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Abstract In this paper we argue that an existing theory of concepts called dynamic frame
theory, although not developed with that purpose in mind, allows for the precise formulation
of a number of problems associated with induction from a single instance. A key role is
played by the distinction we introduce between complete and incomplete dynamic frames,
for incomplete frames seem to be very elegant candidates for the format of the background
knowledge used in induction from a single instance. Furthermore, we show how dynamic
frame theory provides the terminology to discuss the justification and the fallibility of incom-
plete frames. In the Appendix, we give a formal account of incomplete frames and the way
these lead to induction from a single instance.
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1 Induction from a Single Instance

The word ‘induction’ can refer to a whole variety of reasoning methods.1 This paper how-
ever, is mostly concerned with a specific type of inference. Take the following two examples,
motivated by Norton (2003: 649) and Steel (2008: 88), respectively:

One sample of bismuth melts at 271 ◦C.
All samples of bismuth melt at 271 ◦C.

Bob’s 2005 VW Beetle has its wheel-drive in the front.
All 2005 VW Beetles have their wheel-drive in the front.

1 Vickers (2010) gives a nice survey of those.
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642 R. Urbaniak, F. Van De Putte

These are inductions where from the fact that one element of a given class of objects
has a certain predicate, a generalization is inferred which attributes that predicate to all
elements of this class. We will call this inference pattern ‘induction from a single instance’,
and henceforth abbreviate it as ISI. The general schema for ISI is:

(ISI)
One C has P .
All C’s have P .

where C is a predicate determining a class and P is another predicate.
Now, it is obvious that this schema doesn’t hold for all classes C and all predicates P .

Although examples of apparently reliable ISIs are numerous, it is just as easy to give a coun-
terexample to this type of inference. If we replace bismuth by wax in the first example, the
induction would be unwarranted. It would be equally unreliable if the predicate in the second
example was ‘is blue’ instead of ‘has its wheel-drive in the front’.2

What is it that makes ISI rational in some cases, but not in others? There have been many
approaches to this question. Notwithstanding the difference in terminology, most authors
agree on the necessity of some specific background knowledge that accounts for the selec-
tive reliability of ISI. Mill (1973: 308–311) calls it a ‘hidden major premise’ and pursues
the idea that every induction is actually a syllogism. Goodman (1978: 110) speaks of a
‘positive overhypothesis’, Thagard and Nisbett (1982: 380) refer to ‘knowledge of variabil-
ity within kinds’, Davies (1988: 233) points at knowledge of ‘determination relations’, and
more recently Norton (2003: 650) refers to a certain kind of ‘material facts’.

This background knowledge (BK) has to be strong enough to make a single instance suffi-
cient for the inductive conclusion. However, BK shouldn’t by itself entail this generalization,
for this would make the single instance redundant. It is BK together with the instance that
lets one derive the desired generalization.3

Take our second example. On the face of it, the BK comes down to this: ‘Either all 2005
VW Beetles have their wheel-drive in the front, they all have it in the rear, or they have a 4×4
wheel-drive’. With this assumption, knowing that at least one car of this year and making
has its engine in the front enables one to infer that all 2005 VW Beetles have their engine in
the front.

In cases such as the car example, the BK implies a disjunction of generalizations. Each
of these generalizations is about the same class C of objects, assigning a certain predicate
P to all its members. Also, we believe that if one of these generalizations is true, then all
others are false—they are mutually exclusive. However, we don’t know which one is true.
The instance, itself a member of C , falsifies all but one of these generalizations, and hence
‘picks out’ that generalization as the inductive conclusion. This turns the induction into a
classical inference, which explains its great strength compared to other cases of ISIs which

