
Tutorial on Inconsistency-Adaptive Logics

Diderik Batens∗

Centre for Logic and Philosophy of Science
Ghent University, Belgium

Diderik.Batens@UGent.be

August 19, 2014

Abstract

This paper contains a concise introduction to a few central features
of inconsistency-adaptive logics. The focus is on the aim of the program,
on logics that may be useful with respect to applications, and on insights
that are central for judging the importance of the research goals and the
adequacy of results. Given the nature of adaptive logics, the paper may
be read as a peculiar introduction to defeasible reasoning.

1 Introduction

Adaptive logics are formal logics but are not deductive logics. They do not
define the meaning of logical symbols and are certainly not in competition for
the title ‘standard of deduction’—that is: for delineating deductively correct
inferences from incorrect inferences and from non-deductive inferences. To the
contrary, adaptive logics explicate reasoning processes that are typically not
deductive, viz. defeasible reasoning processes.

By a logic I shall mean a function that assigns a consequence set to any
premise set. So where L is a language schema, with F as its set of formulas
and W as its set of closed formulas, a logic is a function ℘(W) → ℘(W). The
standard predicative language schema, viz. that of CL (classical logic), will be
called Ls; Fs its set of formulas and Ws its set of closed formulas.

A logic is formal iff its consequence relation is defined in terms of logical
form. Some people identify this with the Uniform Substitution rule,1 but that
is a mistake because Uniform Substitution defines just one way in which a
logic may be formal. Let me quickly spell out a different one. A language or
language schema L will comprise one or more sets of non-logical symbols, for
example sentential letters, predicative letters, letters for individual constants,
etc. Consider all total functions f that map every such set to itself. Extend f
to formulas, f(A) being the result of replacing every non-logical symbol ξ in A

∗I am indebted to Mathieu Beirlaen for careful comments on a previous draft.
1Uniform Substitution is rule of propositional logic. Predicative classical logic is tradition-

ally axiomatized in terms of a finite set of rules and axiom schemata, rather than axioms. So
no substitution rule is then required. Substitution rules in predicate logic have been studied
[55] and the outcome is very instructive.
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by f(ξ). A logic L is clearly formal iff the following holds: A1, . . . , An `L B iff,
for every such f , f(A1), . . . , f(An) `L f(B).

Logics may obviously be presented in very different ways. Formal logics are
usually presented as sets of rules, possibly combined with the somewhat special
rules that are called axioms (and axiom schemata). Apart from many types
of ‘axiomatizations’, logics are standardly characterized by a semantics, which
has a rather different function. Deductive logics are typically Tarski logics.
This means that they are reflexive (Γ ⊆ CnL(Γ)),2 transitive (if ∆ ⊆ CnL(Γ),
then CnL(∆) ⊆ CnL(Γ)), and monotonic (CnL(Γ) ⊆ CnL(Γ ∪ Γ′) for all Γ′).
Another interesting property, which is required if a logic has to have static
proofs,3 is compactness (if A ∈ CnL(Γ) then there is a finite Γ′ ⊆ Γ such that
A ∈ CnL(Γ′)).

This paper follows several conventions that I better spell out from the start.
Classical logic, CL, will be taken as the standard of deduction. This is a purely
pragmatic decision, not a principled one. Next, all metalinguistic statements are
meant in their classical sense. More specifically, the metalinguistic negation will
always be classical. So where I say that A is not a L-consequence of Γ, I rule out
that A is a L-consequence of Γ. Similarly, I shall use “false” in its classical sense;
no statement can be true as well as false in this sense. An inconsistent situation
will be one in which both A and ¬A are true, not one in which A is both true
and false. There is a rather deep divide between paraconsistent logicians on
these matters. There are those who claim that ‘the true logic’ is paraconsistent
and that it should always be used, in particular in its own metalanguage. Some
of these even take it that classical negation is not coherent, lacks sense, and
the like. Other paraconsistent logicians, with whom I side, have no objections
against the classical negation or against its occurrence in the same language as
a paraconsistent negation. This is related to the fact that they are pluralists,
either in general or with respect to contexts. They might argue, for example,
that consistent domains, like most paraconsistent logics themselves, are more
adequately described by CL than by a paraconsistent logic.

A warning of a different kind is that the materials discussed in the subsequent
pages have been studied at the predicative level. That I shall offer mainly
propositional toy examples has a pedagogical rationale.

The last general survey paper that I wrote on adaptive logics was [19]. Mean-
while new results were and are being obtained, some of them are still unpub-
lished. This may be as expected, but one aspect needs to be mentioned from
the start. Quite a group of people have contributed to adaptive logics and have
published in the field, many more than I shall mention below. While I was
always eager to retain the unity of the domain, not everyone attached the same
value to unification. Such a situation was obviously very useful to prevent that
interesting things are left out of the picture—in principle the aim is to integrate
directly or under a translation all potentially realistic first order defeasible rea-
soning forms. As we shall see, this integrating frame is the standard format.
Little changes were introduced over the years in an attempt to make it as em-
bracing as possible. While most were improvements or clarifications, there was
one development that I now consider as misguided. In the end it resulted in the
systematic introduction of a set of new symbols to any language. These new

2The L-consequence set of Γ is defined as CnL(Γ) =df {A | Γ `L A}.
3Just think about usual proofs. Every formula in the proof is a consequence of the premise

set and every proof may be extended into a longer proof by applications of the rules.
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symbols had their CL-meaning, whence they were called classical. They were
added even if they duplicated existing symbols. In the second half of section
11, I shall discuss the idea of adding classical symbols and the reasons for not
adding them any more today.

The present paper is by no means a summary of all available results on
adaptive logics. It merely provides an introduction to the central highlights.
Moreover, this paper is explicitly intended as an introduction to inconsistency-
adaptive logics, viz. adaptive logics that handle inconsistency. They concern
compatibility, inductive generalization, abduction, prioritized reasoning, the dy-
namics of discussions, belief revision, abstract argumentation theory, deontic
logic, and so on. Most adaptive logics in standard format are not inconsistency-
adaptive and have no connection to paraconsistency. Nevertheless, the present
paper can also be read as an introduction to adaptive logics in general, with spe-
cial attention to handling inconsistency and with illustrations from that domain.
The reference section is not a bibliography of inconsistency-adaptive logics.

2 The Original Problem

Consider a theory T that was intended as consistent and was given CL as its
underlying logic: T = 〈Γ,CL〉, in which Γ is the set of non-logical axioms of T
and CnCL(Γ) is the set of theorems of T , often simply called T . Suppose, how-
ever, that T turns out to be inconsistent. There are several well-documented
examples of such situation, both in mathematics (Newton’s infinitesimal calcu-
lus, Cantor’s set theory, Frege’s set theory, . . . ) and in the empirical sciences
[30, 42, 43, 46, 50, 51, 52, 61]. Actually, it is not difficult to find more examples,
especially in creative episodes, for example in scientists’ notes.

What scientists do in such situations, is look for a consistent replacement for
T . As history teaches, however, they do not look for a consistent replacement
from scratch. To the contrary, they reason from T , trying to locate the problems
in it. This reasoning obviously cannot proceed in terms of CL because CL
validates Ex Falso Quodlibet: A,¬A `CL B. So the theory T , viz. its set of
theorems CnCL(Γ) is trivial; it contains each and every sentence of the language.
If CL is the criterion, all one can do is give up the theory and restart from
scratch; but scientists do not do so. The upshot is that one should reason
about T in terms of a paraconsistent logic, a logic that allows for non-trivial
inconsistent theories. Note that any such logic has a semantics that contains
inconsistent models—models that verify inconsistent sets of sentences.

It is useful to make a little excursion at this point because many people
underestimate the difficulties arising in inconsistent situations. Time and again,
people argue that one should figure out where the inconsistency resides and
next modify the theory in such a way that the inconsistency disappears. They
apparently think that it is easy to separate the consistent parts of a theory
from the inconsistencies. Next, if they are very uninformed, they will think
that one may choose one half of the inconsistency (or inconsistencies) and add
that to the consistent part. If they are a bit better informed, they will realize
that a conceptual shift may very well be required, that the new consistent theory
should only contain the important statements from the consistent parts, or even
a good approximation of them, and should only contain an approximation of
one of the ‘halves’ of the inconsistencies. What is wrong with this reasoning,
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even with the sophisticated version, is that it is in general impossible to identify
the consistent parts of a predicative theory. There is no general positive test
for consistency. Being a consistent set of predicative statements is not semi-
decidable. The set of consistent subsets of a set of predicative statements is
not semi-recursive. So there is no systematic method, no Turing machine, that
is able to identify an arbitrary consistent set as consistent, independent of the
number of steps that one allows the Turing machine (or the person who applies
the method) to take. So the reasoning from an inconsistent theory can only be
explicated in terms of a paraconsistent logic.

Moving from CL to a paraconsistent logic has some drastic consequences.
Not only Ex Falso Quodlibet, but many other rules are invalidated. Which rules
will be invalidated will depend on the chosen paraconsistent logic. If one chooses
a compact Tarski logic in which negation is paraconsistent but in which all other
logical symbols have the same meaning as in CL, then Disjunctive Syllogism and
several other rules are definitely invalidated. Incidentally, the weakest compact
Tarski logic in which negation is paraconsistent but not paracomplete4 and in
which all other logical symbols have their CL-meaning is CLuN, to which I
return in Section 3.

Let us first have a look at Disjunctive Syllogism (or rather at one of its
forms), for example A∨B,¬A/B. Reasoning about the classical semantics one
shows: if A ∨ B and ¬A are true, then B is true. Here is one version of the
reasoning.

1 A ∨B and ¬A are true supposition
2 A ∨B is true from 1
3 ¬A is true from 1
4 A is true or B is true from 2
5 A is false from 3
6 B is true from 4 and 5

Reasoning about the paraconsistent semantic leads to a very different result
because 5 is not derivable from 3. Indeed, both A and ¬A may be true in a
paraconsistent model. If that is the case, however, then both A∨B and ¬A are
true even if B is false. So there are models in which A∨B and ¬A are true and
B is false.

Remember that we were considering CLuN and paraconsistent extensions
of it. We have seen that Disjunctive Syllogism is invalid in CLuN. Moreover,
as Addition (in particular the variant A/A∨B) is valid, extending CLuN with
Disjunctive Syllogism would make Ex Falso Quodlibet derivable, whence we
would be back at CL. Other CL-rules are also invalid in CLuN, but CLuN
may be extended with them. Double Negation is among those rules, for example
the axiom ¬¬A ⊃ A and also its converse. If A is false, ¬A is bound to be true,
but ¬¬A may still be true also. So some paraconsistent models verify ¬¬A
and falsify A. Although ¬¬A ⊃ A is invalid in CLuN, extending CLuN
with it results in a paraconsistent logic. This holds for many CL-theorems, for
example ¬(¬A ∧ ¬B) ⊃ (A ∨B). However, extending CLuN with several such
CL-theorems may again result in CL.

