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Abstract

In this paper, we present a modal language for contextual computing,
corresponding to the fragment of constructive KT with necessity and pos-
sibility operators. We interpret absolute and contextual computations as
different modes of verifying the truth of propositions. The semantics of
the language Lcc interprets absolute computations by a direct verification
function valid in every state; contextual computations are interpreted in
terms of a verification function valid under unverified information. Modal-
ities are used to express extensions of contexts in order to define local and
global validity. This semantics has a (weak) monotonicity property, de-
pending on satisfaction of processes in contexts. In the corresponding
axiomatic system cKT�♦ a restricted version of the deduction theorem
for globally valid formulas holds, soundness and completeness are proven
and decidability is shown to hold for the necessitation fragment of the
language by a restricted finite model property.

1 Background and Motivation

The relation between modal logic S4 and intuitionistic logic is notoriously given
via the interpretation of necessity as provability. Constructive S4 has been
explored in the form of both Kripke and categorical semantics. Less considered
in the literature are modal translations of the contextual notion of derivability,
known from natural deduction calculi and type theories.1 Even less so are
languages defining both local and global validity relations, roughly corresponding
to the idea of derivability from undischarged and discharged assumptions.

Semantic research in modelling contexts from AI relies on the very same
background.2 Contextual computing can be seen as the algorithmic interpreta-
tion of reasoning under contexts and its modal version in a constructive format
is particularly apt for applications-oriented research. Various Kripke semantics

1See e.g. [14], [27], [19].
2See e.g. [15].
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for constructive intuitionistic modal logics from K to S4 exist.3 Among these,
a weaker format to accomodate the notion of context is given by the calculus
CK in [16], which presents a possible-world semantics sound and complete with
respect to the natural deduction interpretation given in [5].

Syntactically, contextual modal type theories for programming languages
and further research in linguistics and hardware verification have been pur-
sued.4 In the present paper, a constructive reading of computational processes
is extended to contextual validity by means of modalities. This provides a
general model of computations in context, with the latter intended to express
background knowledge.

Among intuitionistic modal logics, one standard interpretation of the concept
of truth is given in [33] by the schema: “A is true if and only if it is possible that
it is verified that A”.5 The resulting formal system is based on an intuitionistic
language extended with modalities ♦ and � and with a knowledge operator K,
such that the previous schema is formally translated as:

(∗) ` A↔ ♦KA

In [1] the standard ways to define intuitionistic modalities semantically are given
as follows:

�1 M, w � �φ iff ∀v(wRv →M, v � φ)

�2 M, w � �φ iff ∀v(wRv → ∀u(vRu→M, v � φ))

♦1 M, w � ♦φ iff ∃v(wRv ∧M, v � φ)

♦2 M, w � ♦φ iff ∀v(wRv → ∃u(vRu ∧M, u � φ)

where M is a model, w an element in the set of worlds, R the appropriate
accessibility relation and φ a formula. The contextual interpretation given in
the present paper significantly differs from any of the above given standard
definitions. Necessity and possibility are here linked respectively to absolute
and contextual truth via computations:6

1. “A is true” is necessary if and only if A is globally verified

2. “A is true” is possible if and only if A is locally verified

3For an overview of the various systems of intuitionistic modal logics introduced since the
middle of the Sixties, see [25]. For the constructive translations, see for example [20], [32], [4],
[3], [2].

4See e.g. [17] and the bibliography in [2]. Modalities for type-theories focus on the com-
putability of the underlying λ-calculus, which in turn can be interpreted as the corresponding
programming language, see [6].

5[33], p. 65.
6This definition has moreover the advantage of simplifying the language so that it does not

require an extra knowledge operator. See also [21] and [28] for a discussion on the application
of modal operators to the judgemental form “A is true”.
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These definitions translate modalities via appropriate validity relations. In par-
ticular, it is possible to understand global verification as truth under no condi-
tion,

(∗∗) �(A true)⇔ ((∅)A)

and local verification as truth under conditions:

(∗ ∗ ∗) ♦(A true)⇔ ((Γ)A)

This requires to give an appropriate interpretation of the content in Γ. We will
understand the judgement ♦(A true) as ‘A is true in the context of unverified
information’.

We present a standard verificationist semantics for non-modal formulas ex-
tended to a modal language that contains both empty and non-empty contexts
of unverified information. The two protocols are dubbed respectively ‘verifi-
cational’ (Lver) and ‘contextual’ (Lctx). Formulas verified in an empty con-
text induce truth; formulas valid under open variables induce contextual truth.
Modalities express validity under extensions of contexts. The language is then
completed by an appropriate axiomatic calculus, corresponding to a version of
the modal logic KT including also appropriate axioms for the possibility oper-
ator and restricting necessitation and weakening to a subset of the formulas of
the language.

The structure of the paper is as follows. In section 2, we introduce the
semantics that interprets logical connectives for categorical judgements and ex-
tend it to knowability in a context. A main theorem is stated for the relation
to standard constructive semantics. In section 3, we present the corresponding
axiomatic calculus and prove a restricted form of the deduction theorem, sound-
ness and completeness, and characterize the maximal decidable fragment of the
language in view of a restricted version of the semantics. In the conclusion,
we refer to applications for which this semantics appears natural and mention
related work.

