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Abstract. In this paper we present a logic that determines when implications in a

classical logic context express a relevant connection between antecedent and consequent.

In contrast with logics in the relevance logic literature, we leave classical negation intact -

in the sense that the law of non-contradiction can be used to obtain relevantly implications,

as long as there is a connection between antecedent and consequent. On the other hand,

we give up the requirement that our theory of relevance can define a new standard of

deduction. We present and argue for a list of requirements that such a logical theory of

classical relevance needs to meet and go on to formulate a system that respects each of

these requirements.

The presented system is a monotonic and transitive logic that extends the relevance

logic R with a richer relevant implication that allows for Disjunctive Syllogism and similar

rules. This is achieved by interpreting the logical symbols in the antecedents in a stronger

way than the logical symbols in consequents. A proof theory and an algebraic semantics

are formulated and interesting metatheorems (soundness, completeness and the fact that

it satisfies the requirements for classical relevance) are proven.

Finally we give a philosophical motivation for our non-standard relevant implication

and the asymmetric interpretation of antecedents and consequents.

Keywords: relevant implication, classical negation, relevance logic, algebraic semantics,

non-transitive implication

1. Introduction

It is well known that the implication of classical propositional logic has very
counterintuitive properties—we will call them henceforth the paradoxes of
material implication1. Consider for example the fact that (A ∧ ¬A) ⊃ B,
A ⊃ (¬A ⊃ B), A ⊃ (B ∨ ¬B) and (A ⊃ B) ∨ (B ⊃ C) are all theorems of
Classical Logic. Nevertheless, no rational agent would ever assume that their
communication partner utters something that is trivially true when he uses
natural language sentences of that form. In natural language we have the
tendency to assume that ‘A implies B’ means something like ‘arguments to
accept A give us arguments to accept B’ or ‘accepting A automatically leads
to accepting B’. Hence, rational human agents assume that there is a (logical
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1We use this term only because the counterintuitive properties are usually called para-

doxes in the relevance logic literature. Here we use the term without negative connotation.
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or contingent) connection between the antecedent and the consequent of the
implications they use in natural language discourse. If this is not the case,
one usually does not use expressions like ‘A implies B’ but rather disjunctive
expressions ‘A is not the case or B is the case’.

In the literature, there are two ways of solving this problem. The first
is the traditional relevance logic solution. After pioneering work by Church
and Ackermann (cf. [1] and [7]), the systems are thoroughly elaborated by,
among others, Anderson, Belnap, Meyer, Read, Dunn Routley, Urquhart and
Brady, cf. [2], [3], [9], [8], [10], [11], [13], [12], and [17]. This group of solutions
is basically revisionistic. They claim that the irrelevancies in Classical Logic
are pure fallacies of reasoning. So they argue that Classical Logic (or at least
its implication) is mistaken and needs to be fixed. They have developed
different logical systems that do not have the counterintuitive properties
Classical Logic has. These systems are weaker than Classical Logic and
many aspects of Classical Logic are not valid in it. One of the more striking
features is that they in fact give up the law of non-contradiction. This of
course ensures that (A ∧ ¬A)→ B is no longer valid, but it also invalidates
(A ∧ (¬A ∨ B)) → B and A → (A ∧ (B ∨ ¬B)). In these implications,
there at least seems to be a reasonable connection between antecedent and
conclusion. And indeed there is from a classical point of view. But there
is no implicational relation from a relevantist one, because they reject the
general applicability of the law of non-contradiction (as well as of the law
of excluded middle)2. So, from a relevantist point of view, p∧ (¬p∨ q) does
not imply q, but this is not the case because the content of the antecedent
is irrelevant for the content of the conclusion, but because the implication is
simply falsifiable in relevance logics.

