
Degrees of inconsistency. Carefully combining

classical and paraconsistent negation.

Peter Verdée∗

Centre for Logic and Philosophy of Science
Ghent University, Belgium

Peter.Verdee@UGent.be

December 28, 2013

Abstract

This paper is devoted to combining the negation of Classical Logic
(CL) and the negation of Graham Priest’s LP in a way that is faithful to
central properties of the combined logics.

We give a number of desiderata for a logic L which combines both
negations. These desiderata include the following: (a) L should be truth
functional, (b) L should be strictly non-explosive for the paraconsisent
negation ∼ (i.e. if A and ∼A both have a non-trivial set of consequences,
then this should also be the case for the set containing both) and (c) L
should be a conservative extension of CL and of LP. The desiderata are
motivated by a particular property-theoretic perspective on paraconsis-
tency.

Next we devise the logic CLP. We present an axiomatization of this
logic and three semantical characterizations (a non-deterministic seman-
tics, an infinitely valued set-theoretic semantics and an infinitely valued
semantics with integer numbers as values). We prove that CLP is the only
logic satisfying all postulated desiderata. The infinitely valued semantics
of CLP can be seen as giving rise to an interpretation in which inconsis-
tencies and inconsistent properties come in degrees: not every sentence
which involves inconsistencies is equally inconsistent.

1 Introduction

This paper is devoted to combining the negation of Classical Logic (CL),
here denoted by the symbol ¬, and the negation of Graham Priest’s Logic
of Paradox (LP, cf. [5]), here denoted by the symbol ∼ in a way that is
faithful to central properties of the combined logics.

LP is a paraconsistent logic: its negation is inconsistency tolerant.
Therefore inconsistent sets of sentences (i.e. sets of sentences from which
a sentence and its negation follow) do not (always) have a trivial set of
LP-consequences.

Semantically, this is realized by the fact that LP has models which
verify inconsistencies (an inconsistency is a conjunction of a sentence and
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its negation). Priest himself argues that this reflects reality: according to
him there are indeed inconsistencies which are true. He argues e.g. that
both the liar sentence and its negation are true. Philosophers who accept
the existence of true inconsistencies are called dialetheists. However, one
does not need to be dialetheist to find the logic LP useful. One may
also be agnostic with respect to the truth of inconsistencies. Or one
may be convinced that no inconsistencies can ever be actually true but
nevertheless allow them to be true in the models of one’s logic in order
to be able to continue reasoning with (incorrect) inconsistent theories, for
which there is not yet a consistent alternative.

Tolerating inconsistencies by formalizing certain negations as para-
consistent negations, does not make the classical negation meaningless or
useless. Even if some inconsistencies are possibly, actually or even nec-
essarily true, it is still possible to distinguish the case where a sentence
is true only (its negation is classically not true) from the case where it is
inconsistent. A paraconsistent logic like LP can never express this dis-
tinction. One needs a logic with a classical negation for this task (or at
least a negation which is not inconsistency tolerant). Only then one can
for example express that A is true and the (paraconsistent) negation of
A is (classically) not true. Being able to express classical negation can
be useful for many applications of paraconsistency. In inconsistent set
theory, e.g., one may want to be able to express whether a set a is not
merely paraconsistently empty (for every set x not-x ∈ a holds) but also
has (classically) no members (there is no set x such that x ∈ a). Another
set theoretic example may be that it is probably useful to express that
membership of some basic non-paradoxical sets (e.g. the finite ordinals), is
not inconsistent. Even the uncontroversial but for a dialetheist only con-
tingently true statement ‘most inconsistent statements about our physical
world are false’ involves some kind of classical negation, not expressible
in LP.

In the literature many logics have been proposed which can be seen as
logics that allow adding classical negation to LP. Examples are Brazilian
paraconsistent logics (specific existing LFI’s (Logics of Formal Inconsis-
tency and Da Costa’s Cn logics, cf. [3]) and the logic CLuNs described
by Batens and De Clercq, cf. [2]. Although these logics are very inter-
esting and have many applications, one can add classical negation to LP
with the aim to fulfil other desiderata, not satisfied by the existing logics.
More particularly one may look for a combination of classical and para-
consistent negation such that (i) the combining logic is an conservative
extension of both LP and classical logic, (ii) the paraconsistent negation
is still fully paraconsistent also when classical negations occur in its scope,
which can be made precise as follows:

if A and ∼A both have a non-trivial set of consequences, then
also {A,∼A} should have a non-trivial set of consequences (in-
dependent of whether ¬ occurs in A),

and (iii) certain unproblematic instances of the classical equivalence rule
remain valid also in the scope of paraconsistent negations; the first case
concerns formulas classically equivalent by the law of Double Negation: if
¬¬A occurs in a formula B, then B follows from a set of premises iff the
result of substituting ¬¬A by A in B follows form these premises. The
second case concerns formulas classically equivalent by the De Morgan
laws: ¬(A∧B) and ¬A∨¬B are inter-substitutable in the same way and
so are ¬(A ∨B) and ¬A ∧ ¬B.
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Many logics that combine paraconsistent and classical negation are too
weak to be extensions of LP (Da Costa’s Cn logics, Batens’s CLuN—
the propositional version has also been called PI, mbC, Jaśkowski’s logic
D2), other logics like LFI1 and CLuNs are extensions of LP and a
classical negation ¬ can be defined in them, but they do not satisfy (ii)
and (iii). In these logics ∼¬A ` A is valid. Hence we have in these
logics ∼¬A,¬A ` B falsifying (ii) and moreover ∼¬¬A,A ` B, which
entails that (iii) cannot be valid. This is because, if the equivalence rule
would hold for double negations, we would have ∼A,A ` B, which is
(fortunately) not the case in these logics.

In Section 2 we sketch a picture of a particular property theoretic
application of a logic which combines LP and CL. It is argued there that
(i), (ii) and (iii) are desirable properties for a logic which is used for such
applications. After a number of preliminary definitions in Section 3, we
give a number of desiderata for a logic L which combines both negations in
such a way that it is suited for the formalization of the property theoretic
picture in Section 4. In Section 5 we devise the logic CLP semantically
by means of 3 different semantic characterizations: a non-deterministic
semantics, an infinitely valued set-theoretic semantics and an infinitely
valued semantics with integer numbers as values. In section 6 we present
an axiomatization of this logic. In Section 7, we prove completeness of
the proof theory, maximal paraconsistency of CLP and the main result of
the paper: CLP is the only logic satisfying all postulated desiderata. In
Section 8, an adaptive logic is defined which interprets CLP-premise sets
as consistently as possible. Finally in Section 9, we conclude the paper by
mentioning a couple of interesting related issues and questions for further
research.

2 Intuitive property theoretic picture

In what follows we see naive property theory as a sort of non-mathematical
primitive set theory. Given how objects relate to primitive properties, a
naive property theory determines how they relate to complex properties,
i.e. properties that result from applying logical operations to primitive
properties. Take for example the properties ‘Green’ and ‘Big’. Suppose
one knows how the objects in a certain domain relate to being Green
and to being Big. A naive property theory should determine how objects
relate to complex properties composed of Big and Green, such as ‘is not
(both Big and not Green) or is Green’. So, a naive property theory defines
basic operations on properties, such as the intersection or the union of two
properties, the complement of a property, etc.

An approach to naive property theory may be considered as paracon-
sistent if the approach tolerates the existence of properties for which there
is an overlap between the extension of the property and the extension of
the negation of the property (from now we shall call the extension of the
negation of a property the co-extension of the property). In other words,
in paraconsistent logics one does not presuppose that there are no objects
which are both in the extension of a property and in its co-extension. This
might for example be useful for paradoxical properties or properties that
occur in a scientific theory that was supposed to be consistent but turned
out to be inconsistent.

Even in contexts where there is a paraconsistent concept of co-extension,
it often makes a lot of sense to also have a non-paraconsistent concept of
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co-extension around. It greatly enhances the expressive power. Take for
example the case of a paraconsistent collection theory. The Russell col-
lection is the collection of those collections that are not a member of
themselves. Consider the property ‘is a member of the Russell collection’
abbreviated to MemR. The collection should famously contain itself and
not contain itself at the same time. And so the property MemR should
allow an overlap between its extension and co-extension. This does not
mean that all objects are both in the extension and in the co-extension
of MemR. The empty collection, for example, is arguably not a member
of itself (it has no members) and so it should only be in the extension
of MemR (not in the co-extension). On the other hand, the universal
collection is arguably a member of itself and should only be in the co-
extension of MemR (not in the extension). So we have three categories
with respect to the property MemR: there are (i) objects that are mem-
bers of its extension and not of its co-extension (e.g. the empty collection),
(ii) objects that are both in its extension and in its co-extension (e.g. the
Russell collection itself) and (iii) objects that are in its co-extension and
not in its extension (e.g. the universal collection). If one wants a theory of
properties of collections which expresses these three categories, one should
be able to express that something is consistently not in the extension or
consistently not in the co-extension. Saying that the empty collection
is (paraconsistently) not a member of itself does not yet express that it
might not also be a member of itself (which is obviously against the whole
concept of an empty collection). So, if one does not have a way to express
‘consistently not’, one can express that the empty collection (supposing
that one does have a means the refer to the empty collection) is in the
extension of MemR and that the universal collection is in the co-extension
of MemR, but there is no means to express that they are (consistently)
not in the overlap between the extension and the co-extension.

So it is useful to also have a concept of consistent co-extension even in
paraconsistent contexts (next to the concept of paraconsistent co-extension).
To avoid confusion, from now on let the complement of an extension be
everything that is consistently not in the extension. Let P be some prop-
erty. We can now unambiguously assign names to the three categories
with respect to P -hood: (i) the complement of the co-extension of P
(henceforth called the consistent extension), (ii) the overlap between the
extension and the co-extension of P (henceforth called the inconsistent
extension), and (iii) the complement of P (henceforth called the consis-
tent co-extension). Now, one may wonder what the co-extension of the
complement of P looks like. Given that we allow overlap between exten-
sion and co-extension (this is exactly what it means to be paraconsistent),
there may be overlap between the complement and its co-extension (there
is no reason why these properties should be treated differently). So in fact
there should be four categories (instead of the three mentioned above).
The complement (category (iii)) can be split into the ‘pure’ complement
and the overlap between the complement and the co-extension of the com-
plement. What we call the ‘pure’ complement is actually more accurately
described as the complement of the co-extension of the complement of the
concept, or in other words: the consistent extension of the complement.
Similarly we can split the first category into two new categories: the ‘pure’
consistent extension of P and the overlap between the consistent exten-
sion of P and its co-extension. So we now already have distinguished 5
reasonable categories:

(1) the consistent extension of the consistent extension of P (or equiv-
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(1) (2) (3) (5)(4)

coe(com(coe P )

coe P P

coe(com P )

Figure 1: The five categories (1), (2), (3), (4), and (5) described on page
4. com(X) abbreviates the complement of X and coe(X) abbreviates the co-
extension of X. The upward hatching denotes the extension of P , the downward
hatching denotes the extension of not-P . The largest rounded rectangle denotes
the universe. The grey areas are empty due to the law of excluded middle.

alently: the complement of the co-extension of the complement of
the co-extension of P ),

(2) the inconsistent extension of the consistent extension of P (or equiv-
alently: the overlap between the complement of the co-extension of
P and its co-extension),

(3) the inconsistent extension of P (or equivalently: the overlap between
the extension of P and its co-extension),

(4) the inconsistent extension of the complement of P (or equivalently:
the overlap between the complement of P and its co-extension), and

(5) the consistent extension of the complement of P (or equivalently:
the complement of the co-extension of the complement of P ).