2 The specific reasoning pattern that we call ISI is well-known in cognitive sciences and was shown to be a
robust phenomenon in experimental settings. See e.g. Thagard and Nisbett (1982: 380) for an example con-
cerning the physical behavior of a kind of metal, floridium. Moreover, the impact of the projectability of certain
predicates on inductive inferences about these predicates is a well-established fact in cognitive psychology
(see Heit 2000).
3 Davies (1988: 231) in particular stresses this point, and calls it “The non-redundancy problem”.
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lack such additional assumptions.4 In the Appendix, we show how this case and similar ones
can be formalized in a first order language.5

We agree that every ISI depends on some domain-specific background knowledge. How-
ever, once we accept this, the focus is immediately moved to more detailed questions: (i) is
there any uniform relation between the classes about which we generalize and the predicates
that we generalize about? (ii) how can we justify the BK for an ISI? (iii) how do we revise
the BK once it becomes falsified by new evidence? (iv) can we give any formal account of
(ii) and (iii)?

Our claim is that the BK that licenses ISI can be very conveniently studied using dynamic
conceptual frames. We will start with a brief explanation of what these are in Sect. 2. Section 3
introduces the distinction between complete and incomplete dynamic frames. In Sect. 4 we
discuss the role this distinction plays in a fairly uniform account of ISIs. Section 5 is devoted
to an explanation of how incomplete dynamic frames come to be accepted. In Sect. 6 we
describe certain ways the frames may be revised when anomalies are encountered in the
context of ISI. In the remaining section, we will discuss some arguments in favor of our
approach, and remark on some loose ends and prospects for further research.

2 Dynamic Frames

On the classical theory of concepts, to each concept there corresponds a set of necessary and
sufficient conditions for falling under that concept, a set of conditions that can be discov-
ered by conceptual analysis. Arguably, the classical view is not an adequate picture of how
concepts work in human cognition (see e.g. Quine 1951; Fodor et al. 1999; Rosch 1973a,
1975a,b, 1978, 1983; Wittgenstein 1953). One of the major and most recent accounts of
concepts put forward as an alternative to the classical theory, inspired by the work of Rosch
(1973b, 1983), employs the notion of a dynamic conceptual frame. We will henceforth speak
of the theory of dynamic conceptual frames, or more briefly, frame theory.6 Some of the most
well-known formulations of frame theory have been provided in Barsalou (1987), Barsalou
and Hale (1993), Barsalou (1993), Barsalou and Yeh (2006). Motivated by the work of Kuhn
(esp. Kuhn 1974), certain applications to the history of science have been put forward and it
has been argued that dynamic frames are a useful tool to account for scientific revolutions
and conceptual frame incommensurability (Andersen et al. 2006).

A frame developed for a single concept only is called a partial frame. In this paper we
will be interested in various kinds of partial frames and certain relations between them. We
will only explain the main ideas behind these and refer to the Appendix for their formal
representation. A partial frame (for a concept R) is composed of two layers: attributes and
values. Every object that falls under R is supposed to have all the attributes. Objects having
a certain attribute are divided according to what values of those attributes they instantiate.
For any object that falls under R and for any attribute in the frame for R, this object has to
instantiate exactly one value for that attribute.7 Take a simple example from Andersen et al.

4 This doesn’t mean that the assumptions used in this inference haven’t been obtained by some sort of inductive
reasoning. We’ll discuss this possibility in Sect. 5.
5 For the bismuth example, one might want to consider an infinite range of predicates, where the ISI allows us
to single exactly one of them out. To deal with such cases, one has to turn to second-order classical logic—see
also the Appendix.
6 The psychological evidence for the adequacy of frame theory is surveyed by Andersen et al. (2006: 47–52).
7 “…all of the attribute nodes are activated for every subordinate concept. However, value nodes appear in
mutually exclusive clusters.” (Andersen et al. 2006: 44)
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Fig. 1 A partial dynamic frame for the concept Bird

(2006: 43). The concept bird can be considered in a frame where it has only two subordinate
attributes: beak and foot, each having two values: round, pointed, and webbed, clawed
respectively.8

Some combinations of values (each belonging to a distinct attribute) are taken to constitute
a separate taxonomical unit. Taxonomical units are taken to be a division of the domain of
objects that fall under the root concept: no object should belong to two taxonomical units (see
Andersen et al. 2006: 56) and every object should belong to a taxonomical unit (Andersen
et al. 2006: 27). For instance, in the exemplary frame there are only two such combinations:
{pointed, clawed} and {round, webbed}, giving raise to the taxonomical units land
bird and water bird respectively.9 In this sense, a frame specifies a taxonomy of the
concept under consideration. In the example, the concept Bird is divided into two separate
taxonomical units.

