
Nice Embedding in Classical Logic∗

Peter Verdée†, Diderik Batens
Centre for Logic and Philosophy of Science

Ghent University, Belgium
PVerdee@GMail.com, Diderik.Batens@UGent.be

embed_fin2.tex

Abstract

It is shown that a set of semi-recursive logics, including many frag-
ments of CL (Classical Logic), can be embedded within CL in an inter-
esting way. A logic belongs to the set iff it has a certain type of semantics,
called nice semantics. The set includes many logics presented in the lit-
erature. The embedding reveals structural properties of the embedded
logic. The embedding turns finite premise sets into finite premise sets.
The partial decision methods for CL that are goal directed with respect
to CL are turned into partial decision methods that are goal directed with
respect to the embedded logics.

Keywords: embedding, translations, classical logic, gluts and gaps, bi-valued
semantics.

1 Aim of this Paper

Let W and W ′ be the sets of formulas of the languages of logics L and L′

respectively. An embedding of L within L′ is a recursive function emb: ℘(W)×
W → ℘(W ′)×W ′ such that Γ ⊢L A iff Γ′ ⊢L′ A′, whenever (Γ′, A′) = emb(Γ, A).
In this paper, we propose a specific type of embedding of logics within CL, which
we shall call nice embedding.

This type of embedding has several advantages over other types of embed-
ding. In the case of a nice embedding, (i) Γ′ is finite whenever Γ is so, (ii) Γ′

is a recursive set whenever Γ is so, and (iii) partial decision methods that are
goal directed with respect to CL are turned into partial decision methods that
are goal directed with respect to the embedded logics.

Nice embedding provides easy means to show the presence or absence of
meta-properties like reflexivity, transitivity, monotonicity, compactness, struc-
turality, interpolation, and so on. It allows one to devise tableau methods and

∗We are indebted to Kristof De Clercq for participating in the early research for this paper
and for many careful comments on early drafts. We also express our gratitude to a referee
whose comments enabled us to clarify our text at several points.

†During the research of this paper Peter Verdée was a post-doctoral fellow of the Fund
for Scientific Research – Flanders at Ghent University and later of FAPESP at the State
University of Campinas, SP, Brazil.

1

embed˙fin2.tex 2

other partial decision methods for the embedded logic. For many logics, their
nice embedding also provides heuristic insights (with respect to proofs, tableaux,
etc.).

In Section 7 we shall compare nice embedding with other types of embedding
in CL and highlight its advantages.

It was shown in [7] that a set of propositional logics which are paraconsistent
(A and ¬A can be jointly true) or paracomplete (A and ¬A can be jointly false)
have (what we now call) a nice embedding. In the present paper we generalize
this result not only to the predicative version of those logics, but also to a
large set of fragments of CL that allow for gluts and/or gaps with respect to
other logical symbols than negation—that ¬A is true while A is also true is a
negation glut; that A ∧B is false while A and B are true is a conjunction gap.
The embedding result is further generalized to all logics that have (what we shall
define as) a nice semantics. So we show that, where L has a nice semantics, A
is a formula, and Γ is a recursive set of formulas, there exists a formula A′ and
a recursive Γ′ such that Γ ⊢L A iff Γ′ ⊢CL A′. We moreover show that Γ′ is
finite whenever Γ is so.

Every nice semantics is deterministic and two-valued. The metalanguage
of a nice semantics is always classical. A nice semantics defines a semantic
consequence relation that is semi-recursive—this follows from the fact that every
logic L that has a nice semantics is embeddable within CL.

Incidentally, the notion of a nice semantics is interesting in itself. In past
work, we experienced the notion’s usefulness in devising a logic in terms of its
semantics, axiomatizing it, studying its properties, employing it as the underly-
ing logic of theories, and so on.1 We shall present an assignment that can serve
as a common basis for every nice semantics. Before getting there, we need a few
technicalities.

2 Preliminaries

Let Ls be the language of CL with the logical symbols ¬, ∧, ∨, ⊃, ≡, ∀, ∃, and =
(but without function symbols); C is the set of (letters for) individual constants,
V the set of individual variables, and Pr the set of predicates of rank r ≥ 0—
predicates of rank 0 will function as sentential letters. Officially, the members of
Pr will be P r, Qr, Rr, P r

1 , . . ., but we shall often write the superscripts invisibly,
relying on the usual convention that we write only well-formed strings. Let Fs

and Ws denote respectively the set of formulas and the set of closed formulas
of Ls.

By L we shall refer to any language that has the same non-logical symbols as
Ls and an arbitrary set of logical symbols—these may but need not be symbols
of Ls. L will be the language of the logic that is embedded in CL. In some
contexts L will be a variable for such languages, in others it will refer to a
specific such language. Let F and W denote respectively the set of formulas
and the set of closed formulas of L.

The easiest way to present the embedding is to consider a language L♯,
which extends Ls in view of the specific language L. We first introduce some
functions that have F as their domain. Let f(A) be the string obtained by

1For the sake of an example: all the non-defeasible logics from [6].

embed˙fin2.tex 3

replacing in A ∈ F every occurrence of an individual constant and every free oc-
currence of an individual variable by a centred dot. Thus f(∃y(Pay ⊃ Qbx)) =
f(∃y(Pxy ⊃ Qxx)) = ∃y(P · y ⊃ Q · ·). Let h(A) be the number of centred
dots that occur in f(A)—for example h(∃y(Pay ⊃ Qbx)) = 3. Let g(A) be
the (possibly empty) string obtained by deleting from A all symbols except
for occurrences of individual constants and free occurrences of individual vari-
ables. Thus g(∃y(Pay ⊃ Qbx)) = abx, and g(∃y(Pxy ⊃ Qxx)) = xxx. Finally,
let the functions gi(A) denote the ith item in g(A), gi(A) being undefined for
i /∈ {1, ..., h(A)}. For example, g2(∃y(Pay ⊃ Qbx)) = b and g4(∃y(Pay ⊃ Qbx))
is undefined.

The language L♯ is obtained from Ls by adding (i) a new binary predicate I

and (ii) a set of new predicates containing, for every A ∈ W, a predicate P
h(A)
f(A) .

Thus P 0
P and P 0

∀x(Px⊃Qx) are new predicates of rank 0, P 1
P · and P 1

∀x(P ·⊃Qx)

are new predicates of rank 1, etc. Let, for every r ∈ N, Pr
♯ be the set of all

predicates of rank r of L♯. Let F♯ and W♯ denote respectively the set of formulas
and the set of closed formulas of L♯.

In order to simplify the characterization of the semantic systems, we intro-
duce pseudo-languages. Consider sets O of pseudo-constants; for each model
M , a set O should have at least the cardinality of the domain of M . A pseudo-
language +L is obtained from L by replacing C by C ∪ O. We always tacitly
presume that, in every context, a +L is chosen with sufficiently large O. Let +F
and +W denote respectively the set of formulas and the set of closed formulas
of +L. In a similar way one defines the pseudo-languages +Ls and +L♯ from Ls

and L♯ respectively. Their sets of formulas are respectively +Fs and +F♯, their
sets of closed formulas respectively +Ws and +W♯.

Extend the functions f , g, h, and gi to the pseudo-languages +L, +Ls, and
+L♯ by letting them refer to C ∪ O ∪ V instead of to C ∪ V. Let Z0 = {f(A) |
A ∈ +W;h(A) = 0} ∪ +W and, for all r > 0, Zr = {f(A) | A ∈ +W;h(A) = r}.
The sets Zr

s and Zr
♯ are defined similarly (for all r ≥ 0), replacing +W by the

suitable set of closed pseudo-formulas. Also extend f , g, h, and the gi to the
metalanguage in the standard way.

In the semantic systems, the assignment function v will assign a set of h(A)-
tuples of members of the domain to every f(A) for which A is a closed pseudo-
formula of the language. So v(f(P 2ab)) = v(P 2 · ·) is a set of couples. If v were
to assign a value to P 2, one would obviously require that v(P 2) = v(P 2 · ·).
For this reason we identify, for every πr ∈ Pr, πr with πr · . . . · (in which · . . . ·
denotes r centred dots). As an effect, Pr ⊂ Zr. Moreover, a 0-tuple will be
identified with ∅—see, for example, clause C2.1 in Section 4. So, if h(¬A) = 0,
⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ is a 0-tuple, and hence is identified with ∅—see,
for example, clause C2.3o= in Section 4.

Let, for every r > 0, D(r) denote the r-th Cartesian product of D and let
D(0) = {∅}.

Let P ⊂ F be the set of formulas that do not contain any logical symbols
(not even identity), and let P= = P ∪ {α = β | α, β ∈ C ∪ V}. Let +P and +P=

be defined analogously in terms of +F and C ∪O∪V . Finally, let mP be the set
of metalinguistic formulas that do not contain any logical symbols and mP= the
set of metalinguistic formulas that do not contain any logical symbols different
from identity.

The further use of symbols will be self-explanatory, except (perhaps) for the

embed˙fin2.tex 4

following. mF will denote the set of metalinguistic formulas (which contain only
metavariables and logical symbols of the object language) and mW the set of
closed metalinguistic formulas. We shall use the following metametalinguistic
variables: A and B as variables for metalinguistic formulas, Pr as a variable for
metavariables for predicates of rank r, a, b, a1, . . . , as variables for metavariables
for individual constants and individual pseudo-constants, and x as a variable for
metavariables for individual variables. The symbols A, B, A′, . . . will be used
as variables for metalinguistic statements that occur in semantic clauses (we
shall call these statements semantic statements).

3 Nice semantics

All semantic systems will have the same type of models—L is a variable in the
following definition.

Definition 1 A model M (for the language +L and hence for L) is a couple
⟨D, v⟩ in which D is a non-empty set and the assignment v is as follows:

C1.1 v : C ∪ O → D (where D = {v(α) | α ∈ C ∪ O})
C1.2 v : Zr → ℘(D(r)) (for every r ∈ N)

Let M be the set comprising the metavariables for non-logical symbols and
the metavariables for formulas. Let A be the set of members of M that occur
in A. Let m be an instantiation function iff m maps every member of M on
a symbol or formula from the object language for which it is a variable. The
formula m(A) is obtained by replacing every metavariable µ ∈ M by m(µ).
Let i(A) be the set of all A ∈ +W such that m(A) = A for an instantiation
function m. A logical form ψ will be identified with a couple ⟨A, {B1, . . . ,Bn}⟩
(n ≥ 0) and a formula A will be said to have the form ψ = ⟨A, {B1, . . . ,Bn}⟩ iff
A ∈ i(A) − (i(B1) ∪ . . .∪ i(Bn)). If n = 0, we shall also say that A has the form
of A.

