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In this paper we offer a system J-Calc that can be regarded as a typed λ -calculus for the
{→,⊥} fragment of Intuitionistic Justification Logic. We offer different interpretations of
J-Calc, in particular, as a two phase proof system in which we proof check the validity of
deductions of a theory T based on deductions from a stronger theory T ′. We establish some
first metatheoretic results.

1 Introduction

A plausible reading of Gödel’s incompleteness results ([18]) is that the notion of “validity”
diverges from that of “truth within a specific theory”: given a theory that includes enough arith-
metic, there are statements whose validity can only be established in a theory of larger proof-
strength. This phenomenon can be shown even with non-Gödelian arguments in the relation
e.g. between I∆0 and IΣ1 arithmetic [27], IΣ1 and PA, PA and ZF, etc. [29, 15]. The very
same issues arise in automated theorem proving. A good example is given by type systems and
interactive theorem provers (e.g. Coq, Agda) of the functional paradigm. In such systems, when
termination of functions has to be secured, one might need to invoke stronger proof principles.
The need for reasoning about two kinds of proof objects within a type system is apparent most
of all when one wants to establish non-admissibility results for a theory T that can, in contrast,
be proved in some stronger T ′. The type system, then, has to reconcile the existence of a proof
object of some type φ in some T ′ and a proof object of type ¬∃s.ProvT (s,φ) that witnesses the
non-provability of φ (in T ).

In this work, we argue that the explicit modality of Justification Logic [7] can be used to
axiomatize relations between objects of two different calculi such as those mentioned above. It
is well known that the provability predicate can be axiomatized using a modality [14], [9]. The
Logic of Proofs LP [3] goes further and provides explicit proof terms (proof polynomials) to
inhabit judgments on validity. By translating reasoning in Intuitionistic Propositional Calculus
(IPC) to classical proofs, LP obtains classical semantics for IPC through a modality (inducing a
BHK semantics). In this paper we axiomatize the relation of the two kinds of proof objects ex-
plicitly, by creating a modal type theory that reasons about bindings of objects from two calculi:
a lower-level theory T , formulated as IPC with Church-style λ -terms representing intuitionistic
proof objects; and a higher-level, possibly stronger theory T ′ in a classical setting, fixed as foun-
dational and validity preserving, with justifications representing classical proof objects. These
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latter objects are axiomatized as justifications (i.e. terms of Justification Logic) and are used to
interpret classically (meaning truth-functionally) the constructions of the intuitionistic natural
deduction. A binding witness constructor JBox creates witnesses of bindings between objects
of the two kinds. This is how necessity is introduced: by proof-checking deductions of T with
deductions of T ′, we reason constructively (i.e. within T ) about admissibility of valid (via T ′)
statements in T . We thus assume that T and T ′ contain both enough arithmetic and hence they
both capture provability predicates: their own and of one another. In turn, both can capture the
existence of proof bindings, i.e. proofs that a sentence is provable in both T and in T ′.

A possible application of the presented type theory comes from the computational reading
of our extended Curry–Howard correspondance. We can read functions within � types indexed
by justifications as constructs that link processes for modular programming in functional lan-
guages like ML.1 Such programs are used to map well–typed constructs importing and using
module signatures into their residual programs. By residual programs we mean programs where
all instances of module types and function calls are replaced by (i.e. linked to) their actual im-
plementations, which remain hidden in the module. We believe that, with slight modifications,
our type system can find a natural application in this setting. Here we focus on the type system
itself and not on its operational semantics.

The backbone of this work is the idea of representing the proof theoretic semantics for
IPC through modality that stems from [5],[6]. An operational approach to modality related
to this work can be found in [4]. The modularity of LP, i.e. its ability to realize other kinds of
modal reasoning with proper changes in the axiomatization of proof polynomials, was shown
with the development of the family of Justification Logics [7]. This ability is easily seen to be
preserved here. Our work tries to incorporate the rich type system and modularity of Justification
Logic within the proofs-as-programs doctrine. For that reason, we obtain an extension of Curry-
Howard correspondance ([30], [17]) and adopt the judgmental approach of Intuitionistic Type
Theory ([21], [22], [23], [25], [11]). Our system borrows from other modal calculi developed
within the judgmental approach (e.g. [28], [19],[1]), and especially [13] for the modal logic K.
A main difference of our system with those systems, as well as with previous λ -calculi for LP
([2], [10]) is that our type system hosts a two-kinded typing relation for proof objects of the same
formulae. It can be viewed as an attempt to add proof terms for validity judgments as presented
in [28]. The resulting type system adopts dependent typing ([12], [26]) to relate the two kinds
of proof objects with modality. The construction of the type universe as well as of justificational
terms draws a lot from ideas in [8] and from [16]. Extending typed modal calculi with additional
(contextual) terms of dependent typing can be also found in [24].