So one of the main constituents of a dynamic frame is a tree-like structure. The idea
seems fairly simple. Any object that falls under the root concept is supposed to have one of
the values for each of the attributes. Attributes are just aspects in which objects that fall under
the root concept are classified and values are various features that an object can have with
respect to those aspects. This two-layered structure provides frame theory with rich means
of expression, and we will rely on this feature in subsequent sections.

Another important constituent of a dynamic frame are activation patterns. These decide
which combinations of values for the attributes in the frame actually occur together and
they put additional restrictions one the domain of objects falling under the root concept. For
instance, in the frame from Fig. 1, the combination {round beak,webbed foot} and the
combination {pointed beak,clawed foot} constitute the two activation patterns in the
frame. On the other hand, the above frame does not admit an activation pattern where an
object has a pointed beak but webbed feet, or a round beak and clawed feet.10

3 Complete and Incomplete Frames

Now that the notion of a dynamic frame has been introduced, we will elaborate on a particular
aspect of the theory, in order to explain the relation between dynamic frames and ISI.

8 We will refer to partial dynamic frames as frames, and a distinction soon will be made between complete
and incomplete frames. Completeness will be opposed to incompleteness, not to being partial.
9 The distinction between these two groups might be introduced for instance because there are certain useful
generalizations that apply to all land birds but not to all water birds, and so on.
10 This might be the case for instance because we have a causal story that tells us why birds with webbed feet
are less likely to survive if they have a pointed beak, or because we simply have no evidence for there actually
being birds instantiating this combination.
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For some frames, each taxonomical unit has a fixed value for every attribute of the frame,
i.e.:

[Strong Relevance Requirement] For any taxonomical unit and for any attribute in
that frame, there exists exactly one value for that attribute such that all objects in that
taxonomical unit have that value.11

Note that SRR implies that every taxomical unit in the frame has to correspond to an acti-
vation pattern, as in the example from Sect. 2. Also, it is important to observe that SRR is
different from the claim that for any object that falls under the root concept, for any attribute
in the frame, there exists exactly one value for that attribute possessed by that object. For
even if the latter condition holds, it still might be the case that a taxonomical unit contains
objects that disagree on a certain attribute.

The basic intuition in support of SRR is that attributes should be, in a fairly strong sense,
relevant for our taxonomy. SRR is quite strong, because we also have another candidate for
capturing the idea that attributes should be relevant for our classification:

[Weak Relevance Requirement] For any taxonomical unit and for any attribute in
the frame, there exists at least one value for that attribute such that no object in that
taxonomical unit has that value.

We will focus on frames that obey SRR, arguing that these provide the most straightforward
justification of ISI. However, in Sect. 7 we will briefly show that ISI can take place in the
context of other frames as well. In other words, the rather strict and abstract model we are
presenting can be easily loosened such that real-life examples are within reach.

Now, even if SRR holds, a distinction should be made between two cases: (i) we are able
to associate each taxonomical unit with a particular activation pattern, and (ii) we believe
that every taxonomical unit is associated with an activation pattern, but are sometimes unable
to tell which taxonomical unit is associated with which pattern. (i) and (ii) are epistemically
different situations, and—as the examples we will give indicate—both are quite common.12

If (i) is the case, we speak of a complete frame, whereas in the case of (ii), we speak of an
incomplete frame. In the Appendix we show how complete and incomplete frames can be
distinguished in more formal terms.