We shall distinguish between two kinds of nice semantics: those for logics
that follow the RoI schema and those for logics that do not. A logic L follows the
RoI schema iff it validates the rule of replacement of identicals: α = β,A(α) ⊢L

A(β) for all α, β ∈ C.

Definition 2 By semantic elements we shall mean the expressions that occur
in quotation marks in (i)–(vi):

(i) “vM (B) = 1”, with B ∈ mW,
(ii) “⟨v(a1), . . . , v(ar)⟩ ∈ v(Pr)”,
(iii) “v(a) = v(b)”,
(iv) “0 = 0”,
(v) “⟨v(g1(B)), . . . , v(gh(B)(B))⟩ ∈ v(f(B))” with B ∈ mW and B not of the

form a = b,
(vi) “v(B) = {∅}” with B ∈ mW.

The semantic elements from (i)–(v) are RoI-semantic elements, those from (i)–
(iv) and (vi) are non-RoI-semantic elements; those from (ii)–(vi) are semantic
base elements.2

2Semantic base elements do not refer to the (pre-)valuation value of other formulas.

embed˙fin2.tex 5

Definition 3 A RoI-valuation-defining clause has officially the following struc-
ture:

[Where A has the form ψ,] vM (A) = 1 iff A.

provided (i) A is the first element of ψ, (ii) A is a finite semantic statement
made up by parentheses, occurrences of “not”, “or”, “and”, “for all a ∈ C ∪O”,
“for at least one a ∈ C ∪ O”, and one or more RoI-semantic elements, and
(iii) every metavariable that occurs in A either occurs in A or is bound by (or
occurs in) a metaquantifier of the form “for all a ∈ C ∪ O” or “for at least one
a ∈ C ∪ O”.

A non-RoI-valuation-defining clause is defined similarly in terms of non-
RoI-semantic elements.

In the examples of semantic systems presented in subsequent sections, we
shall often specify the form of A in a shorter way, leaving it to the reader to
rephrase the clause in official structure. If ψ = ⟨A, ∅⟩, the part between square
brackets will be dropped altogether. Another example is clause C2.3c¬∧1 of the
C1-semantics. It reads “where B ̸= ¬A, vM (¬(A ∧ B)) = 1 iff . . . ”, whereas
its official structure is “where ¬(A∧B) has the form ⟨¬(A∧B), {¬(A∧¬A)}⟩,
vM (¬(A ∧B)) = 1 iff . . . ”.

Where A is a semantic statement and m is an instantiation function, define
m∗(A) as the result of replacing every metalinguistic variable µ that occurs in
A, by m∗(µ), which is defined as follows: (i) if µ occurs in a quantifier “for all
µ ∈ C∪O” or “for at least one µ ∈ C∪O” or is bound by such a quantifier, then
m∗(µ) = µ, (ii) otherwise m∗(µ) = m(µ). m∗(A) will be called an instance of
A.

Definition 4 An instance of the valuation-defining clause

[Where A has the form ψ,] vM (A) = 1 iff A.

is a statement
vM (m(A)) = 1 iff m∗(A).

provided m is an instantiation function and m(A) has the form ψ.

Let ++W comprise all members of +W together with the formulas that result
from replacing in a member of +W one or more members of C ∪ O by metavari-
ables for individual constants. Let the form of the result be identical to the
form of the formula from which it is obtained.

Definition 5 A recursive set Ψ is a complete set of logical forms for +L iff∪
{A | A ∈ ++W has the form ψ;ψ ∈ Ψ} = ++W and no formula of a form

ψ1 ∈ Ψ has also a different form ψ2 ∈ Ψ.

Note that, in the following definition, α is an arbitrary variable for individual
constants and a is an arbitrary metametavariable for those.

Definition 6 A regular complexity function for +L is a function c : ++W → N

such that, if B(ξ) ∈ +F , then c(B(a)) = c(B(α)).

embed˙fin2.tex 6

We shall say that a semantics is complex iff a pre-valuation function vM
is defined in terms of the assignment function v and the valuation function
VM is defined by VM (A) = vM (ϕ(A)), in which ϕ : W → W is a computable
function. A semantics is simple if the valuation value of a formula coincides
with its pre-valuation value. For the sake of uniformity, we shall then say
that VM (A) = vM (A). A special common case is that equivalence classes are
defined by a (recursive) partition of all closed formulas and that all members
of an equivalence class receive the same valuation value VM in a model M . To
realize this, let s⟦A⟧ select an element from the equivalence class ⟦A⟧ and define
VM (A) = vM (s⟦A⟧).

Definition 7 A semantics for a logic L with language L is nice iff (i) it has
models in the sense of Definition 1, (ii) there is a complete set of logical forms Ψ
for +L such that, for every ψ ∈ Ψ, the semantics has a unique valuation-defining
clause

[Where A has the form ψ,] vM (A) = 1 iff A. (1)

(iii) all the semantics’ valuation-defining clauses are RoI or all are non-RoI,
(iv) there is a regular complexity function c such that, for every instance

vM (m(A)) = 1 iff m∗(A).

of every valuation-defining clause (1), c(B) < c(m(A)) whenever B ∈ ++W
occurs in m∗(A), and (v) there is a recursive function that maps every formula
to the clause that applies to it.

For all logics with a nice semantics, we shall sometimes write M A to
express that M verifies A, which is defined as VM (A) = 1; semantic consequence,
and validity are defined from there as usual. In this paragraph (and in similar
passages later on) we follow the usual convention to let “model” refer to an
entity comprising a model M = ⟨D, v⟩ in the strict sense plus the valuation
function for the specific logic, which is here CL.

A transparent semantic statement is compounded from instances of semantic
base elements by the connectives “(. . . and . . .)”, “(. . . or . . .)”, and “not . . . ”
and by restricted quantifiers of the form “for all α ∈ C ∪ O” and “for at least
one α ∈ C ∪ O”. A reduction statement is a statement of the form “vM (A) = 1
iff A”, in which A is a transparent semantic statement.3

Lemma 1 In a nice semantics for L, a reduction statement “vM (A) = 1 iff A”
holds for every A ∈ +W, and there is an algorithm for constructing it.

Proof. Let the semantics be nice with respect to the complete set of logical forms
Ψ and let c be a regular complexity function suitable for the nice semantics. We
prove by an induction on d(A) = c(A) − min{c(B) | B ∈ +W} that a reduction
statement “vM (A) = 1 iff A” holds for every A ∈ ++W. We also show the way
in which the reduction statement is constructed.

For the basis, let d(A) = 0 and let ψ ∈ Ψ be the form of A. As there is
no B ∈ ++W for which c(B) < c(A), the clause for ψ cannot contain semantic

3Non-logical symbols of the object language occur in this occurrence of A (and in future
occurrences of similar expressions) and this was not the case for former occurrences. The
context disambiguates everywhere.

embed˙fin2.tex 7

non-base elements in view of Definition 7. So the instance “vM (A) = 1 iff A” of
this clause is a reduction statement.

For the induction step, suppose that there is a reduction statement “vM (B) =
1 iff B” for all B ∈ ++W for which d(B) < n. Consider an A for which d(A) = n
and let ψ ∈ Ψ be the form of A. Consider the instance “vM (A) = 1 iff A′” of the
clause for ψ. In view of Definition 7, d(B) < n for every vM (B) = 1 that occurs
in A′. So, for every such vM (B) = 1, there is a reduction statement “vM (B) = 1
iff B” in view of the induction hypothesis. Replacing in “vM (A) = 1 iff A′”,
for every B ∈ ++W, every vM (B) = 1 by B one obtains a reduction statement
“vM (A) = 1 iff A”.

Corollary 1 In every nice semantics, vM (A) is, for every A, a function of the
model M .

Corollary 2 In a nice semantics for L, whether simple or complex, a reduction
statement “VM (A) = 1 iff A” holds for every closed formula A, and there is an
algorithm for constructing it.

Obviously, there may be several A for which “VM (A) = 1 iff A” is a reduction
statement. If that is so, we shall take one such A to be selected—A will then be
called the selected transparent statement.

4 Classical Logic and Its Basic Fragments

We begin with a nice semantics for CL.4 Its models are as defined at the outset
of the previous section (here for the language +Ls). The valuation function
vM : +W → {0, 1}, determined by M , is defined by:

C2.1 vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) (r ≥ 0)5

C2.2 vM (α = β) = 1 iff v(α) = v(β)
C2.3 vM (¬A) = 1 iff vM (A) = 0
C2.4 vM (A ⊃ B) = 1 iff vM (A) = 0 or vM (B) = 1
C2.5 vM (A ∧B) = 1 iff vM (A) = 1 and vM (B) = 1
C2.6 vM (A ∨B) = 1 iff vM (A) = 1 or vM (B) = 1
C2.7 vM (A ≡ B) = 1 iff vM (A) = vM (B)
C2.8 vM (∀ξA(ξ)) = 1 iff vM (A(α)) = 1 for all α ∈ C ∪ O
C2.9 vM (∃ξA(ξ)) = 1 iff vM (A(α)) = 1 for at least one α ∈ C ∪ O

For all A ∈ W, M A iff vM (A) = 1.
In order to extend the semantics to L♯, replace Zr by Zr

♯ and +W by +W♯ in
the definition of the assignment. This version will be used for the embedding.

Each of C2.1–9 specifies the valuation values of all formulas of a certain
logical form. Let us call these nine logical forms the simple logical forms.

The basic fragments are obtained by removing one or both directions of the
equivalences in the clauses C2.1–9. Thus, by removing “if vM (¬A) = 1, then
vM (A) = 0” some models will display negation gluts, by removing “vM (¬A) = 1
if vM (A) = 0” some models will display negation gaps, and by removing both,

4Materials for this section are taken from [6].
5As stipulated in Section 2, ⟨v(α1), . . . , v(αr)⟩ = ∅ if r = 0. So vM (π0) = 1 iff v(π0) = {∅}.

embed˙fin2.tex 8

some models will display both negation gluts and negation gaps.6 Similarly, by
removing “If vM (A∧B) = 1, then vM (A) = 1 and vM (B) = 1” some models will
display conjunction gluts and by removing “vM (∃ξA(ξ)) = 1 if vM (A(α)) = 1 for
at least one α ∈ C ∪ O” some models will display existential gaps. A semantics
that allows for predicative gluts or gaps is obtained by removing one or both
directions of C2.1.

The resulting semantic systems are indeterministic: the valuation values of
formulas are not functions of the assignment values of their components. We
shall devise equivalent nice (and hence deterministic) semantics, but first point
to another peculiarity.

