ), by the appropriate set of abnormalities similar to A if A is the

abnormality that has to be made unreliable.

4.3.3 Making the abnormalities weaker: the theory MCCb

The last (and probably preferable but more technical) solution involves making
the abnormalities more complex.

The underlying logic for the resulting adaptive theory is the adaptive logic
AMb = 〈M, {♦A∧¬

∧
({A}∪VarA(A)) | A ∈ Insts(A);♦A is an axiom schema},

Reliability〉.
The adaptive theory is then defined by

Definition 6 MCCb = 〈COMP♦ + EXT,AMb〉.

This solution works because the abnormalities are a lot weaker. From every
♦A (an instance of an axiom schema A) and ¬B where B ∈ VarA(A), we can
M-derive ♦A ∧ ¬

∧
({A} ∪ VarA(A)). Hence, the inference from ♦A to A (on

the condition that exactly contains this abnormality) is blocked, independent of
the question whether ¬A is M-derivable.

Let me illustrate this with an example. Consider the adaptive proof above,
where an arbitrary comprehension instance A was marked, because the disjunc-
tion of ♦A ∧ ¬A and ♦B ∧ ¬B, where B = ∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬A)),
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was unconditionally derivable whereas ♦B ∧ B was not. In the logic AMb,
however, A is derived on a weaker condition: the singleton containing the ab-
normality ♦A ∧ ¬

∧
({A} ∪ VarCOMP(A)). We know that ∃x∀y(y ∈ x ≡ (y ∈

y ⊃ ¬>)) is an element of VarCOMP(B). Moreover, one can easily prove that
∃x∀y(y ∈ x ≡ (y ∈ y ⊃ ¬>)) CL-entails ⊥, whence ¬∃x∀y(y ∈ x ≡ (y ∈
y ⊃ ¬>)) is a M-theorem and therefore ♦B ∧ ¬

∧
({B} ∪ VarCOMP(B)) is un-

conditionally derivable in an AMb-proof. As a consequence the disjunction
of ♦A ∧ ¬

∧
({A} ∪ VarCOMP(A)) and ♦B ∧ ¬

∧
({B} ∪ VarCOMP(B)) is not a

minimal Dab-formula and so ♦A∧¬
∧

({A} ∪VarCOMP(A)) is not an unreliable
abnormality. Consequently, B does not prevent A from being derivable, which
is what we wanted.

4.3.4 Can we warrant that the presented solutions solve all prob-
lems?

All three solutions solve the problems caused by all Curry-like paradoxes con-
cerning infective abnormalities. Moreover one can easily prove that these solu-
tions do not affect the guaranteed non-triviality of the adaptive theory.

It is not entirely excluded that there would exist yet other infections that
make the adaptive theory too weak and are not solved by the presented solutions.
However this is rather unlikely given the fact that the presented solutions are
generally applicable solutions for problems of infective abnormalities.

5 Non-trivially rich universal set theory

The second approach (elaborated in detail in [24]) to adaptive set theory is
fundamentally different from the first. Whereas for the first theory we were
interested in a maximally large consistent sub-theory of naive set theory, for the
second theory, we explicitly accept all the instances of comprehension. Of course
this must result in an inconsistent set theory and in order to avoid triviality the
underlying logic must be paraconsistent and have an implication or equivalence
weaker than the classical variants.

Many systems have been proposed to give a non-trivial version of the com-
prehension or the abstraction axiom. Most of the proposed set theories have a
relevant underlying logic that does not validate the rule of contraction to avoid
Curry’s paradox (cf. [6], [7], [28] and [29]). One can also use other logics without
contraction (cf. [16], [10], [21] and [31]) or a weak paraconsistent logic like LP
(cf. [17] and [20]).

All set theories of this type are universal (they use full comprehension), but
are often too weak to serve as a foundation of mathematics or they are strong
enough to formalize basic arithmetic, in which case they have the same problem
as ZFC with respect to proving non-triviality.

I start by semantically introducing the logic EL that adds a special equiv-
alence symbol ⇁= to classical logic. The equivalence will be non-commutative:
classical in the left-right direction, but it shows a glut in the right-left direc-
tion. It is the only primitive symbol that does not behave classically5, but a
paraconsistent negation can be defined. The logic is four valued. The special

5As EL contains full classical logic, a material equivalence connective ≡ is also definable,
cf. the list of definitions in the next subsection.