Since they are less specific, incomplete frames are less informative than their complete
counterparts. In this sense, when we “fill in” the details in an incomplete frame, associating
taxonomical units with specific values, epistemically speaking, we are making progress. In
what follows, we describe ISI as the process of rendering an incomplete frame complete.

Take for example the concept broadleaf tree. Suppose the attributes of the frame for
this concept are leaf- shape, fruit and mode of reproduction.13 Say we know three
kinds of broadleaf trees: chestnut trees, elms and cherry trees. These are our taxonomical

11 See the Appendix for a formal representation of SRR. We may refer to Andersen in this context: “Conven-
tionally, all of the attribute nodes are activated for every subordinate concept. However, value nodes appear in
mutually exclusive clusters. Only one value for any given attribute may be activated, but different activation
patterns, or different choices of value, generate many different subordinate concepts, within the limits allowed
by the attribute and value constraints already described. Each pattern of selection constitutes a subordinate
concept; for example, a waterfowl is a bird whose values for beak and foot are restricted to round and
webbed.” (Andersen et al. 2006: 44) We use the term “taxonomical unit” where Anderson et al. speak of
subordinate concepts.
12 As far as we know, the distinction has not been made in literature of the subject.
13 For the sake of brevity and simplicity we use a greatly simplified example here, in the sense that we’ve
reduced the number of attributes, values and taxonomical units to a minimum.
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Fig. 2 An incomplete frame for broadleaf tree

Fig. 3 A complete frame for broadleaf tree

units. We may once have learned the shape of the leaves for each of these units. However,
few of us still know the leaf-shape of e.g. elm trees. We know that all elms must have the
same kind of leaves, but we can’t figure out what exactly these look like, and we may not
be able to choose the right item from a list of all possible leaf-shapes. Hence, our frame for
broadleaf trees is incomplete (Fig. 2):

A tree expert, on the contrary, may have a complete frame for broadleaf trees (Fig. 3):
The incomplete frame presented in Fig. 2, even though less informative than the one

pictured in Fig. 3, is still in an important sense more informative than a frame without leaf-
shape as an attribute. In the latter case, we wouldn’t even have the incomplete knowledge
about taxonomical units being uniform with respect to this attribute. Moreover, given that it
might be rather hard to memorize all the shapes of leaves of different tree species, and that
we often can quite easily consult exemplars of trees in our environment and obtain this infor-
mation, the incomplete frame may be seen as a “shorthand guide” to certain information.14

14 One may compare this to information gathering in general: it is sometimes more useful and certainly easier
to know where you can find the right information about a certain class of subjects when you need it, than to
know as much as possible.
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4 Incomplete Frames and ISI

What is the relation between incomplete frames and ISI, as we described it in the first section?
The answer is fairly straightforward: incomplete frames provide the background knowledge
for ISI. The predicate that the generalization assigns to certain classes of objects is a value
of an attribute of such a frame, and the class of objects that the generalization is about is
a taxonomical unit in that frame. Each ISI which draws a connection between a particular
taxonomical unit and a certain value is a step towards a complete frame.15 More formally, the
incomplete frame entails a disjunction of generalizations, whereas the instance falsifies all
but one of these—see the Appendix where this is explained by means of first order predicate
logic. To get the intuitive picture, let’s reconsider the examples from section one.