Whether an object is in one of the 5 categories with respect to P -hood
determines in how far they are and in how far they are not P . Objects are
more consistently/unproblematically P in categories with lower numbers.
More particularly, an object in (1) is more P than one in (2) because an
object in (2) is still in the co-extension of the complement of co-extension
of P , which means that there is still some negative ‘evidence’ with respect
to the P -hood of the object (remark that this is not the case for the object
in (1)). The objects in category (3) are as much P as they are not-P , so
they are even less convincingly P than the ones in (1) and (2). Objects
in categories (4) and (5) are not in the extension of P , so are definitely
less convincingly P than the ones in (1)–(3). For the objects in (4),
however, there is still some inconsistent information involved. Although
they are in the complement of P , they are also in the co-extension of this
complement, so they are still problematically not-P (there is still some
positive ‘evidence’). For category 5, finally, no P -related inconsistencies
are involved and so these objects are unproblematically not-P . They are
the least P of the 5 categories.
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The reader probably wonders why we stop at 5 categories. Could we
not split category (5) into the category (5a) of the objects in the consistent
extension of (5) and the category (5b) containing the ones in the incon-
sistent extension of (5)? Indeed we can. Can we not do the same thing
for category (1)? Yes we can. We can always split up the outer categories
(the most P -category and the least P -category) into more fine-grained
categories (their consistent extension and their inconsistent extension).
So in fact we obtain infinitely many categories of ever more consistently
P -objects and infinitely many ever more consistently not-P -objects. It
makes sense to order the categories in the same way as the set of positive
and negative integer numbers. In this ordering, category x is greater than
category y, whenever the objects in category x are more consistently P
than the ones in category y. Given this ordering, one can let every cat-
egory correspond to exactly one integer number, except for two special
categories. Remark that we did not yet mention categories that are com-
pletely consistent. Take any positive number n. For an object in category
n it holds that it is in the inconsistent extension of (the consistent exten-
sion of)n of P . Now take any negative number −n. An object in category
−n is in the inconsistent extension of (the consistent extension of)n of not-
P . So for every category with an integer number a P -related inconsistency
is involved. The objects in such categories are therefore not completely
consistent. To also be able to categorize completely consistent objects,
we use two categories named by infinite numbers. We use positive infinity
(number∞) to denote the category of objects that are completely consis-
tently P and negative infinity (number −∞) for the category containing
the objects that are completely consistently not-P . So, now we have dis-
tinguished the categories numbered by −∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞.

We have distinguished an infinity of categories with respect to P -hood.
Let n ∈ N.

• An object is in P -category n iff it is in the inconsistent extension of
the (consistent extension of the)n extension of P .

• An object is in P -category −n iff it is in the inconsistent extension
of the (consistent extension of the)n co-extension of P .

• An object is in P -category∞ iff for each m ∈ N it is in the consistent
extension of the (consistent extension of the)m extension of P .

• An object is in P -category −∞ iff for each m ∈ N it is in the con-
sistent extension of the (consistent extension of the)m co-extension
of P .

These categories are mutually exclusive and exhaustive (they define a
partition on the set of objects).

Why do we only split up the outer categories into more fine-grained
categories? For this question we should first say something about the
intersections and unions of inconsistent properties.

Suppose we know for both property P and property Q which objects
are in their respective consistent extensions, inconsistent extensions and
complements. Does this information suffice to know which objects are
in which of these categories with respect to the property P ∧ Q? Not
obviously. One may argue that fresh inconsistencies can popup at any
level of complexity, independent of the inconsistencies at lower levels. In
such approach to paraconsistent properties it is possible that properties P
and Q are perfectly consistent, but that at the same time the intersected
property P ∧ Q has a non-empty inconsistent extension. Such approach
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+∞ . . . 3 2 1 0 −1−2−3 . . . −∞

Figure 2: The infinite number of P -categories described on page 6. The up-
ward hatching denotes the extension of P , the downward hatching denotes the
extension of not-P .

may be useful in case one wants to maximally isolate inconsistencies and
thus prevent them from spreading. One may want to treat them in this
way for example because they are considered problematic and harmful
phenomena without clear origin (for example for applications to scientific
theories that were intended to be consistent but turned out or may turn
out to be inconsistent). Following such an approach to paraconsistency,
paraconsistent naive property theory is not very useful because the co-
extension is no long an operation on the property itself. The co-extension
is a separate property, only linked to the original property in the sense that
each object is either in the extension of a property or in its co-extension.
In this paper we choose not to follow the approach to paraconsistency.
We here develop an approach towards inconsistencies in which complex
properties may be inconsistent but their inconsistency originates entirely
in the inconsistency of the composing parts. Choosing this road, it is
perfectly possible to see the paraconsistent co-extension as a full blown
operation on the property, in such a way that the naive property theory
is able to determine how objects relate to complex properties even if they
contain the paraconsistent co-extension.

So in our approach the question to which categories of P -hood and
Q-hood an object belongs completely determines to which category of
P -and-Q-hood an object belongs. More concretely we accept the law of
Double Negation

DN the co-extension of the co-extension of a property is the property itself

and the laws of De Morgan for the co-extension operation

DM1 the co-extension of the union of two properties is identical to the
intersection of the co-extensions of the properties.

DM2 the co-extension of the intersection of two properties is identical to
the union of the co-extensions of the properties.

So let us see what the intersection comes to in this property theoretic
picture. Suppose object a is in the consistent extension of P and in the
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consistent extension of Q. So it is in the extension of P and that of Q and
therefore in the extension of the intersection of P and Q. Moreover it is
not in the co-extension of P and not in the co-extension of Q either, i.e.
it is not in the union of the co-extensions of P -and-Q. With DM2 this
entails that it is not in the co-extension of the intersection of P and Q.
We can conclude that a is in the consistent extension of P intersection Q.

So if a is in either of categories {1, . . . ,∞} with respect to both P and
Q, then P intersection Q is in one of these categories.

More specifically if a is in P -category 1 and in Q-category 3, it is in
P -and-Q-category 1. Let us explain why. If it is in P -category 1, it is
also in the co-extension of the consistent extension of P . Therefore it is
in the co-extension of the intersection of the consistent extensions of P
and Q. But we already established that the intersection of the consistent
extensions of P and of Q is identical to the consistent extension of P -and-
Q. So a is also in the co-extension of the consistent extension of P -and-Q.
Therefore it is in one of the P -and-Q-categories {−∞, . . . ,−1, 0, 1} . So
a must be in P -and-Q-category 1.

Similar reasoning allows us to conclude that an object is in P -and-
Q-category n iff it is in P -category nP , in Q-category nQ and n =
min(nP , nQ). So we have determined what the intersection of two in-
consistent properties looks like. We do the same for the union of two
paraconsistent properties: an object is in P -or-Q-category n iff it is in
P -category nP , in Q-category nQ and n = max(nP , nQ).

But we wanted that all complex paraconsistent properties are com-
pletely determined by their their constituent parts and the way they are
constructed from these. So we need to determine how the two kind of
‘complements’ affect the categories. If an object is in P -category n, it
is in the inconsistent extension of the (consistent extension of the)n ex-
tension of P . In which co-extension-of-P -category would this object then
be? Well, given the DN law, it will be in the inconsistent extension of the
(consistent extension of the)n of the co-extension of the co-extension of
P , but this is exactly the co-extension-of-P -category −n.

What about the complement? If object a is in P -category n, it is in
the inconsistent extension of the (consistent extension of the)n extension
of P . Hence it is in the inconsistent extension of the (consistent extension
of the)n of the complement of the complement of P , and therefore also
in the inconsistent extension of the (consistent extension of the)n of the
complement of the co-extension of the co-extension of the complement
of P , or equivalently: in the inconsistent extension of the (consistent
extension of the)n+1 co-extension of the complement of P . Consequently,
it is in the complement-of-P -category −(n+ 1).

Let us return to the question whether it makes sense to split up our cat-
egories into further categories: a consistent extension and an inconsistent
extension. Remark that there are four kind of categories. Two categories
(the infinite ones) are completely consistent and so the inconsistent ex-
tension of them is per definition empty. Hence, there is no actual splitting
in this case. The other categories are all characterized as the inconsistent
extension of some property. So what is the consistent extension of an
inconsistent extension of a property? Well, it is the complement of the
co-extension of the intersection of the extension and the co-extension of
the property. Applying DM2 we obtain that it is identical to the comple-
ment of the union of on the one hand the co-extension of the co-extension
and on the other hand the co-extension, which is equal to the intersection
of the complement of the property and the consistent extension of the
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property. Given the way we have defined the notions complement and
consistent co-extension, they cannot have any objects in common. So this
category is empty and so the category we wanted to split is identical to
the inconsistent extension of it. So the splitting we suggested did not
result in any actual splitting. We do not need more categories than the
one mentioned before.

So if we want a reasonable formal treatment of paraconsistent proper-
ties (1) with a classical and a paraconsistent complement-operation and
(2) such that for every complex property A, A-hood of an object a is
completely determined by the B-hood of a for every primitive property
B from which A is constructed, we naturally end up with infinitely many
categories for A-hood for every category A instead of the 2 categories in
the case of classical properties.

So we obtain something similar to fuzzy set theory as first developed
by Lofti Zadeh (cf. [7]). In fuzzy set theory a set no longer divides the ob-
jects into two categories IN and OUT as in classical set theory, but there
are infinitely many categories in between fully IN (real value 1) and fully
OUT (real value 0). The same holds for what we describe here. Some
object may be completely consistently P and some may be completely
consistently not-P , with infinitely many categories in between. Even our
intersection (minimum) and union (maximum) are similar to important
set operations in fuzzy set theory. Of course there are important distinc-
tions as well: our categories are necessarily discrete and fuzzy logic does
not allow inconsistency: objects cannot be in a set and in the fuzzy com-
plement of the set at the same time. This is not surprising given that
we want to capture a completely different kind of properties (inconsistent
ones, not vague ones).

The intuitive picture we sketched in this introduction suggests the
development of a proper paraconsistent property theory or even a para-
consistent set theory. While this is indeed the long term goal of this line
of research, we will in this paper only develop a propositional logic based
on these ideas. All mentioned aspects of this paraconsistent property
theory can already be formalized at the propositional level. Propositions
correspond to properties applied to concrete objects. The operations by
which we construct complex properties correspond to the logical symbols
as follows: co-extension, complement, intersection and union correspond
to respectively paraconsistent negation ∼, classical negation ¬, conjunc-
tion ∧ and disjunction ∨. Actual paraconsistent set or property theories
based on the presented ideas will have as their underlying logic a pred-
icative (and possibly adaptive, cf. Section 8) version of the paraconsistent
logic we are about to present.