4A logic L is paracomplete (with respect to a negation ¬) iff some A may false together with
its negation ¬A; syntactically: iff there are Γ, A and B such that Γ, A `L B and Γ,¬A `L B,
but Γ 0L B.
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3 Paraconsistent Tarski Logics

The basic paraconsistent logic CLuN was already mentioned in the previous
section. It is obtained in two steps. First, full positive logic CL+ is retained.5

So if A1, . . . , An `CL+ B then A1, . . . , An `CLuN B. Next, for the negation,
Excluded Middle (` A∨¬A, which is contextually equivalent to ` (A ⊃ ¬A) ⊃
¬A) is retained, but Ex Falso Quodlibet is not. In the context of CL+, Excluded
Middle together with Ex Falso Quodlibet define the classical negation.

That CLuN contains (all inferences of) CL+ warrants that, for example,
¬p `CLuN q ⊃ (¬p ∧ q) because A `CL+ B ⊃ (A ∧ B). This is because CL+

theorem schemata hold for all formulas, formulas of the form ¬A included.
However, CL+ does not have any effect within such formulas, in other words
within the scope of a negation symbol. As a result of this, Replacement of
Equivalents is invalid: `CLuN p ≡ (p ∧ p) and `CLuN p ≡ p but 0CLuN ¬p ≡
¬(p∧p). For the same reason, Replacement of Identicals is invalid: a = b `CLuN

Pa ≡ Pb but a = b 0CLuN ¬Pa ≡ ¬Pb. It is easy to extend CLuN with
Replacement of Identicals.

In the previous section, I referred several times to CLuN-models. The reader
may wonder what these models precisely look like. For all that was said until
now, the CLuN-semantics is indeterministic. Excluded Middle is retained,
vM (¬A) = 1 whenever vM (A) = 0, but the converse obviously cannot hold
because, if it did, Ex Falso Quodlibet would be valid. It is not difficult to restore
determinism and the method is interesting because it can be applied rather
generally. Two functions play an important role in connection with models.
The assignment v is part of the model itself: M = 〈D, v〉.6 The assignment
fixes the ‘meaning’ of non-logical symbols. Next, the valuation vM fixes the
‘meaning’ of logical symbols. A decent semantics presupposes a complexity
ordering < which is such that if A < B, then all non-logical symbols that
occur in A also occur in B. If the semantics is deterministic, the valuation
function defines the valuation value vM (A) in terms of the assignment function
and in terms of valuation values vM (B1), . . . , vM (Bn) such that B1 < A, . . . ,
Bn < A. So every valuation value vM (A) is a function of assignment values of
formulas B such that B < A and of non-logical symbols that occur in those B.
Actually, a deterministic semantics is the standard. If two models are identical
M = 〈D, v〉 = 〈D′, v′〉 = M ′, whence D = D′ and v = v′, then they better
verify the same formulas. If they don’t, then we should describe a semantics
in terms of model variants rather than models. Nevertheless, indeterministic
semantic systems have been around for more than thirty years, never caused
any confusion, and were the subject of several interesting systematic studies
[3, 4, 5, 6].

The official deterministic semantics for CLuN is obtained from the indeter-
ministic one by replacing the clause “if vM (A) = 0, then vM (¬A) = 1” by

vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = 1 .

Obviously, for this to work, v needs to assign a value to formulas of the form
¬A. Note that vM (¬A) is still not a function of vM (A) in the deterministic
CLuN-semantics. Determinism does not entail truth-functionality.

5CL+ is like CL except that axioms and rules (in the semantics clauses) in which occurs
a negation sign are removed.

6Names and notation may obviously be different and the model may be more complex.
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A useful observation is the following. Precisely because, in the two-valued
semantics of paraconsistent logics, vM (¬A) is not a function of vM (A), the
truth-value of ¬A depends on information not contained in the truth-value of
A. Information of this type must naturally be conveyed by the assignment
v. Indeed, a model itself, viz. M = 〈D, v〉, represents a possible situation (or
possible state of the world, etc.), whereas the valuation describes the conventions
by which we define logical symbols in order to build complex statements—
formulas at the schematic level—that enable us to describe the situation. So
all information should obviously come from the model itself—the situation, the
world, or however you prefer to call it. Moreover, in order to handle not only
negation gluts, viz. inconsistencies, but gluts and gaps with respect to any logical
symbol, one better lets the assignment map every formula of the language to
the set of truth values {0, 1}.7

Incidentally, the view on models presented in the previous paragraph throws
some doubt on claims to the effect that classical negation is not a sensible logical
operator, among other things because it would be tonk-like. Unless a different
approach to logic and models is elaborated, such claims seem not to refer to
the situation or world, but to the way in which we handle language. If that
is so, one wonders why a modification to our logical operators (for example
banning classical negation) is more legitimate than modifying the way in which
we handle language.8

As already suggested in the previous section, several CL-theorems (as well
as the corresponding rules) are lost in CLuN. Moreover, some of these are such
that if CLuN is extended with them, even separately, then Ex Falso Quodli-
bet is derivable, whence we are back to CL, or Ex Falso Quodlibet Falsum
(A,¬A ` ¬B) is derivable, whence we are back to something almost as ex-
plosive as CL. Disjunctive Syllogism is such a rule. Other examples of such
rules are (full) Contraposition, Modus Tollens, Reductio ad Absurdum, and Re-
placement of Equivalents. Let me illustrate the matter for Modus Tollens. In
view of A `CLuN B ⊃ A and reflexivity, B ⊃ A,¬A ∈ CnCLuN({A,¬A}). So
extending CLuN with Modus Tollens results in A,¬A `CLuN ¬B in view of
transitivity.

As was also suggested in the preceding section, some CL-theorems and CL-
rules are invalid in CLuN, but adding them (separately) to CLuN results
in a richer paraconsistent logic. Among the striking examples are ¬¬A/A; de
Morgan properties; A,¬A ` B for non-atomic A; Replacement of Identicals; and
so on. Note that some combinations of such CL-theorems and CL-rules still
result in the validity of Ex Falso Quodlibet or of Ex Falso Quodlibet Falsum.

It still seems useful to mention a result from an almost 35 years old pub-
lication [7]. There is an infinity of logics between the propositional fragments
of CLuN and CL. These logics form a mesh. Some of them are maximally
paraconsistent in that every extension of them is either propositional CL or the
trivial logic Tr, characterized by Γ `Tr A, in other words CnTr(Γ) =W. Many

7Take conjunction as an example. The clause allowing for gluts: vM (A ∧ B) = 1 iff
(vM (A) = 1 and vM (B) = 1) or v(A ∧ B) = 1; the one allowing for gaps: vM (A ∧ B) = 1 iff
(vM (A) = 1 and vM (B) = 1) and v(A ∧ B) = 1; the one allowing for both: vM (A ∧ B) =
v(A ∧B).

8I heard the claim that restricting the formation rules of natural language so as to classify
“this sentence is false” as non-grammatical is illegitimate because the sentence is ‘perfect
English’. I also heard the claim that invalidating Disjunctive Syllogism is illegitimate because
this reasoning form is ‘perfectly sound’.
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propositional paraconsistent logics have a place in this mesh—exceptions are
extensions of CLuN that validate non-CL-theorems like ¬(A ⊃ ¬A).9 Other
paraconsistent logics are fragments of logics in this mesh, for example Priest’s
LP, which has no detachable implication. Other paraconsistent propositional
logics are obviously not within the mesh, for example relevant logics, modal
paraconsistent logics, logics that display other gluts or gaps, and so on.

An example of a maximal paraconsistent logic is the propositional fragment
of a logic which is called CLuNs in Ghent because Schütte [58] was the first
to describe that propositional fragment. CLuNs, fragments of it, and slight
variants of it were heavily studied and are known under many names [1, 2, 7, 25,
32, 34, 35, 36, 37, 38, 39, 56, 60]. CLuNs is obtained by extending CLuN with
axiom schemas to ‘drive negations inwards’ as well as with an axiom schema
that restores Replacement of Identicals: ¬¬A ≡ A, ¬(A ⊃ B) ≡ (A ∧ ¬B),
¬(A∧B) ≡ (¬A∨¬B), ¬(A∨B) ≡ (¬A∧¬B), ¬(A ≡ B) ≡ ((A∨B)∧(¬A∨¬B)),
¬(∀α)A ≡ (∃α)¬A, ¬(∃α)A ≡ (∀α)¬A, and α = β ⊃ (A ⊃ B), in which B
is obtained by replacing in A an occurrence of α by β. CLuNs has a nice
two-valued semantics and several other semantic systems, among which a three-
valued one, are adequate for it. I refer the reader elsewhere [25] for this. Priest’s
LP is obtained from CLuNs by removing the axioms and semantic clauses for
implication and equivalence and defining the symbols in a non-detachable way:
A ⊃ B =df ¬A ∨B and A ≡ B =df (A ⊃ B) ∧ (B ⊃ A).

Several paraconsistent logics having been described, we may now return to
the original problem and phrase things in a more precise way.

4 The Original Problem Revisited

We considered a T = 〈Γ,CL〉 that turned out inconsistent. T itself is obviously
too strong, viz. trivial, to offer a sensible view on ‘what T was intended to be’.
But we know a way to avoid triviality: replace CL by a paraconsistent logic.
So let us pick CLuN, or any other paraconsistent Tarski logic. For nearly all
sensible Γ, T ′ = 〈Γ,CLuN〉 offers a non-trivial interpretation of ‘what T was
intended to be’. A little reflection reveals, however that this T ′ is too weak.

A toy example will be helpful. Specify the Γ in T to be Γ1 = {p, q,¬p ∨
r,¬q ∨ s,¬q}. Note that Γ 0CLuN s and Γ 0CLuN r. However, there seems
to be a clear difference between p and q. Intuitively speaking, Γ1 obviously
requires that q behaves inconsistently but does not require that p behaves in-
consistently. However, and this is interesting, CLuN leads to exactly the same
insight. Indeed, Γ1 `CLuN q∧¬q whereas Γ1 `CLuN p but Γ1 0CLuN ¬p. Let us
see whether something interesting can be done with the help of this apparently
interesting distinction.

As p and ¬p ∨ r are T -theorems, r was intended as a T -theorem. Similarly,
as q and ¬q ∨ s are T -theorems, s was intended as a T -theorem. However, s
better be not a T -theorem. Indeed, intuitively and by CLuN, q and ¬q ∨ A
are T -theorems for every A. So if, relying q, we obtain the conclusion s from
¬q∨s, then, by exactly the same move we obtain the conclusion A from ¬q∨A.
The justification for deriving s justifies deriving every formula A because ¬q∨A
is just as much a CLuN consequence of Γ1 as is ¬q ∨ s. In other words, this
kind of reasoning leads to triviality. The matter is very different in the case of

9This formula is CL-equivalent to A but not CLuN-equivalent to it.
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r. Indeed, r can be a T -theorem. Relying on p one obtains the conclusion r
from¬p∨ r and there is no other formula of the form ¬p∨A to which the same
move might sensibly be applied.10 A different way to phrase the matter is by
saying that applications of Disjunctive Syllogism of which q is the minor result in
triviality, but that applications of Disjunctive Syllogism of which p is the minor
do not result in triviality. The reason for the difference is clear: Γ1 requires q
to behave inconsistently, but does not require p to behave inconsistently.