The other way of solving it is due to Neil Tennant (cf. [14], [15] and
[16]). He does not want to criticize classical reasoning, but wants to for-
malize actual classical reasoning as it is done in mathematics and in the
hypothetico-deductive method of the sciences in such a way that irrelevan-
cies are sieved out. This stance sees the irrelevant aspects of Classical Logic
thus only as byproducts of how Boole and Frege formalized the meaning of
logical connectives. For him there is no problem with the actual classical
reasoning. He wants to show that everything that is usually formalized by
means of Classical Logic entailment can also be formalized by means of his
favourite logic which is free of the paradoxes of material implication. This

2To be more precise: these laws do not hold in all worlds in the Routley-Meyer semantics
for the relevance logic R, although they do hold in the actual/normal worlds of that
semantics.
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logic, however, is not transitive, which means that he should find a way to
eliminate all uses of transitivity in actual reasoning before he can start the
formalization.

We, however, want to explore a third option. We do not want to reject
Classical Logic. We do not even wish to reject the implication of Classical
Logic. Especially in mathematics, computer science and other axiomatized
sciences, Classical Logic has definitely proven its merits. We diagnose the
problem of the paradoxes of material implication not as a problem of ma-
terial implication as such, but as a problem of the relation between natural
language and Classical Logic. The expressive power of Classical Logic is
simply too limited to express that there is a special connection between an-
tecedent and consequent of implicational statements in natural language.
For this reason, we need a more expressive formal tool that is able to filter
out the implications that do express a relevant connection from the big pool
of implications that are merely materially/classically true. Compare it to
the problem of finding causal relations. Sentences of the form ‘A causes B’
are not uttered for every case where there is a correlation between A and
B. A good theory of causality is able to filter out those correlations where
there is indeed a causal link in some sense of the word. In the same way
we need a theory of relevance that can filter out those materially acceptable
implications that also express a relevant connection between antecedent and
consequent.

Our filter mechanism is presented as a transitive, monotonic and reflex-
ive consequence relation, in the sense that, given a number of premises, the
logic defines which of the implications in the classical consequences express
a relevant connection between antecedent and consequent. Moreover, if one
already has information that some of the implications in the premises are
relevant, the logic will tell us which further statements about relevant im-
plications follow from this. In the logic we will define, A → B is supposed
to mean that A relevantly implies B. ` A → B will therefore mean that it
is always the case that A relevantly implies B (remember that ‘A relevantly
implies B’ is, in our approach, short for ‘A implies B and there is a relevant
connection between A and B’). A → B,C → D ` E → F will for example
mean that given the information that A relevantly implies B and that C
relevantly implies D, we know that E relevantly implies F .

That it is a logic does not mean that we want to sell it as a stand-alone
deductive reasoning tool which can replace Classical Logic. Although it
would be nice to obtain a stand-alone relevant deductive reasoning tool, in
our opinion it is not a necessary requirement for a good theory of relevance.
Even stronger, we shall argue that a good theory of relevance in a classical
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context cannot be a good theory of deduction at the same time. This is
because of the fact that the classical relevant implication we defend will
turn out to be necessarily non-transitive and Modus Ponens will turn out
not to be a valid rule for this type of classical relevant implication.

We will now formulate a number of minimal requirements for a conse-
quence relation ` to function as a filter mechanism for classical relevant
implications in the above described sense.

We accept the full classical meaning and functionality of the non-implicative
symbols. This entails that B follows correctly from A ∧ (¬A ∨B). There is
moreover a relevant connection between antecedent and consequent of this
implication; the consequent would not be generally acceptable without the
antecedent and from the antecedent does not follow no matter what. So we
require that a filter for classical relevance picks out (A ∧ (¬A ∨ B)) → B
as one of the generally valid relevant implications. The same holds for
A → (A ∧ (¬B ∨ B)). In general we can phrase this requirement by means
of the following property of Classical Strength.