Assume that we have an incomplete frame for Pure liquids, containing the attribute
Boiling point. Since Bismuth is a taxonomical unit in this frame, all samples of this fluid
will have the same boiling point. Knowing the boiling point of one sample of bismuth thus
suffices to associate the right value for the attribute Boiling point to the taxonomical unit.
Wax, on the contrary, is not a taxonomical unit of this frame (or any other incomplete frame
with Boiling point as the attribute, for that matter). Hence a similar ISI doesn’t work for
wax.16

As for the car example, say an incomplete frame Car contains an attribute wheel- drive
(2-wheel-front, 2-wheel-rear, 4-wheel). The taxonomical units are version-specific makes of
cars. Our incomplete frame expresses our knowledge that cars of the same version-specific
makes have the same wheel-drive, and this licenses an ISI: once we observe that a certain car
of a particular version has a certain kind of wheel-drive, we can legitimately infer that all cars
of that version have the same kind of wheel-drive. On the other hand, color is not a relevant
attribute of this frame, since cars of the same type can have different colors.17 The richness
of frame theory, which for each concept introduces two levels of predicates (attributes and
their values), makes it very suitable for an account of ISI—all the different constituents of a
frame play their part in the explanation.

5 Justifying Incomplete Frames

Once we have an incomplete frame, it allows for sensible inductions from a single instance.
Also, inductions from a single instance not based on an available incomplete frame are not
legitimate, and in this sense our assembly of available incomplete frames allows us to draw
the line between convincing and unconvincing ISIs. But how is the frame itself justified? Let
us, for the sake of example, briefly discuss two ways this can be done.

One kind of justification is based on a causal story. Such a story informs us that every
member of the same taxonomical unit has been involved in the same causal process, and for
this reason has a fixed value for a given attribute. For instance, suppose we are developing
a frame for our concept Car, where the basic taxonomical units are version-specific car
makes. We may then obtain information that all cars of the same version are the product of
one and the same assembly line in a factory, and that this assembly line determines where the

15 Whenever a series of ISIs eventually leads to a complete frame, one can speak of the “saturation” of an
incomplete frame.
16 Notice that the expression “has a fixed boiling point” can be captured within frame theory only given the
distinction between complete and incomplete frames we made in the previous section.
17 Note that, since no colors are excluded for any type of car, even a frame for car that only conforms to the
Weak Relevance Rule cannot contain the attribute color.
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wheel-drive of a car is situated.This amounts to the conclusion that every version-specific car
make is associated with a single value for the attribute Wheel- drive, even though we are
not sure what the connections exactly are. At that point, we are justified in our acceptance of
an incomplete frame for the concept Car.

Another kind of justification is based on a specific type of second-order induction. Let
V1, V2, . . . be values of a certain attribute that is new to the frame, and let T1, T2, . . . be taxo-
nomical units of that frame. Suppose we come to believe that T1 is associated with V1, T2

is associated with V4, and in general we come to accept a certain number of generalizations
of this sort. Then, prior to discovering those connections for all of the taxonomical units,
we reason by induction on the taxonomical units themselves to the conclusion that all the
taxonomical units available in that frame are associated with a single value. Hence we obtain
an incomplete frame. This, of course, may motivate our search for a causal story explaining
this connection, but that does not mean that the second-order induction itself cannot justify
the incomplete frame.

For instance, suppose we are developing a frame for the concept pure liquids. Our attri-
bute candidate is Boiling point. We learn that quite a few types of pure liquids have a fixed
boiling point. We then might be justified to infer inductively that each taxonomical unit in
our frame is associated with a fixed boiling point.

We tend to be pluralists about the ways an incomplete frame can be justified, and the
above is not a complete list of the ways this can be done. Just like there are many ways one
can be rational in accepting certain beliefs, there are many ways one can be rational to accept
a certain structured conceptual frame. Rather our intention is to display at least certain ways
an incomplete frame can be justified, to indicate that this justification can be clarified fairly
easily, using the terminology of frame theory.

6 Revising Frames

While reasoning with a certain (complete or incomplete) frame in the background, reliable
data might force one to revise the frame. It might turn out that the taxonomization provided
by the frame is inadequate. For instance, an object falling under the root concept can be
discovered which does not belong to any of the taxonomical units (or which should belong
to two distinct taxonomical units). There are quite a few ways in which data may go against
a given frame. According to our approach, revising the background knowledge that grounds
an ISI is but a particular case of frame revision in general.