One might take that the preceding paragraphs led to the following insight:
what was intended as a T -theorem and can be retained as a T -theorem, should
be retained as a T -theorem. Alas, this will not do. Consider another toy example
for the non-logical axioms: Γ2 = {¬p,¬q, p∨r, q∨s,¬t, u∨t, p∨q}. Clearly r was
intended as a theorem and indeed it can be retained. However, then q, which
was also intended as a theorem, should by the same reasoning also be retained.
Moreover, if q is retained, then so is q ∨ A for every formula A. So, although s
was also intended as a theorem, it cannot be retained because, relying on ¬q we
cannot only obtain s from q ∨ s, but we can obtain every formula A from q ∨A.

That may seem all right at first sight, but it is not. If you take a closer
look at Γ2, you will see that p and q are strictly on a par. The reasoning in the
preceding paragraph relied on the consistent behaviour of p to derive s and q
and hence to find out that q behaves inconsistently. However, one may just as
well start off by relying on the consistent behaviour of q to obtain s as well as
p and hence to find out that p behaves inconsistently. So the insight mentioned
at the outset of the previous paragraph should be corrected. Here is the correct
version: what was intended as a T -theorem and can be retained as a T -theorem
in view of a systematic and formal account, should be retained as a T -theorem.
A little reflection on the part of the reader will readily reveal that neither r nor
s can be retained as consequences of Γ2, but that u can be so retained.

What is the upshot? We want to replace T by a consistent theory. Obvi-
ously, there is no point in devising a consistent replacement for a trivial theory.
Moreover, T ′, in which CL is replaced by CLuN will be non-trivial for most Γ,
but is clearly too weak. However, for most Γ one may strengthen T ′ by adding
certain instances of applications of CL-rules that are CLuN-invalid. These in-
stances of applications may be added to T ′ in view of the fact that a systematic
distinction can be made between formulas that behave consistently with respect
to Γ and others that do not. In this way one obtains T “in its full richness,
except for the pernicious consequences of its inconsistency”; one obtains an ‘in-
terpretation’ of T that is as consistent as possible, and also as much as possible
in agreement with the intention behind T .

Of course the matter should still be made precise. This will be done in the
next section, but a central clue is the following:

¬A,A ∨B 0CLuN B but ¬A,A ∨B `CLuN B ∨ (A ∧ ¬A) .

In view of this, one may consider formulas of the form A ∧ ¬A as false, unless
and until proven otherwise—unless it turns out that the premises do not permit
to consider them as false on systematic grounds. In the first toy example Γ1

10As q is CLuN-derivable from the premises, so is ¬p ∨ q. However, relying on p to repeat
the move described in the text delivers a formula that was already derivable, viz. q. The
same story may be retold for every CLuN-consequence of Γ1 and each time the move will be
harmless because nothing new will come out of it.
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requires that q∧¬q is true, but not that p∧¬p is true: Γ1 `CLuN q∧¬q whereas
Γ1 0CLuN p ∧ ¬p. Relying on the presumed falsehood of p ∧ ¬p, we may take
r to be true. The second toy example shows that the matter is slightly more
complicated: Γ2 `CLuN (p ∧ ¬p) ∨ (p ∧ ¬p) whereas neither Γ2 `CLuN p ∧ ¬p
nor Γ2 `CLuN p ∧ ¬p. We shall deal with this in the next section.

In order to avoid circularity, it is essential to distinguish between CLuN-
consequences of a premise set and defeasible consequences derived in view of
CLuN-consequences. Which formulas behave consistently with respect to a
given premise set, will typically be decided in terms of the CLuN-consequences
of Γ.

5 Dynamic Proofs

Dynamic proofs are a typical feature of adaptive logics. The logics were ‘discov-
ered’ in terms of the proofs. In the first paper written on the topic [9], not the
first published, only a rather clumsy semantics was available. The semantics for
what became later known as the Minimal Abnormality strategy was described
in an article [8] that was written six years later but published earlier. A decent
semantics for the Reliability strategy appears only in [11]. Dynamic proofs are
also typical for adaptive logics because nearly no other approaches to defeasible
reasoning present proofs and certainly not proofs that resemble Hilbert proofs.
A theoretic account of static proofs as well as dynamic proofs, which turn out
to be a generalization of the former, is published [20]; a more extensive account
is available on the web [23, §4.7].

Let us, very naively, have a look at some examples of dynamic proofs. More
precise definitions follow in Section 7, but obtaining a clear and intuitive insight
may be more important for the reader. Let us start with a dynamic proof from
Γ1. First have a look at stage 7 of the proof—a stage is a sequence of lines;
think about stage 0 as the empty sequence and let the addition of a line to stage
n result in stage n+ 1.

1 p Prem ∅
2 q Prem ∅
3 ¬p ∨ r Prem ∅
4 ¬q ∨ s Prem ∅
5 ¬q Prem ∅
6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q}

So the premises were introduced and next two conditional steps were taken.
Line 6 informs us that r is derivable on the condition that p ∧ ¬p is false and
line 7 that s is derivable on the condition that q∧¬q is false. Incidentally, a line
with a non-empty condition corresponds nicely and directly with a line from a
static proof—in the present case a Hilbert-style CLuN-proof. The condition,
∆, of a line is always a finite set of contradictions. Where a line of the dynamic
proof contains a line at which A is derived on the condition ∆, the corresponding
static CLuN-proof contains a line at which A ∨

∨
(∆) is derived—as expected,∨

(∆) is the disjunction of the members of ∆. So in a sense stage 7 of this
dynamic proof is nothing but a static proof in disguise. Note that the rule
applied at lines 6 and 7 is called RC (conditional rule) because, as explained, a
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formula A∨
∨

(∆) is CLuN-derivable from previous members of the proof, but
∆ is pushed into the condition.

The way in which dynamics is introduced appears from the continuation of
the proof. I do not repeat 1–5, which merely introduce the premises.

6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q} X
8 q ∧ ¬q 2, 5; RU ∅

At stage 8 of the proof, q ∧ ¬q is unconditionally derived, viz. at line 8. So the
supposition of line 7, viz. that {q ∧ ¬q} is false, cannot be upheld. As a result,
line 7 is marked, which means that its formula is considered as not derived
from the premise set Γ1.11 Incidentally, the rule applied at line 8 is called RU
(unconditional rule) because (the formula of) 8 is a CLuN-consequence of (the
formulas of) 2 and 5.

So the dynamics is controlled by marks. Which lines are marked or un-
marked is decided by a marking definition, which is typical for a strategy. More
information on this follows in Section 7. For now, it is important that the
reader understands why line 7 is marked and other lines are unmarked. As
far as this specific proof stage is concerned, nothing interesting happens when
the proof is continued. No mark will be removed or added to any of these 8
lines.12 Incidentally, the only line that might become marked is line 6. The
formulas derived on lines with an empty condition are CLuN-consequences of
the premises. These are the stable consequences of the premise set. The marks
pertain to the supplementary, defeasible consequences of the premise set.

How can I be so sure that the marks of lines 1–8 will not be changed in an
extension of the proof from Γ1? The example is propositional and propositional
CLuN is decidable in the same sense as propositional CL. It is easy enough to
prove that q ∧ ¬q is the only contradiction that is CLuN-derivable from Γ1.13

Beware. As is the case for CL, only some fragments of CLuN are decidable.
So arguing that a predicative proof is stable with respect to certain lines will
often be much more complicated than in the present case.

Before we proceed, allow me to summarize that the two components gov-
erning dynamic proofs are rules (of inference) and the marking definition. The
rules are applied at will by the people who devise the proof—if they are smart,
they will follow a certain heuristics. As we shall see, the marking definition
operates independently of any human intervention. In view of the stage of the
proof, the marking definition determines which lines are marked.

When we consider more examples, a little complication will catch our atten-
tion. Here is a dynamic proof from Γ2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}.

1 ¬p PREM ∅
2 ¬q PREM ∅
3 p ∨ r PREM ∅
4 q ∨ s PREM ∅

11Do not read the “not derived” as “not derivable”. Indeed, a formula may be derivable in
several ways from the same premise set.

12A more accurate wording requires that one adds: in a proof from Γ1 that extends the
present stage 8. Indeed, the logic we are considering is non-monotonic. So extending the
premise set may result in line 6 being marked.

13The reader might think that, as p is also a CLuN-consequence of Γ1, (p ∧ q) ∧ ¬(p ∧ q)
is also a CLuN-consequence of Γ1. This however is mistaken. ¬q 0CLuN ¬(p ∧ q).
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5 ¬t PREM ∅
6 u ∨ t PREM ∅
7 p ∨ q PREM ∅
8 r 1, 3; RC {p ∧ ¬p}

√

9 s 2, 4; RC {q ∧ ¬q}
√

10 u 5, 6; RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7; RC ∅

At stage 10 of the proof—when the proof consists of lines 1–10 only—no line
is marked. At stage 11, however, lines 8 and 9 are both marked. Why is
that? Line 11 gives us the information that either p or q behaves inconsistently
on Γ2, but does not inform us which of both behaves inconsistently. So a
natural reaction is to consider both p ∧ ¬p and q ∧ ¬q as unreliable. This is
the reaction that agrees with the Reliability strategy—we shall come across
other strategies later. According to the Reliability strategy a line is marked if
one of the members of its condition is unreliable. At this point in the paper,
consider the unreliable formulas as the disjuncts of the minimal disjunctions
of contradictions. If the “minimal” was not there, Addition would cause every
contradiction to be unreliable as soon as one contradiction is unreliable.

In both example proofs, some lines were unmarked at a stage and marked
at a later stage. The converse move is also possible, as is illustrated by a proof
from Γ3 = {(p ∧ q) ∧ t,¬p ∨ r,¬q ∨ s,¬p ∨ ¬q, t ⊃ ¬p}.

1 (p ∧ q) ∧ t PREM ∅
2 ¬p ∨ r PREM ∅
3 ¬q ∨ s PREM ∅
4 ¬p ∨ ¬q PREM ∅
5 t ⊃ ¬p PREM ∅
6 r 1, 2; RC {p ∧ ¬p}

√

7 s 1, 3; RC {q ∧ ¬q}
√

8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅

Both lines 6 and 7 are marked at stage 8 because (p∧¬p)∨ (q∧¬q) is a minimal
disjunction of contradictions that is derived at the stage. However, look what
happens if stage 9 looks as follows—I do not repeat 1–5.

6 r 1, 2; RC {p ∧ ¬p}
√
X

7 s 1, 3; RC {q ∧ ¬q}
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
9 p ∧ ¬p 1, 5; RU ∅

At stage 9 of this proof, (p ∧ ¬p) ∨ (q ∧ ¬q) is not a minimal disjunction of
abnormalities because (the ‘one disjunct disjunction’) p ∧ ¬p was derived. We
knew already that either p ∧ ¬p or q ∧ ¬q was unreliable and now obtain the
more specific information that it is actually p∧¬p that is unreliable. So q ∧¬q
is off the hook, whence line 7 is unmarked. Stage 9 of this proof is stable: no
mark will be removed or added to lines 1–9 if the stage is extended. Actually
nothing interesting happens in any such extension.