2 A road map for the type system

The present system can be viewed as a calculus of reasoning in three interleaving phases. Firstly,
reasoning about proof objects in the implicational fragment of an intuitionistic theory T in ab-
sence of any metatheoretic assumptions of validity (Here), introduced in Section 3. This calculus

1See [20].
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is formalized by the turnstile Γ `IPC2 where Γ contains assumptions on proofs of sentences in
T . The underlying logic is intuitionistic, the system corresponding to the implicational fragment
of simply typed lambda calculus. Secondly, reasoning with justifications, corresponding to rea-
soning about proof objects in some fixed foundational system T ′ (There), introduced in Section
4. We suppose that T ′ provides the intended semantics for the intuitionistic system T . The cor-
responding turnstile is ∆ `J. Abstracting from any specific metatheory, all that matters from a
purely logical point of view is that the theory of the interpretation should – at least – include as
much logic as the implicational fragment of T and it should satisfy some minimal provability
conditions applied to the provability predicate of T . Finally, reasoning (in both systems) about
existence of bindings 3 between proof objects in the implicational fragment of the two axiomatic
systems, introduced in Section 5. This mode of reasoning is axiomatized within the full turnstile
∆;Γ ` JC. The core of that system is the �-Introduction rule, which allows to express construc-
tive reasoning on binding existence. The idea is – ignoring contextual reasoning for simplicity –
that binding a construction in T with a justification of the same type from T ′ we obtain a proof of
a constructive (or, admissible in T ) validity. The full turnstile Γ;∆ ` is a modal logic that “zips”
mutual reasoning between the two calculi. Within this framework we obtain the Curry-Howard
correspondence for justification logic under K modal reasoning. Before presenting this mutual
reasoning at any arbitrary level of nesting, we first introduce JCalc1 which is a restriction of the
calculus up to degree 1.

We fix a countable universe of propositions (Pi) that corresponds to sentences of T together
with the bottom type (⊥). The elements of this universe can be inhabited either by constructions
or justifications.4 We will need, accordingly, two kinds of inhabitation relations for each propo-
sition. We will be writing M : φ for a construction M of type φ in T . Such construction in T
does not entail its necessity: a corresponding justification from T ′ has to be obtained. We will
be writing j : Just φ to express the fact that j is a justification (proof in T ′) of the proposition φ .
When there is no confusion we will be abbreviating this by j :: φ . The justification ( j) of φ in T ′

alone entails its validity but not its admissibility in T (constructive necessity). This is expressed
by the proposition – type �jφ . A construction of �jφ can be obtained only when the (weaker)
theory T actually “responds” with a construction M of the type φ to the valid fact φ known from
T ′ by deducing j. Hence, once (and only if) we have j :: φ then �jφ can be regarded as a well
formed proposition. The stronger theory might be able to judge about �jφ (given j :: φ ) and
prove e.g, u :: �jφ . In that case T ′ “knows” that φ is admissible in T . Or, more interestingly,
we might have u :: ¬�jφ , meaning that T ′ proves that φ cannot be proved in T . In other words,
when reasoning with justifications, the universe of types is contextual. To speak about an admis-
sible (or, constructive) necessity of a proposition we need a corresponding proof object j in T ′

that establishes its validity.

2One could alternatively use an additional constant symbol null and write null;Γ `IPC to denote reasoning purely
in T and, thus, in absence of any metatheoretic environment.

3The reason we insist on binding witnesses and not bindings themselves should become clear when we introduce
them.

4Or, equivalently, there is a bijection between sentences of a theory T and their intended interpretations in T ′.
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3 Reasoning without foundational assumptions: IPC

Reasoning about the implicational fragment of the constructive theory (T ) (i.e. without for-
mulating provability statements) is done within the implicational fragment of the simply typed
lambda calculus. We start by giving the grammar for the metavariable φ used in the rules.

φ := Pi|⊥|φ → φ

The calculus is presented by introducing: the universe of types Prop0; rules for constructing
well-formed contexts of simple propositional assumptions Γ0; the rules governing `IPC.