If some models of a logic L display gluts or gaps, RoI does not hold in L.
In view of C2.1 and C2.2, vM (a = b) = 1 warrants that vM (Pa) = vM (Pb).
But if there is, for example, a negation glut or gap, vM (a = b) = 1 does not
warrant that vM (¬Pa) = vM (¬Pb). For some purposes, however, one will want
to combine gluts or gaps with RoI. It is indeed possible to do so, as we now
shall show.

An obvious example concerns gluts and gaps for negation. The six basic
fragments handle negation gluts, negation gaps, or both negation gluts and
gaps respectively. RoI does not hold in the first three logics, but holds in the
last three (that have identity in the superscript). The nice semantics of the
six logics is obtained from the above CL-semantics for L by replacing C2.3
according to the following table:

CL CLoN CLuN CLaN CLoN= CLuN= CLaN=

C2.3 C2.3o C2.3u C2.3a C2.3o= C2.3u= C2.3a=

The replacing clauses are:

C2.3o vM (¬A) = 1 iff v(¬A) = {∅}
C2.3u vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = {∅}
C2.3a vM (¬A) = 1 iff vM (A) = 0 and v(¬A) = {∅}
C2.3o= vM (¬A) = 1 iff ⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ ∈ v(f(¬A))
C2.3u= vM (¬A) = 1 iff vM (A) = 0 or ⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ ∈ v(f(¬A))
C2.3a= vM (¬A) = 1 iff vM (A) = 0 and ⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ ∈

v(f(¬A))

Other gluts and gaps are handled similarly. Suppose that one wants to
allow for gluts or gaps with respect to some logical symbol. In the above CL-
semantics, the symbol is characterized by a simple form A and the clause for it
reads “vM (A) = 1 iff Z” for some Z. In this clause, one replaces the expression
“Z” by “Z or Y ” to allow for gluts, by “Z and Y ” to allow for gaps, and by
“Y ” to allow for both. In these expressions, Y is either v(A) = {∅}, in which
case RoI is invalidated, or ⟨v(g1(A)), . . . , v(gh(A)(A))⟩ ∈ v(f(A)) in which case
RoI is validated. Consider the clause for the universal quantifier as an example.
Only gluts are allowed by the clause

vM (∀ξA(ξ)) = 1 iff vM (A(α)) = 1 for all α ∈ C ∪ O or v(∀ξA(ξ)) = {∅} ,

which invalidates RoI. Both gluts and gaps are allowed by the clause

6The resulting logics are called CLuN (for example in [4]), CLaN and CLoN
respectively—they are like CL except in that they allow for, respectively, gluts, gaps, and
both gluts and gaps with respect to negation.

embed˙fin2.tex 9

vM (∀ξA(ξ)) = 1 iff
⟨v(g1(∀ξA(ξ))), . . . , v(gh(∀ξA(ξ))(∀ξA(ξ)))⟩ ∈ v(f(∀ξA(ξ))) ,

which makes sure that RoI is validated.
Some special cases deserve a comment. The first case concerns predicative

gluts or gaps. Consider the RoI variant of what the clause for predicative gluts
would be:

vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) or
⟨v(g1(πrα1 . . . αr)), . . . , v(gh(πrα1...αr)(π

rα1 . . . αr))⟩ ∈ v(f(πrα1 . . . αr))

which is equivalent to

vM (πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr) or
⟨v(α1), . . . , v(αr)⟩ ∈ v(f(πrα1 . . . αr)).

In Section 2 we have identified v(πr) with v(f(πrα1 . . . αr)), but suppose we
did not do so. Where M = ⟨D, v⟩, there obviously is a model M ′ = ⟨D, v′⟩ that
is exactly as M except that v′(πr) = v(πr) ∪ v(f(πrα1 . . . αr)) and in which
there are no predicative gluts in that the corresponding clause there reads:

vM ′(πrα1 . . . αr) = 1 iff ⟨v′(α1), . . . , v′(αr)⟩ ∈ v′(πr) .

It is easily seen that vM ′(A) = vM (A) for all A ∈ +W.
So the semantics is equivalent to (defines the same consequence relation

as) a simpler semantics. As this simpler semantics does not introduce pred-
icative gluts, it follows at once that the original semantics does not introduce
any identity gluts that show at the level of the consequence relation. By the
same reasoning, one immediately sees that predicative gaps, either by them-
selves or combined with predicative gluts, are a useless complication if the se-
mantics follows the RoI schema. So there is no harm in identifying v(πr) with
v(f(πrα1 . . . αr)) as we did.

If the logic does not follow the RoI schema, predicative gluts and gaps do
have effect. Consider a semantics that is exactly like that for CL except that
clause C2.1 is modified in order to allow for gluts and/or gaps. It is easily seen
that RoI is not valid on this semantics.

The second special case is identity. As we are not interested here in the
study of the basic logics themselves, two comments are sufficient. First, the RoI
variant of the clause for identity gluts, which reads

vM (α = β) = 1 iff v(α) = v(β) or ⟨v(α), v(β)⟩ ∈ v(· = ·) ,

obviously does not warrant the validity of RoI. Indeed, it allows for models in
which v(a) ̸= v(b), ⟨v(a), v(b)⟩ ∈ v(· = ·), v(a) ∈ v(P), v(b) /∈ v(P), and hence
vM (a = b) = vM (Pa) = 1 and vM (Pb) = 0. Similarly for the RoI variant of the
clause that allows for both identity gluts and gaps. The resulting logics have a
semantics that follows the non-RoI schema.

We shall show that all basic fragments of CL can be embedded in CL. The
same holds for certain extensions and fragments of them, which we discuss in
the next section.

embed˙fin2.tex 10

5 Other Logics that Have a Nice Semantics

An extension of a logic L may be defined in terms of axiom schemata. If one
adds to the semantics of L a clause vM (A) = 1 for every new axiom schema
A, the result will not be sensible because the new clauses may (and for some
models will) contradict one of the original clauses for L. This, however may
sometimes be repaired by first considering the original clause as a default (which
is overruled by the new clauses) and next turning the semantics into a consistent
and recursive one.

As a simple example, consider the extension of CLoN with the axiom schema
¬¬A ⊃ A. The new semantic clause is vM (¬¬A ⊃ A) = 1, which is contextually
equivalent to “vM (¬¬A) = 0 if vM (A) = 0.” It readily turns out that C2.3o

should be replaced by C2.3′ and C2.3′′:

C2.3′ if A is not of the form ¬B, then vM (¬A) = 1 iff v(¬A) = {∅}
C2.3′′ vM (¬¬A) = 1 iff vM (A) = 1 and v(¬¬A) = {∅}

5.1 Some Maximal Fragments of CL

Two sets of logics between CL and those listed in the table in Section 4 will be
considered.7

The first six will be called Schütte logics because their propositional frag-
ments were first presented in [20]—their names are formed by appending a “s”
to the systems they extend. The nice semantics for these systems is obtained
from the CL-semantics of Section 4 by adding C2.3¬¬–C2.3¬∃ and by replacing
C2.3 according to the following table:

CL CLoNs CLuNs CLaNs CLoNs= CLuNs= CLaNs=

C2.3 C2.3op C2.3up C2.3ap C2.3o=p C2.3u=p C2.3a=p

Here are the clauses:

C2.3op If A ∈ +P=, vM (¬A) = 1 iff v(¬A) = {∅}
C2.3up If A ∈ +P=, vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = {∅}
C2.3ap If A ∈ +P=, vM (¬A) = 1 iff vM (A) = 0 and v(¬A) = {∅}
C2.3o=p If A ∈ +P=, vM (¬A) = 1 iff ⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ ∈

v(f(¬A))
C2.3u=p IfA ∈ +P=, vM (¬A) = 1 iff vM (A) = 0 or ⟨v(g1(¬A)), . . . , v(gh(¬A)(¬A))⟩ ∈

v(f(¬A))
C2.3a=p If A ∈ +P=, vM (¬A) = 1 iff vM (A) = 0 and ⟨v(g1(¬A)), . . . ,

v(gh(¬A)(¬A))⟩ ∈ v(f(¬A))
C2.3¬¬ vM (¬¬A) = vM (A)
C2.3¬⊃ vM (¬(A ⊃ B)) = vM (A ∧ ¬B)
C2.3¬∨ vM (¬(A ∧B)) = vM (¬A ∨ ¬B)
C2.3¬∧ vM (¬(A ∨B)) = vM (¬A ∧ ¬B)
C2.3¬≡ vM (¬(A ≡ B)) = vM ((A ∨B) ∧ (¬A ∨ ¬B))
C2.3¬∀ vM (¬∀ξA(ξ)) = vM (∃ξ¬A(ξ))
C2.3¬∃ vM (¬∃ξA(ξ)) = vM (∀ξ¬A(ξ))

7All logics considered in this section have a characteristic three-valued semantics and their
propositional fragments are maximally paraconsistent—see [3].

embed˙fin2.tex 11

These six systems ‘drive’ negations of complex formulas ‘inwards’. On
six other systems negations behave classically in front of complex formulas.
The logics are called CLoNv, CLuNv, CLaNv, CLoNv=, CLuNv=, and
CLaNv=—the “v” refers to Arruda’s so-called Vasil’ev system from [2], which
is the propositional fragment of CLuNv and CLuNv=.

The semantics of these logics is the same as that of the corresponding Schütte
logic, except that C2.3v is added instead of C2.3¬¬–C2.3¬∃:

C2.3v where A ∈ +W − +P=, vM (¬A) = 1 iff vM (A) = 0,

5.2 Linguistic Extensions and Fragments

Several logics are fragments of the aforementioned ones, obtained by removing
some logical symbols from the language. Their semantics is obtained by select-
ing the relevant valuation clauses from the logics of which they are fragments.
Examples are LP from [18] (obtained from CLuNs= by removing ⊃ from the
language), the predicative version of SK3 from [16], etc.

Other logics are obtained by adding logical symbols that are definable in CL
to logics from the previous paragraph. Typical examples are logics extended
with the missing classical connectives. Thus, if a logic handles negation gluts
or gaps, the language may be extended with classical negation, say ∼. If it
handles conjunction gaps or gluts, the language may be extended with classical
conjunction, say ⊓. The advantage of this linguistic extension is that it often
greatly simplifies the metatheory.

The easiest way to handle linguistic extensions is to extend the language
L and the pseudo-language +L with the new symbol, and to extend the CL-
semantics with an appropriate clause for the new symbol. In the case of added
classical symbols, this clause will duplicate that for the original symbol (except
for the single occurrence of the new symbol itself).

5.3 Other Roads to Gluts and Gaps

Many more logics than the ones described in this paper have a nice semantics
and can be embedded in CL by the method described below.