It is time to make the marking more precise. Dynamic proofs need to expli-
cate the dynamic reasoning. So, at the level of the proofs, the dynamics needs
to be controlled. The central features for this control are the conditions and
the marking definition. The way in which conditions are introduced should be
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clear by now—precise generic rules follow in Section 7. However, how does one
precisely figure out which lines are marked?

Only some adaptive logics are inconsistency-adaptive. So allow me to use
a slightly more general terminology. The formulas that occur in conditions of
lines—in the previous examples these were contradictions—are called abnormal-
ities and Ω is the usual name for the set of abnormalities.

A classical disjunction of abnormalities will be called a Dab-formula—needless
to say, a disjunction of formulas is always a disjunction of finitely many formulas.
I shall often write Dab(∆) to refer to the classical disjunction of the members
of a finite ∆ ⊂ Ω. A Dab-formula that is derived in a proof stage by RU at a
line with condition ∅ will be called a inferred Dab-formula of the proof stage.
Note that a Dab-formula introduced by Prem is not an inferred Dab-formula
in the sense of this definition. Dab(∆) is a minimal inferred Dab-formula of a
proof stage if it is an inferred Dab-formula of the proof stage and there is no
Θ ⊂ ∆ such that Dab(Θ) is an inferred Dab-formula of the proof stage. Where
Dab(∆1), . . . ,Dab(∆n) are the minimal inferred Dab-formulas of stage s, the
set of unreliable formulas of stage s is Us(Γ) = ∆1 ∪ . . . ∪ ∆n. Where Θ is
the condition of line i, line i is marked iff Θ ∩ Us(Γ) 6= ∅. This is the mark-
ing definition for the Reliability strategy—every strategy has its own marking
definition.

Marks come and go. As they determine which formulas are considered as
derived, derivability seems to be unstable; it changes from stage to stage. Let
this unstable derivability be called derivability at a stage. Apart from it, we
want a stable form of derivability, which is called final derivability and is noted
as Γ `CLuNr A. There are several ways to define final derivability. At this point
in my story, the following seems most handy. If A is derived at an unmarked
line i of a stage of a proof from Γ and the stage is stable with respect to i—line
i is not marked in any extension of the stage—then A is finally derived from Γ.

Just as we wanted the stable entity called final derivability, we also want
to have some further entities that refer to what is CLuN-derivable from the
premise set Γ rather than referring to a stage of a proof from Γ.

Definition 1 Dab(∆) is a minimal Dab-consequence of Γ iff Γ `CLuN Dab(∆)
and, for all ∆′ ⊂ ∆, Γ 0CLuN Dab(∆′).

Definition 2 Where Dab(∆1), . . . ,Dab(∆n) are the minimal Dab-consequences
of Γ, U(Γ) = ∆1 ∪ . . . ∪∆n.

The set U(Γ) is defined in view of the Reliability strategy. A very different
set will be introduced later in view of Minimal Abnormality.

The reader may expect a section on semantics at this point, but I shall only
deal with the semantics as defined by the standard format.

6 The Standard Format SF

There is a large diversity of adaptive logics. Every new adaptive logic requires
that one delineates its syntax (proof theory), its semantics (models), and, what
is the hard bit, its metatheory (study of properties of the system). This sug-
gested the search for a common structure for a large set of adaptive logics, if
possible for all of them. The idea was that the structure would take care of most
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of the work beforehand, that the proof theory and semantics would be defined
in terms of the common structure and that the metatheoretic properties would
be provable from the structure. The common structure would be a function
of certain parameters and specifying these would result in a specific adaptive
logic with all required features available. This common structure is called the
standard format.

An adaptive logic AL in Standard Format is defined as a triple comprising:14

· a lower limit logic LLL: a logic that has static proofs and contains classical
disjunction,

· a set of abnormalities Ω, a set of formulas that share a (possibly restricted)
logical form or a union of such sets,

· a strategy (Reliability, Minimal Abnormality, . . . ).

That the lower limit logic contains a classical disjunction means that one
of the logical symbols is implicitly or explicitly defined in such a way that it
has the meaning of the CL-disjunction. Explaining the notion of static proofs
goes beyond the scope of the present paper, but the reader may for all useful
purposes replace the requirement by: a formal and compact Tarski logic.

“Abnormality” is a technical term, different adaptive logics require that
different formulas are seen as abnormalities. Only the abnormalities of correc-
tive adaptive logics—those with LLL weaker than CL—are CL-falsehoods. In
nearly all inconsistency-adaptive logics, existentially closed contradictions are
abnormalities. Also other formulas may belong to the Ω, for example Univer-
sally closed contradictions or formulas of the form A∧¬(A∨B). Some examples
of restricted and unrestricted logical forms will be presented below.

Adaptive strategies will be discussed at some length later in this section.
If the lower limit logic LLL is extended with a set of rules or axioms that

trivialize abnormalities (and no other formulas), then one obtains a logic called
the upper limit logic ULL. Examples follow but it should be clear by now that,
for all A ∈ Ω and for all B ∈ W, A/B should be a derivable rule in ULL. As Ω
is characterized by a logical form, it is in possible to obtain ULL by extending
LLL with a set of rules.

I shall suppose that a characteristic semantics of LLL is known. This will
enable me to define the semantics of AL in terms of the standard format. The
LLL-models that verify no member of Ω form a semantics for ULL.15 A premise
set that has ULL-models is often called a normal premise set ; it does not require
that any abnormality is true.

It is instructive to have a closer look at the difference between ULL and
AL. ULL extends LLL by validating some further rules of inference. AL
extends LLL by validating certain applications of ULL-rules. The point is
easily illustrated in connection to Disjunctive Syllogism. CL validates this rule,
while in the (not yet precise) toy examples of proofs from Section 5, some but not
all applications of Disjunctive Syllogism were sanctioned as correct. As those
examples clarify, it depends on the premises—or should one say on the content

14Names like LLL, AL, ALr , and ULL are used as generic names to define the standard
format and to study its features. The names refer to arbitrary logics that stand in a certain
relation to each other.

15Similarly for those models together with the trivial model—the model that verifies all
formulas.
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of the premises—which applications turn out valid. In other words, adaptive
logics display a form of content-guidance.16 A different way of phrasing the
matter is that CnAL(Γ) comes to CnLLL(Γ) extended with what is derivable if
as many abnormalities are false as the premises permit. This phrase is obviously
ambiguous, but strategies disambiguate it, as we shall see.

An important supposition on the language L of AL is that it contains a
classical disjunction. It may of course contain several disjunctions, but one of
them should be classical. In the sequel of this paper, the symbol ∨̂ will always
refer to this disjunction.17 Similarly, ∼ will always refer to a classical negation.
This is not supposed to occur in every considered language schema.

As we already have seen in Section 5, we need ∨̂ for Dab-formulas—but
see Section 11 for an alternative. In Section 5, I also introduced inferred Dab-
formulas and minimal inferred Dab-formulas of a proof stage as well as the
notation Dab(∆).

Let us consider some examples of adaptive logics. Expressions ∃A will denote
the existential closure of A, viz. A preceded by an existential quantifier over
every variable free in A.

The adaptive logic CLuNm is defined by the following triple:

· lower limit logic: CLuN,

· set of abnormalities Ω = {∃(A ∧ ¬A) | A ∈ Fs}

· strategy: Minimal Abnormality.

The upper limit logic is CL, obtained by extending CLuN with, for example,
the axiom schema (A∧¬A) ⊃ B.18 It is not difficult to prove that the CLuN-
models that verify no abnormality form a semantics of CL.

The logic CLuNsm is defined by:

· lower limit logic: CLuNs,

· set of abnormalities Ω = {∃(A ∧ ¬A) | A ∈ Fa
s }

· strategy: Minimal Abnormality,

in which Fa
s is the set of atomic (open and closed) formulas of Ls—atomic for-

mulas are those in which no logical symbols occur except possibly for identity =.
The upper limit logic is CL, obtained by extending CLuNs with, for example,
the axiom schema (A ∧ ¬A) ⊃ B.19 Semantically: the CLuNs-models that
verify no abnormality form a CL-semantics.

Some further examples are easy variants. CLuNr is like CLuNm , except
that Minimal Abnormality is replaced by Reliability. LPm is like CLuNsm

16The notion played a rather central role in discussions on scientific heuristics. A very clear
and argued position was for example proposed by Dudley Shapere [59].

17This obviously does not mean that ∨̂ is a symbol of the language. It is a conventional
name to refer to a symbol of the language that has the meaning of classical disjunction. It
may even refer ambiguously: if there are several classical disjunctions, ∨̂ need not always refer
to the same one.

18Axioms are suppose to be closed formulas. So A ∈ Ws. The idea is that CLuN-valid
rules are fully retained in the extension. One of these rules is: from ` A(a) ⊃ B to derive
` ∃xA(x) ⊃ B provided a does not occur in B.

19The axiom schema may be restricted to A ∈ Wa
s , but there is no need to do so.
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except that CLuNs is replaced by Priest’s LP—see Section 3 for the relation
between CLuNs and LP.

In these examples LLL or the strategy are varied. What about the differ-
ence between the set of abnormalities of CLuNm as opposed to CLuNsm?
In a sense this is just a variation. Yet, if the Ωs are exchanged, the result-
ing variant of CLuNm is still an inconsistency-adaptive logic, but its ULL is
weaker than CL—a feature that is difficult to justify with respect to applica-
tions. If the Ω are exchanged, the resulting variant of CLuNsm is also still
an inconsistency-adaptive logic, but it is a flip-flop logic—see Section 12, where
also more variation will be considered.

If an adaptive logic is in standard format, this fact (not specific properties
of the logic) provides it with:

• its proof theory,

• its semantics (models),

• most of its metatheory (including soundness and completeness).

So the standard format provides guidance in devising new adaptive logics. More-
over, once a new adaptive logic is phrased in standard format, most of the hard
work is over.

7 SF: Proof Theory

As we already know, every adaptive logic requires a set of rules of inference and
a marking definition. The rules of inference are determined by LLL and Ω; the
marking definition is determined by Ω and by the strategy. We also know that
the dynamics of the proofs is controlled by attaching conditions (finite subsets of
Ω) to derived formulas, or, if you prefer, to lines at which formulas are derived.
We also have seen what is special about annotated dynamic proofs: their lines
consist of four rather than three elements: a number, a formula, a justification,
and a condition. The rules govern the addition of lines, the marking definition
determines for every line i at every stage s of a proof whether i is unmarked
or marked— this means that it is respectively IN or OUT—in view of (i) the
condition of i and (ii) the minimal inferred Dab-formulas of stage s.

The rules of inference can be presented as three generic rules. Let Γ be the
premise set and let

A ∆

abbreviate that A occurs in the proof on the condition ∆.
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Prem If A ∈ Γ: . . . . . .
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An `LLL B ∨̂Dab(Θ): A1 ∆1

. . . . . .
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

Only RC introduces new non-empty conditions (adds a non-empty set to the
conditions of the local premises). Prem introduces empty conditions and RU
merely carries conditions over and adds them up in a union.

Easy illustrations: RU may be applied in view of p, p ⊃ q `CLuN q; RC may
be applied in view of p,¬p ∨ q `CLuN q ∨̂ (p ∧ ¬p). In view of the formulation
of the antecedent of RU and RC, all rules are finitary—have a finite number of
local premises. This formulation does not in any way affect the adaptive logic
AL because LLL is a compact logic anyway. Incidentally, it is instructive to
review the toy examples in terms of the precise formulation of the rules.