2 A semantics for contextual computation

The language Lcc for contextual computing is given by two languages: Lver is
called the ‘verificational’ protocol and it is a fragment of Lctx, the ‘contextual’
protocol. In Lcc absolute and contextual computations are defined as modes of
verifying the truth of proposition A:

1. in Lver, ‘A is true’ is defined by a globally valid verification of A.

2. in Lctx, ‘A is true’ is defined by verification in the context of an unverified
A′.

In our interpretation of (i), truth corresponds to verification; by our interpre-
tation of (ii), a verification of A holds assuming (i.e. in the context where) A′

holds; verification of A′ is considered as not directly accessible.
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2.1 Absolute Computations

A language Lver for absolute computations is defined by formulas built in
a standard way from a finitely enumerable set of propositional atoms P =
{φ, ψ, . . . }, the propositional constants >,⊥, unary and binary propositional
operators ¬,∧,∨,⊃; variables for propositional formulas are referred to asW =
{A,B, . . . }:

Lver := φ | > | ⊥ | ¬A | A ∧B | A ∨B | A ⊃ B.

Ki denotes a knowledge state with a set of indices I = {i, j, k, . . . } totally
ordered under a ≤ relation holding among states. A knowledge state collects
propositional atoms and formulas (possibly a singleton) that are evaluated in a
model at that state. A knowledge set at some index n, K = {K1, . . . ,Kn | 1 ≤
n ∈ I} is a finite collection of indexed knowledge states up to n, closed under
logical consequence. When needed, we shall refer to ≥ as the reverse order of
≤.

Definition 1. A model of Lver is a tuple Mver = {K,≤, v}, where K is a
nonempty set ranging over {Ki,Kj , . . . }; ≤ is a reflexive and transitive ordering
relation over members of K; v is a verification function v : K 7→ 2W .

We shall call Mver(Ki) a verificationist model of knowledge state Ki if and
only if all formulas of Ki are true in it; that a formula A is true in Mver(Ki)
corresponds to the existence of a function that verifies A in Ki. The intended
meaning of such verification function is that of an effective procedure that makes
the truth of A explicit at that state. The verification function corresponds to
an inductively generated satisfaction relation at a state and, in the case of the
negation operator, defined over related members of K:

C1ver Ki 2 ⊥ and Ki � >;

C2ver for all φ, Ki � φ iff (φ, v(Ki));

C3ver Ki � A ∨B iff Ki � A or Ki � B;

C4ver Ki � A ∧B iff Ki � A and Ki � B;

C5ver Ki � A ⊃ B iff Ki � A implies Ki � B;

C6ver Ki � ¬A iff ∀Kj ≥ Ki, it holds Kj � A ⊃ ⊥.

The satisfaction relation Ki � A reads as follows: “A is verified in the state Ki

by a verification v”. C1ver declares consistency of Ki’s (contradictions are not
admitted); C2ver gives the base case of satisfaction by verification: a propo-
sitional letter φ is true in Ki iff there is a verification function for φ in Ki;
C3ver − C5ver are standardly defined for binary connectives; A⊃B is satisfied
in Ki if and only if a verification process for A at Ki gives a verification process
for B at Ki. For the negation function C6ver: a construction of ¬A implies the
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implication from A to the falsity in all the accessible knowledge states.7 M(Ki)
denotes the set of all Ki-models. When required for clarity, we shall use the
abbreviation vMver to refer to a verification function in a model of Lver.

Monotonicity as for standard intuitionistic models follows from the heredity
condition (proven by induction on formulas):

Lemma 1 (Monotonicity). For every φ ∈ P, if Ki � φ and Ki ≤ Kj then
Kj � φ.

A standard notion of validity of formulas as verification in all states holds:

Definition 2. �verA iff Ki � A for every Ki ∈ K.

A formula is satisfiable if there is a knowledge state and a verification func-
tion in it that satisfies it. A formula A is a logical consequence of a set of for-
mulae A1, . . . , An if for every Mver(Ki) such that Ki � Ai for every Ai∈{1,...,n},
then Ki � A.

2.2 Contextual Computations

The extension to the language Lctx is obtained by introducing an appropriate
notion of contextual verification, simulating truth under contents that are not
directly computable in Lver, but are considered admissible.8 A contextual ver-
ification is therefore given by a verification function as in Definition 1 for a
knowledge state in which some contents are taken as valid without verification.

The first step is therefore the definition of such notion of unverified but
admissible content. We will denote in the following a finite set of variables by
V = {x1, x2, . . . }:

Definition 3. For any Ki ∈ K, an informational context Γ : V 7→ W for Ki

consists of a finite set of injective functions γ1, γ2, . . . , γn such that γi := xi 7→
Ai. We then say that the truth of Ai is admissible in Ki if Kh 2 ¬Ai for all
Kh ≤ Ki.

By an informational context we refer therefore to a (set of) mapping(s) from
variables to propositional contents; each such function is a place holders for a
missing verification; by the last condition in the definition above, a formula A
introduced in a context is admissible for a knowledge state in the sense that its
negation is not validated at the current knowledge state. Notice that the con-
struction of a context does not forbid inadmissible formulas to be selected. When

7One enters here the debate on the constructive treatment of negation, and in particular
the largely discussed standard BHK-interpretation, according to which a proof of ¬A is a
function that converts each proof of A into a proof of ⊥. See [30], [26] and the overview
given in [31]. The standard treatment of constructive negation, that requires knowledge of
hypothetical proofs and what a proof of an absurdity is, has been reformulated by introducing
the primitive notion of disproof in [13], leading to the interpretation of Nelson’s constructive
logic with negation but without ex-contradictione quodlibet, see [18].