Consider the result of replacing, in the CL-semantics from Section 4, C2.1
and C2.2 by

C2.1o vM (πrα1 . . . αr) = {∅} iff v(πrα1 . . . αr) = 1 (r ≥ 0)
C2.2o vM (α = β) = 1 iff v(α = β) = {∅}

and C2.3 by C2.3¬¬–C2.3¬∃ together with

C2.3¬p vM (¬πrα1 . . . αr) = 1 iff ⟨v(α1), . . . , v(αr)⟩ /∈ v(πr) (r ≥ 0)
C2.3¬= vM (¬α = β) = 1 iff v(α) ̸= v(β)

Suppose moreover that classical negation, ∼, is added to the language and
correctly defined within the semantics—see the previous subsection.

The resulting logic allows for predicative gluts and gaps, for identity gluts
and gaps, but also for negation gluts and gaps. The logic is not equivalent to any
of the logics considered before, even if these are extended with classical negation.
Indeed, unlike all previously considered logics, the present logic validates “If
Γ ⊢ ∼¬a = b, then Γ ⊢ ¬A(a) ≡ ¬A(b).”

embed˙fin2.tex 12

Our proofs in Section 6 can handle gluts and gaps for different simple forms,
provided all of them are RoI variants—we then say that the logic follows the
RoI schema—or all of them are non-RoI variants—we then say that the logic
follows the non-RoI schema.

5.4 A nice semantics for C1

A set of logics that have a nice semantics are the well-known Cn-systems (n ∈ N)
from [11], further studied in [12] and many other papers—C0 is CL.

The nice semantics for C1 is like the one for CL, apart from the fact that
vM is not equal to VM for C1 and that clause C2.3 must be replaced by clauses
C2.3c¬p to C2.3c¬∃.

C3 VM (A) = vM (T (A)), where T (A) is the result of first deleting all the
vacuous quantifiers in A and then uniformly replacing all variables
by the first variables of the alphabet in alphabetic order.

C2.3c¬p Where A ∈ P=: vM (¬A) = 1 iff v(A) = 0 or v(¬A) = {∅}
C2.3c¬¬ vM (¬¬A) = 1 iff vM (¬A) = 0 or (vM (¬A) = vM (A) = 1 and

v(¬¬A) = {∅})
C2.3c¬⊃ vM (¬(A ⊃ B)) = 1 iff vM (A ⊃ B) = 0 or ((vM (¬A) = vM (A) = 1

or vM (¬B) = vM (B) = 1) and v(¬(A ⊃ B)) = {∅})
C2.3c¬∨ vM (¬(A∨B)) = 1 iff vM (A∨B) = 0 or ((vM (¬B) = vM (B) = 1 or

vM (¬C) = vM (C) = 1) and v(¬(A ∨B)) = {∅})
C2.3c¬∧1 where B ̸= ¬A: vM (¬(A∧B)) = 1 iff vM (A∧B) = 0 or ((vM (¬A) =

vM (A) = 1 or vM (¬B) = vM (B) = 1) and v(¬(A ∧B)) = {∅})
C2.3c¬∧2 vM (¬(A ∧ ¬A)) = 1 iff vM (¬A) ̸= vM (A)
C2.3c¬∀ vM (¬∀αA(α)) = 1 iff vM (∀αA(α)) = 0 or (vM (¬A(β)) = vM (A(β)) =

1 for at least one β ∈ C ∪ O and v(¬∀αA(α)) = {∅})
C2.3c¬∃ vM (¬∃αA(α)) = 1 iff vM (∃αA(α)) = 0 or (vM (¬A(β)) = vM (A(β)) =

1 for at least one β ∈ C ∪ O and v(¬∃αA(α)) = {∅})

Adjusting the semantics to any logic Cn (n ∈ N) is straightforward.

5.5 A nice semantics for AN

The logic AN was presented in [17] by means of an elegant three-valued seman-
tics. Its peculiarity is that paraconsistency is realized by weakening disjunction.
AN validates all ‘analysing rules’ at the expense of giving up some ‘constructive
rules’.

The nice semantics for AN is like the one for CL, except that vM is not
equal to VM , that the clauses for negation and disjunction are replaced as shown
below, and that the clauses for implication and equivalence are removed—they
are useless in view if C3.

C3 VM (A) = vM (B), where B is the prenex conjunctive normal form of
A—see, for example [9].

C2.3up If A ∈ +P=, vM (¬A) = 1 iff vM (A) = 0 or v(¬A) = {∅}
C2.3¬¬ vM (¬¬A) = vM (A)
C2.3¬∨ vM (¬(A ∧B)) = vM (¬A ∨ ¬B)
C2.3¬∧ vM (¬(A ∨B)) = vM (¬A ∧ ¬B)
C2.3¬∀ vM (¬∀ξA(ξ)) = vM (∃ξ¬A(ξ))

embed˙fin2.tex 13

C2.3¬∃ vM (¬∃ξA(ξ)) = vM (∀ξ¬A(ξ))
C2.6a∨ vM (A ∨ B) = 1 iff (vM (A) = 1 and vM (¬A) = 0) or (vM (B) = 1 and

vM (¬B) = 0) or (vM (A) = vM (B) = 1)

5.6 A nice semantics for Lukasiewicz’s m-valued logic Lm

The logical symbols of the language of Lm (m > 2) are ⊃, ¬ and ∀. The language
is denoted by L L, its set of well formed formulas by W L, and their extensions
with pseudo-constants respectively by L+

 L and W+
 L .

Let Nm = {i ∈ N | 1 ≤ i ≤ m}. An m-valued semantics (with truth values
in Nm, of which 1 is the only designated value) for Lm is defined by considering
models L = ⟨D, v⟩ where the domain D is a non-empty set and the assignment
v is a function v : C ∪ O → D and v : Pr → (D(r) → Nm).

Such a model L = ⟨D, v⟩ determines the valuation function vL : W+
 L → Nm,

defined by the following clauses: vL(πrα1 . . . αr) = (v(πr))(⟨v(α1), . . . , v(αr)⟩),
vL(A ⊃ B) = max(1, 1 + vL(B) − vL(A)), vL(¬A) = m − vL(A) + 1 and
vL(∀ξA(ξ)) = max{vL(A(α)) | α ∈ C ∪ O}. Truth in a model L is defined by
L A iff vL(A) = 1.

In order to transform this many valued semantics into a nice semantics we
proceed by making use of specific symbols which are definable in Lm. As was
established in [19], it is possible to define a set of symbols {Ik | k ∈ Nm} within
 Lm such that

vL(Ik(A)) =

{
1 vL(A) = k

m otherwise.
(*)

Although the precise way in which these symbols are defined is of no importance
to the semantics we are about to present (we are only interested in their property
(*)), we mention the definitions for the sake of completeness. To avoid clutter,
we first define some other symbols as is usual in the literature.

D1 A&B =df ¬(A ⊃ ¬B)
D2 A ∧B =df A&(A ⊃ B)
D3 A ∨B =df ((A ⊃ B) ⊃ B)&((B ⊃ A) ⊃ A)

D4 Ai =df

i times︷ ︸︸ ︷
A&(A&(. . . (A&A) . . .)

Let fm(k) denote the least integer n ≥ m−k
k−1 .

D5 Define Ik(A) recursively by:
(i) I1(A) = Am−1,

(ii) Im(A) = (¬A)m−1,
(iii) if 1 < k < m and k ≤ max(1,m − ((k − 1) × fm(k))), then Ik(A) =

((¬Afm(k) ∨A) ⊃ (¬Afm(k) ∧A))m−1, and
(iv) if 1 < k < m and k > max(1,m − ((k − 1) × fm(k))), then Ik(A) =

Ifm(k)(¬(Afm(k))).

The clauses for the valuation function of the nice semantics, which is two-
valued, are the following.

C2.1k Where k ∈ Nm−{m}, vM (Ik(πrα1 . . . αr)) = 1 iff ⟨v(α1), . . . , v(αr)⟩ ∈
v(f(Ik(πrα1 . . . αr))) and for every i < k, vM (Ii(π

rα1 . . . αr)) = 0
(r ≥ 0)

embed˙fin2.tex 14

C2.1m vM (Im(πrα1 . . . αr)) = 1 iff for every i < m, vM (Ii(π
rα1 . . . αr)) = 0

(r ≥ 0)
C2.3 L¬ vM (Ik(¬A) = 1 iff vM (Im+1−k(A)) = 1
C2.4 L⊃ vM (Ik(A ⊃ B)) = 1 iff vM (Ii(A)) = 1 and vM (Ij(B)) = 1 for some

i, j ∈ Nm such that k = max(1, 1 + j − i)
C2.8 L∀ vM (Ik(∀αA(α))) = 1 iff, for all β ∈ C ∪ O, there is an l ≤ k such that

vM (IlA(β)) = 1 and, for at least one β ∈ C ∪ O, vM (IkA(β)) = 1
C2.10 where A is not of the form Ik(B), vM (A) = vM (I1(A))

For each specific choice of m, the clauses C2.1k–C2.10 define the valuation
as required for a nice semantics. The matter is most easily understood by
considering the formulas that contain only the primitive symbols. Some of
these correspond by the definitions to one of the m×4 forms handled by C2.1k–
C2.8 L∀. All other formulas belong to the residual category handled by C2.10.

We better also present a suitable regular complexity function. In order to
do this in a transparent way we first define an auxiliary language LD, with
symbols ⊃, ¬, ∀ and Ik, for each, k ∈ Nm. The set WD of formulas of LD is
the set {Ik(A) | k ∈ Nm;A ∈ W L}. We recursively define a complexity function
c′ : WD → N for this language.

CoFn1 c′(I1(A)) = 1 where A does not contain logical symbols
CoFn2 c′(I1(A ⊃ B)) = c′(I1(A)) + c′(I1(B)) + 2m+ 1
CoFn3 c′(I1(¬A)) = c′(I1(A)) +m+ 1
CoFn4 c′(I1(∀xA(x))) = c′(I1(A(x))) +m+ 1
CoFn5 c′(Ik(A)) = c′(I1(A)) + k − 1

We define a function red : W L → WD in order to obtain a complexity
function for members of W L from c′. Consider again the members of W L that
contain only primitive symbols. If A ∈ W L is of the form of the definiens of
Ik(B) for some k ∈ Nm, red(A) = Ik(B)—remember that Ik is a symbol of WD.
Otherwise, let red(A) = I1(A). This function is complete and well defined. We
define a complexity function c : W L → N for W L by c(A) = c′(red(A)) + 1.

Unlike the other nice semantic systems defined in this paper, it is not com-
pletely obvious why this one is adequate. This requires some explanation.

To every Lm-model L = ⟨D, v⟩ corresponds a nice semantics model M =
⟨D′, v′⟩, as is warranted by the following procedure. Let D′ = D and v′(α) =
v(α) for all α ∈ C ∪ O. Now let v′(Ik(πr · . . . ·)) for each k < m be the set
{⟨α1, . . . αr⟩ ∈ D(r) | (v(πr))(⟨α1, . . . αr⟩) = k}. For all other cases v′ can get
arbitrary values.