Suppose we have filled in the blanks in an incomplete frame, by drawing inductions from
a single instance. Every taxonomical unit Ti is thus associated with a single value for the
new attribute A, say Vj . We happily continue to use the newly obtained complete frame for
a while.

Alas, at some point we realize that two objects that fall under the same taxonomical unit
Tk have a different value for A. So we are faced with a contradiction between the newly
obtained complete frame and the available data.In that case, we may continue reasoning for
a while, relying on the non-problematic parts of our frame (see Urbaniak 2010) for a formal
account of this. However, having inconsistent beliefs is usually not the ideal state that we are
after, whence we need to revise our frame somehow and restore consistency.

Perhaps, even though we have reasons to reject our generalization about Tk , our claim that
taxonomical units are associated with specific values is still strongly supported for all the
other taxonomical units. In such a case, we would be rather inclined to keep the new attribute,
and divide Tk into as many “real” taxonomical units as needed: if all the objects from Tk have
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one of the values Vi , Vn or Vu , we might simply move to a frame where instead of Tk we
have three taxonomical units Tk1, Tk2, Tk3, all of them associated with the same values for all
the attributes different from A, and each of them associated with a different value for A. For
instance, in the case of wheel-drives, once we discover that something that we considered
a specific version of a car comes in two sorts, e.g. those that have 2-wheel-front and those
that have 2-wheel-rear drive, instead of deleting the attribute of wheel-drive, we might just
decide that what we considered a version is not really a version and comprises at least two
versions.

One may also decide to split up the original frame into two separate frames for two differ-
ent root concepts: one containing the new attribute, and the other one without it. This implies
that one also decides which elements of T1, T2, . . . , Tk , belong to the first frame, and which
to the second one. For instance, one may initially have an incomplete frame for substances,
containing the attribute boiling point. After discovering that wax doesn’t have a fixed boil-
ing point, one may distinguish between pure substances and mixtures. The frame for pure
substances still contains the attribute boiling point and remains an incomplete frame,
while the one for mixtures doesn’t. A good reason to do this would be that one knows of
other relevant differences between both subclasses of the initial root concept (as is the case
for the example we just gave).

As in Sect. 5, the above picture is not exhaustive—there are many rational ways one can
respond to inconsistencies that result from new data. The exact details of these reactions
require further attention, and more formal accounts. Our goal was to indicate that frame
theory can provide us with the theoretic tools to do this.

7 Summary and Further Research

In the previous sections, we explained that the problem of the appropriateness of single
instance inductions can be formulated and studied in a fairly clear way in terms of an inde-
pendently developed theory of dynamic conceptual frames. Only a few specifications and
one distinction—that between complete and incomplete frames—suffice to phrase the nec-
essary BK for ISI in terms of a partial dynamic frame. Furthermore, questions concerning
the acceptance of this BK and the reaction when confronted with data that contradict it can
be addressed nicely using this terminology.

The concept of an incomplete frame thus helps us to formulate the necessary background
knowledge for ISI, bringing with it all the theoretic tools that are inherent in frame theory.
Interestingly, frame theory was not constructed with ISI in mind, and its development by
cognitive scientists is quite independent of questions concerning induction. In this sense,
developing frame theory to account for ISI does not seem to be too ad hoc.

The most striking feature of frame theory, compared to preceding alternatives to the clas-
sical view of concepts, is that it allows for two levels of predicates: attributes and values.
Hence it makes it possible to group values according to the respective attributes that they are
values of. Whether the BK is attained through causal knowledge or through a kind of second
order induction about predicates and classes of objects, there is always a reference to a set
of predicates, namely all the values of a certain attribute. Most of the older alternatives—for
instance the prototype theory (Rosch 1973b) or the exemplar theory (Medin and Schaffer
1978)—lack the division of predicates into levels which would allow for this sort of move.18

18 See Barsalou and Hale (1993) for a lengthy discussion of this difference.
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What may be slightly unusual about our approach is that we consider the appropriateness
of ISIs to be a matter of concepts. However, we are not the first to state that a conceptual frame
contains more than just analytic knowledge in the sense of possible combinations of values
that fall under a root concept, but can contain factual and law-like knowledge as well.19 The
notion of complete and incomplete frames is simply an extension of this idea.