8In the syntactic model designed in [22] for a type-theoretical language with open assump-
tions, this property corresponds to the formulation of type contructions that not necessarily
β-reduce by admissibility of non-contradictory constructions.
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a context Γ is defined for a knowledge state Ki, we shall refer to the resulting
state with contextual information by (Γ)Ki. By a function γ the inductive step
is given for the extension from Lver to Lctx by taking the empty informational
context Γ = ∅ and a non-empty one Γ′ = {γ}. Non-empty contexts Γ,Γ′ are or-
dered according to an inclusion relation ⊆, indexed by the novel functions added
by the new context: Γ ⊆γn+1 Γ′ iff Γ = {γ1, . . . , γn} for propositions A1, . . . An
and Γ′ = {Γ ∪ γn+1} such that γn+1 := xn+1 7→ An+1 for a new proposition
An+1 and a fresh variable xn+1. Extension of contexts determines the pre-order
on K: when (Γ)Ki, Γ ⊆γn+1

Γ′ and (Γ′)Kj , (Γ)Ki ≤Γ∪γn+1 (Γ′)Kj .
9

The grammar of Lctx is given as follows:

Lctx := φ | > | ⊥ | A ∧B | A ∨B | A ⊃ B | �A | ♦A

The notion of a model for Lctx is formulated by modifying the previous definition
of a model for Lver with the newly defined order among knowledge states:

Definition 4. A model for Lctx is a tuple M ctx = {K,≤γ , v}, where K is
a nonempty set ranging over {(Γ)Ki, (Γ

′)Kj , . . . }; ≤γ is a reflexive ordering

relation over members of K such that if Γ(Ki) and Γ ⊆γ′ Γ′, then (Γ)Ki ≤γ
′

(Γ′)Kj; v is a verification function v : K 7→ 2W .

We shall call M ctx(Ki) a contextual model of knowledge state Ki if and only
if all the members of Ki are true in it; that a formula A is true in M ctx(Ki)
corresponds to the existence of a function that verifies A in (Γ)Ki. A new
inductively generated satisfaction relation to evaluate formulas in Lctx holds,
denoted as Ki �ΓA, which reads: “A is verified in Ki on the basis of information
Γ”. The definitional clauses for connectives of the language are given below with
the extension to � for global validity over all extensions to accessible knowledge
states and ♦ for the counterpart local validity:

C1ctx Ki �Γ φ iff (φ, v((Γ)Ki));

C2ctx Ki �Γ ⊥ iff (A, v((Γ)Ki)) and Kh �∅ ¬A, for some Kh ≤γ Ki;
10

C3ctx Ki �Γ A ∨B iff Ki �Γ A or Ki �Γ B;

C4ctx Ki �Γ A ∧B iff Ki �Γ A and Ki �Γ B;

C5ctx Ki �Γ A ⊃ B iff Ki �Γ A implies Ki �Γ B;

C6ctx Ki �Γ �A iff for all (Γ′)Kj ≥γ (Γ)Ki, it holds Kj �Γ∪γ A;

C7ctx Ki �Γ ♦A iff there is a (Γ′)Kj ≥γ (Γ)Ki such that Kj �Γ∪γ A.

9Notice that in Definition 3, the old ordering ≤ is referred to only in view of the necessary
condition over states with empty contexts preceding a state with a non-empty one.

10The formula Kh �∅ ¬A corresponds to an evaluation (A ⊃ ⊥, vMver (Ki)), for all Ki ≥
Kh. To reduce it to a corresponding evaluation in Mctx, we simply take Γ = ∅.
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The clauses from Lver are here reformulated for �Γ∪γ , with eventually any of Γ
or γ possibly empty. C1ctx says that φ is satisfied in a contextual model for Ki

if there is a verification of φ in Ki with the informational context Γ; by C2ctx a
knowledge state Ki with information Γ is inconsistent if the consistency require-
ment from Definition 3 is not satisfied; C3ctx−C4ctx are standard compositional
clauses; C5ctx says that A ⊃ B is satisfied in an informational model of Ki if
and only if A is verified in (Γ)Ki, then so is B. Modal formulas express the
conditions for validating a formula under extensions of a context Γ: by C6ctx,
if A is verified by any non-empty extension of a (possibly empty) context, then
�A is valid (because it can be verified under any context); by C7ctx, if A is
verified by some non-empty extension of some context Γ′ extending the current
one, then ♦A is valid, i.e. there is some γ on whose basis A is validated (this
formulation does not force consistency of the contextual extension).

Transitivity no longer holds in general, in view of the non-monotonic nature
of the contextual models; symmetry cannot be validated as it would always
require a verification of an assumption (which is not always available) and an
assumption on a construction (which is not always needed). In the follow-
ing we refer to a frame of the language Lctx as a structure including K and
an accessibility relation R among models M ctx of its elements. Properties of
such a frame correspond to properties of the order relation ≤γ among states
{(Γ)Ki, (Γ

′)Kj , . . . } ∈ K. In the following, to simplify the notation, we avoid
the explicit signature of contexts before knowledge states and the notation on
models that identifies them as contextual ones.

Theorem 1 (Reflexivity). Every frame F : 〈K, R〉 for a M ctx model is reflexive.

Proof. If F is reflexive, it means that for every Ki ∈ K, there is a R such that
M(Ki) R M(Ki). We consider the modal cases.