17



equivalence will be used in the comprehension axiom schema. This logic will
function as the LLL of the AL that will be the underlying logic of our set the-
ory. By means of this logic, I shall define a tentative adaptive set theory which
will turn out to be too weak. Finally, I present two adaptive set theories that
solve the weakness problem of the tentative theory.

5.1 The logic EL

Let the language of EL contain the logical symbols ¬, ∨, ⇁=, ∀, ⊥ and =, a set
of constants C, a set of variables V = {x, y, z, . . .}, and sets of predicates P0,
P1, . . . , where Pr contains the r-ary predicates. All the sets in the previous
sentence are supposed to be pairwise disjoint. Formulas are constructed in the
usual way with the restriction that ⇁= cannot be nested. Let FEL and WEL

denote respectively the set of formulas and the set of closed formulas of LEL.
Let P ⊂ FEL denote the set of primitive formulas and let P¬ = {¬A | A ∈ P}.

In order to simplify the characterization of the semantics, I introduce a
pseudo-language—this method also occurs in [4]. Let O be a set of pseudo-
constants; O should have at least the cardinality of your largest set and its
elements do not occur in premises or conclusions. The pseudo-language +LEL

is defined by adding the members of O to the constants. Let +FEL and +WEL

denote respectively the set of formulas and the set of closed formulas of +LEL.
The semantics makes use of four truth values: the values T (can be in-

terpreted as full truth), F (can be interpreted as full falsehood), B (can be
interpreted as both true and not true), and D (can be interpreted as both false
and not false).

Let, for every r > 0, D(r) denote the r-th Cartesian product of D and let
D(0) = {∅}, i.e. a 0-tuple will be identified with ∅. ℘(A) denotes the powerset
of A.

An EL-model M (for the language LEL) is a couple 〈D, v〉 in which D is a
non-empty set and the assignment function v is restricted as follows:

C1.0 v is the union of v1, v2 and v3.
C1.1 v1 : C ∪ O → D (where v1 is a surjection)
C1.2 v2 : ({B,T,F,D} × Pr)→ ℘(D(r)) (for every r ∈ N)
C1.3 For any π ∈ Pr,

⋂
{v2(V, π)|V ∈ {B,T,F,D}} = ∅

C1.4 For any π ∈ Pr,
⋃
{v2(V, π)|V ∈ {B,T,F,D}} = D(r)

C1.5 v3 : {⊥} → {F,D}

The following clauses define how a model M determines the truth values VM
formulas receive in that model6.

C2.1 VM (πα1 . . . αr) = V iff 〈v(α1), . . . , v(αr)〉 ∈ v(V, π) where V ∈ {B,T,F,D}.
C2.2a VM (¬A), VM (A ⇁= B) and VM (A ∧B) are determined according to the

truth values in table 1.
C2.2b VM (⊥) = v(⊥)
C2.3a VM (∀γA(γ)) = T iff (VM (A(α)) = T for all α ∈ C ∪ O).
C2.3b VM (∀γA(γ)) = B iff (VM (A(α)) ∈ {B,T} for all α ∈ C ∪ O and

VM (A(α)) = B for at least one α ∈ C ∪ O).
C2.3c VM (∀γA(γ)) = F iff (VM (A(α)) = F for at least one α ∈ C ∪ O).

6So, where π is an 0-ary predicate, VM (π) = T iff v(T, π) = {∅}.
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VM (A ⇁= B) VM (A ∨B) VM (¬A)XXXXXXXXXVM (A)
VM (B)

B T F D B T F D

B T T F F B T B B D
T T T F F T T T T F
F F F T T B T F D T
D T T T T B T D D B

Table 1: Matrices for the propositional symbols.

C2.3d VM (∀γA(γ)) = D iff (VM (A(α)) = D for at least one α ∈ C ∪ O and
VM (A(α)) 6= F for all α ∈ C ∪ O).

C2.4a VM (α = β) ∈ {T,F}.
C2.4b VM (α = β) = T iff v(α) = v(β).

Some symbols are defined from the other symbols. The defined symbols
function as mere abbreviations of more complex formulas.