(CS) If A `CL B and 0CL ¬A and 0CL B, then ` A → B (A relevantly
implies B)

A second requirement is formality. We are looking for a formal theory
of relevance. The relevant connection between antecedent and consequent
we are interested in is of a formal nature. Without this presupposition one
could for example argue that (p∧q)→ p expresses a real relevant connection,
but that ((r ∨ ¬r) ∧ q) → (r ∨ ¬r) does not express such a connection,
because the conclusion is already always true, independent of the truth of
the antecedent. This is a valid line of reasoning, but it makes sense to look
for a formal criterion anyway. Why? Exactly the same formal connection
holds between (p∧ q)→ p and ((r∨¬r)∧ q)→ (r∨¬r): if A∧B holds then
A holds. That the connection is not necessary for the consequent r ∨ ¬r in
that particular instance of the connection could be seen as beside the point:
one may claim that for implications to be relevant, it suffices that there
is some kind of connection, necessary or not. Moreover, one may wonder
what sentential letters like p correspond to in natural language. Maybe p
itself corresponds to a necessary truth the truth of which is not formally
expressible in propositional Classical Logic, e.g. bachelors are not married.
There is no way to express that ‘bachelors are not married’ is a necessary
truth in propositional logic and so one may simply formalize this as p. In
that case, if one accepts that (p∧q)→ p is a relevant implication, one should
also accept that one of the sentences it could formalize, ‘bachelors are not
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married and the moon is green implies that bachelors are not married’ is a
relevant implication. But of course the antecedent is in this case not needed
for accepting the consequent. We conclude from this that requiring that
the relevant connection is really necessary is too strict a requirement for an
applicable theory of relevance. Without this requirement there seems to be
no reason to give up formality in this case. This formal approach is also in
line with all of the relevance logic tradition up to now.

The formality requirement is in this case specified as the validity of the
law of Uniform Substitution.

(US) If ` A then also ` B, where B is the result of substituting every
occurrence of a sentential letter in A by a formula C.

A third requirement is monotonicity. This comes down to requiring that
strengthening the antecedent can never take away the relevant connection
between antecedent and consequent. We require only the existence of a
relevant connection. Adding more information to the antecedent cannot take
away a connection that was originally there. So the connection still exists if
the antecedent is strengthened (even if it strengthened to inconsistency).

(MO1) If ` A→ B, then ` (A ∧ C)→ B

Given the idea that the existence of a relevant connection is enough to
consider an implication as relevant and the classical meaning of conjunction,
one should also accept the following related conjunction principle (but now
with the conjunction in the antecedent).

(MO2) If ` A→ B and ` A→ C, then ` A→ (B ∧ C)

We realize that it would make sense to remove these monotonicity re-
quirements and still obtain a reasonable theory of (classical) relevance. One
may for example defend a view on relevance where the information con-
tained in the antecedent as a whole should be relevant for the consequent.
In that case one would accept that (p∧ q)→ p is a relevant implication but
(p ∧ ¬p ∧ q) → p is not. As the second antecedent is inconsistent, it does
not contain any information whatsoever, and so there can be no relevant
connection between this information and the information contained in the
consequent. Indeed, that would make sense, but then one should also give
up the formality requirement (substituting q by r ∧ ¬r, would transform
(p∧q)→ p once again into an irrelevant implication). In general the formal-
ity and the monotonicity requirement are closely related. A similar objection
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against treating (p ∧ q) → p as relevant but (p ∧ ¬p ∧ q) → p not may be
employed as follows: let q stand for some sentence the impossibility of which
is not expressible in propositional logic e.g. ‘there is a round square’. Then
the information expressed in the antecedent of (p∧ q)→ p as a whole is just
as empty as the one contained in q itself and so there can be no relevant
connection between p ∧ q and p.

So, there may be good reasons to remove the monotonicity and formality
requirement, but this requires a different way of looking at logical form and
the relation with natural language (as is for example done in the Adaptive
Logic programme, see [5] and [4]). Here we choose not to follow that road
and stay closer to the formal relevance logic tradition.