If Ki � �A, then Ki � A, standardly proven on the construction of R in the
canonical model that satisfies axiom T (see e.g. [11, p.120]).

Similarly, the construction of R in the canonical model for T♦ means that if
Ki �A then Ki � ♦A. Now suppose that if Ki � A then Ki 2 ♦A; if so, then
there is a γ such that Ki �γ ¬♦A; then Ki � �¬A, which means that for all
γ’s Ki `γ ¬A and therefore (¬A, vMver (Ki)) so that Ki 2 A, contrary to the
hypothesis.

Theorem 2 (Non-transitivity). Every frame F : 〈K, R〉 for a M ctx model is
non-transitive.

Proof. If F is transitive, then for every Ki,Kj ,Kk ∈ K: if M(Ki) R M(Kj) and
M(Kj) R

′ M(Kk), then M(Ki) R
′′ M(Kk). In other words, if Ki �Γ A, then for

all γ, γ′ and Kj ,Kk such that Ki ≤γ Kj and Kj ≤γ
′
Kk, it holds Kk �Γ∪γ∪γ′

A.
The latter, means actually that Ki �Γ �A. Let now M be a model based on F
such that Ki �Γ A, and for some Ki ≤γ Kj it holds Kj �Γ∪γ ¬A: this satisfies
Kk �Γ ♦¬A for some Kj ≤γ Kk. Such M is not transitive, and neither can F
be.
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Validity for Lctx is contextually restricted:

Definition 5. �ΓA if and only if for all Ki ∈ K, Ki �Γ A.

The Monotonicity Lemma,11 as in Definition 1 is not easily extended to
Lctx. Hereditariness for modal frames is usually obtained either by assuming the
standard definition of the possibility operator, and requiring the condition that
if K � ♦A and K ≤ K ′, then K ′ � ♦A; or by imposing universal quantification
over the pre-order successors in the definitional clause of ♦.12 In Lctx, we restrict
the first clause and explicitely disregard the second solution: hereditariness of
knowledge states holds only with the additional requirement that consistency
holds at the current state and it is preserved by every informational function
extending contexts:13

Lemma 2 (Contextual Monotonicity for Lctx). If Ki �Γ >, and ∀Kj ≥γ Ki

holds Kj �Γ∪Γ′ >, if Ki |=Γ φ then Kj |=Γ′
φ.

A generalized consequence relation �Γ can now be defined for global and
local assumptions (see e.g. [7]) in a unified frame. We shall call global a context
Γ that contains all formulae that are themselves valid in any extension of a
(possibly empty) context:

Definition 6. �Γ is called a global context for Ki iff for all γi := xi 7→ Ai in
Γ and all Γ′ ⊇ Γ it holds �Γ′

Ai.

We shall call local a context Γ that contains some (but not necessarily all)
formulas verifiable in the extension of some (possibly empty or global) context:

Definition 7. ♦Γ is called a local context for Ki iff for some γi := xi 7→ Ai in
Γ, there is a Γ′ ⊇ Γ such that �Γ′

Ai.

Let us consider our language Lctx restricted to the set of formulas Lglob :
{A |��ΓA}; �Lglob will be therefore the consequence relation construed by the
satisfaction clauses of Lctx with only global contexts;

C1glob Ki ��Γφ iff for every γ, it holds Ki �Γ∪γ φ;

C2glob Ki ��Γ >;

C3glob Ki ��Γ A ∨B iff Ki ��Γ A or Ki ��Γ B;

C4glob Ki ��Γ A ∧B iff Ki ��Γ A and Ki ��Γ B;

C5glob Ki ��Γ A ⊃ B iff Ki ��Γ A implies Ki ��Γ B.

11See [25], p.22.
12In the corresponding syntactic translation, the latter solution has the well-known effect

of eliminating the axiom for distribution of ♦ over ∨ and the one for the impossibility of
absurdum. This is the way to admit inconsistency in [16].

13As by clause C2ctx, not every Ki is necessarily consistent in view of a context Γ.
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We denote by ��Γ A a semantic consequence of every Ki with global context
�Γ. By definition, the form of the semantic consequence of a global context will
be �A.14 Notice that the condition on validity from a global context is satisfied
also by a formula satisfied under the empty context in Lctx. An axiomatization
of Lglob corresponds to that of S4, with distribution of � over implication, axiom
T , iteration and the Necessitation Rule. A model Mglob is in turn a model of
Lctx where all formulas of the knowledge state considered are formulas of Lglob
and they are all true in it.

Definition 8. A model for global contextual knowledge is a tuple Mglob =
{K,≤�γ , v}, where K is a nonempty set ranging over {(�Γ)Ki, (�Γ′)Kj , . . . };
≤�γ is a reflexive and transitive ordering relation over members of K such
that if �Γ ⊆γ′ �Γ′, then (�Γ)Ki ≤γ

′
(�Γ′)Kj; v is a verification function

v : K 7→ 2W .

Correspondingly, in the frame F the accessibility relation R on K will satisfy
reflexivity and transitivity.