Pi ∈ Prop0
ATOM0 ⊥ ∈ Prop0

BOT0
φ1 ∈ Prop0 φ2 ∈ Prop0

φ1→ φ2 ∈ Prop0
IMPL0

nil `IPC wf
NIL0

Γ0 `IPC wf φ ∈ Prop0

Γ0,x : φ `IPC wf
Γ0-EXP

Γ0 `IPC wf x : Pi ∈ Γ0

Γ0 `IPC x : Pi
Γ-REFL

φ ∈ Prop0 Γ0 `IPC M :⊥
Γ0 `IPC abortφ M : φ

FALSE

Γ0,x : φ1 `IPC M : φ2

Γ0 `IPC λx : φ1. M : φ1→ φ2
→I

Γ0 `IPC M : φ1→ φ2 Γ0 `IPC M′ : φ1

Γ0 `IPC (MM′) : φ2
→E

4 Reasoning in the Presence of Foundations: A calculus of Justifica-
tions J

Reasoning in the presence of minimal foundations corresponds to reasoning on the existence of
proof objects in the foundational theory T ′. The minimal foundational assumptions from the
logical point of view is that T ′ knows at least as much logic as T does. The more non-logical
axioms in T , the more the specifications T ′ should satisfy (one needs stronger foundations to
justify stronger theories). Abstracting from any particular T and T ′ though, and assuming only
that T is a constructive theory, the minimal specifications about existence of proofs in T ′ are:

• to have “enough” types to provide – at least – an intended interpretation of every type φ

of T to a unique type Just φ . In other words a subset of the types of T ′ should serve as
interpretations of types in T ;

• to have – at least – proof objects for all the instances of the axiomatic characterization of
the IPC fragment described above;5

5If we extend our fragment we should extend our specifications accordingly but this can be easily done directly
as in full justification logic. We choose to remain within this fragment for economy of presentation.
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• to include some modus ponens rule which translates as: the existence of proof objects of
types Just (φ → ψ) and of type Just φ in T ′ should imply the existence of a proof object
of the type Just φ .

4.1 Minimal Justification Logic J-Calc1

Under these minimal requirements, we develop a minimal justification logic that is able to realize
modal reasoning as reasoning on the existence of bindings between proofs of T and T ′. We first
realize modal reasoning restricted to formulae of degree (i.e. level of �-nesting) 1. Such a
calculus will be used as a base to build a full modal calculus with justifications for formulae of
arbitrary degree.

4.1.1 Reasoning on minimal foundations J0

Reasoning about such a minimal metatheory is axiomatized in its own turnstile (`J0). Hence-
forth, judgments on the justificational type universe of J0 (an adequate subset of types in T ′)
together with wf predicate for ∆0 contexts go as follows:

nil `J0 wf
NIL

∆0 `J0 wf ∆0 `J0 φ ∈ Prop0

∆0 `J0 Just φ ∈ jtype0
SIMPLE

∆0 `J0 Just φ ∈ jtype0 s 6∈ ∆0

∆0,s :: φ `J0 wf
∆0-APP

∆0 `J0 wf s :: φ ∈ ∆

∆0 `J0 s :: φ
∆0-REFL

We add logical constants to satisfy the requirement that J0 includes an axiomatic characteriza-
tion of – at least – a fragment of IPC. Following justification logic, we define a signature of
polymorphic constructors including K, S from combinatory logic, and Falsum for the explosion
principle. The values of those constructors are axiomatic constants that witness existence of
proofs in T ′ of all instances of the corresponding logical validities. This axiomatic characteriza-
tion of intuitionistic logic in J0 together with rule scheme TIMES (applicativity of justifications)
satisfy the minimal requirement for T ′ to reason logically.