The following procedure transforms every nice semantics model M = ⟨D′, v′⟩
into an Lm-model L = ⟨D, v⟩. Let D = D′ and v(α) = v′(α) for all α ∈ C ∪ O.
Now let v(πr) be the function such that

(1) for every k < m: (v(πr))(⟨α1, . . . αr⟩) = k iff

(1.a) ⟨α1, . . . , αr⟩ ∈ v(Ik(πr · . . . ·))) and

(1.b) for every i < k, ⟨α1, . . . , αr⟩ /∈ v(Ii(π
r · . . . ·))) and

(2) (v(πr))(⟨α1, . . . αr⟩) = m iff ⟨α1, . . . , αr⟩ /∈ v(f(Ii(π
rα1 . . . αr))), for every

i < m.

embed˙fin2.tex 15

An original Lm-model L corresponds to a nice semantics Lm-model M iff M
is the result of transforming L according to the first procedure defined above or
L is the result of transforming M according to the second. The transformation
procedures are defined in such a way that if L corresponds to M , we have that

vM (Ik(A)) = 1 iff vL(A) = k (**)

and therefore also vM (I1(A)) = 1 iff vL(A) = 1, or, by C2.10, vM (A) = 1 iff
vL(A) = 1, whence M A iff L A. (**) can be proven by a straightforward
induction on the (ordinary) complexity of formulas in view of the fact that
clauses C2.3 L¬, C2.4 L⊃, and C2.8 L∀ are precisely formulated in such a way that
they correspond to the clauses of the original semantics, the main difference
being that the numerical operations are replaced from the truth values to the
subscripts k of the defined symbols of the form Ik.

The reader can easily verify that the transformation procedures construct a
corresponding model of the one type for every model of the other type. This fact
together with fact thatM A iff L A in caseM corresponds to L immediately
implies that the nice semantics defines the same semantic consequence relation
as the original semantics. We have thus proven the adequateness of this nice
semantics.

6 The Embedding

Let L be a logic that has an adequate nice semantics. In order to show that L can
be embedded in CL, we shall first turn the L-semantics into a NE-function (nice
embedding function) tr which maps formulas (and sets of formulas) from W to
formulas (and sets of formulas) from W♯, thus taking care of the embedding.
We shall distinguish between two cases according as L follows the RoI schema
or not. The second case is slightly more complicated.

6.1 Logics Following the RoI Schema

Let L be a logic that follows the RoI schema and has a nice semantics—so
without gluts or gaps for either predicates or identity. We shall prove that,
where Γ ⊂ W and A ∈ W, Γ ⊢L A iff tr(Γ) ⊢CL tr(A), in which tr(Γ) is a finite
set whenever Γ is finite.

Definition 8 Where L is a logic that follows the RoI schema and has a nice
semantics, the NE-function tr : W → W♯ for L is defined as:

tr(A) = TRoI(A) ,

where A is the selected transparent semantic statement for which “VM (A) = 1
iff A” is a reduction statement8 and TRoI is the function from transparent
semantic statements to W♯-formulas that is recursively defined in Table 1. The
NE-function is extended to sets by tr(Γ) = {tr(A) | A ∈ Γ}.

Together with Definition 7, the definition of the NE-function warrants that
tr is a total function.

8See Corollary 2 and the subsequent paragraph.

embed˙fin2.tex 16

(i) TRoI((A)) = (TRoI(A))
(ii) TRoI(not A) = ¬TRoI(A)

(iii) TRoI(A and B) = TRoI(A) ∧ TRoI(B)
(iv) TRoI(A or B) = TRoI(A) ∨ TRoI(B)
(v) TRoI(A(a) for all a ∈ C ∪ O) = ∀ξTRoI(A(ξ)),

where ξ is the first variable that does not occur in A(a)
(vi) TRoI(A(a) for at least one a ∈ C ∪ O) = ∃ξTRoI(A(ξ)),

where ξ is the first variable that does not occur in A(a)
(vii) TRoI(⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)) = πrα1 . . . αr

(viii) TRoI(v(α) = v(β)) = α = β
(ix) if A /∈ +P=,

TRoI(⟨v(g1(A)), . . . , v(gh(A)(A))⟩ ∈ v(f(A))) = P
h(A)
f(A) g(A)

(x) TRoI(0 = 0) = (P 0 ∨ ¬P 0)

Table 1: RoI schema: from the semantics to tr

Let us at once consider a complex example, viz. the NE-function for CLuNs=.
The NE-function is recursively defined as follows:9

T1 tr(πrα1 . . . αr) = πrα1 . . . αr (r ≥ 0)
T2 tr(α = β) = α = β
T3 tr(A ⊃ B) = tr(A) ⊃ tr(B)
T4 tr(A ∧B) = tr(A) ∧ tr(B)
T5 tr(A ∨B) = tr(A) ∨ tr(B)
T6 tr(A ≡ B) = tr(A) ≡ tr(B)
T7 tr(∀ξA) = ∀ξ tr(A)
T8 tr(∃ξA) = ∃ξ tr(A)

T9u=p If A ∈ +P=, tr(¬A) = ¬tr(A) ∨ Ph(¬A)
f(¬A) g(¬A)

T9s¬¬ tr(¬¬A) = tr(A)
T9s¬⊃ tr(¬(A ⊃ B)) = tr(A) ∧ tr(¬B)
T9s¬∧ tr(¬(A ∧B)) = tr(¬A) ∨ tr(¬B)
T9s¬∨ tr(¬(A ∨B) = tr(¬A) ∧ tr(¬B)
T9s¬≡ tr(¬(A ≡ B)) = (tr(A) ∨ tr(B)) ∧ (tr(¬A) ∨ tr(¬B))
T9s¬∀ tr(¬∀ξA) = ∃ξ tr(¬A)
T9s¬∃ tr(¬∃ξA) = ∀ξ tr(¬A)

Definition 9 Where M = ⟨D, v⟩ is a L-model for +L and M ′ = ⟨D, v′⟩ is a
CL-model for +L♯, let RMM ′ iff the following conditions are fulfilled:
R1 If α ∈ C ∪ O, then v′(α) = v(α).
R2 If A ∈ +P, then v′(A) = v(A).

R3 If A /∈ +P=, then v′(P
h(A)
f(A)) = v(f(A)).

Lemma 2 (i) For every L-model M = ⟨D, v⟩ for +L there is a CL-model M ′ =
⟨D, v′⟩ for +L♯ such that RMM ′ and (ii) for every CL-model M ′ = ⟨D, v′⟩ for
+L♯ there is a L-model M = ⟨D, v⟩ for +L such that RMM ′.

Proof. Immediate in view of Definition 9.

9There is some notational abuse in T7 and T8. However, it is easily seen that the correct
formulation of the formula to the right of the identity in T7 is a relettering of ∀ξ tr(A).
Analogously for T8.

embed˙fin2.tex 17

Lemma 3 If M = ⟨D, v⟩ is a L-model for +L, M ′ = ⟨D, v′⟩ is a CL-model for
+L♯, RMM ′, and A is an instance of a semantic base element, then A holds
true in M iff vM ′(TRoI(A)) = 1.

Proof. Suppose that the antecedent is true. There are four cases.
Case 1: A has the form ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr), whence TRoI(A) is

πrα1 . . . αr. The consequent of the lemma follows in view of R1, R2, and C2.1.
Case 2: A has the form v(α) = v(β), whence TRoI(A) is α = β. The

consequent of the lemma follows in view of R1 and C2.2.
Case 3: A has the form ⟨v(g1(A)), . . . , v(gh(A)(A))⟩ ∈ v(f(A)) and A /∈ +P=,

whence TRoI(A) is P
h(A)
f(A) g(A). The consequent of the lemma follows in view of

R1, R3, and C2.1.
Case 4: A has the form 0 = 0, whence TRoI(A) is P 0∨¬P 0. The consequent

of the lemma follows in view of C2.6 and C2.3.

Lemma 4 If M = ⟨D, v⟩ is a L-model for +L, M ′ = ⟨D, v′⟩ is a CL-model for
+L♯, RMM ′, and A is a transparent semantic statement, then A holds true in
M iff vM ′(TRoI(A)) = 1.

Proof. Suppose M = ⟨D, v⟩ is a L-model for +L, M ′ = ⟨D, v′⟩ a CL-model for
+L♯ and RMM ′. We prove that

A holds true in M iff vM ′(TRoI(A)) = 1 (2)

for every transparent semantic statement A, by means of an induction on the
complexity of transparent semantic statements10.

Base case: A is an instance of a semantic base element. So (2) follows by
Lemma 3.

For the induction step, suppose that, for every transparent semantic state-
ment B that is less complex than A, B holds true inM just in case vM ′(TRoI(B)) =
1. There are five cases.

Case 1–3. A is of the form “not B”, “B1 and B2”, or “B1 or B2”, whence
respectively TRoI(A) = ¬TRoI(B), TRoI(A) = TRoI(B1) ∧ TRoI(B2) and
TRoI(A) = TRoI(B1) ∨ TRoI(B2). (2) follows in view of C2.3, C2.5, C2.6 and
the induction hypothesis.

Case 4 and 5. A is of the form “B(a) for at least one a ∈ C∪O” or “B(a) for
every a ∈ C∪O”, whence respectively TRoI(A) = ∃ξTRoI(B(ξ)) and TRoI(A) =
∀ξTRoI(B(ξ)). In view of C2.9 and C2.8, vM ′(∃ξTRoI(B(ξ))) = 1 just in case
vM ′(TRoI(B(α))) = 1 for at least one α ∈ C ∪ O and vM ′(∀ξTRoI(B(ξ))) = 1
iff vM ′(TRoI(B(α))) = 1 for all α ∈ C ∪ O. The induction hypothesis entails
that for all α ∈ C ∪ O, B(α) holds true in M iff vM ′(TRoI(B(α))) = 1. Hence,
vM ′(∃ξTRoI(B(ξ))) = 1 iff B(α) holds true in M for at least one α ∈ C ∪ O
and vM ′(∀ξTRoI(B(ξ))) = 1 iff B(α) holds true in M for all α ∈ C ∪ O. So we
have established (2).

Lemma 5 If tr is the NE-function for L, M = ⟨D, v⟩ is a L-model for +L,
M ′ = ⟨D, v′⟩ a CL-model for +L♯, and RMM ′, then vM ′(tr(A)) = vM (A).