Marking definitions proceed in terms of the minimal inferred Dab-formulas
at the proof stage. Where Dab(∆1), . . . , Dab(∆n) are the minimal inferred
Dab-formulas at stage s, Us(Γ) = ∆1 ∪ . . . ∪∆n.

Definition 3 Marking for Reliability: where ∆ is the condition of line i, line i
is marked at stage s iff ∆ ∩ Us(Γ) 6= ∅.

The idea behind the definition consists of two steps. First, the minimal in-
ferred Dab-formulas of stage s of a proof from Γ provide, at stage s, the best
available estimate of the minimal Dab-consequences of Γ. So their disjuncts,
which are abnormalities, cannot be safely considered as false. Next, the formula
of a line can only be considered as derived (by present insights) if the abnor-
malities in the condition of the line can be considered as false. If they cannot,
the line is marked.

However sensible this may sound, Minimal Abnormality offers a more refined
approach. A choice set of Σ = {∆1,∆2, . . .} is a set that contains one element
out of each member of Σ. A minimal choice set of Σ is a choice set of Σ of
which no proper subset is a choice set of Σ. Where Dab(∆1), . . . , Dab(∆n) are
the minimal inferred Dab-formulas of stage s, Φs(Γ) is the set of the minimal
choice sets of {∆1, . . . ,∆n}.

Definition 4 Marking for Minimal Abnormality: where A is the formula and ∆
is the condition of line i, line i is marked at stage s iff (i) there is no ϕ ∈ Φs(Γ)
such that ϕ ∩∆ = ∅, or (ii) for some ϕ ∈ Φs(Γ), there is no line at which A is
derived on a condition Θ for which ϕ ∩Θ = ∅.

The set Φs(Γ) is the best estimate, at stage s, of Φ(Γ), which is the set of
minimal choice sets of the minimal Dab-consequences of Γ. The ϕ ∈ Φ(Γ) are
the minimal sets of abnormalities that are true if Γ is true. On the Minimal

16



Abnormality strategy, a formula A is an adaptive consequence of Γ iff A is a
consequence for every ϕ ∈ Φ(Γ). So, for every ϕ ∈ Φ(Γ), there should be a Θ
such that A ∨̂Dab(Θ) is a LLL-consequence of Γ and all members of Θ can be
false, viz. none of them is a member of ϕ.

The difference between Minimal Abnormality and Reliability can be nicely
illustrated by means of a toy proof. Considering again Γ2 = {¬p,¬q, p ∨ r, q ∨
s,¬t, u∨ t, p∨ q}, let us continue the second proof from Section 5. The premise
lines 1–7 are not repeated.

8 r 1, 3; RC {p ∧ ¬p}
√

9 s 1, 4; RC {q ∧ ¬q}
√

10 u 5, 6; RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7; RC ∅
12 r ∨ s 8; RC {p ∧ ¬p}
13 r ∨ s 9; RC {q ∧ ¬q}

Obviously Φ13(Γ) = Φ11(Γ) = {{p∧¬p}, {q ∧¬q}}. So, on the Minimal Abnor-
mality strategy, lines 12 and 13 are unmarked. Indeed, if p∧¬p is the case and
q ∧ ¬q is not, then r ∨ s is in view of line 13. If q ∧ ¬q is the case and p ∧ ¬p is
not, then r∨s is in view of line 12. It follows that, on the Minimal Abnormality
strategy, r ∨ s is an adaptive consequence of Γ2. The matter is very different
for Reliability. Indeed, U13(Γ) = {p ∧ ¬p, q ∧ ¬q}, whence lines 12 and 13 are
marked. As the displayed proof stage is stable for both strategies and r ∨ s
is not CLuN-derivable from Γ2 on any other condition, Γ2 `CLuNm r ∨ s but
Γ 0CLuNr r ∨ s.

In Section 5, I delineated final derivability in terms of a stable proof stage.
This is not very handy as a general definition. Indeed, for some adaptive logics
AL, premise sets Γ, and formulas A, only infinite AL-proofs of A from Γ are
stable [11, §7]. But one obviously cannot write down infinite proofs. For this
reason, the official definition of final derivability goes as follows.

Definition 5 A is finally derived from Γ at line i of a finite proof stage s
iff (i) A is the second element of line i, (ii) line i is not marked at stage s,
and (iii) every extension of the proof in which line i is marked may be further
extended in such a way that line i is unmarked.

Definition 6 Γ `AL A (A is finally AL-derivable from Γ) iff A is finally
derived at a line of a proof stage from Γ.

Establishing final derivability requires (i) a finite proof stage and (ii) a
metatheoretic reasoning about extensions of the stage and extensions of these.
Some comments on these definitions follow in Section 10.

8 SF: Semantics

The syntactic definition of minimal Dab-consequences of Γ was presented in
Definition 1. As this proceeds in terms of LLL and an adequate semantics of
this logic is supposed to be known, Dab(∆) is a minimal Dab-consequence of Γ
iff Γ �LLL Dab(∆) and, for all ∆′ ⊂ ∆, Γ 2LLL Dab(∆′).

Definition 7 Where M is a LLL-model, Ab(M) = {A ∈ Ω |M  A}.
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Figure 1: Comparison of Models

Consider first adaptive logics ALr that follow the Reliability strategy. Let
MLLL

Γ be the set of LLL-models of Γ.

Definition 8 M ∈ Mr
Γ (M is a reliable model of Γ) iff M ∈ MLLL

Γ and
Ab(M) ⊆ U(Γ).

So the reliable models of Γ are the models of Γ that verify at most reliable
abnormalities. Note that there are no reliable models, but only reliable models
of a set of formulas Γ. The same holds for adaptive models in general.

Definition 9 Γ �ALr A (A is an ALr -consequence of Γ) iff M  A for all
M ∈Mr

Γ.

So the ALr -semantics selects some LLL-models of Γ as ALr -models of Γ.
The selection depends on Ω and on the strategy.

For adaptive logics ALm that follow the Minimal Abnormality strategy, one
may proceed in a very different way.

Definition 10 M ∈ Mm
Γ (M is a minimally abnormal model of Γ) iff M ∈

MLLL
Γ and no M ′ ∈MLLL

Γ is such that Ab(M ′) ⊂ Ab(M).

Definition 11 Γ �ALm A (A is an ALm -consequence of Γ) iff M  A for all
M ∈Mm

Γ .

Lemma 14 below greatly clarifies the relation between the minimal abnormal
models and the marking definition for Minimal Abnormality.

Have a look at Figure 1. For a normal premise set Γ, an adaptive logic simply
selects the upper limit models of Γ, and hence delivers the same consequence
set as the upper limit logic. Abnormal Γ have no ULL-models. Still, some
exceptions aside,20 adaptive logics select a proper subset of the set of LLL-
models and hence deliver a larger consequence set than LLL.

20The exception may be caused by the logic, which is then called a flip-flop, or by the
premise set—for example if the premise set comprises the formulas verified by a LLL-model.

18



9 SF: Metatheory

What follows is a selection of theorems. They are selected in view of their
importance or in view of the insights they reveal in the context of the present
introduction. They are all provable from the standard format [19, 23]. This
means that they are provable from the common structure of all adaptive logics
in standard format, independent of further specific properties.

Theorem 12 Γ �ALr A iff Γ �LLL A ∨̂Dab(∆) and ∆ ∩ U(Γ) = ∅ for a finite
∆ ⊂ Ω.

Corollary 13 Γ `ALr A iff Γ �ALr A. (Soundness and Completeness for
Reliability)

Lemma 14 M ∈Mm
Γ iff M ∈MLLL

Γ and Ab(M) ∈ Φ(Γ).

Theorem 15 Γ `ALm A iff Γ �ALm A. (Soundness and Completeness for
Minimal Abnormality)

Strong Reassurance, also called Stopperedness or Smoothness, refers to the
following property: if a model of the premises is not selected, this is justified
by the fact that a selected model of the premises is less abnormal. If Strong
Reassurance is absent, there are infinite sequences of models of a certain Γ in
which each member of the sequence is less abnormal than its predecessor. This
absence sometimes results in very odd consequence sets [12].

Theorem 16 If M ∈ MLLL
Γ − Mm

Γ , then there is a M ′ ∈ Mm
Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Minimal Abnormality.)

Theorem 17 If M ∈ MLLL
Γ − Mr

Γ, then there is a M ′ ∈ Mr
Γ such that

Ab(M ′) ⊂ Ab(M). (Strong Reassurance for Reliability.)

All of the following theorems highlight important features of adaptive logics.
The reader may find some more fascinating than others. This will depend on
the reader’s familiarity with certain aspects of non-monotonic reasoning and of
defeasible reasoning in general.

Theorem 18 Each of the following obtains:

1. Mm
Γ ⊆Mr

Γ. Hence CnALr (Γ) ⊆ CnALm (Γ).

2. If A ∈ Ω− U(Γ), then M 1 A for all M ∈ Mr
Γ, whence ∼A ∈ CnALr (Γ)

if ∼ is in L.

3. If Dab(∆) is a minimal Dab-consequence of Γ and A ∈ ∆, then some
M ∈Mm

Γ verifies A and falsifies all members (if any) of ∆− {A}.

4. Mm
Γ = Mm

CnALm (Γ) whence CnALm (Γ) = CnALm (CnALm (Γ)). (Fixed

Point for Minimal Abnormality.)

5. Mr
Γ =Mr

CnALr (Γ) whence CnALr (Γ) = CnALr (CnALr (Γ)). (Fixed Point

for Reliability.)

6. For all ∆ ⊆ Ω, Dab(∆) ∈ CnAL(Γ) iff Dab(∆) ∈ CnLLL(Γ). (Immunity.)
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7. If Γ′ ⊆ CnAL(Γ) then CnAL(Γ ∪ Γ′) ⊆ CnAL(Γ). (Cautious Cut.)

8. If Γ′ ⊆ CnAL(Γ), and CnAL(Γ) ⊆ CnAL(Γ ∪ Γ′). (Cautious Monotonic-
ity.)

Theorem 19 Each of the following obtains:

1. If Γ is normal, thenMULL
Γ =Mm

Γ =Mr
Γ whence CnALr (Γ) = CnALm (Γ) =

CnULL(Γ).

2. If Γ is abnormal andMLLL
Γ 6= ∅, thenMULL

Γ ⊂Mm
Γ and hence CnALr (Γ) ⊆

CnALm (Γ) ⊂ CnULL(Γ).

3. MULL
Γ ⊆ Mm

Γ ⊆ Mr
Γ ⊆ MLLL

Γ whence CnLLL(Γ) ⊆ CnALr (Γ) ⊆
CnALm (Γ) ⊆ CnULL(Γ).

4. Mr
Γ ⊂MLLL

Γ iff Γ ∪ {A} is LLL-satisfiable for some A ∈ Ω− U(Γ).

5. CnLLL(Γ) ⊂ CnALr (Γ) iff Mr
Γ ⊂MLLL

Γ .