∆0 `J0 Just φ1→ φ2→ φ1 ∈ jtype0

∆0 `J0 K[φ1,φ2] :: φ1→ φ2→ φ1
K

∆0 `J0 Just ⊥→ φ ∈ jtype0

∆0 `J0 Falsum[φ ] ::⊥→ φ
FALSUM

∆0 `J0 Just (φ1→ φ2→ φ3)→ (φ1→ φ2)→ (φ1→ φ3) ∈ jtype0

∆0 `J0 S[φ1,φ2,φ3] :: (φ1→ φ2→ φ3)→ (φ1→ φ2)→ (φ1→ φ3)
S

∆0 `J0 j2 :: φ1→ φ2 ∆0 `J0 j1 :: φ1

∆0 `J0 j2 ∗ j1 :: φ2
TIMES
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The substitution principle for justifications is expressed explicitly by the following rule:6

∆0,s :: φ `J0 j :: φ ∆0 `J0 j′ :: φ

∆0 `J0 j[s := j′] :: φ
∆0-SUBST

4.1.2 Zipping: J-Calc1 = IPC+J0 +�−Intro

In this section we introduce J-Calc1 for reasoning on the existence of bindings i.e. constructions
that witness the existence of proofs both in IPC (here: T ) and J0 (there: T ′). By constructing
a binding we have a proof of a constructive necessity of a formula, showing that it is true and
valid. Bindings have types of the form �jφ where j is a justification of the appropriate type.
J-Calc1 realizes modal logic theoremhood in K up to degree 1.

∆0 `J0 wf

∆0;nil `JC1 wf
IMPWF

∆0;Γ1 `JC1 wf ∆0 `J0 j :: φ

∆0;Γ1 `JC1 j :: φ
IMPJUST

φ ∈ Prop0 ∆0;Γ1 `JC1 j :: φ

∆0;Γ1 `JC1 �
j
φ ∈ Prop1

PROP1-INTRO

∆0;Γ1 `JC1 φ ∈ {Prop0,Prop1} x 6∈ Γ1

∆0;Γ1,x : φ `JC1 wf
Γ1-APP

From justifications of formulas in Prop0, we can reason about their admissibility in T . Hence, Γ1
might include assumptions from the sorts Prop0 and Prop1. For the inhabitation of Prop0,Prop1,
we first we accumulate intuitionistic reasoning extended to the new type universe (Prop1), adapt-
ing the rules from Section 3:

∆0;Γ1 `JC1 wf x : φ ∈ Γ1

∆0;Γ1 `JC1 x : φ
Γ-REFL

∆0;Γ1 `JC1 φ ∈ {Prop0,Prop1} ∆0;Γ1 `JC1 M :⊥
∆0;Γ1 `JC1 abortφ M : φ

FALSE

∆0;Γ1,x : φ1 `JC1 M : φ2

∆0;Γ1 `JC1 λx : φ1. M : φ1→ φ2
→I

∆0;Γ1 `JC1 M : φ1→ φ2 ∆0;Γ1 `JC1 M′ : φ1

∆0;Γ `JC1 (MM′) : φ2
→E

For relating the two calculi, a lifting rule is formulated for turning strictly Prop0 judgments to
judgments on proof bindings (Prop1). Note that since the K modality does not require factivity,

6We could have introduced a function space among justificational types in the form of evidence functions (objects
appearing in the semantics of Justification Logic) as first class citizens of the theory, with terms corresponding to
abstraction from ∆, together with an elimination rule corresponding to substitution. For economy of presentation,
and in accordance with justification logic syntax, we prefer here a single substitution rule.
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we do not keep the construction M in the conclusion of the rule. That is, when the existence of
a proof match is obtained the T construct becomes irrelevant. This is why we speak of binding
witnesses instead of bindings themselves.

In the rule, the �-operator, to be fully defined in Section 5.2, ensures that context list � Γ

includes assumptions strictly in Prop0. Finally, since justifications now appear in constructions
(via “boxing”) we have to extend the substitution rule accordingly as shown for the full calculus
in Section 5.1. 7