D1 A ⊃ B =df ¬A ∨B
D2 A ∧B =df ¬(¬A ∨ ¬B)
D3 A ≡ B =df (A ⊃ B) ∧ (B ⊃ A)
D4 ∃αA(α) =df ¬∀α¬A(α)
D5 ∼A =df ¬A ⇁= (A ∨ ¬A)
D6 > =df ¬⊥

Definition 7 EL-satisfaction. Where A ∈ WEL, Γ ⊆ LEL and M = 〈v,D〉 is
an EL-model, M |= A iff VM (A) ∈ {B, T} and M |= Γ iff M |= A for every
A ∈ Γ.

Definition 8 EL-consequence. Where Γ∪{A} ⊆ LEL, A is an EL-consequence
of Γ, in symbols Γ �EL A, iff M |= A, for every EL-model M such that M |= Γ.

Definition 9 EL-equivalence. A is EL-equivalent to B (abbreviated as A ≈ B)
iff {A} �EL B and {B} �EL A.

One can easily devise a sound and complete proof theory for this logic, but
for my current purpose, this is not needed. The reader can check the correctness
of the following theorem with the help of tables 2 and 1.

Theorem 2 The following are important properties of this logic:

F1 A ⇁= B ≈ (A ⊃ B) ∧ (B ⊃ ∼¬A)
F2 ∼¬A 2EL A
F3 A ∧ ∼A ≈ ¬A ⇁= A
F4 ¬A ∧ ∼¬A ≈ A ⇁= ¬A
F5 ¬A,∼¬A �EL A ⇁= B

Although the equivalence symbol ⇁= is the only non-classical symbol in this
logic, an alternative negation ∼ can be defined by means of this equivalence.
Because, for every A ∈ WEL, there is a B ∈ WEL such that A,∼A 2EL B,
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VM (A ∧B) VM (∼A) VM (∼¬A) VM (A ⇁= ¬A)XXXXXXXXXVM (A)
VM (B)

B T F D

B B B F D T T F
T B T F D F T F
F F F F F T F F
D D D F D T T T

VM (A ⊃ B) VM (A ∧ ∼A) VM (¬A ⇁= A) VM (¬A ∧ ∼¬A)XXXXXXXXXVM (A)
VM (B)

B T F D

B B T D D B T D
T B T F D F F F
F T T T T F F F
D B T B B D F B

Table 2: Truth functionality of some important formulas

∼ is paraconsistent. The logic EL however is not paraconsistent because it is
explosive (for all A,B ∈ WEL, A,¬A �EL B holds).

Formulas get one out of four truth values in an EL-model. One can easily
understand the meaning of the truth values by means of the negation ∼. The
value T stands for pure truth, F for pure falsity, B for both A and ∼A true
and D for A false, ∼A true, but ∼¬A also true. The fourth unusual value
is necessary because the classical negation ¬ can occur within the scope of
the paraconsistent negation ∼. There are no other values needed because the
definition of the language does not allow ∼ to be nested (remember that it is
defined in terms of ⇁=, which cannot be nested). Every ∼-inconsistency boils
down to ∼-inconsistencies at the level of primitive formulas or on the level of
the classical negation of primitive formulas.

5.2 A tentative adaptive version of naive set theory: the
theory WMRU

We start again with a simple adaptive set theory that will turn out to be too
weak.

Let the language of the set theory be based on the language of EL. Restrict
the set of predicates so that it only contains the binary predicate ∈ and augment
the language with set terms of the form {α | A(α)}, where α ∈ V and A(α) is
a formula in which only α occurs free. Formulas of the form {α | A(α)} ∈ {β |
A(β)} are considered as primitive formulas and are therefore elements of P.

For this theory, I use the abstraction axiom schema rather than the compre-
hension schema7. Abstraction is here defined as follows.

ABS ∀x(x ∈ {y | A(y)} ⇁= A(x))

7This allows me to easily express the inconsistency of particular sets in the abnormalities.
The only difference between comprehension and abstraction is the availability of names for
sets. Contextually defining constants also allows this if one uses the comprehension schema,
but this requires more technicalities. The comprehension schema is a CL-consequence of the
abstraction schema.