6. Mm
Γ ⊂ MLLL

Γ iff there is a (possibly infinite) ∆ ⊆ Ω such that Γ ∪∆ is
LLL-satisfiable and there is no ϕ ∈ ΦΓ for which ∆ ⊆ ϕ.

7. If there are A1, . . . , An ∈ Ω (n ≥ 1) such that Γ ∪ {A1, . . . , An} is LLL-
satisfiable and, for every ϕ ∈ ΦΓ, {A1, . . . , An} * ϕ, then CnLLL(Γ) ⊂
CnALm (Γ).

8. CnALm (Γ) and CnALr (Γ) are non-trivial iff CnLLL(Γ) is non-trivial. (Re-
assurance)

Theorem 20 If Γ′ ⊆ CnAL(Γ), then CnAL(Γ ∪ Γ′) = CnAL(Γ). (Cumulative
Indifference.)

Theorem 21 If Γ `AL A, then every AL-proof from Γ can be extended in such
a way that A is finally derived in it. (Proof Invariance)

Theorem 22 If Γ′ ∈ CnAL(Γ) and Γ ∈ CnAL(Γ′), then CnAL(Γ) = CnAL(Γ′).
(Equivalent Premise Sets)

10 SF: Decidability Matters And A Philosophi-
cal Comment

We have seen in Section 7 that final derivability is established by a finite proof
stage and a metatheoretic reasoning about extensions of the stage and extensions
of these. It is provable that, if Γ `AL A, then A is derived on an unmarked
line i of an AL-proof stage from Γ that is stable with respect to line i. The
inconvenience is that the stage may be infinite,21 whence Definition 5 is superior

The need for a metatheoretic argument reveals an ambiguity in the notion
of a proof. On the one hand, there are proofs in the sense of constructions
obtained by correct applications of the rules of inference. On the other hand, a
proof in the strong sense establishes by itself that a certain formula is derivable

21Infinite stages can be extended by inserting lines in the sequence.
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from a certain premise set. For compact Tarski logics, there are metatheoretic
arguments that show that the existence of a proof in the weak sense warrants
the existence of a proof in the strong sense—or that a proof in the weak sense
constitutes a proof in the strong sense. For adaptive logics that matter is more
sophisticated, as we shall see.

Definition 5 has a nice game-theoretic interpretation, actually several related
such interpretations. As one might expect, the Proponent’s task is to establish
the proof, the Opponent’s task to defeat it. In the simplest variant, the first
move is for the Proponent who should produce a finite proof stage in which A
is derived from Γ, say at line i. The next move is for the Opponent, who should
extend the proof stage from Γ in such a way that i is marked. In the third
move, the Proponent has to further extend the result in such a way that line i is
unmarked. The Proponent has a winning strategy if, whatever the second move
of the Opponent, the Proponent is able to carry out the third move successfully.
Please check that this literally follows Definition 5.

For the propositional fragment (and for other decidable fragments of LLL),
final derivability from finite premise sets is decidable. For the full predicative
logics, however, there is not even a positive test. Nevertheless, even at the
predicative level, there are criteria for final derivability. Such criteria were
developed by several means, for example a ‘block analysis’ of proofs [10], specific
tableau methods [27, 28], and a specific prospective dynamics [15, 17, 70]. Some
of these need some reworking in view of the present standard format. The third
approach results in the formulation of proof procedures that provide a criterion.
If the procedure stops, the state of the proof reveals whether a certain formula
is or is not finally derivable from the premise set; however, it is also possible
that the procedure does not stop.

What if no criterion applies? All one can do is act on present insights as
revealed by a proof at a stage. This leads to two questions. The first is whether
the dynamics of the proofs goes anywhere. In view of the block analysis of
proofs (and of the connected block semantics), the following can be established.
A stage of a proof provides an insight in the premises and every step of the
proof can be either informative or non-informative—this is defined in a precise
way. If the step is informative, more insight in the premises is gained; if the
step is non-informative, no insight is gained but no insight is lost either.

Sensible proofs contain only informative steps and it is not difficult to avoid
uninformative steps. There is, however, no guarantee on convergence because
the computational complexity of some adaptive consequence sets, viz. where
the logic follows the Minimal Abnormality strategy, is Π1

1.22 Let me be more
explicit on convergence. There is convergence with respect to the set of Dab-
consequences of the premise set. There is also convergence with respect to the
set of minimal Dab-consequences of the premise set Γ. Both sets are recursively
enumerable. However, there is no convergence with respect to final derivability
from Γ. Suppose that A is derived on a condition, respectively a set of con-
ditions, that warrants its final derivability with respect to U(Γ), respectively
Φ(Γ). As long as not all minimal Dab-consequences of Γ are derived, it is pos-
sible that the derivation of a non-minimal Dab-consequence of Γ causes A not

22It is ironic that the study of the computational complexity of adaptive logics started
with a paper arguing that they are too complex [40]. The philosophical complaints and
misunderstandings in that paper were answered in [26]; a mistaken theorem was corrected in
[67]. Extremely interesting and more detailed studies followed [53, 54].
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to be derived at the stage. Needless to say, there is convergence with respect to
final derivability whenever the set of minimal Dab-consequences of Γ is finite.

If no criterion applies, there is, as announced, a second question: Does the
application context require final derivability? Not always. Reconsider the role
of inconsistency-adaptive logics with respect to (what I called) the original prob-
lem. After certain abnormalities are located and perhaps some abnormalities
are narrowed down in view of personal constraints and the like—see Section
12—one may have a clear idea for replacement and this may be sufficient to
launch a hypothesis for a replacement of the inconsistent theory. Several people
may launch several hypotheses, but the located problems will usually be com-
mon. Even if these are far from complete, some of the launched hypotheses may
be successful, for a while or forever. A good example is Frege’s set theory. The
Russell paradox was known and led to proposals for replacements. Several of
these were not shown to be inconsistent until now. So, as far as we can tell, they
are worthwhile proposals for consistent set theories. Only after most of these
proposals were formulated, the Curry paradox was discovered. So the proposals
were made without a full analysis of the inconsistencies in Frege’s theory. A
similar story may be told, although perhaps less convincingly, about Clausius’
removal of an inconsistency from thermodynamics. The aim of applications with
respect to creative processes is to arrive at sensible hypothetical proposals for
consistent replacements. The means to reach this end is the analysis provided
by the inconsistency-adaptive logic(s). In that respect CnAL(Γ) is merely an
ideal. This ideal is studied in order to show that the applied mechanism is
coherent and conceptually sound. To the extent that our estimate of CnAL(Γ)
is better, we may arrive at better proposals. We know that, for some AL and
Γ, the set CnAL(Γ) is beyond our reach. All we can do is go by present insights
and hope that they are not too bad an estimate of the final consequence set.
That’s life. The only alternatives are dogmatic belief and gardening.

11 Variants To The Standard Format

The first versions of the standard format were published in [14] and [16]. It
soon became clear that especially a universal formulation of the proof theory
required the presence of a classical disjunction. Other classical logical symbols
also proved very useful. If the abnormalities are contradictions or existentially
closed contradictions, one better has a classical conjunction around. Having
classical negation around also turned out attractive.

Let me illustrate the attractiveness of classical negation in terms of CLuNr—
the subsequent illustration may be adjusted to any inconsistency-adaptive logic
mentioned so far. If p ∧ ¬p /∈ U(Γ), then each of the following obtain: (i) if
¬p, p∨ q ∈ CnCLuNr (Γ), then q ∈ CnCLuNr (Γ), (ii) if ¬p, q ⊃ p ∈ CnCLuNr (Γ),
then ¬q ∈ CnCLuNr (Γ), (iii) if ¬p ∈ CnCLuNr (Γ), then ¬(p∧q) ∈ CnCLuNr (Γ),
and so forth and so on. Suppose, however, that CLuN is extended with the
classical negation ∼.23 As p∧¬p /∈ U(Γ), we now obtain: if ¬p ∈ CnCLuNr (Γ),
then ∼p ∈ CnCLuNr (Γ). Note, however, that this is a very basic step. Once we
have derived ∼p by the rule RC, all other steps follow by the rule RU. Indeed, in

23Stepwise: the language Ls of CLuN is extended with the symbol ∼ and CLuN is ex-
tended with axioms or rules that give ∼ its classical meaning—for example the schemas
A ⊃ (∼A ⊃ B) and (A ⊃ ∼A) ⊃ ∼A.
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the version of CLuN that contains a classical negation, (i) ∼p, p ∨ q `CLuN q,
(ii) ∼p, q ⊃ p `CLuN ¬q, (iii) ∼p `CLuN ¬(p ∧ q), and so forth and so on. So
once the classical negation of p is derived, there is no further need to apply RC.
This made classical negation quite interesting.

The situation became even more attractive when it turned out that, in cer-
tain combinations of adaptive logics—like in CnAL2(CnAL1(Γ))—not all infor-
mation is carried over to the second logic unless CnAL1(Γ) contains a classical
negation. Moreover, the formulation of the standard format turned out more
elegant if classical connectives were around. I tried to avoid ∼ in Section 9—
actually, ∼ only occurs in Item 2 of Theorem 18. However, many transparent
and clarifying statements may be phrased as soon as classical negation is around.
Just to mention one example: CnALr(Γ) = CnLLL(Γ ∪ {∼A | A ∈ Ω− U(Γ)}).
Note that, thanks to the presence of ∼, this defines the ALr -consequences of
Γ in terms of its LLL-consequences—even U(Γ) is so defined. All this, and
actually more, suggested the usefulness of classical symbols in general and of
classical negation in particular. Moreover, adding the classical logical symbols
(in a specific way) turned out to be easy and seemed philosophically unobjec-
tionable. Over the years, this led to the view that, given a premise set Γ ⊆ W,
it is advisable to formulate adaptive logics handling Γ in terms of the extension
of the native L with the classical symbols that do not belong to L. In the inter-
est of the elegance of the standard format, this was modified to: add classical
symbols, even when they duplicate symbols of L, and refer to them by specific
‘checked’ logical symbols ¬̌, ∨̌, etc.24

It later turned out that it was important to distinguish, with respect to
proofs, between (what is now called) Dab-formulas and inferred Dab-formulas.25

As the added symbols were around anyway, the distinction was originally intro-
duced in terms of the checked disjunction ∨̌.

There are mainly three reasons why I described a standard format without
‘checked’ logical symbols. First, the introduction of those symbols is rather
tiresome. It requires a motivation and a lengthy and careful formulation. A
standard format with checked symbols is definitely more complicated than one
without, and one wonders whether the advantages of extending the language
outweighs the complication. Next, the addition of classical negation will defi-
nitely raise suspicion from the side of dialetheists. So, as the addition is avoid-
able, it better is avoided—the formulation of a logic should refrain from taking a
philosophical stance. Finally, the checked symbols led to confusion, for example
to the mistaken claim that adaptive logics are in a sense incomplete because not
all semantic consequences would be derivable from premise sets in which occur
checked symbols [62, 63].26

All that we really need in the standard format is a classical disjunction, to
which I refer by ∨̂. The classical disjunction will occur in Dab-formulas and in
disjunctions like B ∨̂ Dab(Θ) in applications of RC. And even the requirement
that a classical disjunction should occur in L may be dropped, as we shall see

24The classical symbols were actually superimposed on L: in the extended language, they
never occur within the scope of the original logical symbols of L.