Before getting to the actual logic, the question pops up: can we not
base our property theory on an existing paraconsistent logic? The an-
swer is no (as far as we know). There are indeed paraconsistent logics
available with the four needed logical symbols and more particularly, a
paraconsistent and a classical negation. An example is the logic CLuNs
(cf. [2]). This logic is exactly like LP (cf. Section 3 for the definition)
to which falsum (⊥ ` A) and a classical implication ⊃ is added such
that ∼(A ⊃ B) is equivalent to A ∧ ∼B. Classical Negation is defined as
¬A =df A ⊃ ⊥. This logic works exactly as one would expect (and as is
described above) when there occur no classical negations within the scope
of a paraconsistent negation.

However, the classical negation of CLuNs does not correspond to
our intuitive complement operation described above but rather to what
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could be called the completely consistent complement (in our picture the
completely consistent complement of any positive category or 0 is −∞
and of any strictly negative category it is ∞). This results in the fact
that ∼¬A,¬A `CLuNs B and ¬¬A,∼¬¬A `CLuNs B, while of course
∼A,A 0 B. So, CLuNs’s classical negation actually makes the formula
to which it is applied bivalent and this way the paraconsistent negation
with classical negation in their scope lose their paraconsistency. This also
means that classical negation in CLuNs is not really involutive. ¬¬A
means something like the completely consistent extension of A which is
essentially a bivalent proposition, while A itself may be paraconsistent
and trivalent (however, remark that this distinction is not observable at
the level of logical consequence: A `CLuNs ¬¬A and ¬¬A `CLuNs A).

All this is related to the fact that the classical negation is defined by
means of the CLuNs-implication. ∼(A ⊃ B) is CLuNs-equivalent to
∼(¬A∨B), which is then equivalent by De Morgan’s laws to ∼¬A∧∼B.
But because ∼(A ⊃ B) is made equivalent to A ∧ ∼B, A and ∼¬A are
equivalent in CLuNs. One would however expect that, since paracon-
sistent negation is supposed to be weaker than the classical negation,
A (logically equivalent to ¬¬A) entails ∼¬A but not vice versa. Read-
ing ¬ here as ‘completely consistent complement’ makes this understand-
able: because ¬A already has transformed A into a bivalent proposition,
∼¬A reduces to ¬¬A and from there to A. Again, remark that A and
∼¬A (although they entail each other) have a different meaning (one is
trivalent and the other one is bivalent) and are not inter-substitutable:
∼∼¬A,A ` B holds in CLuNs but obviously ∼A,A ` B does not.

Another famous example of a logic that contains both a paraconsistent
and a classical negation is the logic CR∗ presented by Meyer and Routley
in [4]. This logic does not have the strange property that the paracon-
sistent character of sentences is removed whenever a classical negation is
applied to it. In other words in CR∗ we have 0 (¬A ∧ ∼¬A) → B and
0 (¬¬A ∧ ∼¬¬A) → B, where we use ∼A to refer to their A. Still, this
logic does not suffice to formalize the kind of paraconsisitent properties
characterized above. First of all, the logic is not only paraconsistent but
also paracomplete (one does not have ` B → (A∨∼A)), which makes the
negation too weak for purely paraconsistent purposes. But this would not
really be a problem as we may be able to simply add de law of excluded
middle, making the logic strong enough. In that case the property theory
based on CR∗ would simply have more expressive power than the one
introduced here: next to purely paraconsistent properties, one would also
have properties that are both paracomplete and paraconsistent. Adding
the law of excluded middle would simply exclude all the paracomplete
ones.

Are we able to do that? Not without also giving up on the para-
consistency of the negation. In this logic ¬∼A and ∼¬A are equivalent
and inter-substitutable. From a paraconsistent, but not paracomplete,
negation one would expect ` ¬A → ∼A, (but not vice versa)—if A is
not the case then ∼A should be the case (it cannot be neither). How-
ever, adding this to CR∗ has dramatic consequences. We would obtain
` ¬∼A → ∼∼A and therefore also ` ¬∼A → A. Moreover we would
also obtain ` ¬¬A → ∼¬A and therefore also ` A → ∼¬A. With the
inter-substitutability of ¬∼A and ∼¬A, we now obtain that A, ∼¬A and
¬∼A are all inter-substitutable. On the other hand we obviously have
` (¬∼A ∧ ∼A) → B (¬ is after all classical). So it turns out that giv-
ing up on the paracompleness of CR∗ also yields ` (A ∧ ∼A) → B,
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which reduces ∼ to a classical negation, which is obviously undesired. In
other words, CR∗ tolerates both gluts and gaps and does this adequately.
However, removing the possibility of a gap immediately also removes the
possibility of gluts. This logic is therefore not suited as a logic for pure
paraconsistency.

In this paper we develop the logic CLP, which is basically LP plus
classical negation. The resulting logic will be able to formalize the phe-
nomenon of inconsistent properties in the presence of a classical comple-
ment relation described above. Let us call such contexts (in which one
tolerates inconsistent properties but still wants the ability to express the
classical set-theoretic operations on properties) expressive inconistency-
tolerant (abbreviated to EIT) contexts.

3 Preliminaries

3.1 Truth functional semantics

We first define what a truth functional semantics is.

Definition 1 A truth functional semantics for a language L is a triple
〈V,D, F 〉 where V is a set (the set of truth values), D ⊂ V (the set of
designated values), and F is a set of functions f‡ : V n → V , one for each
n-airy connective ‡ in the language (the truth functions).

Consider a particular language L and a truth functional semantics T S
for L with truth values V , designated values D and truth functions {f‡ | ‡
is a connective in L}. Let W denote the set of formulas of L.

Definition 2 A T S-truth function is a function v : W → V for which
v(‡(A1, . . . An)) = f‡(v(A1), . . . , v(An)), for every n, every n-airy L-
connective ‡ and every set of L-formulas {A1, . . . , An}.

Definition 3 T S defines the semantic consequence relation �T S : ℘(W)→
W where, for every A∪ {Γ} ⊆ W, Γ �T S A iff for all T S-truth functions
v: v(A) ∈ D whenever v(B) ∈ D for all B ∈ Γ.

Definition 4 T S is adequate for a consequence relation ` defined over
L iff, for every A ∪ {Γ} ⊆ W, Γ �T S A iff Γ ` A.

Definition 5 A particular consequence relation ` defined over a language
L is truth functional iff there is a truth functional semantics for L which
is adequate for `.

Definition 6 Two formulas A and B are strongly equivalent in a truth
functional semantics T S if v(A) = v(B) for all T S-truth functions v.

3.2 Meta-properties of consequence relations

We list a number of meta-properties of consequence relations which we
shall use later in the paper.

Definition 7 Where S andW are respectively the set of sentential letters
and the set of formulas of the language L, the following is the law of
Uniform Substitution for ` over L:

(US) For all σ ∈ S, A,B ∈ W and Γ ⊆ W: if Γ ` A then Γ′ ` A′, where
Γ′ and A′ are the result of substituting every occurrence of σ in A
resp. Γ by B.
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Definition 8 A consequence relation ` for a language L is structural iff
the law of Uniform Substitution holds for ` over L.

Definition 9 A consequence relation ` is deductive w.r.t. a binary sym-
bol → iff Γ ∪ {A} ` B iff Γ ` A→ B

Definition 10 A consequence relation ` is monotonic iff, for all Γ,∆ ⊆
W and A ∈ W, Γ ∪∆ ` A whenever Γ ` A

Definition 11 A consequence relation ` is transitive iff, for all Γ,∆ ⊆
W and A ∈ W, Γ ∪∆ ` B whenever Γ ` A and ∆ ∪ {A} ` B

Definition 12 A consequence relation ` is compact iff, for all Γ ⊆ W
and A ∈ W, if Γ ` A then there is a finite ∆ ⊆ Γ such that ∆ ` A.

A set of formulas Γ is said to `-explode iff Γ ` A for all formulas A of
the language of `.

Definition 13 A consequence relation ` for a language L with a unary
connective ‡ is strictly non-explosive with respect to ‡ iff, for every L-
formula, {A, ‡A} `-explodes only if a proper subset of {A, ‡A} `-explodes.

Definition 14 A consequence relation `2: ℘(W1 ∪W2)× (W1 ∪W2) is a
conservative extension of `1: ℘(W1)×W1 iff

`2 ∩ (℘(W1)×W1) = `1

3.3 The logics we want to combine: CL and LP

Let LCL be the propositional language with sentential letters S, binary
connectives ∨ and ∧, unary connective ¬ and set of formulas WCL .

Definition 15 CL is the logic semantically defined by the language LCL

and the following truth functional semantics for this language:

〈V1, D1, {f∨, f∧, f¬}〉,

where V1 = {0, 1}, D1 = {1}, f∨ = max, f∧ = min, f¬(1) = 0 and
f¬(0) = 1.

We shall write `CL to denote the consequence relation for which the
truth functional semantics is adequate.

Theorem 1 `CL is structural, truth functional, deductive w.r.t. ⊃, mono-
tonic, transitive and compact.

Let LLP be the propositional language with sentential letters S, binary
connectives ∨ and ∧, unary connective ∼ and set of formulas WLP .

Definition 16 LP is the logic semantically defined by the language LLP

and the following truth functional semantics for this language:

〈V2, D2, {f ′∨, f ′∧, f ′∼}〉,

where V2 = {{0}, {1}, {0, 1}}, D2 = {a ∈ V2 | 1 ∈ a}, f∨ = max,
f∧ = min, f∼({1}) = {0}, f∼({0}) = {1}, and f∼({0, 1}) = {0, 1}. The
members of V2 are ordered as follows: {0} < {0, 1} < {1}.

The truth functional semantics of LP defines truth functions v that
attach one of three truth values {1}, {0}, or {1, 0} to all formulas with
the following restrictions:

SSLP1a 1 ∈ v(A ∨B) iff 1 ∈ v(A) or 1 ∈ v(B)
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SSLP1b 0 ∈ v(A ∨B) iff 0 ∈ v(A) and 0 ∈ v(B)

SSLP2a 1 ∈ v(∼A) iff 0 ∈ v(A)
SSLP2b 0 ∈ v(∼A) iff 1 ∈ v(A)

SSLP3a 1 ∈ v(A ∧B) iff 1 ∈ v(A) and 1 ∈ v(B)
SSLP3a 0 ∈ v(A ∧B) iff 0 ∈ v(A) or 0 ∈ v(B)

We shall write `LP to denote the consequence relation for which the
truth functional semantics is adequate.

Theorem 2 `LP is structural, truth functional, monotonic, transitive,
compact and strictly non-explosive w.r.t. ∼.

4 How to add classical negation to LP?
A list of requirements.

There are different ways to add a classical negation to a logic like LP. We
however want a logic which fits the EIT-contexts presented in Section 2.
We will now give a list of requirements a logic should satisfy in order to
preserve central properties of both CL and LP. The particular focus on
EIT-contexts determines which properties are central and which are not.

Let LCLP be the propositional language with sentential letters S,
binary connectives ∨ and ∧, unary connectives ¬ and∼ and set of formulas
WCLP . LCLP will be the language of our combined logic. Conjunction
and disjunction are the same in LP and CL, so only classical negation ¬
needs to be added to the language of LP.

This language is propositional. Although first order versions have been
developed for CL and LP, we will not add quantifiers or predicates to the
language of our combination of LP and CL. Of course this is only the
first step: to actually formalize all aspects of EIT-contexts, one obviously
needs to formalize things at the first order level. Nevertheless, it is unlikely
that much interesting happens moving from the propositional level to the
first order level. The universal/existential quantifiers can be handled as
infinite conjunctions/disjunctions. Further research should make clear
whether one would be able to retain all desired meta-properties such as
completeness and compactness at the first order level. This is not obvious
as these properties fail in some other infinitely valued first order logics.