10The complexity of a transparent semantic statement, which should not be confused with
the complexity function of a nice semantics, is the number of connectives and quantifiers that
occur (in English) in the statement.

embed˙fin2.tex 18

(i) TNRoI((A)) = (TNRoI(A))
(ii) TNRoI(not A) = ¬TNRoI(A)

(iii) TNRoI(A and B) = TNRoI(A) ∧ TNRoI(B)
(iv) TNRoI(A or B) = TNRoI(A) ∨ TNRoI(B)
(v) TNRoI(A(a) for all a ∈ C ∪ O) = ∀ξTNRoI(A(ξ)),

where ξ is the first variable that does not occur in A(a)
(vi) TNRoI(A(a) for at least one a ∈ C ∪ O) = ∃ξTNRoI(A(ξ)),

where ξ is the first variable that does not occur in A(a)
(vii) TNRoI(⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)) = πrα1 . . . αr

(viii) TNRoI(v(α) = v(β)) = Iαβ

(ix) TNRoI(v(A) = {∅}) = P
h(A)
f(A) g(A)

(x) TNRoI(0 = 0) = (P 0 ∨ ¬P 0)

Table 2: Without RoI: from the semantics to tr

Proof. Immediate in view of Definition 8, Lemma 4 and Lemma 3.

Theorem 1 If L has a nice semantics that follows the RoI schema and tr is
the NE-function for L, then Γ �L A iff tr(Γ) �CL tr(A).

Proof. By Lemmas 2 and 5, if a L-model M verifies Γ and falsifies A, then there
is a CL-model M ′ that verifies tr(Γ) and falsifies tr(A), and vice versa.

If Γ is a finite set, then so is tr(Γ).

6.2 Logics Following the Non-RoI Schema

Let ∆= = {∀xIxx, ∀x∀y∀z(Ixy ⊃ (Ixz ≡ Iyz))} ∪ {∀x∀y(Ixy ⊃ (A(x) ≡
A(y))) | A(x) ∈ P}.11 The main general difference with the previous subsection
is that, whenever L has a nice semantics, the NE-function tr will be such that
where Γ ⊂ W and A ∈ W, Γ ⊢L A iff tr(Γ) ∪ ∆= ⊢CL tr(A). ∆= is an infinite
set, but we shall also be able to show that, under the above conditions, Γ ⊢L A
iff tr(Γ) ∪ ∆=

Γ∪{A} ⊢CL tr(A), in which tr(Γ) ∪ ∆=
Γ∪{A} is a finite set whenever

Γ is finite.

Definition 10 Where L is a logic that follows the non-RoI schema and has a
nice semantics, the NE-function tr : W → W♯ for L is defined as:

tr(A) = TNRoI(A) ,

where A is the selected transparent semantic statement for which “VM (A) = 1
iff A” is a reduction statement and TNRoI is the function from transparent
semantic statements to W♯-formulas that is recursively defined in Table 2. The
NE-function is extended to sets by tr(Γ) = {tr(A) | A ∈ Γ}.

Let us at once consider a complex example, viz. the NE-function for C1.
The NE-function is defined by:12

11∆= CL-entails ∀x∀y(Ixy ⊃ Iyx) as well as ∀x∀y∀z(Ixy ⊃ (Iyz ⊃ Ixz)).
12The notational abuse for the quantifiers is as described in footnote 9.

embed˙fin2.tex 19

T1 tr(A) = tr′(T (A)), where T (A) is the result of first deleting all the
vacuous quantifiers in A and then uniformly replacing all variables by
the first variables of the alphabet in alphabetic order.

T2 tr′(πrα1 . . . αr) = πrα1 . . . αr (r ≥ 0)
T3 tr′(α = β) = Iαβ
T4 tr′(A ⊃ B) = tr′(A) ⊃ tr′(B)
T5 tr′(A ∧B) = tr′(A) ∧ tr′(B)
T6 tr′(A ∨B) = tr′(A) ∨ tr′(B)
T7 tr′(A ≡ B) = tr′(A) ≡ tr′(B)
T8 tr′(∀ξA) = ∀ξ tr′(A)
T9 tr′(∃ξA) = ∃ξ tr′(A)

T10u=p If A ∈ +P=, tr′(¬A) = ¬tr′(A) ∨ Ph(¬A)
f(¬A) g(¬A)

T10s¬¬ tr′(¬¬A) = ¬tr′(¬A) ∨ (tr′(¬A) ∧ tr′(A) ∧ Ph(¬¬A)
f(¬¬A) g(¬¬A))

T10s¬⊃ tr′(¬(A ⊃ B)) = ¬tr′(A ⊃ B) ∨ (((tr′(¬A) ∧ tr′(A)) ∨ (tr′(¬B) ∧
tr′(B))) ∧ Ph(¬(A⊃B))

f(¬(A⊃B)) g(¬(A ⊃ B)))

T10s¬∧1 if B is not of the form ¬A: tr′(¬(A∧B)) = ¬tr′(A∧B)∨ (((tr′(¬A)∧
tr′(A)) ∨ (tr′(¬B) ∧ tr′(B))) ∧ Ph(¬(A∧B))

f(¬(A∧B)) g(¬(A ∧B)))

T10s¬∧2 tr′(¬(A ∧ ¬A)) = ¬(tr′(A) ∧ tr′(¬A))
T10s¬∨ tr′(¬(A∨B)) = ¬tr′(A∨B)∨(((tr′(¬A)∧tr′(A))∨(tr′(¬B)∧tr′(B)))∧

P
h(¬(A∨B))
f(¬(A∨B)) g(¬(A ∨B)))

T10s¬≡ tr′(¬(A ≡ B)) = ¬tr′(A ≡ B) ∨ (((tr′(¬A) ∧ tr′(A)) ∨ (tr′(¬B) ∧
tr′(B))) ∧ Ph(¬(A≡B))

f(¬(A≡B)) g(¬(A ≡ B)))

T10s¬∀ tr′(¬∀ξA(ξ)) = ¬tr′(∀ξA(ξ)) ∨ (∃ξ(tr′(¬A(ξ)) ∧ tr′(A(ξ))) ∧
P

h(¬∀ξA(ξ))
f(¬∀ξA(ξ)) g(¬∀ξA(ξ)))

T10s¬∃ tr′(¬∃ξA(ξ)) = ¬tr′(∃ξA(ξ)) ∨ (∃ξ(tr′(¬A(ξ)) ∧ tr′(A(ξ))) ∧
P

h(¬∃ξA(ξ))
f(¬∃ξA(ξ)) g(¬∃ξA(ξ)))

Definition 11 Where M = ⟨D, v⟩ is a L-model for +L and M ′ = ⟨D, v′⟩ a CL-
model for +L♯, let SMM ′ hold iff the following conditions are fulfilled:
S1 If α ∈ C ∪ O, then v′(α) = α.
S2 If πr ∈ Pr, then v′(πr) = {⟨α1, . . . , αr⟩ | ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr)}.
S3 v′(I) = {⟨α, β⟩ | v(α) = v(β)}.
S4 For all A ∈ +W, if f(A) ̸= I, then v′(P

h(A)
f(A)) = {⟨α1, . . . , αr⟩ | for some

B ∈ +W, f(B) = f(A), v(B) = {∅}, and g(B) = α1 . . . αr}.

Two models (for the same language) are equivalent iff they verify the same
set of formulas. Where M = ⟨D, v⟩ is a CL-model for +L♯, a predicate π2 ∈ P2

♯

will be called an identity relation over +L♯ in M iff v(π2) is reflexive, symmetric
and transitive and, for all ρr ∈ Pr, if ⟨v(α1), . . . , v(αi), . . . , v(αr)⟩ ∈ v(ρr) and
⟨v(αi), v(β)⟩ ∈ v(π2), then ⟨v(α1), . . . , v(β), . . . , v(αr)⟩ ∈ v(ρr).

Lemma 6 (i) For every L-model M = ⟨D, v⟩ for +L there is a CL-model M ′ =
⟨C∪O, v′⟩ for +L♯ such that SMM ′, and (ii) for every CL-modelM ′′ = ⟨D′′, v′′⟩
for +L♯ in which I is an identity relation over +L♯, there is an equivalent CL-
model M ′ = ⟨C ∪O, v′⟩ for +L♯ and there is a L-model M = ⟨D, v⟩ for +L such
that SMM ′.

embed˙fin2.tex 20

Proof. The proof of (i) is immediate in view of the definition of SMM ′. For
the proof of (ii), consider a CL-model M ′′ = ⟨D′′, v′′⟩ for +L♯ in which I is an
identity relation over +L♯. Let M ′ = ⟨C ∪O, v′⟩ be a CL-model for +L♯ in which
v′ fulfills the following conditions:

(a) Where α ∈ C ∪ O, v′(α) = α.
(b) Where πr ∈ Pr

♯ , v′(πr) = {⟨α1, . . . , αr⟩ | ⟨v′′(α1), . . . , v′′(αr)⟩ ∈ v′′(πr)}.

We leave it to the reader to prove that M ′ is equivalent with M ′′ and that I is
an identity relation over +L♯ in M ′.

Let, for all α ∈ C ∪ O, ⟦α⟧ = {β ∈ C ∪ O | ⟨α, β⟩ ∈ v′(I)}. Define a L-
model M = ⟨D, v⟩ in which D = {⟦α⟧ | α ∈ C ∪ O} and v fulfills the following
conditions:

v1 Where α ∈ C ∪ O, v(α) = ⟦α⟧.
v2 Where πr ∈ Pr, v(πr) = {⟨⟦α1⟧, . . . , ⟦αr⟧⟩ | ⟨α1, . . . , αr⟩ ∈ v′(πr)}.
v3 Where A ∈ +W and g(A) = α1 . . . αh(A), v(A) = {∅} iff ⟨α1, . . . , αh(A)⟩ ∈

v′(P
h(A)
f(A)).

SMM ′ holds because M and M ′ are models of the right sorts, (a) warrants
S1, S2 is warranted by v1 together with v2 and the fact that I is an identity
relation over +L♯ in M ′, v3 warrants S4, and, given the way in which D is
defined, v1 warrants S3.

Lemma 7 If SMM ′, then M ′ ∆=.

Proof. Suppose that SMM ′. In view of S1 and S3, C2.1 warrants that vM ′(∀xIxx) =
vM ′(∀x∀y∀z(Ixy ⊃ (Ixz ≡ Iyz))) = 1.

Suppose moreover that vM ′(∀x∀y(Ixy ⊃ (A(x) ≡ A(y)))) = 0 for some
A(x) ∈ P, whence vM ′(∀x∀y(Ixy ⊃ (A(x) ⊃ A(y)))) = 0 or vM ′(∀x∀y(Ixy ⊃
(A(y) ⊃ A(x)))) = 0. We only consider the first possibility. It follows that there
are α, β ∈ C ∪O such that vM ′(Iαβ) = vM ′(A(α)) = 1 and vM ′(A(β)) = 0. We
shall show that this is impossible.