25The distinction warrants that the reference to a finite proof stage in Definition 5 is all
right.

26The mistake is caused by a confusion between symbols and concepts. If ∨̌ occurs in a
premise, and so in L, then ∨̌ is not a new symbol of the extended language. So one needs to
extend the language with another symbol, say ∨̃, and call that the checked disjunction.
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after the next paragraph.
Do all adaptive logics that fit in the version of the standard format with

added classical symbols also fit in the version without such added symbols?
Not quite. However, the adaptive logics that do not belong to the standard
format in the present (actually restored original)27 version can be integrated by
a single and simple strike. We shall see so in Section 13.

The requirement that classical disjunction should be a symbol of L may
be dropped by moving to a multiple-conclusion standard format. This fact
was first seen and used by Sergei Odintsov and Stanislav Speranski [54]; they
formulated this version of the standard format for propositional logics, but the
generalization to predicative logics is straightforward.

Where L is a logic, I shall write Γ `mc
L ∆ to express that, according to L,

one of the members of ∆ is true if all members of Γ are true. LLL should
be specified to be left compact as well as right compact; so if Γ `mc

L ∆, then
there is a finite Γ′ ⊆ Γ and a finite ∆′ ⊆ ∆ such that Γ′ `mc

L ∆′. Next, the
condition of the rule RC can now be phrased as “If A1, . . . , An `mc

LLL {B} ∪
Θ”, in which Θ is a finite set as in the original RC. The multiple-conclusion
standard format is also handy and interesting from a metatheoretic point of
view. Remember the characterization of ALr in terms of LLL phrased with
the help of ∼: CnALr(Γ) = CnLLL(Γ ∪ {∼A | A ∈ Ω − U(Γ)}). This can be
phrased without classical negation in multiple-conclusion terms: Γ `mc

ALr ∆ iff
Γ `mc

LLL ∆∪ (Ω−U(Γ)). The multiple conclusion version of Theorem 12 follows
from this by right compactness.

12 Variation

As adaptive logics are not deductive logics but formal characterizations of meth-
ods, a multiplicity of adaptive logics is required for every purpose. It is not up
to the logician to decree which methods a scientist should use. This choice is
up to the user, viz. the scientist, and perhaps to some extent to philosophers of
science. The choice cannot be justified in terms of logical features. It depends
on what one learned about how to learn (Shapere), and more precisely about
learning within a specific domain. So the logician should provide a multiplicity
of adaptive logics. Variation may have two sources. On the one hand, the lo-
gician should look at the facts, historical facts most of the time. As the saying
justly goes, the facts often outdo our phantasy. On the other hand, the logician
is well placed to devise a set of variations in terms of features of the formal
machinery.

Let us first have a look at LLL-variation. In principle, the lower limit logic
can be every formal paraconsistent logic that is reflexive, transitive, monotonic,
and compact, for which there is a positive test, and that contains a classical
disjunction—the latter is not even required in view of the multiple-conclusion
standard format. So a multitude of potential lower limit logics is available.
Logics between CLuN and CL (CLuNs, da Costa’s Cn, . . . ), fragments of the
former, such as LP, all LFI that have a classical disjunction, Jaśkowski’s D2,28

practically all relevant logics, etc. Each of these can be combined with several Ω

27All that is new in the restored version is the notion of an inferred Dab-formula.
28Adaptive versions of D2 and other Jaśkowski logics were extensively studied [47, 48, 49].
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and with several strategies. Some LLL behave in an unexpected way if they are
combined with an unsuitable Ω. However, a suitable Ω is usually easily located.

The set of abnormalities Ω may also be varied. We have already seen {∃(A∧
¬A) | A ∈ Ws} as well as a restricted version {∃(A ∧ ¬A) | A ∈ Wa

s }, which
is adequate for CLuNs, LP, and similar logics. At first sight, not much room
seems to be left as the lower limit logic CLuN combined with Ω = {∃(A∧¬A) |
A ∈ Wa

s } results in adaptive logics of which CL is not the upper limit, whereas
the lower limit logic CLuNs combined with Ω = {∃(A∧¬A) | A ∈ Ws} results
in a flip-flop logic—see below.

And yet, some variation is known. One example is that the set of abnormal-
ities is extended as follows: Ω = {∃(A∧¬A) | A ∈ Fs} ∪ {∀(A∧¬A) | A ∈ Fs}.
The effect is rather transparent. Although ∀(A ∧ ¬A) `CLuN ∃(A ∧ ¬A), it
makes a difference whether, next to minimizing ∃(A ∧ ¬A) one also minimizes
∀(A∧¬A). Again, this Ω is suitable for CLuN; for CLuNs one needs to replace
Fs by Fa

s . Other variations require symbols not in Ls—but CL-definable in Ls.
A nice example is the consistency operator from logics of formal inconsistency
[31]. If LLL is a compact such logic (and ∨̂ is present in its language schema),
it may be combined with {¬ ◦ A | A ∈ W}, possibly restricted to, for example,
{¬ ◦A | A ∈ Wa}. A few more suitable sets of abnormalities for inconsistency-
adaptive logics are known, but it seems wiser to postpone their introduction for
a few paragraphs.

So let us turn to variations to the strategy. Reliability and Minimal Abnor-
mality are the oldest and still central strategies. A few others are worth being
mentioned. The first strategy that comes to the mind of people new in the
domain is the Simple strategy.

Definition 23 Marking for Simple: where ∆ is the condition of line i, line i is
marked at stage s iff some A ∈ ∆ is an inferred Dab-formula of s.

This strategy is suitable iff, in view of properties of LLL or of the specific
premise set Γ, every minimal Dab-consequence of Γ has only one disjunct and
so is just an abnormality. It is easily seen that, if this is the case, Reliability,
Minimal Abnormality, and Simple define the same adaptive logic. Where Simple
is suitable, its semantics is like that of Reliability or Minimal Abnormality—the
semantics for those coincide whenever Simple is suitable.

The Normal Selections Strategy was mainly developed in order to character-
ize some non-monotonic logics known from the literature in terms of an adaptive
logic—see Section 13. The relation with Minimal Abnormality is obvious in view
of Section 8.

Definition 24 Marking for Normal Selections: where ∆ is the condition of line
i, line i is marked at stage s iff ϕ ∩∆ = ∅ for all ϕ ∈ Φs(Γ).

The following theorem shows that the computational complexity of adap-
tive logics that follow the Normal Selections strategy is less complex than the
definition suggests.

Theorem 25 Where ALn is an adaptive logic following the Normal Selections
strategy, ALn -final consequence sets are identical to the final consequence sets
assigned by an adaptive logic AL1 that is exactly like ALn except that marking
is defined as follows:

25



where ∆ is the condition of line i, line i is marked at stage s iff, for a Θ ⊆ ∆,
Dab(Θ) is an inferred Dab-formula of stage s.

Definition 26 Γ �ALn A iff, for some ϕ ∈ Φ(Γ), M  A for all M ∈ Mm
Γ

with Ab(M) = ϕ.

Some adaptive logics AL are called flip-flops. For normal premise sets Γ,
CnAL(Γ) = CnULL(Γ), which is as desired and holds for all adaptive logics. For
abnormal Γ—those that have no ULL-models—CnAL(Γ) = CnLLL(Γ), which
is usually not what one wants. As was explained in Section 4, a central aim
of adaptive logics is to isolate the abnormalities in abnormal Γ and to validate
applications of ULL-rules whenever no abnormality is involved. Flip-flops do
this only in the crudest possible way. In the case of inconsistency-adaptive
logics, for example, flip-flops deliver the full CL-consequence set of normal Γ
and nevertheless avoid triviality in the case of abnormal Γ. Unlikely as it may
appear, there are application contexts in which a flip-flop is precisely what one
wants. For such cases, it is useful to have a strategy around to define flip-flops.

Definition 27 Marking for Flip-Flops: where ∆ is the condition of line i, line
i is marked at stage s iff ∆ 6= ∅ and there is at least one inferred Dab-formula
of s.

The Blindness strategy handles abnormal premise sets as if they were nor-
mal. Replacing the strategy of any of the aforementioned inconsistency-adaptive
logics by Blindness results in CL.

Definition 28 Marking for Blindness: mark no lines.

By varying the strategy, one may also define some logic-like entities. A first
example is the Single Selection Strategy. It consists in choosing a ϕ ∈ Φs(Γ)
and in marking lines with condition ∆ iff ϕ ∩∆ = ∅. The result is not a logic
because there is an element of choice that is not specified in the premise set.
There are several ways in which the consequence set may be characterized in
terms of an adaptive logic. I mention the most obvious one. Let ALs have
the same lower limit and set of abnormalities as the logic-like object but the
Simple strategy instead. The intended consequence set is provably identical to
CnALs (Γ ∪ ϕ).29

Another logic-like entity is defined by the All Selections Strategy. The entity
is at best logic-like because it maps premise sets to sets of consequence sets,
rather than to consequence sets: ℘(W) → ℘(℘(W)). Each of the consequence
sets is associated with a ϕ ∈ Φ(Γ). One also needs to associate a mark to each
ϕ ∈ Φ(Γ). A line with condition ∆ is ϕ-marked iff ∆ ∩ ϕ 6= ∅.30

Leaving strategy variations, let us have a look at some more drastic ‘vari-
ants’. A first variant comes in a sense to digging deeper in abnormalities. The
point is that an inconsistency like (p∨q)∧¬(p∨q) may have several ‘causes’ and
that the causes themselves may be considered as abnormalities. The inconsis-
tency (p∨ q)∧¬(p∨ q) may be derivable from the premises because p∧¬(p∨ q)

29The low computational complexity of the consequence set is rather artificial. We suppose
that at least one ϕ ∩∆ = ∅ is given, but precisely locating a ϕ may be a very complex task.

30The logic-like entity has a rather limited application field. For some Γ, Φ(Γ) is not only
infinite but also uncountable.

26



CLuNm CLuNm
c CLuNsm LPm

p p p p
¬p ¬p

¬¬p ¬¬p ¬¬p ¬¬p
¬r ¬r ¬r

q q
s s s

Table 1: Comparison for Γ = {p, ¬p ∨ q, ¬(p ∨ r), ¬¬p ⊃ s}

is derivable, or because q ∧ ¬(p ∨ q) is derivable. It is also possible that neither
of the two is derivable, but that (p∨ q)∧¬(p∨ q) still is. So this leaves us with
three different sorts of (non-independent) abnormalities rather than one. What
is fascinating in this approach? Let me explain in terms of Reliability. Even
if (p ∨ q) ∧ ¬(p ∨ q) ∈ U(Γ), it is possible that r is derivable on the condition
{p ∧ ¬(p ∨ q)} and that p ∧ ¬(p ∨ q) /∈ U(Γ). On the one hand this approach
forms an Ω-variant. On the other hand, a net gain is obtained if one applies
this approach to, for example, CnCLuNm (Γ) rather than to Γ itself. I refer to a
published paper [21] for the precise (but rather lengthy) definition of the new
set of abnormalities. It is instructive to compare the new combined logic—call it
CLuNm

c —with the well studied CLuNm , CLuNsm , and LPm . I present one
example of a premise set in Table 1. The consequence set of the combined logic
is rather fascinating. On the one hand, it extends the CLuNm -consequence
set. On the other hand, where a member of the CLuNsm -consequence set
is absent (¬p in the example), this results in a more interesting consequence
(q in the example); an inconsistency is avoided in order to obtain a different
consequence.