4.1 Inheriting basic meta-properties

Formulas B and C are called inter-substitutable w.r.t. a consequence re-
lation ` iff, for every Γ and A in which B occurs as a subformula, Γ ` A
iff Γ′ ` A′, where Γ′ and A′ are the results of substituting at least one
occurrence of B by C in Γ resp. A.

We look for a logic L which combines the symbols of LP and the sym-
bols of CL is such a way that that their meaning is maximally preserved
in the combination. Which aspects of their meaning is to be preserved
is determined by the EIT-contexts described in Section 2. We make pre-
cise what it means that the meaning of the logical symbols of LP and
CL is preserved in function of EIT-contexts by means of the notion EIT-
adequateness, defined as follows.

Definition 17 A combination L of LP and CL is EIT-adequate iff each
of the following requirements hold:
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Req1 `L is structural (STR), monotonic, transitive, compact, and truth
functional

Req2 `L is a conservative extension of `LP (CE-LP) and of `CL (CE-CL)

Req3 The formulas of the following form are inter-substitutable w.r.t. `L:
(i) ¬(A∨B) and ¬A∧¬B, (ii) ¬(A∧B) and ¬A∨¬B, (iii) ∼(A∨B)
and ∼A ∧ ∼B, (iv) ∼(A ∧ B) and ∼A ∨ ∼B, (v) A and ¬¬A, and
(vi) A and ∼∼A.

Req4 `L is strictly non-explosive with respect to ∼.

We will now argue in favour of each of these requirements.
Req1 does not require much motivation. Each of these properties holds

for both CL and LP. If the combination L is supposed to be a logic of the
same kind, devised for similar purposes, the properties better also hold for
L. There may be good reasons to give up some of these properties. The
adaptive logic developed in Section 8, for example, is not monotonic nor
structural and rightly so. But logics that do not merely add a classical
negation to LP, but also give up one of these properties, change the whole
function of the logic.

Maybe truth functionality is a property for which it is less obvious
that it should be inherited by the combination logic. Truth functionality
is however essential for EIT-contexts. For these contexts one needs a logic
the connectives of which can correspond to operations on properties. The
kind of inconsistent properties we considered were such that the relation
between complex properties and the objects of the domain are completely
determined by the relation between primitive properties and the objects.

Req2 is an uncontroversial requirement for combining logics: every-
thing what can be derived with the combined logics should also be deriv-
able with combination logic AND the combination logic should not add
anything to the combined logics with respect to the original fragments of
the language. This requirement is a necessary condition for warranting
that the meaning of the connectives is preserved in the combination logic.
However it is definitely not a sufficient condition as the non-triviality of
the following requirements will illustrate.

The meaning of all connectives in the original logics LP and CL should
be preserved when combining them. This is a requirement which cannot
be made precise straightforwardly. One cannot simply use the meaning
as expressed by the truth functional semantics of both CL and LP and
combine them. Neither the three valued semantics of LP nor the two val-
ued semantics of CL is straightforwardly extendable with a truth function
that can express the meaning of the extra connective (resp. ∼ or ¬).

The only possible candidate seems to be the following: take the three
truth values of LP (with the same designated ones as in LP) and let the
CL-truth value ‘true’ correspond to both the LP-values {1} and {0, 1}
and ‘false’ to {0}. This way the shared connectives ∨ and ∧ can get
the same truth functions as in LP, which immediately warrants that
also the truth functionality of CL is maintained for these connectives.
Also ∼ can remain the same as in LP, because we still have the original
LP-truth values at our disposal. But what should we do with ¬? It is
obvious for values {1} and {0, 1}, in which case the truth function for
¬ simply gives {0}. But what should be the value of f¬({0})? If we
choose {1}, we have f¬(f¬({0, 1})) = {1} and if we choose {0, 1}, we have
f¬(f¬({1})) = {0, 1}. Both choices surely preserve part of the meaning
of classical negation, but they both falsify the semantic variant of the law
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of double negation (¬¬A has (exactly) the same meaning as A), which is
an essential part of the meaning of classical negation.

Especially in EIT-contexts, we want to maintain the usual laws for the
complement operation as much as possible. The complement of the com-
plement of a property, for example, should be identical to the property
itself, just like in classical property theory. It is hard to imagine how a
complement operation on properties can be anything for which the DN
law is not valid. Remark that this immediately implies that we can al-
ways substitute the complement of the complement of a property by the
property itself, also within more complex properties.

In general, the problem is that Req2 preserves part of the meaning of
the connectives, but it cannot affect the meaning of the connective ¬ when
it occurs in the scope of ∼. There are two prima facie reasonable ways
to extend the meaning preservation to subformulas in the scope of LP-
negations. The first is by means of a variant of the law of contraposition
(require that if A ` B then also ∼B ` ∼A), the second is by means of a
variant of a specific instance of the the equivalence rule (if A a` B then
∼A a` ∼B, where A a` B abbreviates ‘A ` B and B ` A’). This way,
the meaning of the relation between the meaning of connectives at the
outmost level is transferred to occurrences of the same connectives within
the scope of an LP-negation.

This would indeed work nicely, were it so that these criteria indeed
hold for the LP-negation. But they do not even hold for the logic LP,
let alone for the combination logic. The reason why they do not hold
is rather obvious. We have q ∨ ∼q a`LP p ∨ ∼p but we do not have
∼(p ∨ ∼p) `LP ∼(q ∨ ∼q), because ∼(A ∨ ∼A) means exactly the same
thing as A ∧ ∼A in LP.

A promising, but still imprecise, sufficient condition for meaning preser-
vation within the scope of ∼ is the following:

SE Formulas A strongly equivalent in the truth functional semantics of
CL and of LP should maximally be inter-substitutable w.r.t. a con-
sequence relation which combines LP and CL.

The adverb maximally is of great importance here. If it were removed,
there would not be any satisfactory combination logic which is still para-
consistent. Consider the following example. Because of the meaning of
classical negation, A always gets the same truth value as A∧ (B ∨¬B) in
CL, so A and A ∧ (B ∨ ¬B) are strongly equivalent in CL and therefore
these formulas would have to be inter-substitutable in the combination
logic. Unfortunately (and maybe surprisingly), this aspect of the mean-
ing of classical negation is not compatible with the paraconsistency of the
LP-negation. We prove that p,∼p ` q if one would be able to substitute
A by A ∧ (B ∨ ¬B) (in the proof below denoted by ?) in a logic that
combines ∼ and ¬ with properties (CE-LP), (CE-CL) and (STR).

1 p PREM
2 ∼p PREM
3 ¬p ∨ ∼¬p (US) on ` r ∨ ∼r (by (CE-LP))
4 ∼¬p 1,3; (US) on ¬r, r ∨ s ` s (by (CE-CL))
5 ∼p ∧ ∼¬p 1,4; (US) on r, s ` r ∧ s (by (CE-LP))
6 ∼(p ∨ ¬p) 5; (US) on ∼r ∧ ∼s ` ∼(r ∨ s) (by (CE-LP))
7 ∼(p ∨ ¬p) ∨ ∼∼q 6; (US) on r ` r ∨ s (by (CE-LP))
8 ∼((p ∨ ¬p) ∧ ∼q) 7; (US) on ∼r ∨ ∼s ` ∼(r ∧ s) (by (CE-LP))
9 ∼∼q 8; ? (∼q same CL-value as ∼q ∧ (p ∨ ¬p))

10 q 9; ∼∼q ` q by (CE-LP)
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For similar reasons one cannot add the following rules to the combina-
tion logic without giving up (SP): substituting A ∨ (B ∧ ¬B) by A (and
vice versa), A ∧ ¬A by B ∧ ¬B, or A ∨ ¬A by B ∨ ¬B.

However, the situation is not hopeless. For a lot of pairs of formulas
that have the same meaning in CL, rules can be added to the combination
logic stating that the members of the pairs are inter-substitutable, without
threatening paraconsistency. In fact, one can require the following:

(SE-CL) For all of the pairs (A,B) of formulas A and B that are strongly
equivalent in the truth functional semantics of LP, C and D
should be inter-substitutable in the combination logic, where C
and D are the result of replacing each occurrence of ∼ by ¬ in
A resp. B.

So, all CL-formulas that have the same meaning, except those formulas
that only have the same meaning because of the classical (empty) meaning
of a contradiction or a theorem, are required to receive the same meaning
in the combination logic. For LP, strong equivalence (SE) can be valid
unrestrictedly without danger of losing paraconsistency.

(SE-LP) For all of the pairs (A,B) of formulas A and B that are strongly
equivalent in the truth functional semantics of LP, A and B
should be inter-substitutable in the combination logic.

If one combines (SE-CL) and (SE-LP) for the logic L one obtains
exactly Req3.

Req4 has to do with the preservation of the most essential aspect of
the LP-negation: its paraconsistency. Of course we want the negation
of LP to remain paraconsistent when we add classical negation to it. It
is possible to require mere paraconsistency for the combination logic, but
note that this is an extremely weak property. Paraconsistency in the weak
sense only requires that there are formulas A and B such that A,∼A 0 B.
Observe that every conservative extension of LP is paraconsistent in this
sense since p,∼p 0 q in every conservative extension of LP. There are
stronger notions of paraconsistency, for example the property that for
every formula A there is a formula B such that A,∼A 0 B, or with
similar results: the property that every set of formulas has at least one
model. LP is indeed paraconsistent even in this strong sense, but this
property is definitely too strong for a logic containing classical negation.
If A is of the form B ∧ ¬B it cannot have a model and it should entail
every arbitrary formula B (independent of whether ∼A is also a premise).

The EIT-contexts suggest a compromise notion of paraconsistency. In
EIT-contexts there can be an overlap between the extension and the co-
extension of all properties, also properties constructed by means of the
complement operation. Of course, if the extension or the co-extension
themselves are already empty, it makes no sense to make an overlap pos-
sible between the two. But in all other cases it makes sense to allow for
overlap. This translates into the property of non-explosiveness w.r.t. the
paraconsistent negation: For every formula A there is a formula B such
that A,∼A 0 B, unless for all formulas B A ` B or ∼A ` B. This is the
kind of paraconsistency which is required by Req4.

5 Semantics

We shall now define the combination logic CLP semantically. The lan-
guage of CLP is LCLP . We define the logic in such a way that it satisfies

16



criteria Req1–Req4.

5.1 Indeterministic semantics

We start off with a very direct semantics for the logic which adds a clas-
sical negation to LP, viz. a semantics which is only based on the basic
assumptions listed above.

The easiest way to present this semantics requires a notion of strong
equivalence. This is a notion close to “has the same truth value as” or “is
as (in)consistently true/false as”. Regular semantic equivalence is defined
as usual: A is semantically equivalent to B in a model M iff M |= A iff
M |= B. Strong equivalence is equivalent to regular equivalence in bivalent
contexts. Already in LP, there is a difference between the two notions.
In each LP-model, every inconsistent formula is semantically equivalent
to every sentence which is consistently true, just because they are both
verified by the model. In LP, formulas are strongly equivalent if they
are either both inconsistent, both consistently true or both consistently
false. In the context of the logic we develop in this paper, formulas are
strongly equivalent in a model only if all formulas constructed in the same
way with these formulas are semantically equivalent in that model. More
precisely: A is strongly equivalent to B in M iff for every formula C which
contains A, C is semantically equivalent to D in M , where D is the result
of substituting every occurrence of A in C by B.