� Γ1 `IPC M : φ ∆0 `J0 j :: φ ∆0;Γ1,Γ
′
1 `JC1 wf

∆0;Γ1,Γ
′
1 `JC1 Jbox j : � j

φ
�-INTRO

5 The Full Calculus: J-Calc

J-Calc1 motivates the generalization to modal reasoning of arbitrary nesting: J-Calc. To allow
such generalization, we need justifications of types of the form Just �jφ . Let us revise: If φ is a
proposition (or, a sentence in the language of T ), then Just φ corresponds to the intended inter-
petation of φ in some metatheory T ′. In J-Calc1 we could reason logically about the constructive
admissibility of (valid according to T ′) facts of T . The existence of a binding (or proofcheck or,
mapping) of a proof in T with an existing proof of the same type in T ′ would lead to construc-
tions of a type of the form � jφ with φ a simple type. To get modal theoremhood of degree 2 or
more we have to assume that T ′ can express the existence of such bindings in itself. That is to
say that T ′ can express the provability predicates both of T and of itself. Hence, supposing that
j :: φ , we can read a justification term of type Just � jφ as a witness of a proof in T ′ of the fact
∃x.Proo fT (x,φ)∧∃x.Proo fT ′(x, Just φ) expressed in T ′. We will specify which of those types
T ′ is expected to capture by introducing additional appropriate constants. Having this kind of
justifications we can obtain Propi for any finite i as slices of a type universe in a mutual inductive
construction. Schematically: Prop0⇒ Just Prop0⇒ Prop1⇒ Just Prop1 and so on. This way
we obtain full modal logic with justifications and Curry-Howard Isomorphism for intuitionistic
justification logic. As different kinds of judgments are kept separated by the different typing
relations, we do not need to provide distinct calculi as we did for J-Calc1 but we provide one
“zipped” calculus directly. 8

5.1 Justificational (Validity) Judgments

The justificational type system has to include: judgments on the wellformedness of contexts
(wf);9 judgments on what T ′ can reason about (jtype) under the requirement that it is a metathe-

7The (currently in progress) operational semantics of the calculus reads Jbox j as the return value of an interpre-
tation procedure that “consumes” constructs in T and maps them, forgetfully, to constructs in T ′. The return value
witnesses a success in this mapping process. The connection with IO and Lift monads has to be explored and utilized
for a more explicit version of this rule.

8In fact, adjoining Γ contexts when reasoning within justifications is pure weakening so we could have kept
those judgments separated in a single–context ` relation. We gain something though: we can squeeze two premises
(∆ ` j :: φ , ∆;Γ ` wf) to a single one (∆;Γ ` j :: φ ).

9 Analogous treatments of judgments on the validity of contexts can be found e.g. in [26].
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ory of T ; judgments on the construction of the justificational type universe (jtype) and minimal
requirements about its inhabitation. (i.e, a minimal signature of logical constants). Here is the
grammar for the metavariables appearing below:

φ :=Pi|⊥|� j
φ |φ1→ φ2

j :=si|C| j1 ∗ j2
C :=K[φ1,φ2]|S[φ1,φ2,φ3]|Falsum[φ ]|Kappa[ j1, j2,φ1,φ2]|!C
s :=si

We introduce progressively: formation rules for Prop (where we treat negation definitionally:
¬φ =de f φ → ⊥); the formation rule for jtype; rules to build well-formed contexts of propo-
sitions and justifications (where we will be abbreviating using the following equational rule:
nil,s1 :: φ1,s2 :: φ2, . . .=

de f s1 :: φ1,s2 :: φ2, . . . ).

∆;Γ `JC wf

∆;Γ `JC Pi ∈ Prop
ATOM

∆;Γ `JC wf

∆;Γ `JC ⊥ ∈ Prop
BOT

∆;Γ `JC φ1 ∈ Prop ∆;Γ `JC φ2 ∈ Prop

∆;Γ `JC φ1→ φ2 ∈ Prop
IMPL

∆;Γ `JC j :: φ

∆;Γ `JC � j
φ ∈ Prop

BOX

∆;Γ `JC φ ∈ Prop

∆;Γ `JC Just φ ∈ jtype
JTYPE

nil;nil `JC wf
NIL

∆;Γ `JC Just φ ∈ jtype s 6∈ ∆

∆,s :: φ ;Γ `JC wf
∆-APP

∆;Γ `JC φ ∈ Prop x 6∈ Γ

∆0;Γ,x : φ ` wf
Γ-APP

While inhabitation of Prop and jtype have not yet been presented, substitution on justificational
terms is treated as a context operation and introduced first. In the following, the Γ′ context in the
second premise is rudimentary and could be assumed to be empty. In addition, having second
degree assumptions implies dependencies of propositions on the succeeding slice of the context
∆2 by s. As a result, we apply substitution uniformly from the “point” s :: φ on.

∆1,s :: φ1,∆2;Γ `JC j :: φ2 ∆1;Γ
′ `JC j′ :: φ1

∆1,∆2[s := j′];Γ[s := j′] `JC j[s := j′] :: φ2[s := j′]
∆-SUBST1

Analogously we have the same substitution principle for propositional judgments. Substitution
should be applied in the constructions too, since in the general case they include justificational
terms (cf. JBox):

∆1,s :: φ1,∆2;Γ `JC M : φ2 ∆1;Γ
′ `JC j′ :: φ1

∆1,∆2[s := j′];Γ[s := j′] `JC M[s := j′] :: φ2[s := j]
∆-SUBST2
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5.1.1 Prop Inhabitation

Here is the first part of logical propositional reasoning of the system.