Theorem 3. For every A ∈ W, ��Γ A iff �S4 A

Proof. By induction on A, relying on the fact that A is intuitionistically deriv-
able if for every propositional atom φ in A it holds �S4 �φ and on the obvious
inclusion of Lglob in a language of modal intuitionistic logic, given that it cor-
responds to Lver extended by an intuitionistically admissible �-operator. The
only interesting step is in the contextual construction:

• Left-Right: ��Γ A⇒�S4 A:

– for atomic �∅ A, by Definition 6 it follows ��Γ �A and so �S4 A;

– construction by connectives is standardly preserved;

– for ��Γ A, infer �
∧

Γ ⊃ A; then �φ for every φ ∈
∧

Γ ⊃ A by
Definition 6; so �S4 A.

• Right-Left: �S4 A⇒��Γ A.

– If valid in S4, every propositional atom φ ∈ A can be prefixed by a
�; then �∅ A or ��Γ A.

The corresponding local version of semantic consequence is formulated as
follows:

Definition 9. For every A ∈ W, Ki �♦Γ A iff for some γ it holds Ki �Γ∪γ A.
We denote by �♦ΓA a semantic consequence of every Ki with local context ♦Γ.

14From a syntactic point of view, this interpretation deals with the necessitation of undis-
charged assumptions; by consequence from a global context, necessitation is preserved only
for assumptions closed under substitution. See [2] for the corresponding formulation of the
�-Introduction Rule in Natural Deduction.
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AXIOMS
Axioms of IPL
K� �(A ⊃ B) ⊃ (�A ⊃ �B)
K♦ ♦(A ⊃ B) ⊃ (♦A ⊃ ♦B)
T� �A ⊃ A
T♦ A ⊃ ♦A
RULES
Modus Ponens
Uniform Substitution
Necglob `�Γ A⇒ �Γ ` �A
Weakglob �Γ ` A⇒ �Γ,Γ′ ` A

Figure 1: The system cKT�♦

Consequence from a local context �♦Γ is required to preserve the ♦ opera-
tor.15

3 The Calculus cKT�♦

In the following we design the calculus cKT�♦, sound with respect to the se-
mantic local/global consequence relation from the previous section. It amounts
to a fragment of the standard constructive S4.16 cKT�♦ includes the possibility
version of axiom T , which expresses the fact that a derivable formula is possibly
true; standardly, the necessity version of this axiom says that a necessarily true
formula is derivable. The Necessitation rule (` A⇒ ` �A) is not admissible for
derivability relations instantiated by a non-empty local context ♦Γ, i.e. where
our language is generalized to accommodate the locally valid derivability rela-
tion. On the other hand, Necessitation still holds under a global context, by
a rule we call Necglob; also weakening holds in the same form by a rule called
Weakglob. These rules also have appropriate counterparts with Γ = {∅}. Possi-
bility is unrestricted, so that the axiom ¬♦⊥ is no longer validated; it is possible
to define the evaluation function for ♦A for any A, except when A is valid in a
global state in which �(¬A ⊃ ⊥) is validated. tThere is therefore a conceptual
priority of consistent states over those where inconsistency are admissible so
that there must be at least one consistent state, and there can be one or more
inconsistent ones. Figure 1 presents the basic axiomatization of cKT�♦.

Derivability from a global context for cKT�♦ is easily defined:

Theorem 4 (Derivability from a global context). �Γ`�A, iff ∅`
∧

Γ ⊃ A.

15See again [2] for the equivalent remark on the ♦-Elimination Rule for Natural Deduction,
with the additional requirement that the extended context be empty or global in order to
reflect closure under substitution.

16See [2] for the language of CS4. A natural deduction formulation of our calculus corre-
sponds to the set of rules for the type-theoretical system introduced in [22], which includes
appropriate introduction and elimination rules for both � and ♦.
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Proof. By induction on the construction of any formula A ∈ Γ:

• Left-Right: By T� and appropriate applications of ⊃ axioms;

• Right-Left: By NecGlob and appropriate applications of ⊃ axioms.

This notion of derivability has a counterpart in a necessitation version of the
Deduction Theorem:17

Theorem 5 ((Global) Deduction Theorem). If Γ,�A ` B then Γ ` �(A ⊃ B).

Proof. By induction.

1. if B ≡ A:

• �(A ⊃ A) by Axiom A ⊃ A and Necglob;

• Γ ` �(A ⊃ B) by Weakglob and Sub.

2. if B ∈ Γ:

• Γ ` B;

• ` B ⊃ (A ⊃ B) (Axiom);

• ` �(B ⊃ (A ⊃ B)) by Necglob;

• ` �B ⊃ �(A ⊃ B) by K�;

• Γ ` �(A ⊃ B) by MP and Weakglob.

3. if B is an axiom: as above;

4. if the last rule is Necglob:

• if `�A B, then �A ` �B by Necglob;

• A ⊃ (B ⊃ A) (Axiom);

• ` �(A ⊃ B) by MP.

5. if the last rule is MP and none of the premises is obtained by Necglob:

• A is among the assumptions in ∆ for Γ = {∆,∆′}

∆, A ` C ∆′ ` C ⊃ B
∆,∆′, A ` B

• ∆ ` �(A ⊃ C) by hypothesis step;

• (B ⊃ C) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)) (Axiom);

17For the validity of the Deduction Theorem in Modal Logic see [7] and [10]. The present
version differs from the usual version with global assumptions as the interpretation of the �
operator is intended as expressing assertion conditions.
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• (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C)) (Axiom);

• �(A ⊃ C) ⊃ (�(C ⊃ B) ⊃ �(A ⊃ B)) by MP;

• ∆ ` �(C ⊃ B) ⊃ �(A ⊃ B) by MP;

• Γ ` �(A ⊃ B) again by MP and Weakglob.