We promised to come back to the possibility of frames that only obey the weak rele-
vance requirement. Even for such frames it is still possible that at least one attribute behaves
according to SRR (even though the whole frame doesn’t), and yet we don’t know which
taxonomical unit is associated with which value. The justification for the assumed behavior
of such an attribute can of the kind we gave in Sect. 5, and ISI proceeds in the same manner
as before.

Numerous issues still require consideration. Further research should include both a more
formal account of the acceptance, use and rejection of incomplete frames, continuing the
work initiated by Urbaniak (2010) and more psychological research pertaining to the empir-
ical adequacy of frame theory. The relation between ISI and other kinds of induction within
the context of frame theory also deserves some consideration.Seen from that perspective, the
current paper is just the starting point of an investigation into the relation between frames and
induction as a whole. Following Nelson Goodman’s critique of a purely syntactical approach
to induction,20 frame theory can provide a semantic complement to logics of inductive gener-
alization21 and thus viewed, may result in a more general theory of inductive generalizations.
The general idea behind this is that our inductive reasoning can only reach stable and reliable
universal propositions, once it limits its scope to a certain set of predicates—those that are
values of attributes in a frame. Such a model of induction would be able to account for both
ISI and more complex cases of induction.

Appendix

In this Appendix, we will briefly illustrate how cases like the car example and the tree exam-
ple can be captured in a first order predicative language. Although our formal explication is
very basic, it can easily be refined and enriched in several ways.22 Also, it shows the road
to representations in second order logic, which can account for more complex issues such as
the second-order induction mentioned in Sect. 5, or ISIs about attributes that have an infinite
range of values.

In the remainder, we assume that a frame is rooted and consists of only finitely many
attributes and values (see Urbaniak 2010: pp. 436–438) for a justification of these restric-
tions. We will consider complete frames as a starting point, and gradually extend these to
obtain incomplete frames. This is done by taking the complete frame and stepwise adding
new attributes and their corresponding values to it. Intuitively, this corresponds to adding
new branches to the tree-like structure. However, we do not assume that complete frames are
more primitive or basic from a psychological point of view.

19 This is stressed in particular by the followers of the so-called Theory-Theory view. See Andersen et al.
(2006: 60–64) where this view is commented on. More generally, activation patterns and structural invariants
already go beyond what we would be inclined to treat as “analytical knowledge”.
20 See Goodman (1978), where the author presents his famous “Grue paradox”.
21 See Batens and Haesaert (2003) for examples of a specific class of logics of induction that we have in mind,
adaptive logics of induction. These are being developed by the Ghent Group.
22 For instance, many other approaches in the dynamic frames-literature represent attributes in terms of binary
predicates.
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Information encoded by complete frames. Suppose we have a frame with the tree-like
structure, where R is the root predicate, A1, A2, . . . , Ai are its attributes, and each attribute
Ak has nk values falling under it: V k

1 , V k
2 , . . . , V k

nk
.

To express the tree structure we first have to say that all objects that fall under the root
concept possess all its attributes and that any object that has an attribute Ak instantiates at
least one value for that attribute. That is, for 1 ≤ k ≤ i and i is the number of all attributes
in the frame we need:

∀ x(R(x) → Ak(x)) (1)

∀ x[R(x) → (Ak(x) →
k∨

nk

V k
nk

(x))] (2)

where
∨n

i P(x) abbreviates Pn
1 (x) ∨ Pn

2 (x) ∨ · · · ∨ Pn
i (x) for an optional superscript n, a

predicate P and a individual variable x . Let’s call the set of formulas falling under (1) R and
the set of all needed instances of (2) A. We also need to say that values falling under each
of the attributes are exclusive. Consider the values V k