20



The adaptive theory I shall present has the adaptive logic AEL as its under-
lying logic. AEL is the adaptive logic defined by the following standard format
triple: 〈EL, {∃(A ⇁= ¬A) | A ∈ P ∪ P¬},Reliability〉 (for the explanation of the
abnormalities, see below).

Of course one could use another lower limit logic, and there may even be
much stronger or more sensible logics available, but this logic is sufficiently
strong, quite elegant, and there exists a finite EL-model for ABS + EXT (see
below). I am not aware of any existing logic with similar or better properties.

The strategy of AEL is Reliability and the abnormalities are existentially
closed sentences that express the (existentially closed) inconsistency of primitive
formulas or of their classical negations (such as α ∈ β, α = β, ¬α ∈ β, ¬α = β,
where α and β are variables or set terms)8.

We come to the definition of the provisional theory WMRU.

Definition 10 WMRU= 〈EXT + ABS,AEL〉

This theory is provably non-trivial. The reason for this is simple. There is a
finite EL-model for EXT+ABS, viz. the model 〈D, v〉, where D = {o}, where o
is an arbitrary object, 〈o, o〉 ∈ vD(∈) but vB(∈)∪ vT(∈)∪ vF(∈) = ∅, and finally
v({y|A(y)}) = o for every A(y). The truth functionality of ¬ and ∼ and the
definition of EL-satisfaction ensure that for every α, β ∈ C∪O, M |= ¬β ∈ α and
M |= ∼¬β ∈ α. F5 warrants that M |= β ∈ α ⇁= A, for every formula A. Using
the definition of ∀, one obtains M |= ABS. Because M |= ∀x∀yx = y (D is a
singleton), also M |= EXT. So there is a finite EL-model for the axioms. So the
EL-consequence set of EXT+ABS is non-trivial, whence the AEL consequence
is also non-trivial, in view of Theorem 1. Consequently, WMRU is a non-trivial
set theory.

This theory is also universal in a rather strong sense. For every formula A(α),
(1) the set a = {x | A(x)}, for which it holds that y ∈ a ⇁= A(y), exists in this
theory (and this existence is provable as a theorem) and (2) for every constant
α and every formula A(α), A(α) EL-entails α∈̃{x | A(x)}, where ∈̃ is defined
by α∈̃β =df ∼¬α ∈ β. ∈̃ is an interesting weak paraconsistent membership
relation. One may interpret this membership relation as follows: α is weakly a
member of β, denoted by α∈̃β, iff α is in β but it may also be in the complement
of β. This is a weaker notion than full membership ∈, which holds when an
object is in a set and not in the complement of the set. Many other universal
alternative set theories only have property (1) and not property (2), because
they do not enable the possibility of defining a weak set membership predicate
like ∈̃.

In which sense does the adaptive logic add theorems to the theory 〈EXT +
ABS,EL〉? This is quite intuitive: in the logic EL, the inference from ∼¬A to
A is not valid. If this inference would be generally valid, a theory containing
the abstraction axioms would be trivial. Nevertheless, not all instances of this
inference rule are problematic. With the logic EL, we are able only to derive
∼¬∅ ∈ {x | x = ∅}. It is evidently harmless to strengthen this to ∅ ∈ {x | x = ∅}.
The idea behind the adaptive theory is to block only the instances of this rule
that are problematic and to allow all the harmless ones. Ideally we would obtain
an adaptive theory which is as strong as ZFC, if ZFC is consistent. If ZFC is
consistent, its axioms are harmless.

8Remember that ¬A ⇁= A is EL-equivalent to A ∧ ∼A.
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For this theory, the only relevant abnormalities are of the form α ∈ β ⇁=

¬α ∈ β or of the form ∃γ(γ ∈ β ⇁= ¬γ ∈ β), where α and β are set terms
of the form {γ | A(γ)}. This is due to the fact that from every abstraction
axiom of the form ∀x(x ∈ {y | A(y)} ⇁= A(x)) the following is EL-derivable:
∀x(x ∈ {y | A(y)} ≡ A(x)) ∨ B, where B is an abnormality of the mentioned
form. Because ⇁= is only meant to occur in the abstraction axioms instead of the
classical equivalence, the mentioned fact about EL, enables all CL-consequences
of all abstraction axioms. Note that I shall sometimes write abnormalities as
∼¬A ∧ ¬A instead of the EL-equivalent A ⇁= ¬A, where this is clearer.