A very different variant concerns the reduction of abnormalities in terms of
plausibilities or preferences. Suppose that A1, . . . , An ∈ Ω and that A1 ∨̂. . .∨̂An

is a minimal inferred Dab-formula at stage s of a proof from Γ. One may have
reasons not to consider the n abnormalities Ai as equally affected, but to opt
for or against a specific abnormality Ai. Of course, the choice should be made
defeasibly to avoid triviality on the one hand and superfluous inconsistency on
the other. So one will add the premise ♦Ai or ♦¬Ai, in which ♦ functions
as a plausibility operator. Abnormalities may be the formulas of the form
♦A ∧ ∼A and those of the form ♦∼A ∧ A. So, for example, from ♦∼A one
may derive ∼A on the condition {♦∼A∧A}. The upshot will be that plausible
statements will be defeasibly turned into full premises and that Dab-formulas
from the inconsistency-adaptive logic will be reduced. If A1 ∨̂ . . . ∨̂ An is a
minimal inferred Dab-formula at stage s and A1 came out of the plausibility
logic, then A2, . . . , An are off the hook. If, to the contrary, ∼A1 came out of the
plausibility logic, then A2 ∨̂ . . . ∨̂ An is LLL-derivable and hence is a minimal
inferred Dab-formula. It is often more appropriate to have different degrees of
plausibility available: ♦A for very plausible, ♦♦B for a bit less plausible, and so
on. Technically speaking, one first adds the layers of plausibility statements—as
much as possible of the most plausible statements, next as much as possible of
the second-most plausible statements, and so on, and finally one applies the
inconsistency-adaptive logic. This approach to weeding out abnormalities was
studied along with several variants for expressing and handling plausibilities or
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preferences [18].
And now to a third type of variant, and again a completely different one:

other gluts, gaps, and ambiguities. Remember that, in the original problem, the
aim was to obtain minimally inconsistent theories that may serve as a starting
point to devise a consistent theory. Until now, I have followed the official line of
thought: as the theory under consideration is inconsistent, one has to replace CL
by a paraconsistent logic. This, however, is not the only way out. Inconsistencies
may be seen as negation gluts: the classical condition for ¬A to be false is
present (in that A is true), but nevertheless ¬A is true. Negation gaps may
be understood in a similar way. Moreover, gluts as well as gaps with respect
to other logical symbols may also be understood along the same line. We are
for example confronted with an existential gap if ∃xPx is false although Pa
is true. Furthermore, non-logical symbols may be ambiguous in that different
occurrences of the same symbol may have a different meaning, whence different
occurrences of the same formula may have different truth values. Sundry gluts
or gaps may be allowed, possibly along with ambiguities, in order to avoid
triviality; next, the gluts and gaps and ambiguities may be minimized in order
to interpret the premise set as much as possible in the way CL interprets it—the
first ambiguity-adaptive logics were devised by Guido Vanackere [64, 65, 66].

The premise set Γ4 = {p, r, (p ∨ q) ⊃ s, (p ∨ t) ⊃ ¬r, (p ∧ r) ⊃ ¬s, (p ∧
s) ⊃ t} may serve as an illustration. Γ4 has models (i) of logics that allow
for negation gluts, (ii) of logics that allow for negation gaps, (iii) of logics that
allow for conjunction gaps as well as disjunction gaps, (iv) of logics that allow
for implication gluts, (v) of logics that allow for ambiguities in the non-logical
symbols, and of course of logics that allow for several of the mentioned gluts
and gaps and ambiguities. Each of these possibilities defines a different adaptive
theory. Each of these theories is a sensible solution of the original problem. So,
again, a multiplicity of approaches is available and this is as it should be. All
those abnormalities surface as inconsistencies when one applies CL to premise
sets, but this does not mean that paraconsistency is the only possible answer.
The combinations lead up to adaptive zero logic CL∅m . In this logic, all meaning
is contextual. According to CL∅ nothing is derivable from any premise set, not
even the premises. Nevertheless, the adaptive CL∅m assigns to normal premise
sets the same consequence set as CL. Apart from its own interest, CL∅m was
shown to have an important heuristic value for determining which combinations
of gaps or gluts or ambiguities lead to maximally normal interpretations of a
given premise set. A detailed study is available [24].

13 Integration

Once the standard format was described, it was not difficult to devise many
new logics and this pragmatic attitude led to useful work. However, it is also
important to unify the domain of ‘defeasible logics’. It is important to find
out whether all defeasible logics can be subsumed under the same schema or,
if that turns out impossible, whether the number of schemas can be reduced.
Needless to say, it cannot be settled today which schemes have most unifying
power. However, studying the unifying power of adaptive logics seems sensible
because there is a clear underlying concept. This is why a lot of attention was
given to integrating existing mechanisms into adaptive logics. There is a book
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[62] that contains many relevant results and a list of papers that I shall not add
to the references.

As I see it, the aim should be to integrate the realistic and potentially re-
alistic defeasible reasoning forms. It goes without saying that truckloads of
defeasible mechanisms may be defined, especially in semantic terms. It goes
equally without saying that many of them cannot be integrated in any finite set
of unifying schemas. This is as unimportant as it is obvious. Among the possi-
ble sources for potentially realistic reasoning forms are (i) defeasible reasoning
forms described by different approaches, (ii) old and ‘unusual’ adaptive logics
that are not in standard format, (iii) new defeasible reasoning forms that are
useful in view of the philosophy of science, the philosophy of mathematics, and
everyday reasoning.

Two examples of integration follow, one ‘external’ and one ‘internal’. The
external one concerns the Strong Consequence Relation devised by Nicholas
Rescher [57]. Consider a version of CLuN with classical negation ∼—the vari-
ant will not be given a different name. Let Γ′ comprise the members of Γ
with ¬ replaced by ∼ and let Γ¬∼ = {¬∼A | A ∈ Γ′}. It was proven [13]
that Γ `Strong A iff Γ¬∼ |=CLuNm A. So the corrective consequence relation
Strong is characterized by (the variant of) the adaptive logic CLuNm under a
translation. The characterization in adaptive terms reveals at once a whole set
of properties of the Strong consequence relation. It also enables one to devise
so-called direct proofs: adequate dynamic proofs that proceed in the original
language (with one negation symbol) [29].

By internal integration I mean that adaptive logics that are not in standard
format are characterized in terms of an adaptive logic in standard format. It
may be shown, for example, that adaptive logics following the Normal Selections
strategy can be characterized in terms of adaptive logics that follow the Minimal
Abnormality strategy. The example I shall use as an illustration here is the one
promised in Section 11: adaptive logics that fall under the standard format with
checked logical symbols but not under the standard format without, may (all
and in one sweep) be characterized in terms of adaptive logics that fall under
the new standard format.

Let AL1 be the adaptive logic that requires integration because it requires
the presence of checked symbols whereas some (or even all) classical symbols
are absent from its native language. One simply proceeds as follows. First,
the native language L of AL1 is extended to L+ by superimposing ∨̂31 as well
as all other classical symbols. Next, define AL2 like AL1 except that AL2 is
defined over L+. So, whatever classical symbols were required for defining AL1
are available in the native language of AL2, which is in the present standard
format. Finally, define CnAL(Γ) = CnAL+(Γ) ∩ W—obviously no translation
function is required, or rather, the translation function is such that tr(A) = A.
The reader should not be misled by this example. Here integration is nearly
obvious. In other cases, however, integration may require quite some ingenuity.

14 In Conclusion: Applications

From the very first ideas on, my motivation for developing adaptive logics was
always guided by the aim to handle sensible applications in a sensible way.

31That is (i) W ⊆W+ and (ii) if A,B ∈ W+, then (A ∨̂B) ∈ W+.
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Moreover, this aim was to understand and explicate the actual defeasible rea-
soning. Attention for models and for formal properties came only afterwards,
as a means rather than as an end.

We have seen that the ‘original problem’ was to construct minimally abnor-
mal interpretations of mathematical or empirical theories that were intended
as consistent but turned out to be inconsistent. This was the central appli-
cation context for inconsistency-adaptive logics as well as for combinations of
inconsistency-adaptive logics with other adaptive logics.

In the previous paragraph, “theory” should not be taken too literally. There
are many cases in which one deals with inadvertently inconsistent premise sets
the content of which is much more disparate than are the theorems of a theory.
A nice example is that inconsistency-adaptive logics allow one to incorporate
the inconsistent case in belief revision [33]. This broadens an existing approach,
making room for inconsistency. A similar move may be made with respect to
many other approaches, for example question evocation [44]. A different matter
is that existing mechanisms that are able to handle inconsistency have more
attractive adaptive versions [45].

Graham Priest, who edited my oldest paper on the topic, was fascinated
by the application of adaptive logics to a very different problem. Inconsistency-
adaptive logics offer the possibility to understand most of classical reasoning and
actually to understand it as correct. Not as correct by logical standards, but as
correct by logical standards extended with the presumption that inconsistencies
are false. For dialetheists the presumption is justified by the low frequency of
true inconsistencies. That a person with so different a view on logic saw a use
in inconsistency-adaptive logics has been a great source of encouragement.

Recently a very different type of application turned out to be fascinating.
In view of the limitative theorems in mathematics, (i) the axiomatic method is
known to have a rather limited scope and (ii) some of our present mathematical
theories may very well turn out to be inconsistent and hence, as their underlying
logic is CL, trivial. In view of each of these facts, it became attractive to phrase
theories that have an adaptive logic as their underlying logic. These theories,
viz. their set of theorems, are obviously not semi-recursive. That is precisely one
of the advantages. Notwithstanding their finitary rules and notwithstanding the
simplicity of dynamic proofs-at-a-stage, adaptive logics enable one to axiomatize
Π1

1-complex theories. So although it is too complex, for either humans or Turing
machines, to figure out whether some formula is or is not a theorem of the theory,
the theory at least defines correctly a certain complex consequence set.32

With respect to the possible triviality of classical mathematical theories, the
advantage of adaptive theories is similar. Well-wrought inconsistency-adaptive
theories display the following feature: if the classical theory is consistent, then
the adaptive theory defines exactly the same set of theorems; if the classical
theory is inconsistent, it is trivial and so pointless, but the adaptive theory,
which we may phrase today, will still define a non-trivial consequence set that
is ‘as close to’ the intended consequence set ‘as is possible’.

Until now only a few adaptive theories have been formulated and studied

32Classical theories, which have CL as underlying logic, fail to define such a theory. Their
consequence relation is much less complex. If A is not a theorem of a classical theory, humans
or Turing machines may never find this out. However, if A is a theorem of the classical theory,
humans or Turing machines will find that out at a finite point in time. As this point may be
two million years from here, the point is slightly theoretical.
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[22, 68, 69], but the results seem fascinating.
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