• A is among the assumptions in ∆′ for Γ = {∆,∆′}

∆ ` C ∆′, A ` C ⊃ B
∆,∆′, A ` B

• ∆′ ` �(A ⊃ (C ⊃ B)) by hypothesis step;

• (A ⊃ (B ⊃ C)) ⊃ (B ⊃ (A ⊃ C)) (Axiom);

• ∆′ ` �(C ⊃ (A ⊃ B)) by MP;

• Γ ` �(A ⊃ B) by K�.

6. The last rule is MP and one of the premises is obtained by Necglob:

• Case 1:

` C
Necglob,Weakglob

∆, A ` �C ∆′ ` �C ⊃ B

∆,∆′ ` B

` B ⊃ (A ⊃ B)
Necglob` �B ⊃ (A ⊃ B)

Γ ` �(A ⊃ B)

• Case 2:

` C
Necglob,Weakglob

∆ ` �C ∆′, A ` �C ⊃ B

Γ, A ` B

∆′ ` �A ⊃ �(C ⊃ B)
Necglob

∆′ ` �C ⊃ �(A ⊃ B)

Γ ` �(A ⊃ B)

Local derivability takes the following form:

Theorem 6 (Derivability from a local context). ♦Γ ` ♦A, iff there exists some
finite Γ′ ⊆ Γ such that Γ `

∧
Γ′ ⊃ A.

Proof. By induction, assuming by definition that for at least one A ∈ Γ it does
not hold `∅ A. Then proceed by contradiction on the result of Theorem 4
applying at least once T♦.

The characterization of cKT�♦ with respect to Lcc is provided by the fol-
lowing theorem:18

18In general, as for the theorem here stated, the consequence relation sign should always be
indexed as �Lcc , with an appropriate characterization of the nature of context used, as in �∅

or �♦Γ. In order to simplify the notation, where possible we will in general skip the former
index.
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Theorem 7. For every set of formulae Γ and formula A, it holds Γ `cKT�,♦
A

iff either �∅
∧

Γ ⊃ A, or ��Γ A, or �♦Γ A.

Proof. Soundness.

1. Γ `cKT�,♦
A implies �

∧
Γ ⊃ A is not problematic at all; the proof simply

goes on the length of the derivations starting from Γ = {∅}, where it
concerns only the preservation of validity of axioms of IPL and the related
inference rules; for Γ non-empty it shows a reduction to the implication ⊃
from the conjunction of formulae in Γ.

2. For Γ `cKT�,♦
A implies ��ΓA one has only to show that modal axioms

for � together with Necglob preserve validity. Axioms K� and T� are
valid because of the frame condition on the transitivity and reflexivity
of ≤γ with global assumptions. Necglob allows the further reduction to
boxed formulas.

3. Γ `cKT�,♦
A implies �♦Γ A is the non-trivial part of the proof. It holds

by the cases applying derivability from a local context given in Theorem
6, by which one makes sure that ♦Γ `cKT�,♦

♦A means that ∃Γ′ such
that Γ `cKT�,♦

∧
Γ′ ⊃ A. If Γ cannot be exhausted, axiom T♦ is invoked:

then for the corresponding model it holds Ki �Γ ♦A. The reduction to
case 2. happens by application of Necglob on every subset Γ′ ⊆ Γ, up to
exhaustion of extensions �♦Γ,∅ ♦A. For all non modal formulas in Γ, a
straightforward reduction to case 1. applies.

Completeness. The proof for the cases of non-modal formulas is straightfor-
ward and can happen entirely with respect to Mver models with a standard
model existence theorem. The case of modal formulae can be distinguished
for derivability from boxed formulas (or without assumptions) and derivabil-
ity from locally valid assumptions (♦-prefixed formulas). The former case is
straightforward by the use of the following lemma:19

Lemma 3. For any set of formulas Γ and global context �Γ

1. If ��Γ⊆γ�Γ′
A then ��(Γ∪Γ′) �A;

2. If �(Γ ∪ Γ′) `cKT�♦
�A then Γ,Γ′ `cKT�♦

A.

Proof. This proof is entirely similar to the one for CK,20 adapted for the �
operator and with respect to the contextual extension function and the use of
axiom T� and Necglob.

1. Assume ��Γ⊆γ�Γ′
A. Given a model M in which Ki � �Γ and Ki � �Γ′

hold, we must show that Ki �Γ,Γ′
�A. We then need to start from the

generated submodel of M at Ki that satisfies �Γ; this model will have all

19See [16], Lemma 1.
20See [16].
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the truths derivable from Γ and in particular Ki ��Γ Γ′, so that by Necglob

the model will also satisfy �Γ′. Then by definition of the � operator,
these truths are valid at all states reachable with finite extensions from
the model generated at Ki, so from our assumption we can infer Ki � �A.

2. Assume �(Γ ∪ Γ′) `cKT�,♦
�A. Then, by Theorem 4, it follows that for

any ∆ ⊂ Γ, ∅ `cKT�,♦

∧
∆ ⊃ A. This implies ∆ `cKT�,♦

A and so
Γ `cKT�,♦

A.

Using this Lemma, an appropriate Model Existence Theorem becomes obvi-
ous for all cases including �. In the following we shall focus on how to obtain
completeness for the more interesting case ��Γ⊆γ♦Γ′

♦A implies Γ,Γ′ `cKT�,♦
A.