This theory does not do what it intuitively is expected to do; it does not
add anything to the EL-consequences of the axioms. Suppose C is a use-
ful consequence that the adaptive logic should add to the EL-consequences
of ABS + EXT. Suppose it is derived on the condition {A}, where A is an
AEL-abnormality. In the proof below, let a abbreviate {y | y ∈ y ⊃ A}.

1 C {A} RC X
2 ∀x(x ∈ a ⇁= (x ∈ x ⊃ A)) ∅ PREM
3 a ∈ a ⇁= (a ∈ a ⊃ A) ∅ 2; RU
4 a ∈ a ⊃ A ∅ 3; RU
5 ∼¬(a ∈ a) ∅ 4; RU
6 a ∈ a {∼¬a ∈ a ∧ ¬a ∈ a} 5; RC X
7 A {∼¬a ∈ a ∧ ¬a ∈ a} 6; RC X
8 A ∨ (∼¬a ∈ a ∧ ¬a ∈ a) ∅ 2; RU

5.3 Solving WMRU’s weakness: the theories MRU and
MRU+

Solutions similar to the ones provided for solving the weakness of WMCC are
applicable to this problem. One could for example add the following axiom
schema to the axioms: ∀x((x ∈ α ⇁= ¬x ∈ α) ⊃ (x ∈ β ⇁= ¬x ∈ β)), where
α abbreviates {y | B(y)}, α abbreviates {y | A(y)} and A(α) ∈ VarABS(B(α)).
This solves the problem because for all of the sets of the infecting type, there is
a variant a in which > or ⊥ is substituted such that γ ∈ a ⇁= ¬γ ∈ a occurs in a
minimal Dab-consequence of the axioms, for some constant γ. This is the case
because every ABS-instance that states the existence of a Quine-paradoxical
set, will allow us to EL-derive a disjunction of ∼-contradictions. In its turn,
this disjunction of ∼-contradictions entails a disjunction of abnormalities of the
given form.

The other solutions I have presented to solve the weakness of MCC also
apply to WMRU. But there are two other solutions that allow for an even
more specific localization of the abnormalities.

5.3.1 Adding the axiom of foundation: the theory MRU

This approach brings us closer to ZFC. Consider the axiom FAF:

FAF
∨
{
∧
{¬xi ∈ xj | i ≤ n} | j ≤ n} where n ∈ N .

The adaptive set theory is now defined by the following:

Definition 11 MRU=〈EXT + ABS + FOUND + FAF + CHOICE,AEL〉.
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Actually, FAF is a finitistic version of the axiom of foundation. The axiom of
foundation FOUND and its finitistic version does not state the existence of some
set, but rather the non existence of loops of sets. For every Russell-Curry-Quine
set b we can easily show that there is a loop of sets for which a1∈̃a2, a2∈̃an, and
finally an∈̃a1 are EL-consequences of ABS, such that b is one of a1, . . . , an. If
we would have an axiom that states that for every sequence of sets a1, . . . , an, a1
there is at least one i < n such that ¬ai ∈ ai+1 or ¬an ∈ a1, then the disjunction
of abnormalities (a1 ∈ a2 ⇁= ¬a1 ∈ a2)∨ . . .∨ (an−1 ∈ an ⇁= ¬an−1 ∈ an)∨ (an ∈
a1 ⇁= ¬an ∈ a1) would be derivable for every Russell-Curry-Quine set a1. This
disjunction makes every Russell-Curry-Quine set unreliable which is exactly
what was required.

FAF is simply the result of instantiating the universal quantifier ∀x in FOUND
with every possible finite set, i.e. with the sets {x0}, {x0, x1}, {x0, x1, x2} and
so on, for every possible sets x0, x1, x2, and so on (and afterwards simplifying
the obtained expression). Hence, in combination with the POWER-axiom and
the UNION-axiom of ZFC, FAF is a CL-consequence of FOUND (but FAF is not
an EL-consequence of FOUND). I use FAF in addition to full FOUND because
this allows for the most specific Dab-consequences. In order to obtain a set
theory that is as close to ZFC as possible, all axioms of ZFC are added to
the adaptive set theory that are not falsified by the finite EL-model M for
EXT + ABS mentioned above.