∆;Γ `JC wf x : φ ∈ Γ

∆;Γ `JC x : φ
Γ-REFL

∆;Γ `JC φ ∈ Prop ∆;Γ `JC M :⊥
∆;Γ `JC abortφ M : φ

FALSE

∆;Γ,x : φ1 `JC M : φ2

∆;Γ `JC λx : φ1. M : φ1→ φ2
→I

∆;Γ `JC M : φ1→ φ2 ∆;Γ `JC M′ : φ1

∆;Γ `JC (MM′) : φ2
→E

5.1.2 jtype Inhabitation

Now we move to the core of the system. In the judgments below we provide the construc-
tions of canonical elements of justificational types (jtype). The judgments reflect the minimal
requirements for T ′ to be a metatheory of some T as presented in Section 4.1.1 together with
specifications on internalizing proof binding reasoning in itself. More specifically, we demand
that T ′ can capture reasoning on bindings (between proof objects of T and itself) within itself
and also, internalize modus ponens of T . To capture these provability conditions we add the
constant constructors ! (bang) and Kappa. Although introduction of bindings is axiomatized in
the next section, these judgments are judgments on the existence on proofterms of T ′ and, thus,
are presented together.

∆;Γ `JC Just φ1→ φ2→ φ1 ∈ jtype

∆;Γ `JC K[φ1,φ2] :: φ1→ φ2→ φ1
K

∆;Γ `JC Just ⊥→ φ ∈ jtype

∆;Γ `JC Falsum[φ ] ::⊥→ φ
FALSUM

∆;Γ `JC Just (φ1→ φ2→ φ3)→ (φ1→ φ2)→ (φ1→ φ3) ∈ jtype

∆;Γ `JC S[φ1,φ2,φ3] :: (φ1→ φ2→ φ3)→ (φ1→ φ2)→ (φ1→ φ3)
S

∆;Γ `JC j2 :: φ1→ φ2 ∆;Γ `JC j1 :: φ1

∆ `J j2 ∗ j1 :: φ2
TIMES

∆;Γ `JC M : �C
φ

∆;Γ `JC C! :: �C
φ

BANG

∆;Γ `JC Just � j′
φ1 ∈ jtype ∆;Γ `JC Just � j(φ1→ φ2) ∈ jtype

∆;Γ `JC Kappa[ j, j′,φ1,φ2] :: � j(φ1→ φ2)→� j′
φ1→� j∗ j′

φ2
KAPPA

5.2 Proof Bindings

Our next task is to formulate the main rule for the K modality as a lifting rule for going from
reasoning about constructions to reasoning about admissibility of validities via proof matching.
To reflect the modal axiom K in Natural Deduction we have to obtain a rule that reflects the
following provability principle:

φ1 true, . . . ,φn true ` φ true φ1 valid, . . . ,φn valid ` φ valid

�φ1 true, . . . ,�φn true, . . . `�φ true
�-INTRO
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We proceed with giving inhabitants analogously to what was explained in Section 4.1.2:

∆;� Γ `JC M : φ ∆
′;Γ,Γw `JC j :: φ

∆
′;Γ,Γw ` JBox j : � j

φ
�-INTRO

10 The operator � can be viewed as the opposite of lift operation applied on context lists erasing
one level of boxed assumptions at the top level as described below. The addition of Γw is to
obtain weakening.

� Γ := match Γ with
nil⇒ nil

| Γ′,xi : � j
φi⇒ � Γ

′, xi : φi

|Γ′, ⇒ � Γ
′

5.2.1 An Example

Let us give the main steps of realizing the K modal theorem ��(P1→ P2)→ ��P1→ ��P2
in JCalc.