A fourth requirement is that we agree with the positive characteriza-
tion of relevance by the logic R. All theorems of R indeed express correct
statements about relevant implications. Because the meaning of the non-
implicational symbols of relevance logic is weaker than the meaning of their
classical counterparts, every relevant implication between non-implicational
formulas valid in the relevance logic tradition should a fortiori be valid in the
classical relevance logic we want to design. Regarding implications between
implicational formulas, we also see no reason to reject any of the implica-
tions that are validated by the relevance logic R. There is no deep reason
for our requirement to start from the relevance logic R, but R seems to be
the strongest available relevance logic to account for both contingent and
logical relevance, without problematic theorems3.

A final requirement is of course that the counterintuitive aspects of mate-
rial implication disappear for the relevant implication. None of the so called
paradoxes of material implication should be validated in a good theory of
relevance. A list of these so called paradoxes can be found in section 6.

It is clear that none of the existing approaches to relevance can meet
all of these requirements. This is not a criticism against their approach to
relevance. It could only be a criticism in so far as they would want to give a
filtering theory of classical relevance. Given that both traditions (the rele-
vance logic tradition and the Tennant tradition) criticize and reject Classical
Logic, probably none of the logical systems produced in these traditions aim
to be such a theory of classical relevance.

From our point of view, however, it is very useful to give a theory of
classical relevance that meets all the requirements. One may think that

3RM is an even stronger logic than R, which is often seen as a relevance logic. But
this logic validates A→ (A→ A) and we see no reason why A would be any more relevant
for A→ A, than any other formula B.
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all the requirements together are too strong to result in a coherent logical
system. We however show in this paper that it is perfectly possible to
give such a logical theory of classical relevance. The presented system will,
admittedly, have properties that one would ideally not want, but we argue
that this only shows that classical relevance does not behave as one would
maybe expect. The system is coherent and well defined. The undesired
properties are not artifacts of the technical machinery used in this paper
but are inescapable properties of any theory that would respect all of the
above requirements.

2. Language

We define three different languages. We first define L as the language of
propositional Classical Logic with sentential letters p, q, r, p1, . . ., the binary
connective ∨ and the unary connective ¬. L� will denote the extension of
L with extra binary connectives → and � and the propositional constant t.
L7→ will denote the extension of L with binary connectives → and 7→, the
unary connective � and the propositional constant t. W, W� and W 7→ are
the set of wffs of respectively L, L� and L7→ constructed in the usual way.

L� is the language we really want to study. The central logic RR de-
fined and studied in this paper will have a set of theorems in W� and a
consequence function in P(W�) → P(W�). The �-implication of this
logic will be the actual classical relevant implication we are looking for and
the →-implication will be the implication that corresponds to the conse-
quence/deduction relation in the logic RR. We were not yet able to axiom-
atize this logic RR in its own language. For this reason we will first define
a logic R2 in the language W 7→ from which the logic RR will be defined
by focusing on specific defined symbols of R2. Hence, we do not aim to
motivate or interpret the logic R2 and its language. The reader is asked to
see this logic and its language as a purely technical auxiliary means to define
RR.

3. Syntactical characterization: axiomatization of R2

We start of with the Hilbert style proof theoretic characterization of the
auxiliary logic R2. Given this auxiliary logic, we will be able define the
logic RR which is the actual central system in this paper, i.e. the logical
system that will fulfill all requirements (mentioned in the first section) to
function as a theory for classical relevance.



8 Name(s) of author(s)

The axioms of the system R2 are the following (A∧B abbreviates ¬(¬A∨
¬B) and A↔ B abbreviates (A→ B) ∧ (B → A)):

We start with the standard axioms of the logic R (see [2]) with a truth
constant t.