This theory may very well validate all ZFC-theorems, if ZFC is not trivial.
Indeed, the ZFC-theorems that are not CL-consequences of EXT + FOUND +
FAF+CHOICE, are consequences of a subset of the instances of the abstraction
axiom schema. If ZFC is non-trivial, then this subset of abstraction axioms is
also unproblematic. Conditionally, we are able to derive the full classical vari-
ants of the axioms under consideration. If ZFC is not trivial, these classical
variants will not lead to triviality. Consequently, a disjunction of the relevant
ZFC-abnormalities will not be derivable. So the relevant abnormalities will not
be unreliable. However, there might exist mechanisms similar to the problems
that made our first attempt useless. These mechanisms may result in the infec-
tion of harmless ZFC-sets by paradoxical sets or even by reasonable non-ZFC
sets that are internally consistent and meaningful but that cause problems in
combination with certain ZFC-sets.

5.3.2 Expressing the preference for ZFC: the theory MRU+

In this paper we are interested in providing a foundation of classical math-
ematics. There might be harmless selections of abstraction axioms that are
philosophically more interesting and strong enough to formalize results from
most of classical mathematics. However, for now, ZFC seems to be the best
studied theory with respect to formalizing classical mathematical results. If we
want our theory to inherit the nice foundational or formalizing properties of
ZFC, we need a method to formally prefer the ZFC-axioms to other axioms,
whenever they are incoherent with ZFC and thus risk excluding each other.

One may formalize this preference for ZFC-axioms and sets by means of a
prioritized adaptive logic (cf. [3, 25, 22, 26]). However, this would involve too
many technicalities for the present paper. There is another way to obtain the
same result. I present the basic idea behind this method.
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The crucial aspect lies in distinguishing what I call a ZFC-abnormality9.
The precise way to do this involves many technicalities that are beyond the
scope of this paper. I give an informal sketch. Consider the axioms of MRU.
For every set {y | A(y)} that exists according to the axioms of ZFC, one can
unconditionally derive an ABS-instance ∀x(x ∈ {y ∈ A(y)} ⇁= A(x)) in MRU.
From this ABS-instance, MRU allows us to derive ∀x(x ∈ {y ∈ A(y)} ≡ A(x))
on the condition {∃x(x ∈ {y ∈ A(y)} ⇁= ¬A(x))}. Let a ZFC-abnormality be
the abnormality in such a condition.

Let ΩZFC denote the set of ZFC-abnormalities. Define the logic AEL′

as the logic that is exactly like AEL, except that the set of abnormalities is
restricted to ΩZFC. Finally, define the logic AELZFC as the combined adaptive
logic for which CnAELZFC(Γ) = CnAEL(CnAEL′(Γ)).

A possible semantics of AELZFC uses the following strategy: the ZFC-
reliability strategy. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences
of Γ,

∆′i =

{
∆i if ∆i ⊂ ΩZFC

∆i − ΩZFC otherwise,

Let UZFC(Γ) = ∆′1 ∪ ∆′2 ∪ . . . The set UZFC(Γ) comprises the abnormalities
that are ZFC-unreliable with respect to Γ. Where M is a LLL-model, Ab(M)
is the set of abnormalities verified by M .

Definition 12 An EL-model M of Γ is ZFC-reliable iff Ab(M) ⊆ UZFC(Γ).

Definition 13 Γ �AELZFC A iff A is verified by all ZFC-reliable models of Γ.

One can easily transform this semantics of AELZFC into a proof theory.
The definition of the enriched set theory MRU+ based on this non-standard

adaptive logic is as expected.

Definition 14 MRU+=〈EXT + ABS + FOUND + FAF + CHOICE,AELZFC〉

If ZFC is consistent, no disjunction of ZFC-abnormalities is derivable.
Hence, it is provable that MRU+ is an extension of ZFC, if ZFC is consistent.