To this aim, we shall pursue the same strategy by using a counterpart of Lemma
3:

Lemma 4. For any set of formulae Γ, global context �Γ and local context ♦Γ

1. If ��Γ⊆γ♦Γ′
A then �♦(Γ∪Γ′) ♦A;

2. If ♦(Γ ∪ Γ′) `cKT�,♦
♦A then Γ,Γ′ `cKT�,♦

A.

Proof. Adapted from the proof of Lemma 3:

1. Assume ��Γ⊆γ♦Γ′
A. Given a model M in which Ki � �Γ and Ki � ♦Γ′

hold, we must show that Ki ��Γ,♦Γ′
♦A. We then need to start from the

generated submodel of M at Ki that satisfies both �Γ and ♦Γ′, which
restricts the set of all states originally reachable from Ki by functions
≤Γ to those reachable at Kj by functions ≤γ Γ′: whereas for any such
function γ it is the case that Ki �γ Γ, it is not the case for all γ that
Ki �γ Γ′. But then from our assumption not for all γ holds that Ki �γ A,
and hence Ki �♦(Γ∪Γ′) ♦A by definition of the ♦ operator.

2. Assume ♦(Γ ∪ Γ′) `cKT�,♦
♦A. Then, by Theorem 6, it follows there are

∆ ⊂ Γ, ∆′ ⊂ Γ′ and φ ∈
⋃
{Γ,Γ′} such that φ `cKT�,♦

∧
∆ ∧

∧
∆′ ⊃ A.

This implies φ,Γ,Γ′ `cKT�,♦
A and so Γ,Γ′ `cKT�,♦

A.

Now an appropriate formulation of a finite model construction for this modal
case will be of the form:

Theorem 8 (Model Existence for ♦). If ♦Γ 0cKT�,♦
♦A, then there is a model

M ctx = {K,≤γ , v} and a state Ki ∈ K such that Ki � ♦Γ and Ki 2Γ ♦A.

Proof. The canonical model M that falsifies ♦A under Γ necessarily verifies
Kj �Γ≤γ ¬A, for any function γ and any Kj ≥γ Ki. Hence, Kj �Γ �¬A, which
makes ¬A valid at any state reachable from Ki. Now the construction of finite
model appropriate for cKT�,♦ including the canonical model for ♦ will have the
following cases:
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1. Assume ♦A ∈ Γ. Then for all Γ ⊆γ Γ′ it holds ♦A ∈ Γ′. This makes
�Γ `cKT�,♦

♦A consistent. If not, there is a γ′ and Γ′ s.t. �Γ ⊆γ′

Γ′ 0cKT�,♦
♦A and so v,Kj �Γ∪Γ′

�¬A for some Ki. But then necessarily
Γ 2 ♦A against the hypothesis.

2. Assume ♦A /∈ Γ. Then for some Γ ⊆γ Γ′ it holds ♦A ∈ Γ′ and �Γ,♦A
is consistent, since if �Γ `cKT�,♦

♦A is admissible, by closure ♦A ∈ Γ
becomes valid, contradicting the hypothesis. Therefore, there must be a
maximal Γ such that �Γ,♦A � >: by definition, Γ, A and for some γ′

such that Γ, γ′ it holds Γ 2γ′
A.

Now the proof of Completeness reduces to the following argument: Suppose
�Γ,♦Γ′ 0cKT�,♦

♦A; by Theorem 8 it follows �∅ ♦(Γ ∪ Γ′) and 2♦(Γ∪Γ′) ♦A.

Though it is possible to prove model existence also with respect to the ex-
tension induced by Lctx, the frames for its models remain intransitive, which
induces a basic restriction on the finite model property.

Theorem 9 (Finite Model). � A iff M � A for all finite Mglob models.

Proof. To show that the finite model property can be obtained only by reduction
to the Lglob part of the language, it is enough to show the following:

• for KT� there is a standard finite model property;

• by admitting the intransitive relation over models defined by axiom T♦, a
basic condition is lost for a finite filtration model.

Finiteness can be given therefore only for a maximal extension of the model,
which reduces to a model of Lglob. We refer in the following to the filtration
technique presented in [9, §3.4], to transform a Kripke structure M in which
a formula A is true, to a finite counterpart of the structure uniformly with
respect to A. The same technique is applied to prove the finite model property
and decidability for CK in [16], which we exploit here to our purposes.

Let us consider some M ctx = {K,≤γ , v} and the set T (Ki) of subformulas
of A valid at some Ki and the set F (Ki) of subformulas of A refutable in some
successor state of Ki. The two finite sets T (Ki) and F (Ki) characterize the state
Ki in M . By definition of our accessibility relation, it holds �T (Ki) ⊇ T (Kj),
where �T (Ki) refers to the necessitated version of all formulas in T (Ki). Let us
notice that it is not the case that F (Ki)∩T (Kj) = ∅: i.e., the set of subformulas
of A refuted at Ki might intersect the set of truth at Kj accessible from the
former. This can happen in particular if an instance function ≤γ makes an
extension Γ such that Ki 2 A and Kj �Γ A.