As vM ′(Iαβ) = 1 (for those α and β), v(α) = v(β) by S1, S3 and C2.1. As
A(x) ∈ P, and hence A(α) ∈ +P, it follows that A(α) has the form πrγ1 . . . γr
and that α is one of the γi (1 ≤ i ≤ r). Let us represent this by πrγ1 . . . α . . . γr.
The following equivalences obtain:

vM ′(πrγ1 . . . α . . . γr) = 1
iff (by C2.1) ⟨v′(γ1), . . . , v′(α), . . . , v′(γr)⟩ ∈ v′(πr)
iff (by S1) ⟨γ1, . . . , α, . . . , γr⟩ ∈ v′(πr)
iff (by S2) ⟨v(γ1), . . . , v(α), . . . , v(γr)⟩ ∈ v(πr)
iff (as v(α) = v(β)) ⟨v(γ1), . . . , v(β), . . . , v(γr)⟩ ∈ v(πr)
iff (by S1 and S2) ⟨v′(γ1), . . . , v′(β), . . . , v′(γr)⟩ ∈ v′(πr)
iff (by C2.1) vM ′(πrγ1 . . . β . . . γr) = 1.

As πrγ1 . . . β . . . γr is A(β), this contradicts vM ′(A(β)) = 0.

Lemma 8 If M = ⟨D, v⟩ is a L-model for +L, M ′ = ⟨D, v′⟩ is a CL-model for
+L♯, SMM ′, and A is an instance of a semantic base element, then A holds
true in M iff vM ′(TNRoI(A)) = 1.

Proof. Suppose that the antecedent is true. There are four cases.

embed˙fin2.tex 21

Case 1: A has the form ⟨v(α1), . . . , v(αr)⟩ ∈ v(πr), whence TNRoI(A) is
πrα1 . . . αr. The consequent of the lemma follows in view of S1, S2, and C2.1.

Case 2: A has the form v(α) = v(β), whence TNRoI(A) is Iαβ. The conse-
quent of the lemma follows in view of S1, S3 and C2.2.

Case 3: A has the form v(A) = {∅} whence TNRoI(A) is P
h(A)
f(A) g(A). The

consequent of the lemma follows in view of S1, S4, and C2.1.
Case 4: A has the form 0 = 0, whence TNRoI(A) is P 0 ∨ ¬P 0. The conse-

quent of the lemma follows in view of C2.6 and C2.3.

Lemma 9 If M = ⟨D, v⟩ is a L-model for +L, M ′ = ⟨D, v′⟩ is a CL-model for
+L♯, SMM ′, and A is a transparent semantic statement, then A holds true in
M iff vM ′(TNRoI(A)) = 1.

Proof. The proof is identical to the proof of Lemma 4, apart from the following
two aspects: the reference to Lemma 3 should be changed into a reference to
Lemma 8 and every occurrence of TRoI should be replaced by TNRoI.

Lemma 10 If tr is the NE-function for L, M = ⟨D, v⟩ is a L-model for +L,
M ′ = ⟨D, v′⟩ a CL-model for +L♯, and SMM ′, then vM ′(tr(A)) = vM (A).

Proof. Immediate in view of Definition 10 and Lemmas 9 and 8.

Theorem 2 If L has a nice semantics that follows the non-RoI schema and tr
is the NE-function for L: Γ �L A iff tr(Γ) ∪ ∆= �CL tr(A).

Proof. For the first direction, suppose that there is a CL-model M ′′ = ⟨D′′, v′′⟩
for +L♯ such that M ′′ tr(Γ) ∪ ∆= and M ′′ 1 tr(A). As M ′′ ∆=, I is an
identity relation over +L♯ in M ′′. Hence, by Lemma 6, there is an equivalent
CL-model M ′ = ⟨C ∪O, v′⟩ for +L♯ and there is a L-model M for +L such that
SMM ′. In view of Lemma 10, M Γ and M 1 A.

For the second direction, suppose that there is a L-modelM such thatM Γ
and M 1 A. By Lemma 6, there is a CL-model M ′ such that SMM ′. M ′ ∆=

in view of Lemma 7; M ′ tr(Γ) and M ′ 1 tr(A) in view of Lemma 10.

Even if Γ is a finite set, tr(Γ) ∪ ∆= is an infinite set, which is inconvenient
from a computational point of view. Let PΓ∪{A} be the set of members of P
that occur in Γ or in A, let Pr(Γ ∪ {A}) = {πrx1 . . . xr | πr ∈ PΓ∪{A}}, and let
∀∀A be the universal closure of A (A preceded by a universal quantifier over
every variable free in A). Finally, let ∆=

Γ∪{A} = {∀xIxx, ∀x∀y∀z(Ixy ⊃ (Ixz ≡
Iyz))} ∪ {∀∀(Ixy ⊃ (B(x) ≡ B(y))) | B(x) ∈ Pr(Γ ∪ {A})}. Clearly ∆=

Γ∪{A} is
finite whenever Γ is so.

Theorem 3 tr(Γ) ∪ ∆= �CL tr(A) iff tr(Γ) ∪ ∆=
Γ∪{A} �CL tr(A).

Proof. As ∆=
Γ∪{A} ⊆ ∆=, the right–left direction is obvious. For the left–right

direction, suppose that tr(Γ)∪∆=
Γ∪{A} 2CL tr(A). It follows that there is a CL-

model M = ⟨D, v⟩ for +L♯ that verifies tr(Γ) ∪ ∆=
Γ∪{A} and falsifies tr(A). Let

M ′ = ⟨D, v′⟩ be exactly as M , except that v′(πr) = ∅ for all πr ∈ P − PΓ∪{A}.
It follows that M ′ verifies tr(Γ) ∪ ∆= and falsifies tr(A).

embed˙fin2.tex 22

7 Some Properties of Nice Embeddings

Given that a nice embedding requires a nice semantics, it is easy to prove the
following theorem.

Theorem 4 If there is a nice embedding of L in CL, then L is reflexive, transi-
tive, monotonic, and compact and, for every Γ ⊆ W, CnL(Γ) is a semi-recursive
set.

Proof. That CnL(Γ) is a semi-recursive set for all Γ ⊆ W is obvious in view of
the embedding.

The proof of the other properties is nearly obvious in view of the fact that
tr(Γ) = {tr(A) | A ∈ Γ} and that tr(A) is always a single formula.13 Consider
Reflexivity. Where tr is the specific NE-function for L, Γ ∪ {A} ⊢L A is war-
ranted by [∆=∪]tr(Γ) ∪ {tr(A)} ⊢L tr(A).14 The proof of the Transitivity and
Monotonicity of L proceeds similarly.

For Compactness, note that CL is compact. So, whenever Γ ⊢L A, there
are B1, . . . , Bn ∈ tr(Γ) and there is a finite Θ ⊆ ∆= (∅ if L follows the RoI-
schema), for which Θ ∪ B1, . . . , Bn ⊢CL tr(A). As every Bi is tr(Ci) for a
Ci ∈ Γ, C1, . . . , Cn ⊢L A, whence Γ ⊢L A by the Monotonicity of L (proven in
the previous paragraph).

So there is no point in trying to find a nice embedding of a logic L in CL if
L misses any of the properties stated in the theorem.

An embedding of L into CL reduces questions on L-derivability to questions
on CL-derivability. Different kinds of embedding, however, establish different
reductions of questions of the first sort to questions of the second sort. The
most important effects of the difference concern the heuristics for questions on
L-derivability that is offered by the embedding.

A nice embedding of L into CL reduces, for all Γ and A, the question whether
Γ ⊢L A to a specific question whether Γ′ ⊢CL A

′. The latter question is specific
in that Γ′ and A′ belong to a specific fragment of the language of CL. The re-
lation between the two kinds of questions has two interesting properties. First,
whenever Γ is finite, then so is Γ′. Next, as the heuristics for CL-derivability
is well-studied and quite efficient, this efficiency is transferred to the original
question on L-derivability. If the nice semantics is not artificially complicated,
then the obtained heuristics for the question whether Γ ⊢CL A will be rea-
sonably efficient.15 Note that a somewhat efficient heuristics for finding out
whether Γ′ ⊢CL A

′ will take properties of Γ′ and A′ into account. Think about
CL-tableaux, which provide a very general heuristic method for approaching
questions on CL-derivability. The tableau rules react typically on the logical
form of formulas (premisses, the conclusion, and descendants of these formulas).
The efficiency of a heuristic method may be enhanced for example by making
it more goal-directed, for example by selecting applications of rules (clauses,
instructions, . . .) in view of sets of formulas rather than single formulas.16

13For the proof to go through, it is even sufficient that tr(A) is a finite set of formulas for
all A ∈ W.

14The part in square brackets is only present if L follows the non-RoI-schema and it is
identical for all Γ and A.

15The heuristics cannot be the most efficient one possible and not even the most efficient
known one.

16See [5, 8, 13] for some examples of goal-directed methods.

embed˙fin2.tex 23

In a sense a nice embedding translates A and the members of Γ into formulas
that express the meanings of the translated formulas in terms of CL, sometimes
adding formulas on the premise side to take care of the translated identity. So
a nice embedding of L in CL provides L with a heuristics in terms of this
translation. The translation also warrants that the thus obtained heuristics for
L inherits a certain degree of efficiency from CL.

The specific properties of a nice embedding are most clearly highlighted by
a comparison to other types of embedding. Consider first (what we shall call)
a TM-embedding. A logic L is semi-recursive iff there is a Turing machine T
with the following property: when given the input (A,Γ), T halts after finitely
many steps with the answer YES iff Γ ⊢L A. The machine T , its initial state,
its tape, and the admissible transformations of the machine’s state and of the
tape can be described in CL—see for example [9]. This description can be seen
as an embedding of L in CL, whence every semi-recursive logic can in this way
be embedded in CL.

Where L is semi-recursive, the Turing machine T for L may function as
follows. Given an input (A,Γ), T considers the natural numbers n ∈ N starting
from 0. For each n, T first checks wether n is the Gödel number of a list of
members of W and, if so, whether the list is a L-proof of A from Γ. If this is
the case, T answers YES; if it is not the case, T proceeds to the next n ∈ N.
Note that checking wether n is the Gödel number of a list of members of W
and checking whether the list is a L-proof of A from Γ are recursive tasks which
require, apart from A and Γ, nothing but the lists of symbols and formation
rules of L and the lists of axioms and rules of L.17 This means that a single
Turing machine, call it T1 may do the job for all semi-recursive logics, requiring
as input A, Γ, and the four lists. To fix ideas, let the Turing machine require
a tape each square of which is blank or filled by a 1 and let the machine start
and halt on the leftmost 1 on its tape.