We ensure that the formulas that should be strongly equivalent are
indeed treated the same way in all models by means of the binary relation
≈. We define this equivalence relation as follows.

Definition 18 ≈ is an equivalence relation (transitive, symmetric and
reflexive) in W ×W such that

SE1 ¬(A ∨B) ≈ (¬A ∧ ¬B)
SE2 ¬(A ∧B) ≈ (¬A ∨ ¬B)
SE3 ∼(A ∨B) ≈ (∼A ∧ ∼B)
SE4 ∼(A ∧B) ≈ (∼A ∨ ∼B)
SE5 A ≈ ¬¬A
SE6 A ≈ ∼∼A
SE7 if A ≈ B then ¬A ≈ ¬B and ∼A ≈ ∼B
SE8 if A ≈ B and C ≈ D, then A ∨ C ≈ B ∨D and A ∧ C ≈ B ∧D

Remark that the relation ≈ is not equivalent to the relation ‘strongly
equivalent’. It only expresses some necessary properties of ‘strong equiv-
alence’, which are nevertheless sufficient to define an indeterministic se-
mantics for CLP. Why ≈ is sufficient can be understood as follows: it
will allow us to reduce M |= A for every formula A to an expression
M |= B where B is a formula in which no conjunctions ∧ or disjunc-
tions ∨ occur in the scope of negations ¬ and ∼ (by means of Theorem 3
and clause IS1). Conjunction and disjunctions out of the scope of nega-
tions behave completely classical in CLP whence the classical semantic
clauses sufficiently determine their meaning. An example may clarify this
line of reasoning. A ∨ (A ∧B) should be strongly equivalent to A and so
M |= ¬∼(A∨(A∧B)) should be equivalent to M |= ¬∼A. The ≈-relation
allows us to conclude that ¬∼(A ∨ (A ∧ B)) ≈ (¬∼A ∨ (¬∼A ∧ ¬∼B)).
Only requiring that these two formulas get the same verification status in
each CLP-model, standard conjunction and disjunction clauses suffice to
prove that M |= ¬∼(A ∨ (A ∧B)) iff M |= ¬∼A.
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Definition 19 Where W¬,∼ is the set of CLP-formulas in which ¬ and
∼ are the only logical symbols, the set of formulas with negations pushed
inwards, denoted asWn, is the smallest subset ofWCLP such thatW¬,∼ ⊂
Wn and if A,B ∈ Wn then A ∧B ∈ Wn and A ∨B ∈ Wn.

Definition 20 Let Wpn be the set of formulas in W¬,∼ in which no sub-
string ¬¬ or ∼∼ occurs.

Theorem 3 For every formula A there is a formula B ∈ Wn such that
A ≈ B.

Proof. Every formula B ∈ WCLP can be obtained from a formula A ∈ Wn

by doing nothing (A = B) or by substituting some primitive formulas in A
by complex formulas A1, . . . An of the form C∧D or C∨D. Let c(Ai) ≥ 1
denote the complexity (defined as usual as the maximal depth at which the
primitive formulas occur in Ai) of Ai for i ∈ {1, . . . , An}. Let the maximal
depth md(A) of the occurrence of a conjunction or disjunction within the
scope of a negation ¬ or ∼ of a conjunctive or disjunctive formula be
defined as md(B) = 0 if B ∈ Wn and md(B) = max(c(A1), . . . , c(An))
otherwise.

It suffices to prove that, for each formula A with md(A) = n ≥ 1,
there is a formula B such that A ≈ B and md(B) < n. The transitivity of
≈ and a straightforward mathematical induction show that there is also a
formula C such that A ≈ C and md(C) = 0, which entails what is proven
here.

So suppose md(A) = n. The complex formulas A1, . . . An of the form
C ∧D or C ∨D are themselves each subformulas of subformulas of A of
the form A′i = ‡1i . . . ‡miAi where ‡ji ∈ {∼,¬}. By applying SE1–5 one
can easily prove that

(‡1 . . . ‡k(C ∨D)) ≈ (‡1 . . . ‡kC ∨ ‡1 . . . ‡kD),

when k is an even number and that

(‡1 . . . ‡k(C ∨D)) ≈ (‡1 . . . ‡kC ∧ ‡1 . . . ‡kD),

when k is an odd number. The same is true if one replaces each ∨ by
∧ and vice versa in the 2 latter equations. So for each i ≤ n there is a
formula Fi such that A′i ≈ Fi where md(Fi) < md(Ai).

By E5 and E6 one can prove that

A ≈ B if C ≈ D, where B is the result of substituting C by D in A.

Hence if one substitutes each A′i in A by Fi, one obtains a formula B such
that A ≈ B and md(B) < md(A), which completes our proof.

Now we can list the indeterministic semantic clauses for CLP. Except
the first, the clauses are all directly inherited from CL, LP or both. The
first clause guarantees meaning preservation by means of the concept of
strong equivalence.

IS1 If A ≈ B, then M |= A iff M |= B
IS2 M |= A ∨B iff M |= A or M |= B
IS3 M |= A ∧B iff M |= A and M |= B
IS4 M |= A or M |= ∼A
IS5 M |= ¬A iff M 6|= A
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Definition 21 A model1 M is a CLP-model iff it respects clauses [IS1]–
[IS5].

Definition 22 M |= Γ iff M |= A for each A ∈ Γ.

Definition 23 A is a semantic CLP-consequence of Γ, denoted by Γ �CLP

A, iff, for each CLP-model M , M |= A whenever M |= Γ.

Theorem 4 Whether M |= A holds for a CLP-model M and a complex
formula A is completely determined by whether M |= (∼¬)nρ holds and
whether M |= (∼¬)n∼ρ holds for natural numbers n and sentential letters
ρ that occur in A.

Proof. By Theorem 3 we have M |= A iff M |= B for some B ∈ Wn.
This formula B is composed of formulas C1, . . . Cm of the form ‡1 . . . ‡nρ
(when n = 0, ‡1 . . . ‡n is the empty string) by means of conjunctions and
disjunctions, where n,m are natural numbers ≥ 0, ρ is a sentential letter
which also occurs in A, and ‡ ∈ {¬,∼}. If it is determined whether
M |= ‡1 . . . ‡nρ for each such formula Ci = ‡1 . . . ‡nρ, then M |= B is also
determined (and therefore also M |= A is determined) in view of the fact
that the semantic clauses IS2 and IS3 are perfectly deterministic.

So it remains to show that expressions of the form M |= ‡1 . . . ‡nρ can
be reduced to expressions of the form M ` (∼¬)kρ or expressions of the
form M ` (∼¬)k∼ρ. First we reduce M |= ‡1 . . . ‡nρ to an expression of
the same form in which no substring ¬¬ or ∼∼ occurs. SE5–7 allow us to
show that when †1 . . . †k is the result of removing all substrings ‘¬¬’ and
‘∼∼’ from ‡1 . . . ‡n, then †1 . . . †kρ ≈ ‡1 . . . ‡nρ. IS1 moreover entails that
M |= †1 . . . †lρ iff M |= ‡1 . . . ‡nρ. So the first reduction is complete and
we can safely assume that no double negations occur in ‡1 . . . ‡n.

Next, suppose ‡1 = ¬, then M |= ‡1 . . . ‡nρ iff M 6|= ‡2 . . . ‡n. More-
over, ‡2 = ∼ otherwise ‡1‡2 = ¬¬ which would contradict our assumption
obtained by the previous reduction. So we can reduce all expressions
where ‡1 = ¬ to expressions where ‡1 = ∼ and safely assume that ‡1 = ∼.

It is now clear that all expressions of the form M |= ‡1 . . . ‡nρ are
determined by expressions of the form M |= (∼¬)kρ and expressions of
the form M |= (∼¬)k∼ρ. This concludes our proof.

5.2 Truth values as sets

We now have a semantics for our logic, but it is clarifying to give a seman-
tics which is deterministic. We can do this in a similar way as the seman-
tics of LP presented above: by means of sets as truth values. Applying
Theorem 4 the model verification status of complex formulas can com-
pletely determined by the validity of expressions of the form M ` (∼¬)nρ
and expressions of the form M ` (∼¬)n∼ρ, where n is a natural number
and ρ is a sentential letter. Moreover, because ∼A 0 ¬A none of these
expression can be reduced to each other. So, instead of only considering
notions 0 (falsity) and 1 (truth) as in LP, we could consider infinitely
many shades of truth (1 (truth), 1′ (weak truth), 1′′ (weaker truth), 1′′′

(even weaker truth), . . .) and falsity (0 (falsity), 0′ (weak falsity), 0′′

(weaker falsity), 0′′′ (even weaker falsity), . . .). Let a(n), where a ∈ {0, 1},
be defined by a(0) = a and a(n+1) = (a(n))′. For LP we have M ` A iff

1It is not relevant at this point what a model in general is. One could see it as nothing
but a function from formulas A to {true, false}, where the value true gives M |= A and false
gives M 6|= A.
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1 ∈ v(A) and M ` ∼A iff 0 ∈ v(A). Similarly we could define truth value
sets by means of the following translation to model verification.

1(n) ∈ vM (A) iff M |= (∼¬)(n)A

0(n) ∈ vM (A) iff M |= (∼¬)(n)∼A
Define t = {1(n) | n ∈ N}, f = {0(n) | n ∈ N} and u = t ∪ f . Just like

in the case of the LP-semantics, not every subset of all truth degrees is a
truth value. In the case of LP the empty set is not a truth value in order
to validate excluded middle by excluding the possibility that M 6|= A and
M 6|= ∼A. In the case of CLP validating excluded middle for ∼ becomes
a bit more complicated. As one can see in the following definition, we
need two conditions to reassure the validity of excluded middle for ∼.

Definition 24 a is an element of the set of CLP-truth values V iff

• a ⊆ u
• 0 ∈ a or 1 ∈ a
• for all b ∈ u: if b ∈ a then b′ ∈ a

The second condition literally corresponds to semantic clause IS4. The
third condition corresponds to A �CLP ∼¬A or ¬∼A �CLP A, which is
also a consequence of semantic clause IS4.

Definition 25 A CLP-set assignment is a function S : S → V .