Although the ZFC-reliability strategy is not the most elegant strategy, it
effectively realizes what we want: it enables the definition of a theory MRU+

that is not only provably non-trivial but also contains all the theorems of ZFC,
if ZFC is consistent. Apart from the ZFC-theorems, it also proves the existence
of many more paradoxical and innocent sets like the universal set and the Russel-
Curry-Quine-sets. Even for the paradoxical sets sensible theorems are derivable
by means of the weaker paraconsistent logic and membership relation ∈̃. Some
readers might protest against the admittedly ad hoc character of the strategy.
For those readers: consider that (a) there is a completely general prioritized
variant (omitted here), which works fine but requires some technicalities plus
extra axioms (to express the preference for ZFC-sets) and (b) in the definition of
the ZFC-reliability strategy every ZFC-reference can be replaced by a reference
to any other preferred set theory.

9Although ZFC is obviously not recursive, being a ZFC-abnormality is recursive, as this
only depends on the set of axioms and not on its consequences.
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6 Discussion of the presented theories

I have presented two different approaches to adaptive set theory as pragmatic
foundations for mathematics. Both theories start from the axioms of naive set
theory, i.e. comprehension and extensionality. Both are constructed from the
basic assumption that the comprehension axiom still is the most natural and
philosophically most attractive characterization of the intuitive notion of a set.
In most informal mathematics or meta-logic one does not prove that the sets one
constructs actually exist, one simply defines a set by writing down the property
shared by all (and only) its members. Both set theories maximally validate the
comprehension axioms and the classical consequences of these axioms, unless
and until this leads to triviality. This makes them both provably non-trivial.

They are also discriminatory. Given that the theorems of an adaptive theory
are those formulas that are verified by all selected (‘all reliable models’ in the
case of the here used Reliability strategy) lower limit logic models of the axioms.
Each particular lower limit logic model verifies some formulas and falsifies others
(it is a regular logic with a regular notion of models). The non-theorems of an
adaptive logic are all those formulas that are falsified by some selected model. So
this set of non-theorems is definitely not too small to make a useful distinction
between theorems and non-theorems. Moreover, this distinction is coherent as
there is a formal logic that structures the set of theorems. Even if one does not
trust adaptive logic for that purpose, one can argue that adaptive theories are
also structured by the more regular lower limit logic of the adaptive logic. If
one adds formulas to the axioms of an adaptive theory that express that the
Reliable abnormalities of the adaptive theory are (classically speaking) false and
one uses the lower limit logic as the underlying logic of a new theory based on
the enriched axioms, one obtains exactly the same set of theorems as for the
adaptive logic. So all the formulas that are not lower limit logic consequences
of this enriched axiom set are also non-theorems of the adaptive theory, whence
the adaptive theories are coherently discriminatory.

However, there are important differences between the approaches. Here I
briefly compare the theories thematically.

Let us start with the lower limit logic and the meaning of the logical symbols.
The lower limit logics of the theories are both extensions of classical logic. The
MCC set theory has a lower limit logic that in itself does not add any useful
consequence to the modalized version of the comprehension axioms. One needs
conditional derivations for every single non-modalized consequence. Remark,
however, that this does not mean that the theory would be as simplistic as the
theory CZFC, introduced in Section 1. If ZFC would turn out to be incon-
sistent, many harmless instances of comprehension are still perfectly consistent.
The adaptive theory will still validate those consistent instances.

By contrast, MRU has a quite rich unconditional basis. The logic EL is
designed in such a way that this basis is as rich as possible. The comprehen-
sion axioms are completely classical apart from the right to left direction of the
crucial equivalence symbol. This obviously means that also the properties that
construct the sets are phrased in the classical part of the language. Even for
the right to left direction of the equivalence symbol, we still have a nice para-
consistent alternative 10. This can be considered as an advantage of MRU in

10Remember that B,A ⇁= B �EL ∼¬A and that ∼ is a strong paraconsistent negation, for
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comparison with MCC.
MCC has the advantage that the meaning of the logical symbols is universal

throughout the whole theory. The meaning of the non-classical equivalences in
MRU is contextual: it depends on the consistency of the particular axioms in
which the symbol occurs. If it is inconsistent the meaning and the behavior of the
equivalence symbol are paraconsistent and if it does not lead to inconsistencies,
the meaning and the behavior are classical. Some logicians might consider this
a disadvantage.