To understand the nature of the TM-embedding derived from T1, it is in-
structive to consider (Γ′, A′) = emb(Γ, A). The set Γ′ comprises (i) a set of
formulas describing (under a convention) the initial state of the tape of the Tur-
ing machine on which A, Γ, and the four lists from the previous paragraph are
coded and (ii) a set of formulas describing T1 (under the same convention). The
formula A′ is a description (under the same convention) of the state of T1 and
its tape that corresponds to the positive answer YES.18

One may clearly apply whatever is known about the heuristics of CL-proofs
to find out whether Γ′ ⊢CL A′. However, a TM-embedding of L in CL need
not reveal anything about the heuristics of L-proofs. Consider T1. All informa-
tion it conveys about the logics it handles is that they are semi-recursive. All
specific information on the logics is on the respective tapes. Even the specific
information, however, concerns checking the well-formedness of formulas and
the proofhood of lists of formulas. So in as far as T1 may be said to embody a
heuristics, it is the least goal-directed heuristics one may imagine. T1 provides
some information on recognizing proofs, not on devising L-proofs of A from Γ.

17The set Γ and the four lists need to be recursive but may be infinite. Note that infinite
lists cannot in general be built into the Turing machine itself but have to be coded on the
machine’s tape.

18Basically that T1 halts reading the leftmost 1 on its tape and that the next square on the
tape contains a 1.

embed˙fin2.tex 24

As a second example,19 consider a more specific type of embedding. It looks
similar to nice embedding and may be applied to all logics that are reflexive,
transitive, and monotonic. By way of example, consider an application to a
propositional logic L. For any A ∈ W, tr(A) = P 0

A. It is obvious that Γ ⊢L A
iff Θ ∪ tr(Γ) ⊢CL tr(A), where Θ contains (i) the translation of all axioms of L
as well as (ii) the translation of all instances of rules of L, expressed by means
of material implications. Where the translated logic is the relevant logic R, for
example, Θ contains (i) P 0

A for every instance A ∈ W of an axiom schema of R
as well as (ii) P 0

A ⊃ (P 0
B ⊃ P 0

A∧B) and P 0
A ⊃ (P 0

A→B ⊃ P 0
B) for all A,B ∈ W.20

The difference with a nice embedding is striking. The Compactness of CL
still warrants that, for every Γ and A, there is a finite Θ′ such that Θ′∪tr(Γ) ⊢CL

tr(A) whenever Γ ⊢R A. There is no clue, however, for constructing the finite
Θ′ ⊂ Θ.21 So even for the simplest R-derivation, we are facing an infinite
premise set in CL. Moreover, the embedding offers no insight on heuristic
methods for R-derivability.

8 Some Further Comments

Our distinction in terms of the RoI schema is useful when one devises a nice
semantics for a given logic and moreover simplifies the proof in Section 6. How-
ever, it is not difficult to unify the matter. First, modify two clauses in the
definition of the function TRoI:

(viii) TRoI(v(α) = v(β)) = Iαβ
(ix) if A /∈ +P=,

TRoI(⟨v(g1(A)), . . . , v(gh(A)(A))⟩ ∈ v(f(A))) = Q
h(A)
f(A)g(A)

Extend L♯ with predicates Q
h(A)
f(A) for A ∈ W and replace, in the definition of

∆=, P by P ∪ {Qh(A)
f(A)g(A) | A ∈ W}. It is easily seen that the embedding still

goes through for logics that follow the RoI schema. Moreover, the functions
TRoI and TNRoI do not conflict. So they may be replaced by a single function
that takes care of the embedding of both kinds of logics (and also of logics that
follow the RoI schema at some points and not at others).22 With these changes,
Theorem 1 becomes invalid but Theorem 2 holds for all logics that have a nice
semantics.

When one comes across a new logic L, and devises a nice semantics for it—or
possibly finds L by devising a nice semantics—our result provides an embedding
of L in CL and constructively warrants that L is a semi-recursive logic.

19The example is made up by us. Another example from the literature is [15].
20The claim in the text is correct. Yet, given that R is defined in [1] (in the worst modal

tradition, viz. the one of [14]) as a logic engendering a set of theorems and that the inference
relation is only defined indirectly by the “Entailment Theorem”, viz. as A1, . . . , An ⊢R B iff
⊢R (A1 ∧ . . .∧An) → B, it would take a longer way than we can afford here to show that our
claim is correct.

21Which formulas should belong to Θ′ depends on the question which axioms and rules of
R are required to derive the conclusion from the premises. So this depends wholly on R and
the embedding does not offer any help.

22This highlights that the difference does not relate to the way in which the metalinguistic

identity is translated, but with the fact that I warrants RoI for Q
h(A)
f(A)

g(A)-formulas and not

for P
h(A)
f(A)

g(A)-formulas.

embed˙fin2.tex 25

An interesting open problem concerns the delineation of the set of logics that
have a nice semantics and the procedure to devise, where this is possible, a nice
semantics for a given logic.

In Section 7 “translation” was used in an intuitive way. However, there is
a significant literature in which “translation” has a specific meaning and this
literature concerns the embedding of one logic into another. An interesting
survey is presented by Carnielli and others [10]. The survey is also interesting
because it illustrates one aspect of the novelty of our result, as we shall now
show.

Phrased in our terminology, a translation is defined in [10] as follows. Let
L1 be the language of L1 and L2 be the language of L2. A translation is a
function f : W1 → W2 such that, for all Γ ∪ {A} ⊆ W1 holds: if Γ ⊢L1 A then
f(Γ) ⊢L2 f(A) in which f(Γ) = {f(B) | B ∈ W1}. A translation is conservative
iff an equivalence holds instead of an implication. It is easily seen that the NE-
function tr is not a translation according to this definition. Moreover, our results
from Section 6.2 and hence also our result on the unification introduced at the
beginning of the present section cannot be rephrased in terms of a translation
function in the sense of [10]. In the non-RoI case, a nice embedding requires
one of the following. (i) Γ ⊢L A corresponds to a CL-derivability statement in
which, on the premise side, the translation of the premises is extended either
with an infinite context independent set, as in Theorem 2, or with a set that
depends on the conclusion, as in Theorem 3. (ii) If one tries to push the set
into the translation function itself, then one needs two translation functions, for
example TR1(A) =df

∧
(∆=

{A}) ∧ tr(A) for the premise side and TR2(A) =df∧
(∆=

{A}) ⊃ tr(A) for the conclusion side. In neither case does one obtain a

translation in the sense of [10]. Note that (i) and (ii) are exchangeable choices
because we consider only embedding within CL. If one considers embedding
within an arbitrary logic, (i) and (ii) may lead to very different results indeed.
And obviously there is nothing wrong with an embedding or a translation that
has either structure.

In [10], three ‘dimensions’ on translations (in the informal sense) are dis-
cussed. In view of what is said in the previous paragraph, the dimension con-
cerning conservative translations may be rephrased more generally, viz. in agree-
ment with (i) and (ii). In this way nice embeddings would fall under conservative
translations.

References

[1] Anderson, Alan Ross, and Nuel D. Belnap, Jr., Entailment. The
Logic of Relevance and Necessity, vol. 1, Princeton University Press, 1975.

[2] Arruda, Ayda I., ‘On the imaginary logic of N.A. Vasil’ev’, in Ayda I.
Arruda, Newton C.A. da Costa, and R. Chuaqui, (eds.), Non-classical Log-
ics, Model Theory and Computability, North-Holland, Amsterdam, 1977,
pp. 3–24.

[3] Batens, Diderik, ‘Paraconsistent extensional propositional logics’,
Logique et Analyse, 90–91 (1980), 195–234.

embed˙fin2.tex 26

[4] Batens, Diderik, ‘Inconsistency-adaptive logics’, in Ewa Or lowska, (ed.),
Logic at Work. Essays Dedicated to the Memory of Helena Rasiowa, Phys-
ica Verlag (Springer), Heidelberg, New York, 1999, pp. 445–472.

[5] Batens, Diderik, ‘It might have been Classical Logic’, Logique et Analyse,
218 (2012), 241–279.

[6] Batens, Diderik, ‘Spoiled for choice?’, Journal of Logic and Computa-
tion, (in print). Doi:10.1093/logcom/ext019, 1913.

[7] Batens, Diderik, Kristof De Clercq, and Natasha Kurtonina,
‘Embedding and interpolation for some paralogics. The propositional case’,
Reports on Mathematical Logic, 33 (1999), 29–44.

[8] Batens, Diderik, and Dagmar Provijn, ‘Pushing the search paths in
the proofs. A study in proof heuristics’, Logique et Analyse, 173–175 (2001),
113–134. Appeared 2003.

[9] Boolos, George S., John P. Burgess, and Richard J. Jeffrey,
Computability and Logic, Cambridge University Press, 2002. (Fourth edi-
tion).

[10] Carnielli, Walter A., Marcelo E. Coniglio, and Itala M. Lof-
fredo D’Ottaviano, ‘New dimensions on translations between logics’,
Logica Universalis, 3 (2009), 1–18.

[11] da Costa, Newton C.A., ‘Calculs propositionnels pour les systèmes
formels inconsistants’, Comptes rendus de l’Académie des sciences de Paris,
259 (1963), 3790–3792.

[12] da Costa, Newton C.A., ‘On the theory of inconsistent formal systems’,
Notre Dame Journal of Formal Logic, 15 (1974), 497–510.

[13] Gabbay, Dov M., and Nicola Olivetti, Goal-Directed Proof Theory,
Kluwer, Dordrecht, 2000.

[14] Hughes, G.E., and M.J. Cresswell, An Introduction to Modal Logic,
Methuen, London, New York, 1972. First published 1968.

[15] Jeřábek, Emil, ‘The ubiquity of conservative translations’, The Review
of Symbolic Logic, 5 (2012), 666–678.

[16] Kleene, Stephen Cole, Introduction to Metamathematics, North-
Holland, Amsterdam, 1952.

[17] Meheus, Joke, ‘An extremely rich paraconsistent logic and the adaptive
logic based on it’, in Diderik Batens, Chris Mortensen, Graham Priest,
and Jean Paul Van Bendegem, (eds.), Frontiers of Paraconsistent Logic,
Research Studies Press, Baldock, UK, 2000, pp. 189–201.

[18] Priest, Graham, In Contradiction. A Study of the Transconsistent, Ni-
jhoff, Dordrecht, 1987.

[19] Rosser, J. B., and A. R. Turquette, ‘Axiom schemes for m-valued
propositional calculi’, Journal of Symbolic Logic, 10 (1945), 61–82.

[20] Schütte, Kurt, Beweistheorie, Springer, Berlin, 1960.