Definition 26 Given a CLP-set assignment S, the CLP-valuation func-
tion vS for S is the function vS :WCLP → V where

SS0 vS(ρ) = S(ρ) for all sentential letters ρ

SS1a 1(n) ∈ vS(A ∨B) iff 1(n) ∈ vS(A) or 1n ∈ vS(B)
SS1b 0(n) ∈ vS(A ∨B) iff 0(n) ∈ vS(A) and 0(n) ∈ vS(B)

SS2a 1(n) ∈ vS(A ∧B) iff 1(n) ∈ vS(A) and 1n ∈ vS(B)
SS2b 0(n) ∈ vS(A ∧B) iff 0(n) ∈ vS(A) or 0n ∈ vS(B)

SS3a 1(n) ∈ vS(∼A) iff 0(n) ∈ vS(A)
SS3b 0(n) ∈ vS(∼A) iff 1(n) ∈ vS(A)

SS4a where n ≥ 1, 1(n) ∈ vS(¬A) iff 0(n−1) ∈ vS(A)
SS4b 1 ∈ vS(¬A) iff 1 /∈ vS(A)
SS4c 0(n) ∈ vS(¬A) iff 1(n+1) ∈ vS(A)

Hence, for every CLP-valuation function vS and every A ∈ WCLP the
following holds (the ‘. . .’ in the following expressions denote the infinite
continuation of the sequence that precedes it):

(a) vS(A) = {0, 0′, 0′′, 0′′′, . . .} or

(b) vS(A) = {1, 1′, 1′′, 1′′′, . . .} or

(cn) vS(A) = {0, 0′, 0′′, 0′′′, . . . 1(n), 1(n+1), 1(n+2), . . .} or

(dn) vS(A) = {1, 1′, 1′′, 1′′′, . . . 0(n), 0(n+1), 0(n+2), . . .}

Definition 27 A CLP-set assignment is said to correspond to a CLP-
model M iff for all sentential letters ρ and all natural numbers n

C1 1(n) ∈ S(A) iff M |= (∼¬)(n)ρ, and
C2 0(n) ∈ S(A) iff M |= (∼¬)(n)∼ρ.
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Theorem 5 If a CLP-set assignment S corresponds to a CLP-model
M , then M |= A iff 1 ∈ vS(A)

Proof. Suppose CLP-set assignment S corresponds to CLP-model M .
We prove

M |= (∼¬)nA iff 1n ∈ vS(A) and
M |= (∼¬)n∼A iff 0n ∈ vS(A)

(1)

by a mathematical induction on the complexity of A.
Basic case. For A a sentential letter, (1) follows immediately from the

supposition.
Induction step. Suppose for all formulas B less complex than A, (1)

holds (substituting A by B). There are four cases:
1. A is of the form C ∨D.

M |= (∼¬)n(C ∨D)

iff, because ((∼¬)n(C ∨D)) ≈ ((∼¬)nC ∨ (∼¬)nD),

M |= (∼¬)nC or M |= (∼¬)nD

iff, by the induction hypothesis,

1(n) ∈ vS(C) or 1(n) ∈ vS(D).

Next
M |= (∼¬)n∼(C ∨D)

iff, because ((∼¬)n∼(C ∨D)) ≈ ((∼¬)n∼C ∧ (∼¬)n∼D),

M |= (∼¬)n∼C and M |= (∼¬)n∼D

iff, by the induction hypothesis,

0(n) ∈ vS(C) and 0(n) ∈ vS(D).

2. A is of the form C ∧D. Analogous to case 1.
3. A is of the form ∼C.

M |= (∼¬)n∼C

iff, by the induction hypothesis,

0(n) ∈ vS(C)

iff, by SS3a,
1(n) ∈ vS(∼C).

Next,
M |= (∼¬)n∼∼C

iff, because (∼¬)n∼∼C ≈ (∼¬)nC,

M |= (∼¬)nC

iff, by the induction hypothesis,

1(n) ∈ vS(C)

iff, by SS3a,
0(n) ∈ vS(∼C).
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4. A is of the form ¬C. Where n ≥ 1,

M |= (∼¬)n¬C

iff, because (∼¬)n¬C ≈ (∼¬)n−1∼C,

M |= (∼¬)n−1∼C

iff, by the induction hypothesis,

0(n−1) ∈ vS(C)

iff, by SS4a,
1(n) ∈ vS(¬C).

Next M |= ¬C iff M 6|= C iff, by the induction hypothesis, 1 6∈ vS(C) iff,
by SS4b, 1 ∈ vS(¬C). Where n ≥ 1,

M |= (∼¬)n∼¬C

iff,
M |= (∼¬)n+1C

iff, by the induction hypothesis,

1(n+1) ∈ vS(C)

iff, by SS4c,

0(n) ∈ vS(¬C).

Theorem 6 There is a one-to-one-mapping form the CLP-set assign-
ments S to the CLP-models M

Proof. Theorem 4 tells us that CLP-models are completely determined
by the set ∆M of formulas A of the form (∼¬)nρ or of the form (∼¬)n∼ρ,
where ρ ∈ S and n ∈ N, for which M ` A. We need to prove that there is
a one-to-one mapping g from the set {∆M | M is a CLP-model} to the
set of CLP-set assignments.

Define g as the mapping from {∆M | M is a CLP-model} to the set
of functions in S → ℘(u) such that g(∆) = S iff, for every ρ ∈ S and
n ∈ N,

(∼¬)nρ ∈ ∆ iff 1(n) ∈ S(ρ), and

(∼¬)n∼ρ ∈ ∆ iff 0(n) ∈ S(ρ).

From the definition it is clear that this and the inverse mapping are both
total functions. We need to prove that the image of g is the set of CLP-
assignments.

Observe that, with respect to the formulas they verify of the form
(∼¬)nρ and (∼¬)n∼ρ, CLP-models are only restricted by IS4. IS4 is, for
formulas of that form, equivalent to the conjunction of

((∼¬)nρ ∈ ∆M or (∼¬)n−1ρ /∈ ∆M ),

((∼¬)n∼ρ ∈ ∆M or (∼¬)n−1∼ρ /∈ ∆M ), and

(∼ρ ∈ ∆M or ρ ∈ ∆M )

for all n ∈ N and all ρ ∈ S. This means that the image of g is restricted
exactly by

(1(n) ∈ S(ρ) or 1(n−1) /∈ S(ρ)),
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(0(n) ∈ S(ρ) or 0(n−1) /∈ S(ρ)), and

(0 ∈ S(ρ) or 1 ∈ S(ρ))

for all n ∈ N, all ρ ∈ S, where S = g(∆), for every ∆M and every CLP-
model M . Consequently, in view of this restriction and the definition of
V , the image of g is indeed exactly the set of functions S → V .

Remark that the one-to-one mapping defined in this proof is exactly
the correspondence relation defined in Definition 27.

The latter two theorems together imply the following corollary.

Corollary 1 Γ �CLP A iff, for all CLP-set assignments S, 1 ∈ vS(A)
whenever, for all B ∈ Γ, 1 ∈ vS(B).

This entails that one can also use the CLP-set assignments to define
semantic CLP-consequence. In other words: the deterministic set theo-
retic semantics we have implicitly defined in this subsection is a full blown
alternative to the indeterministic semantics of the previous subsection.

5.3 Integer numbers as truth values

The set theoretic semantics turns out to be a straightforward generaliza-
tion of the LP-set theoretic semantics. It clearly reveals the links between
LP-truth values and CLP-truth values. Nevertheless, for calculations of
truth values it is much more practical to translate the set theoretic val-
ues to integer numbers extended with −∞ and ∞. Let Z∞ abbreviate
Z ∪ {−∞,∞}, where Z is the usual set of integer numbers. This makes
it very easy to calculate the values of complex formulas from the val-
ues of primitive formulas (the CLP-assignment) and to check validity of
formulas.

Definition 28 A CLP-integer assignment is a function I : S → Z∞.

Definition 29 Given a CLP-integer assignment I, the CLP-integer val-
uation function vI for I is the function vI :W → Z∞ where

NS1 vI(ρ) = I(ρ)
NS2 vI(∼A) = −vI(A)
NS3 vI(¬A) = −vI(A)− 1
NS4 vI(A ∨B) = max(vI(A), vI(B))
NS5 vI(A ∧B) = min(vI(A), vI(B))

Definition 30 A CLP-integer assignment I is said to correspond to a
CLP-set assignement S iff

CI1 I(A) = 0 iff S(A) = t ∪ f ,
CI2 Where n ≥ 1: I(A) = n iff 0(n−1) /∈ S(A) and 0(n) ∈ S(A),
CI3 Where n ≥ 1: I(A) = −n iff 1(n−1) /∈ S(A) and 1(n) ∈ S(A),
CI4 I(A) =∞ iff, for all n ∈ N, 0(n) /∈ S(A), and
CI5 I(A) = −∞ iff, for all n ∈ N, 1(n) /∈ S(A).

There is a shortcut to this correspondance. Let ](a) denote the number
of objects in a. The reader can check the following theorem by translating
the set theoretic semantic clauses into integer number clauses and by
elementary calculations.

Theorem 7 A CLP-integer assignment I corresponds to a CLP-set as-
signement S iff, for all A ∈ WCLP,

vI(A) = ](f − vS(A))− ](t− vS(A)).
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Definition 31 A CLP-integer assignment I corresponds to a CLP-model
M iff I corresponds to the CLP-set assignment S that corresponds to M .

Corollary 2 If a CLP-integer assignment I corresponds to a CLP-model
M , then vI(A) ≥ 0 iff M |= A

Corollary 3 Γ �CLP A iff, for all CLP-integer assignments I, vI(A) ≥
0 whenever, for all B ∈ Γ, vI(B) ≥ 0.

This entails that one can also use the CLP-integer assignments to
define semantic CLP-consequence. In other words: the deterministic
integer semantics we have implicitly defined in this subsection is a full
blown alternative to the set theoretic semantics of the previous subsection.
In other words:

Corollary 4 CLP can semantically be defined as the logic with language
LCLP and the following truth functional semantics for this language:

〈Z∞, {a ∈ Z∞ | a ≥ 0}, {f∨, f∧, f¬, f∼}〉,

where f∨ = max, f∧ = min, f∼(a) = −a and f¬(a) = −a − 1 for all
a ∈ Z∞.

6 Proof theory

There is no finite axiomatization for CLP in the language WCLP itself.
The reason for this is easy to see. We have (∼¬)n∼∼A �CLP (∼¬)nA,
for every natural number n. However, the expression ¬∼A �CLP ¬∼B
does not follow from A �CLP B (nor from any other less complex relation
between A and B). To show this, consider A = p ∧ ∼p and B = r. The
reader can check that ¬∼(p ∧ ∼p) �CLP ¬∼r while p ∧ ∼p 2CLP r. So
if one would want an axiomatization in the language itself, one needs the
axiom schema ¬(∼¬)n∼∼A ∨ (∼¬)nA for every natural number n.

An elegant way to avoid this is extending the language with a symbol
./, resulting in the set of formulas W./ = WCLP ∪ {A ./ B | A,B ∈
WCLP} . The added symbol ./ is merely a proof theoretical tool. We are
still only concerned with a logic for the languageWCLP. Consequently, in
premises and conclusions of CLP-proofs we only accept WCLP-formulas.
Formulas of the extended language can occur on all lines of proofs that
are not either premises or the final conclusion.

AE1 A ./ A
AE2 ¬(A ∨B) ./ (¬A ∧ ¬B)
AE3 ¬(A ∧B) ./ (¬A ∨ ¬B)
AE4 ∼(A ∨B) ./ (∼A ∧ ∼B)
AE5 ∼(A ∧B) ./ (∼A ∨ ∼B)
AE6 A ./ ¬¬A
AE7 A ./ ∼∼A

RE8 from A ./ B derive ¬A ./ ¬B
RE9 from A ./ B derive ∼A ./ ∼B
RE10 from A ./ B and C ./ D, derive (A ∨ C) ./ (B ∨D)
RE11 from A ./ B and C ./ D, derive (A ∧ C) ./ (B ∧D)

RE12 from A ./ B and B ./ C, derive A ./ C
RE13 from A ./ B, derive B ./ A

D1 A ⊃ B =df ¬A ∨B
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AL14 A ⊃ (B ⊃ A)
AL15 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
AL16 (A ⊃ B) ⊃ (¬B ∨ ¬A)
AL17 ∼A ∨A

RL18 From A ./ B, derive A ⊃ B
RL19 From A and A ⊃ B, derive B

D2 �zA =df

{
(¬∼)zA if z ∈ N
(∼¬)zA if − z ∈ N

Definition 32 Let an instance of a rule or axiom be the W./-formula
that results from universally substituting every metavariable in the axiom
schema with a formula in WCLP. A CLP-proof from Γ ⊆ WCLP is a
finite list of formulas in W./ such that for each element A of the list:
either (i) A ∈ Γ, (ii) A is an instance of an axiom schema AE1–10 or
AL1–4, or (iii) A is the conclusion of an instance of one of the rules RE
or RL if the premises of that instance of the rule occur in the list before
to A.