Classical logicians that appreciate the adaptive approach presented here will
definitely prefer the MCC-approach as this theory stays very close to classi-
cal logic. All symbols behave classically and the resulting theory is perfectly
consistent, whereas MRU is inconsistent and uses non-classical symbols. Is it
possible that convinced classical logicians (who reject all non-classical logics)
appreciate non-monotonic theories? I strongly believe this is perfectly possible.
One need not consider the underlying formal tool of the theory (in this case, an
adaptive logic) as a full blown Logic11. Basically, I only provide a means that is
able to (1) collect a set of formulas into an interesting foundational theory and
(2) relate the formulas in this collection, by means of the dynamic proofs, to
the usual possibly informal mathematical object proofs. In my opinion, there
is nothing irrational about using a formal tool to collect formulas and at the
same time hang on to the one true classical Logic as the ultimate standard of
deduction.

I now come to a different topic in the comparison: the generalizability of the
used techniques to other axioms and domains. The means used to develop the
theory MCC are quite universally applicable. The methods applied do not rely
on any particular property of the comprehension schema.

This obviously does not hold for MRU. Because the behavior of the alter-
native equivalence symbol that occurs in the abstraction schema is central for
the theory, it seems unlikely that the ideas from this theory are applicable to
completely different domains. However it is likely to be applicable to all similar
domains. I focused my approach around ZFC, but similar techniques are likely
to be successful for any usual set theory. Moreover, the methods are even likely
to be applicable to non-set theoretic domains that are susceptible to paradoxes
similar to the set theoretic paradoxes, e.g. truth theories, property theories and
other domains where self-reference is allowed.

One aspect both theories have in common is the problem that paradoxical
sets that are not inconsistent by themselves may infect otherwise perfectly in-
nocent sets. This is the case for sets that lead to the Curry paradox and similar
paradoxes. This phenomenon is strongly related to the way in which the Curry
paradox (and the related paradoxes) leads to triviality. The Russell paradox
(and similar paradoxes) leads to a plain inconsistency. Classical logic trivializes
this inconsistency. This trivializing effect of classical logic can be blocked by
choosing a paraconsistent logic and the inconsistency can easily be localized. In
case of the Curry paradox, the arbitrary formula that can be derived is already
in the axiom itself, which makes it a lot harder to localize and block it. However,
both adaptive theories present a simple but effective means to localize them:

which the Double Negation rule and the De Morgan rules hold.
11I write Logic here with a capital to contrast it with the concept of logic I use: for me

logic is nothing more than a formal tool that explicates reasoning and defines a consequence
relation.
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link them to the related Russell-like paradoxical sets. For the theory MRU,
I did this by focusing on a common property Russell-like and Curry-like sets
share: they typically are members of themselves or enable a loop of sets. In the
case of the theory MCC sets are linked to their variants that are the result of
substituting subfomulas by > or ⊥. Comprehension axioms for the existence of
Curry-like sets are thus formally linked to related axioms for the existence of
Russell-like sets.

The advantages shared by both approaches are their flexibility, their foun-
dational strength and their ability to get the most out of the comprehension
axiom schema.

In this paper, I saw CL as the standard of deduction, ZFC as the standard
practical set theory and the axioms of comprehension and extensionality as the
ideal axioms of set theory. Of course one is able to develop other adaptive set
theories that start from other standards and other ideals. This might result in
better foundations. One could, for example prefer Quine’s New Foundations
as a standard practical set theory and devise an adaptive set theory that both
enriches this where possible and provides a safety net for in case it would turn
out be trivial. The resulting theory would probably be more elegant and philo-
sophically more justifiable, but has the disadvantage that Quine’s set theory is
not as thoroughly studied as ZFC. A similar situation holds for the choice of
an intuitionistic or a relevant logic as the standard of deduction: maybe this
choice is philosophically less problematic, but the logics are also less studied as
the underlying logic for set theory.

In conclusion, it was not my aim to develop one finished and optimal math-
ematical theory that can serve as a foundation of mathematics. There is many
work to be done among which (i) carefully investigating the mathematical prop-
erties of adaptive theories and (ii) elaborating the metaphysical implications and
justification of pragmatic foundations and adaptive theories. I only aimed to
show in this paper that there are many interesting possibilities to realize a prag-
matic foundation. The domain of adaptive mathematical theories is an almost
unexplored research domain, in which many interesting subtle foundational the-
ories may be found that are able to get around Gödel’s incompleteness results.
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