(A1) A→ A
(A2) (A→ B)→ ((B → C))→ (A→ C))
(A3) A→ ((A→ B)→ B)
(A4) (A→ (A→ B))→ (A→ B)
(A5) (A ∧B)→ A
(A6) (A ∧B)→ B
(A7) ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))
(A8) A→ (A ∨B)
(A9) B → (A ∨B)
(A10) ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)
(A11) (A ∧ (B ∨ C))→ ((A ∧B) ∨ C)
(A12) (A→ ¬B)→ (B → ¬A)
(A13) ¬¬A→ A
(A14) A↔ (t→ A)

We add axioms for another arrow 7→ that behaves exactly like the R-
arrow → (in relation to the other connectives ∨, ¬, and t). The only differ-
ence between the two arrows → and 7→ is that the first is always a conse-
quence of the second but not vice versa.

(A15) (A 7→ B) 7→ ((B 7→ C)) 7→ (A 7→ C))
(A16) A 7→ ((A 7→ B) 7→ B)
(A17) (A 7→ (A 7→ B)) 7→ (A 7→ B)
(A18) ((A 7→ B) ∧ (A 7→ C)) 7→ (A 7→ (B ∧ C))
(A19) ((A 7→ C) ∧ (B 7→ C)) 7→ ((A ∨B) 7→ C)
(A20) (A 7→ ¬B) 7→ (B 7→ ¬A)
(A21) A↔ (t 7→ A)

The next axiom expresses the relation between the two arrows.

(A22) (A 7→ B) 7→ (A→ B)

Finally we axiomatize the symbol �. It weakens the meaning of classi-
cal symbols in such a way that they cannot be eliminated/detached anymore
(without extra information). � weakens the conjunction to the fusion op-
eration ◦ so that �(A∧B) does not imply either �A or �B (nor A or B).
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Disjunction is weakened in such a way it cannot lead to Disjunctive Syllo-
gism. Because the standard disjunction of relevance logics like R is already
not detachable (it cannot lead to Disjunctive Syllogism), � transforms A∨B
into the R-disjunction of �A and �B. � is moreover designed in such a
way that it does not affect/transform the meaning of relevant implications
or their negations.

(A23) �(¬(A ∨B))↔ ¬( �¬A→ ¬ �¬B)
(A24) �(A ∨B)↔ ( �A ∨ �B)
(A25) �(A→ B)↔ (¬ �¬A→ �B)
(A26) �(¬(A→ B))↔ ¬( �A→ ¬ �¬B)
(A27) �(A 7→ B)↔ (¬ �¬A 7→ �B)
(A28) �(¬(A 7→ B))↔ ¬( �A 7→ ¬ �¬B)
(A29) �¬¬A↔ �A,
(A30) �t↔ t,
(A31) �¬t↔ ¬t,
(A32) � �A↔ �A,
(A33) �¬ �A↔ �¬A.

We need to express that formulas are at least as strong as their �-
counterpart, and that ¬ �¬A is at least as strong as A. ¬ �¬A expresses
that the classical symbols in A can be eliminated/detached: ¬ �¬ trans-
forms a conjunction into the detachable conjunction ∧ and it transforms
a disjunction ∨ into an (obviously detachable) intensional disjunction +
(A + B =df ¬A→ B).

(A34) ¬ �¬A→ A
(A35) A→ �A

The following are the rules of R2.

(R1) A,A→ B/B (Modus Ponens)
(R2) A,B/A ∧B
(R3) A→ B/A 7→ B

One might be inclined to think that (R3) and (A22) together entail that
the two arrows → and 7→ have the same meaning. However, it is central for
this paper that this is not the case: (A→ B)→ (A 7→ B) is not a theorem
in R2. The two symbols only have the same meaning when they occur at
the outmost level in formulas: `R2 A→ B iff `R2 A 7→ B. At the outmost
level A → B and A 7→ B both express that A has a value in the algebra
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that is at least as low as B, given the algebraic semantics defined in the next
section.

In the language of R2 we can define the following other symbols.

(D1) �A =df ¬ �¬A
(D2) A ◦B =df ¬(A→ ¬B)
(D3) A •B =df ¬(A 7→ ¬B)
(D4) A� B =df �(A 7→ B)

To already see what the � symbol actually does, we list the following
theorems of R2.