The reader can easily verify that A ./ B occurs in a CLP proof iff
A ≈ B.

Definition 33 Where Γ ∪ {A} ⊆ W, Γ `CLP A iff A occurs in a CLP-
proof form Γ.

As usual, we writeA1, . . . , An `CLP A to abbreviate {A1, . . . , An} `CLP

A and `CLP A to abbreviate ∅ `CLP A.

7 Metatheory

Theorem 8 If Γ `CLP A then Γ �CLP A

The reader can check that all rules and axioms are valid given the
CLP-semantics.

Theorem 9 If Γ �CLP A then Γ `CLP A

Proof. Suppose Γ 0CLP A. We prove that Γ 2CLP A.
Let ∆ be a non-trivial subset of WCLP such that (i) A 6∈ ∆, (ii) Γ ⊆ ∆,

(iii) if ∆ `CLP B, then B ∈ ∆ (∆ is deductively closed), and (iv) ∆ is
maximal (i.e. every proper superset of ∆ lacks one (i)–(iii)).

In view of the fact that CLP has all axioms of CL, one can easily see
that

for all B ∈ WCLP, either B ∈ ∆ or ¬B ∈ ∆, but not both. (2)

We prove that we can define a CLP-model M by stipulating that
M |= B iff B ∈ ∆ for all B ∈ WCLP

It suffices to prove that IS1–5 hold for the relation A ∈ ∆ on A ∈
WCLP (so, substituting each M |= A by A ∈ ∆) .

IS1. Follows by (i) ∆ being deductively closed, (ii) RL1, (iii) RL2, and
(iv) A ≈ B iff there is a CLP-proof containing A ./ B.

IS2. Left to right. By contraposition. Suppose A 6∈ ∆ and B 6∈ ∆.
Hence, by (2), ¬A ∈ ∆ and ¬B ∈ ∆. By the fact that CLP has all
CL-axioms, we have ¬A,¬B `CLP ¬(A ∨ B). By ∆ being deductively
closed we obtain ¬(A ∨B) ∈ ∆, whence, by (2), A ∨B 6∈ ∆.
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IS2. Right to left. Immediate in view of ∆ being deductively closed,
A `CLP A ∨B and B `CLP A ∨B.

IS3. Left to right. Immediate in view of ∆ being deductively closed,
A ∧B `CLP A and A ∧B `CLP B.

IS3. Right to left. By contraposition. Suppose A 6∈ ∆ or B 6∈ ∆.
Hence, by (2), ¬A ∈ ∆ or ¬B ∈ ∆. By the fact that CLP has all CL-
axioms, we have ¬A `CLP ¬(A∧B) and ¬B `CLP ¬(A∧B). By ∆ being
deductively closed we obtain ¬(A ∧B) ∈ ∆, whence, by (2), A ∧B 6∈ ∆.

IS4. By ` A ∨ ∼A and ∆ being deductively closed, A ∨ ∼A ∈ ∆. IS4
follows by IS2.

IS5. By (2).
We now established that M is a CLP-model. Moreover, since M |= Γ

and M 6|= A, we have also shown that Γ 2CLP A.

Definition 34 An integer number function (a function in Zr → Z) is
called d-continuous iff |f(a1, . . . , ai, . . . , ar)−f(a1, . . . , a

′
i, . . . , ar)| ≤ |ai−

a′i| for all i ≤ r and all a1 . . . , ar, a
′
i ∈ Z.

Fact 1 For every total d-continuous integer number n-ary function f ,
every ~a,~b ∈ Zn, and every c ∈ Z such that f(~a) ≤ c ≤ f(~b) or f(~b) ≤ c ≤
f(~a), there is a ~d ∈ Zn such that f(~d) = c.

Proof. We first show that it holds for unary d-continuous functions. The
fact holds in that case in light of the fact that there cannot be ‘jumps’ in
a d-continuous function, i.e. if one observes the graph of a function going
from (a, f(a)) to (b, f(b)), where a < b, it can only go in a continuous
(but not necessarily straight) line, i.e. without ever going from (e, f(e)) to
(e+ 1, f(e+ 1)) with |f(e+ 1)− f(e)| > 1. It is easily seen that therefore
each number c in between f(a) and f(b) is reached as the point (d, c) on
the line that connects (a, f(a)) and (b, f(b)).

We now show that it also holds for n-ary functions. One starts from
~a = a1, . . . an and moves stepwise to ~b = b1, . . . bn as follows: let ei =
f(a1, . . . , ai−1, bi, . . . bn) for each i ≤ n.

We prove for all ei: for each c′ in between e1 and ei, there is a ~dic′ such

that f( ~dic′) = c′. Note that if this holds for all i ≤ n, it holds for i = n

and en = f(~b). We do this by induction on i.
Basic case. If i = 1, we have, for each c′, c′ = e1 and we can take

~d1e1 = ~a because f(~a) = e1.
Induction step. Suppose that for each c′ in between e0 and em,

there is a ~dmc′ such that f(~dmc′ ) = c′. We need to prove this for m + 1.
The difference between em = f(a1, . . . , am, bm+1, . . . an) and em+1 =
f(a1, . . . , am+1, bm+2, . . . an) is such that only one argument (the m+1-th)
changes and therefore the reasoning for unary functions outlined above ap-
plies here. So for every c′ in between em+1 and em there is an appropriate
~dm+1
c′ . The induction hypothesis states that there is also an appropriate
~dm+1
c′ for every c′ in between e0 and em. Elementary interval calculus al-

lows us to conclude that therefore there is an appropriate ~dm+1
c′ for every

c′ in between e0 and em+1.

Fact 2 Every composition f ◦ (g1, . . . , gn) of total d-continuous n-ary in-
teger number functions f, g1, . . . gn is itself a total d-continuous n-ary in-
teger number function.

Proof. For every i, j ≤ n and every a1, b1, . . . , an, bn ∈ Z we have

|f(g1(aj), . . . gn(aj))− f(g1(bj), . . . gn(bj))| ≤ |gi(aj)− gi(bj)| ≤ |aj − bj | ,
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because f and all gi are d-continuous. By transitivity of ≤ this entails
(with the same quantification for the variables)

|f(g1(aj), . . . gn(aj))− f(g1(bj), . . . gn(bj))| ≤ |aj − bj | .

Hence f ◦ (g1, . . . gn) is d-continuous.

Definition 35 A function in Zr∞ → Z∞ is called d-continuous iff f re-
stricted to arguments in Z is a total d-continuous integer number function
and for all 1 ≤ i ≤ r:

lim
ai→∞

f(a1, . . . , ai, . . . , ar) = f(a1, . . . ,∞, . . . , ar) and

lim
ai→−∞

f(a1, . . . , ai, . . . , ar) = f(a1, . . . ,−∞, . . . , ar)

Fact 3 For every total d-continuous f ∈ Zr∞ → Z∞, every ~a,~b ∈ Zr∞,
and every c ∈ Z∞ such that f(~a) ≤ c ≤ f(~b) or f(~b) ≤ c ≤ f(~a), there is

a ~d ∈ Zr∞ such that f(~d) = c.

Fact 4 Every composition f ◦ (g1, . . . , gn) of total d-continuous function
f, g1, . . . gn ∈ Zr∞ → Z∞ is itself a total d-continuous function in Zr∞ →
Z∞.

Lemma 1 Every CLP-truth function is d-continuous.

Proof. Observe that every CLP-truth function is a composition of the
primitive truth functions f∨, f∧, f¬ and f∼. Fact 4 entails therefore that
every CLP-truth function is d-continuous.

Theorem 10 CLP is strictly non-explosive with respect to ∼.

Proof. We need to prove that, for every L-formula, {A, ‡A} `-explodes
only if a proper subset of {A, ‡A} `-explodes.

We prove this by showing that whenever there are CLP-modelsM1,M2

such that M1 |= A and M2 |= ∼A then there is a model M3 such that
M3 |= A and M3 |= ∼A.

A defines a CLP-truth function fA. This function gives the truth
value of A as output, given the truth values of the sentential letters that
occur in A. Each PCL-model M defines a vector ~aM of truth values, such
that this vector contains one value for each sentential letter in A. We have

fA(~aM1) ≥ 0 and fA(~aM2) ≤ 0.

Because fA is d-continuous (by Lemma 1) and the fact that 0 is in between

fA(~aM1) and fA(~aM2), Fact 3 teaches us that there is vector ~b such that

fA(~b) = 0. Define M3 as the CLP-model that assigns the values which

occur in ~b to the sentential letters in A and arbitrary values to the other
sentential letters. Because fA(~b) = 0 we obtain that M3 |= A and M3 |=
∼A.

Theorem 11 `CLP is truth functional

Proof. Both the integer-numbers semantics and the set-theoretic seman-
tics for CLP are truth functional semantics.

Theorem 12 `CLP is a conservative extension of `LP

Proof. If one removes ¬ from the language LCLP, and one replaces in
the integer-numbers-semantics for CLP all values > 0 by {1}, all values
< 0 by {0} and 0 by {0, 1}, one obtains exactly the truth functional
LP-semantics.
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Theorem 13 `CLP is a conservative extension of `CL

Proof. If one removes ∼ from the language LCLP, and one replaces in the
integer-numbers-semantics for CLP all values ≥ 0 by 1 and all values < 0
by 0, one obtains exactly the truth functional CL-semantics.

Theorem 14 CLP is maximally paraconsistent, i.e. for every compact,
monotonic, transitive, deductive w.r.t. ⊃, and structural consequence rela-
tion `∈ ℘(W)×W, if ` is stronger then `CLP (`6=`CLP and if Γ `CLP A
then Γ ` A), then ` is explosive w.r.t. ∼ ({A,∼A} ` B for every A,B ∈
W.

Proof. Suppose ` is compact, monotonic, transitive, structural, deductive
w.r.t. ⊃ and stronger than `CLP. We prove that ` is explosive w.r.t. ∼.

There is a Γ, A such that Γ ` A but Γ 0CLP A.
As ` is compact, there are A1, . . . , An ∈ Γ such that A1, . . . , An ` A.