Let us now define a filtration of M with respect to the finite set of all pairs
T (Ki), F (Ki) of A in M , call it Ψ(A): M|A = {Ψ(A),≤γ|A, v|A}. We can now
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show that the filtration model M|A does not satisfy the following condition:
Ki � φ if and only if T (Ki), F (Ki) �|A φ when φ ⊆ A and φ is of the form ♦B.
This is evident by the mentioned fact that for Ψ(A) it holds F (Ki)∩T (Kj) 6= ∅
for some φ ⊆ A of the form ♦B, which implies that the filtration model does not
need to provide the same set of formulas neither with respect to the ordering ≤γ|A
nor for the relation ≤γ|A of Lctx. Hence, it is not the case that for all formulas

♦B ⊆ A in T (Ki) ∈ Lctx, it holds Ki � A iff T (Ki), F (Ki) �|A ♦B.
But for the model existence theorem 8, there must be a maximal Γ such that

�Γ,♦A � > and for some γ′ such that Γ ≤ γ′ it holds Γ 2γ′
A. So we can pick

up the filtration model up to such Γ, instantiate its �Γ counterpart and apply
Necglob. This will be a model of KT� and so a Mglob model.

Theorem 10 (Decidability). Lglob is the language of the decidable fragment of
the theory cKT�,♦ whose class of models is reflexive and transitive.

Proof. Immediate from soundness and completeness properties expressed by
Theorem 7 and the restricted finite model property of Theorem 9.

3.1 Translation to the two-variable monadic fragment

The decidability result shown above can be reduced to standard decidability
results for intuitionistic modal logics. In fact, it is well-known from [8] that
given the smallest set that contains all first-order atoms and is closed under
boolean connectives, formulas containing at most two free or bound variables
and quantifiers, also known as the two-variable guarded fragment, when adding
transitive relations, it becomes undecidable, while the translation of (multi-
)modal propositional logics K4, S4, S5 to the same fragment of first-order logic
is decidable. In [1], these results are applied to intuitionistic modal logic: it
shows that the translation of the standard interpretation of modalities holds for
the same guarded fragment and that such a translation is decidable for a logic
that adds definable closure conditions on the accessibility relation of models.
The translation proves, based on the result given in [8], decidability for the
class of models with reflexive transitive guards.

Theorem 10 establishes the same result for the class of transitive and reflex-
ive models, based on the restricted model-existence for Lglob. In order to explain
in more detail how the extension to our ♦ operator, and thus the inclusion of
Lctx models, induces indecidability over the reflexive, transitive and symmetryc
models, we start from presenting the translation of our satisfiability clauses to
the two-variable guarded fragment of first-order logic without equality. In the
standard translation, a first order formula tiφ (with i in one of the two trans-
lation variables x, y) contains the free variable i which represents the state at
which φ is evaluated in the model. It can be proven that for any intuitionistic
modal formula A and model M in the class of intuitionistic modal models, if a
formula is valid in a model at a certain point in the appropriate structure, then
the corresponding first-order translation will be valid in the same model. Hence
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the satisfiability problem for the two-variable guarded fragment and for intu-
itionistic modal logic is decidable over the same class of models. Decidability
for intutionistic modal logics with no conditions follows from decidability of the
monotone two-variables guarded fragment with reflexivity and transitivity and
the expressibility in the same fragment of the upward persistency for propo-
sitional variables occuring in formulas. Decidability of the guarded fragment
with transitive guards is proven in [29] and for the two variable case in [12].
Decidability of reflexivity-and-transitivity as one closure condition on relations
in a formula obtained by translation of an intuitionistic modal formula into the
guarded two-variable fragment of first-order logic is proven in [1].

In our translation, we set co-inductively (we skip the obvious inductive def-
inition on the atom φ) the evaluation of formulas conditionally on the formula
representing our contextual information in Γ. We indicate the contextually valid
formula as [φ]ψ and obtain an appropriate translation for φ and ψ with the same
variable. (In the following ∼ and ⊃ are classical connectives).

txφ := φ(x)

tx¬A := ∀y(xRy(tyA→ ⊥))

tx[φ] :=∼ tx¬φ

tx[φ]ψ := txφ ⊃ ψ(x)

tx[A′]¬A := txA
′ ⊃ ∀y(xRy(tyA→ ⊥))

tx[A′]A ∧B := txA
′ ⊃ (txA ∧ txB)

tx[A′]A ∨B := txA
′ ⊃ (txA ∨ txB)

tx[A′]A→ B := txA
′ ⊃ (tx¬A ∨ txB)

tx[A′]�A := txA
′ ⊃ ∀y(xRy ⊃ tyA)

tx[A′]♦A := txA
′ ⊃ ∃y(xRy ∧ tyA)

We have seen in Section 2.2 how the frames defined over the knowledge set
and the accessibility relation among those states are reflexive but intransitive,
by which one means that ¬∀x, y, z(xRy ∧ yRz → xRz). In the translation,
transitivity means that if txφ ⊃ txψ and txψ ⊃ txξ, then txφ ⊃ ξ; now take φ to
be of the form [φ]♦ψ; then the first clause in the translation above requires that
∃y(xRy ∧ tyψ); given another relation ∃y(xRz ∧ tz¬ψ), transitivity is falsified.

4 Conclusions

The system introduced via the semantics Lcc and the axiomatic setting of
cKT�♦ is inspired by applications of logics for modeling knowledge processes in
the context of exchange of unverified or uncertain information. A multi-modal
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type system inspired by similar principles, with signatures on verification func-
tions for formalizing trusted communications of uncertain information is pre-
sented in [23]. A different application is given by programming languages that
use contextual verification methods in distributed and staged computation, see
[24].
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