(T1) `R2 �A→ �(A ∨B)
(T2) `R2 �A→ ( �B → �(A ∧B))
(T3) `R2 �(A ∧B)→ �A
(T4) `R2 �(A ∨B)→ ( �¬A→ �B)

The idea is that one is able to decompose �-preceded formulas, but

� formulas are too weak to be decomposed (but one is able to compose
them into other �-formulas). This enables us to define the implication
A � B as a relevant implication with a strong antecedent and a weaker
consequent. Exactly this enables us to obtain Classical Strength for the
�-implication. The idea of formally distinguishing decomposability from
non-decomposability is based on the results presented in [18].

4. Algebraic semantics of R2

Definition 1. De Morgan monoid.
〈D,∨, ◦,¬, e〉 is a de Morgan monoid iff D is a set, e is an element of

D, ∧ and ◦ are binary operations on D, ¬ is an unary operation on D, and
where a ≤ b =df a ∨ b = b, for all a, b, c ∈ D it holds that

(DM1) e ◦ a = a
(DM2) (a ◦ b) ◦ c = a ◦ (b ◦ c)
(DM3) a ◦ b = b ◦ a
(DM4) a ≤ a ◦ a
(DM5) (a ∨ b) ∨ c = a ∨ (b ∨ c)
(DM6) a ∨ b = b ∨ a
(DM7) a ∨ a = a
(DM8) ¬¬A = A
(DM9) a ◦ b ≤ c iff a ◦ ¬c ≤ ¬b
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(DM10) ¬(¬(a ∨ b) ∨ c) = ¬(¬a ∨ c) ∨ ¬(¬b ∨ c)
(DM11) a ◦ (b ∨ c) = (a ◦ b) ∨ (a ◦ c)

Definition 2. R2-structure.

A sequence 〈D,∨, ◦, •,¬, �, e〉 is a R2-structure iff, for all a, b ∈ D,

(RS1) 〈D,∨, ◦,¬, e〉 is a de Morgan monoid,
(RS2) 〈D,∨, •,¬, e〉 is a de Morgan monoid,
(RS3) a ◦ b ≤ a • b
(RS4) ¬ �¬a ≤ a ≤ �a
(RS5) �e = e
(RS6) �¬e = ¬e

Definition 3. R2-valuation function.

Where A = 〈D,∨, ◦, •,¬, �, e〉 is a R2-structure, a function

vA :W→ → D

is a R2-valuation function iff

(S1) vA(t) = e,
(S2) vA(A ∨B) = vA(A) ∨ vA(B),
(S3) vA(A→ B) = ¬(vA(A) ◦ ¬vA(B)),
(S4) vA(A 7→ B) = ¬(vA(A) • ¬vA(B)),
(S5) vA(¬A) = ¬vA(A),
(S6) vA( �(A ∨B)) = vA( �A) ∨ vA( �B),
(S7) vA( �¬(A ∨B)) = vA( �¬A) ◦ vA( �¬B),
(S8) vA( �(A→ B)) = ¬(vA(¬ �¬A) ◦ ¬vA( �B)),
(S9) vA( �¬(A→ B)) = vA( �A) ◦ vA( �¬B),
(S10) vA( �(A 7→ B)) = ¬(vA(¬ �¬A) • ¬vA( �B)),
(S11) vA( �¬(A 7→ B)) = vA( �A) • vA( �¬B),
(S12) vA( � �A) = vA( �A)
(S13) vA( �¬ �A) = vA( �¬A).

In what follows, we use the following abbreviations in R2-algebras: a ≤
b =df (b = a ∨ b), a → b =df ¬(a ◦ ¬b), a 7→ b =df ¬(a • ¬b), a ∧ b =df

¬(¬a ∨ ¬b), �a = ¬ �¬a, a� b =df �(a 7→ b) and f =df ¬e.