1 , V k
2 , . . . , V k

nk
. For each such k, we

extend our set of formulas that describe the frame by all formulas of the form:

¬∃ x(R(x) ∧ Ak(x) ∧ V k
m(x) ∧ V k

l (x)) (3)

where m 	= l, 1 ≤ m ≤ nk, 1 ≤ l ≤ nk . Call the set of formulas falling under this schema V.
A set of predicates � is a choice set of the tree if and only if:

1. Every predicate in � is a V l
m , that is, � is a set of value predicates.

2. For every k there is an m such that V k
m is in �, that is, � contains at least one value for

each of the attributes.
3. For no k there are m, l, m 	= l such that V k

m and V k
l are both in �, that is, � contains no

two different values for one and the same attribute.

The set of all choice sets of the tree will be called γ .
If a set of predicates � is non-empty and finite, and P1, P2, . . . , Pk are all the members

of �, by
∧

�(x) (
∨

�(x)) we abbreviate P1(x) ∧ P2(x) ∧ · · · ∧ Pk(x) (P1(x) ∨ P2(x) ∨
· · · ∨ Pk(x)). We allow the degenerate case when k = 1. In this case both

∧
� and

∨
� are

the same.
The set of activation patterns is a subset α of γ . Let α = γ −α. Suppose �′

1,�
′
2, . . . , �

′
n

are all the members of α. We need to say that no object that falls under the root concept falls
under one of the �′

i ’s. That is, we need n formulas of the form:

¬∃ x[R(x) ∧
∧

�′
i (x)] (4)

The set of all needed formulas falling under (4) will be called P.
Recall that in a frame that obeys SRR, taxonomical units are identified with activation

patterns. A complete frame moreover contains the explicit association of each taxonomi-
cal unit with a particular activation pattern. Given that α has m members: �1, . . . , �m , we
need m letters T1, . . . , Tm in our language to represent taxonomical units. We introduce m
definitions of the form:

∀ x[R(x) → (Ti (x) ≡
∧

�i (x))] (5)

for 1 ≤ i ≤ m. Call the set of all formulas of this form T. This ends our description of the
frame. The set of formulas F that expresses the frame is now defined by:

F = R ∪ A ∪ V ∪ C ∪ P ∪ T (6)
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Information encoded by incomplete frames. Consider the case where an otherwise complete
frame is extended to an incomplete frame by adding a new attribute Ak+1 and its correspond-
ing values V k+1

1 , . . . , V k+1
nk+1

. How do we extend the set describing the initial complete frame
to capture this new information? There are a few moves that have to be made:

• We add the R-formula for Ak+1.
• We add all A-formulas for Ak+1.
• We add all V-formulas for V k+1

1 , . . . , V k+1
nk+1

.

Now, we have to encode the information that each taxonomical unit from the original
frame is homogenous with respect to the values of Al . This is done by adding, for every
1 ≤ h ≤ m:

∀ x[R(x) → (Th(x) → V k+1
1 (x))] ∨ . . . ∨ ∀ x[R(x) → (Th(x) → V k+1

nk+1
(x))] (7)

Note that formulas of the form of (7) capture SRR, described on page 6.
ISI inferences with incomplete frames. With these assumptions, it is not too difficult to see

how ISI can be modeled. Say we learn that an object a falls under the root concept, belongs
to a taxonomical unit Th and has the value V l

z of attribute Al :

R(a) ∧ Th(a) ∧ V l
z (a)

The last conjunct together with the V-formulas for Al entail ¬V l
g for any g 	= z. This means

that we can use Ra, Th and ¬V l
g to derive the negations of all formulas:

∀ x(R(x) → (Th(x) → V l
g)

whenever g 	= z. Finally, we can use negations thus obtained and disjunction elimination
applied to (7) in order to obtain the desired generalization. 23
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are credited.
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