[Z]=

skip

nil;x : P1,y : P1→ P2 `JC wf
Γ-APP

···
nil;x : P1,y : P1→ P2 `JC (yx) : P2

APP

Letting:
∆ = {s :: P1, t :: P1→ P2} and Γ = {x : P1→ P2,y : P1}, Γ′ = {x : �t(P1→ P2),y : �sP1,}
[V]=

[Z]

skip

∆;Γ
′ `JC wf
···

∆;Γ
′ `JC t ∗ s :: P2

TIMES

∆;Γ
′ `JC JBox t ∗ s : �t∗sP2

�-INTRO

Letting:
∆′= {s :: P1, t :: P1→P2,u ::�t(P1→P2)},v ::�sP1, Γ′′= {x :�v�t(P1→P2),y :�u�sP1,},

10We prefer this to the mouthful but equivalent (since wf is embedded in the second premise of our rule):

∆;x1 : φ1, . . . ,xi : φi `M : φ ∀φi ∈ Γ. ∆
′;nil ` ji :: φi ∆

′;Γ,Γw ` wf
∆
′;x1 : � j1 φi, . . . ,�

ji φi,Γw ` JBox j : �j
φ

�-INTRO
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Kp1 = Kappa[t,s,P1,P2] and with Γw = nil in �-Intro.

[V ]

skip

∆
′;Γ
′′ `JC wf
··

∆
′;Γ
′′ `JC Kp1 :: �t(P1→ P2)→�sP1→�t∗sP2

KAPPA

··
∆
′;Γ
′′ `JC Kp1 ∗u∗ v :: �t∗sP2

TIMES

∆
′;Γ
′′ `JC JBox Kp1 ∗u∗ v : �Kp1∗u∗v�t∗sP2

�-INTRO

··
∆
′;nil `JC λx.λy. JBox Kp1 ∗u∗ v : �u�t(P1→ P2)→�v�sP1→�Kp1∗u∗v�t∗sP2

→I

6 Further Results and Conclusions

Standard meta-theoretical results can be proven for J-Calc. We just mention here that the Jbox
operator satisfies standard commutativity with the substitution rule for justifications and that
structural rules can be proven. We will be skipping the index in `JC.

Theorem 1 (Weakening). J-Calc satisfies Weakening in both modes of reasoning:

1. If ∆;nil ` j :: φ , and ∆;Γ ` wf then, ∆;Γ ` j :: φ .

2. If ∆;Γ ` j :: φ , then ∆,s :: φ ′;Γ ` j :: φ , with s fresh.

3. If ∆;Γ `M : φ , then ∆;Γ,x :φ ′ `M : φ , with x fresh.

Proof. For all items by structural induction on the derivation trees of the two kinds of construc-
tions. The proof of the first is vacuous since Γ contexts are irrelevant in justification formation.
As a result, its inverse can also be shown.

Theorem 2 (Contraction). J-Calc satisfies Contraction:

1. If ∆,s :: φ , t :: φ ;nil ` j :: φ ′, then ∆,u :: φ ;nil ` j[s≡ t/u] :: φ ′.

2. If ∆,s :: φ , t :: φ ;Γ ` wf, then, ∆,u :: φ ;Γ[s≡ t/u] ` wf.

3. If ∆,s :: φ , t :: φ ;Γ `M : φ ′, then, ∆,u :: φ ;Γ[s≡ t/u] `M[s≡ t/u] : φ ′[s≡ t/u].

4. If ∆;Γ,x : φ ,y : φ `M : φ ′, then ∆;Γ,z : φ `M[x≡ y/z] : φ ′.

Proof. First item by structural induction on the derivation trees of justifications (validity judg-
ments). Note, as mentioned in the previous theorem, that it can be shown for arbitary Γ. For
the second, nested induction on the structure of context Γ (treated as list) and the complexity of
formulas. Vacuously in the nil case. For the non-empty case: case analysis on the complexity
of the head formula using the inductive hypothesis on the tail. Cases of interest are with �sφ

or �tφ as subformulae. Use the previous item and judgments for wf contexts. For the third,
structural induction on the derivation. In all cases except for �-Intro, M[s≡ t/u] is vacuous. For
the fourth, again by structural induction on the derivation.
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We additionally mention that the calculus satisfies exchange up to wellformedness preserva-
tion. Moreover, a forgetful projection of the calculus (i.e omitting justificational judgments, ∆

contexts, all j annotations in � types, as well as, proof terms) gives exactly a natural deduction
for modal logic K. This is a weak argument towards soundness. Further results shall include a
translation to a procedural semantics with appropriate type safety preservation and termination.
Preferably, as mentioned before, we would like to strengthen the connection of our lifting rule
with programming procedures of monadic kind such as linkers, that replace parts of the code
of a program by programming constructs defined elsewhere (e.g. linking process in a language
with modules).
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