Obviously, A1, . . . , An 0CLP A.
Because ` and `CLP are both deductive w.r.t. ⊃ and are both ex-

tensions of CL, we have ` (A1 ∧ . . . ,∧An) ⊃ A and moreover 0CLP

(A1 ∧ . . . ,∧An) ⊃ A, otherwise Γ `CLP A would hold. Let C abbreviate
(A1 ∧ . . . ,∧An) ⊃ A

The following rules are valid in CLP and its extensions: (1) Distribu-
tivity of ∨ and ∧ and of ∧ and ∨, (2) De Morgan laws for ∼ and ¬, and (3)
from E derive F , where F is the result of deleting substrings ¬¬ and ∼∼
from E. Given the validity of these rules we can show the following in the
same way as the way one shows that each CL-formula is CL-equivalent to
its conjunctive normal form: there is a formula C′ such that C is equiv-
alent to C′ in both `CLP and ` (i.e. C ` C′, C′ ` C, C `CLP C′, and
C′ `CLP C) and such that C′ is a conjunction of disjunctions of members
of Wpn. We obtain that

` C′ and 0CLP C′.

There is a conjunct D of C, which is a disjunction of formulas of the
form �zB or �z∼B, where z ∈ Z and B is a literal, such that

` D and 0CLP D.

Observe that �z1B `CLP �z2B whenever z1 ≥ z2. Consequently,
F ∨�z1B ∨ . . . ∨�znB is equivalent to F ∨�min{zi|i≤n}B both in ` and
in `CLP. This entails that D is, both in `CLP and in `, equivalent to a
disjunction D′, such that: for every sentential letter ρ that occurs in D, D′

is of the form E1∨B∨E2 (E1∨ and ∨E2 can also denote the empty string),

where (i) ρ does not occur in E1 or in E2 and (ii) B = �z
ρ
1∼ρ ∨ �z

ρ
2 ρ or

B = �z
ρ
3 ρ or B = �z

ρ
4∼ρ. Given that 0CLP B and `CLP �zA ∨�−z+1A

for every A ∈ WCLP, we obtain

zρ2 > −z
ρ
1 + 1 for every ρ. (3)

Let D′′ be the result of substituting in D′ every �z
ρ
2 ρ by �−z

ρ
1+1ρ.

Given (3), the fact that �nA `CLP A and that ` extends `CLP entails
that D′ ` D′′. Now, let D′′′ be the result of substituting each sentential
letter ρ in D′′ by

�z
ρ
1 p if ρ occurs in �z

ρ
1∼ρ ∨�−z

ρ
1+1ρ

�−z
ρ
3¬(p ∧ ∼p) if ρ occurs in �z

ρ
3 ρ

∼�−z
ρ
4¬(p ∧ ∼p) if ρ occurs in �z

ρ
4∼ρ.

(4)
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This is a uniform substitution on D′′ and so, by the structurality of `,
we have ` D′′′. D′′′ is a disjunction of formulas of one of the next three
forms:

�z∼�zp ∨�−z+1�zp

�z∼∼�−z¬(p ∧ ∼p)
�z�−z¬(p ∧ ∼p)

because �z1�z2F `CLP �z1+z2F and ∼�zA `CLP �−z∼A, the latter
two imply ¬(p∧∼p) and the first form implies ∼p∨¬∼p. By De Morgan
laws all 3 forms imply ¬(p ∧ ∼p), whence

` ¬(∼p ∧ p)

whence, by the structurality of `, for every formula F

` ¬(∼F ∧ F ).

Because ` extends `CLP, the latter equation entails

∼F, F ` G

for every formula F,G
We have not only proven that Req1–4 hold for CLP, Theorem 14

implies that every consequence relation stronger than `CLP lacks Req3.
Moreover, the fact that all rules and axioms of the proof theory of CLP
can directly be derived by Req1 and Req4, entails that every consequence
relation that respects Req1 and Req4 is at least as strong as CLP. Con-
sequently, we now have enough information to conclude that

Corollary 5 `CLP is the only consequence relation which adds a classical
negation to LP satisfying requirements Req1–4.

8 Adaptive logic

For many purposes it is useful to consider not just the formulas verified
by all paraconsistent models of a set of premises, but also the ones that
are verified (only) by those models that are minimally inconistent. This
makes it for example possible to treat the paraconsistent negation ∼ as a
classical negation, whenever there is no need to treat it paraconsistently.
In this picture properties can have overlap with their co-extension but
only if this is required by the background theory on pain of triviality.

To formalize such an ‘only go paraconsistent when really necessary’-
account, one may use a logic in the adaptive logic programme. This is
not the place to give a philosophical or technical introduction to adaptive
logics, nor is it useful to list their basic properties. But it is nevertheless
useful to define an adaptive logic based on CLP, because it illuminates
an interesting feature of CLP.

We define the adaptive logic ACLP as a logic within the standard
format of Lexicographic Adaptive Logics. This format is a generalization
of the Standard Format of adaptive logic defined in [1]. It is developed
in [6], where also a proof theory and the metatheory are given for every
logic defined within the format. The format extends the Standard For-
mat in the sense that it allows for prioritization within the logic itself
(Standard Format adaptive logics have to be combined in order to enable
prioritization).

29



What kind of prioritization is enabled? Well, adaptive logics give us
the formulas verified by all least abnormal models of a set of premises.
However, Standard Format abnormality of models determines which ab-
normal formulas are verified by the model and which are not. In many
applications, not every abnormal formula is equally problematic. If we
are able to consider more and less abnormal formulas, we are also able to
make a finer ordering among the models with respect to their abnormal-
ity. Hence we are able to make a more narrow selection of least abnormal
models and so obtain more adaptive logic consequences.

Definition 36 Lexicographic Adaptive Logic.
A Lexicographic Adaptive Logic is a triple consisting of a Lower Limit

Logic (the LLL), a sequence of sets of abnormalities (〈Ωi〉i∈N) and a
strategy (here we only consider Minimal Abnormality)

Definition 37 The lexicographic ordering v of LLL-models w.r.t. a se-
quence of sets of abnormalities 〈Ωi〉i∈N

M1 vM2 iff 〈Ab0(M1), Ab1(M1), . . .〉 v 〈Ab0(M2), Ab1(M2), . . .〉, where

• Abi(M) =df {A ∈ Ωi |M |= A} for LLL-models M and

• 〈∆1
0,∆

1
1, . . .〉 v 〈∆2

0,∆
2
1, . . .〉 iff there is a k ≥ 0 such that

1. for every i < k, ∆1
i = ∆2

i

2. ∆1
k ⊆ ∆2

k,

Definition 38 Semantics of Lexicographic ALs LAL with Minimal Ab-
normality strategy.

Γ �LAL A iff M |= A for all v-minimal elements of {M is an LLL-
model |M |= Γ}

Definition 39 The lexicographic adaptive logic ACLP.

• The Lower Limit Logic is CLP.

• Where L is the set of literals (sentential letters and ∼-negations of
sentential letters), the sequence of sets of abnormalities of AP is

〈{�iA ∧ ∼�iA | A ∈ S}〉i∈N.

• The strategy of the logic is the Minimal Abnormality strategy.

Of course, one can also construct a Standard Format adaptive logic
based on CLP which minimizes those CLP-models which are plainly
minimally inconsistent, without making any distinction between incon-
sistencies (they are all equally abnormal). In this case the LLL is still
CLP, the strategy still Minimal Abnormality, but the sequence of sets of
abnormalities is reduced to one member: 〈{�iA∧∼�iA | A ∈ L, i ∈ N}〉.
In case we want to define this logic correctly within the Standard Format,
we replace the one-membered sequence of sets of abnormalities by the one
member. With this Standard Format adaptive logic the consequence set
of a consistent premise set (a set from which no CLP-abnormalities fol-
low) is the set of all CLP′-consequences of the premise set2, where CLP′

is exactly like CLP, except that ∼ behaves classically (realized e.g. by
adding (A∧∼A) ⊃ B as an axiom). This is as it should be: selecting the
most consistent models of consistent premises comes to selecting exactly
the consistent models. In all these models ∼ behaves classically.

2This can be proven by showing that Γ `CLP′ B iff Γ ∪ {¬(�iA ∧ ∼�iA) | A ∈ S, i ∈
N} `CLP B, using Theorem 3.
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So it is possible to construct an adaptive logic without prioritization.
Why then does it make sense to define a prioritized adaptive logic for
adaptive CLP-reasoning?

To explain this, we first have to fix a philosophical interpretation for
the degrees of truth and the so obtained degrees of inconsistency. In the
property theoretic picture we sketched in Section 2, we saw that incon-
sistencies can be involved with respect to the question whether a certain
object has a certain property, although it is not in the overlap between
the property and its co-extension. It may for example be the case that it
is in the consistent extension of the property, but also in the co-extension
of the consistent extension of the property. So the property holds con-
sistently for the object, but an inconsistency nevertheless pops up with
regards to the co-extension of its consistent extension. One may say that
a model in which the property behaves this way w.r.t. the object is more
consistent (and less abnormal) than exactly the same model but in which
the property is explicitly inconsistent w.r.t. the object.

The integer number truth values of CLP can be read as formalizing
the amount of positive/negative evidence one has for inconsistent state-
ments. By negative evidence for A I mean evidence in favour of ∼A and
by positive evidence I mean evidence in favour of A. If the value is 0,
the positive evidence is just as valuable as the negative evidence. For a
statement with value 4 we have more positive evidence than a statement
with value 2 but less a statement with value 6. Statements with value ∞
and −∞ are absolutely reliably consistent, i.e. there is no negative resp.
positive evidence for them. Observe that there are no finite premise sets
the CLP-models of which can only assign infinite (∞ or −∞) values for
some sentential letter. Incidentally, this property can be interpreted as
corroborating the reasonable thesis that no finite knowlegde base can ever
express that its sentences are absolutely consistent.

So, given this interpretation, we have more positive or negative evi-
dence for primitive sentences far from 0 than for sentences closer to 0.
A sentence may be considered as more abnormal if the inconsistencies
involved take away the strength of the positive or negative evidence for
the sentence. By the same normality standards, we may want to con-
sider primitive sentences with a truth value far from 0 as more normal
than primitive sentences with a truth value closer to 0. If one accepts
this picture in which some abnormalities are more abnormal than others,
one needs to go for a prioritized adaptive logic, such as the lexicographic
adaptive logic defined in this section.

9 A related result, further research and
conclusion

This logic can easily be turned into its dual: a logic which adds a classical
negation to the three valued Strong Kleene logic. To do this, take the
(integer valued) truth functional semantics of CLP, but replace the set
of designated values {a ∈ Z∞ | a ≥ 0} by {a ∈ Z∞ | a > 0}.

In the proof theory we used the connective ./ as a mere proof theo-
retic device which does not occur in premises nor in conclusions of CLP-
proofs. The question immediately pops up what would happen if ./
would be added to the actual language of CLP. It turns out that the
resulting logic is very interesting, especially with respect to a conditional
A→ B =df A ./ (A∧B). This conditional seems to express an interesting
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relation between sentences A and B: ‘B is at least as true as A’, or ‘if
A were true (and if the relation between A and B remained the same),
then B would be true’. In that sense, the conditional has a counterfactual
gist to it. It is moreover interesting from an algebraic point of view. In
a forthcoming paper, CLP plus → is axiomatized and different seman-
tical characterizations are proposed, together with the most important
metatheoretic properties.

To wrap things up: we have defined an infinitely valued paraconsistent
logic CLP which adds classical negation to LP. CLP turns out to be
the only logic which satisfies certain desiderata dictated by a property
theoretic perspective on the combination of classical and paraconsistent
negation. We can therefore conclude that this perspective requires a de-
gree theoretic account of paraconsistency.
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