Definition 4. R2-validity.

�R2 A iff vA(A) = e ∨ vA(A) (in other words: e ≤ vA(A)) for every
R2-valuation function vA and every R2-structure A = 〈D,∧, ◦, •,¬, �, e〉
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Theorem 1. Soundness.
If `R2 A then �R2 A.

Theorem 2. Completeness.
If �R2 A then `R2 A.

5. The logic RR

The language of the logic RR is L�.

Definition 5. `RR A iff A ∈ W� and `R2 A

Definition 6. RR-consequence. Where Γ ∪ {A} ⊂ W�,

Γ `RR A

iff, for some ∆ ⊆ Γ,

`RR (A1 ◦A2 ◦ . . . ◦An)→ A,

where ∆ = {A1, . . . , An}.

In this notation, we interpret (A1 ◦A2 ◦ . . . ◦An)→ A as A when ∆ = ∅.

Definitions:

(D5) �A =df t� A
(D6) �A =df ¬(t� ¬A)

Formulas �A in the language of RR have exactly the same meaning
as �A in the language of R2 and formulas �A in the language of RR
have exactly the same meaning as �A in the language of R2. They are
equivalent but they are not literally identical. So we use other symbols to
avoid confusion.

There are two implications in the language of RR. Both have a distinct
motivation. The �-implication is the implication that we wish to treat as
the classical relevant implication; the one we are looking for in this paper.
The →-implication on the other hand is merely a device that corresponds
to the RR-concept of consequence. This is an important distinction in the
context of our project. We want to enable Disjunctive Syllogism and so
A,¬A ∨ B ` B but we do not want to derive A � B from ¬A ∨ B, as
this would clearly be paradoxical. We solve this problem by means of the
→-implication. We have as a theorem `RR �(¬A ∨ B) → (A → B); this
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merely express that Disjunctive Syllogism is valid. But we do not have
`RR �(¬A∨B)→ (A� B). We are not able to conclude that A relevantly
implies B from the mere truth of ¬A ∨ B, which is exactly as one would
expect from a relevant implication.

6. Metatheoretic properties

In this section we list a number of important properties of the system RR.
The proofs of non-evident results can be found in the appendix.

Theorem 3. Tarski relation.
RR is (1) reflexive, i.e. Γ ∪ {A} `RR A, (2) transitive, i.e. whenever

Γ∪{B} `RR A, ∆ `RR B, then also ∆∪Γ `RR A, and (3) monotonic, i.e.
whenever Γ ` A, also Γ ∪∆ ` A.

Theorem 4. Classical strength.
Let A,B ∈ W. If A `CL B and 0CL ¬A and 0CL B, then `RR A� B.

This is provable by means of the next lemma, which presents a way to
express the (meta-theoretic) lines of the goal directed proofs by Batens and
Provijn (see [6]) in our object language of RR. Their procedural approach
to Classical Logic (without their EFQ rule) gives all of Classical Logic in
case the premises are consistent. Given that the next lemma allows us to
embed their system into ours, we can also get all of Classical Logic. More
specifically, if A `CL B and A is consistent, then there is a goal directed
proof (without the use of the EFQ-rule) for B from the premise A. The next
lemma says that every line of this proof can be translated into a particular
RR-formula such that this formula RR-follows from the premises of the
proof preceded by �. Given that the goal directed proof successfully proves
B, there is a line containing B without a condition. This line is translated
into the formula �B. Hence, by the next lemma, we obtain �A `RR �B
which is equivalent to `RR �A→ �B and therefore also to `R2 �A→ �B.
With (R3) we can conclude `R2 �A 7→ �B from this. (A27) gives us
`R2 �(A 7→ B), which is the same as `RR A� B.

Lemma 1. Embedding goad directed proofs.
Where Γ ∪ {A} ⊂ W, if a line

[A1, A2, . . . An]A

can occur in a goal directed proof from Γ then

Γ� `RR (�A1 ◦ �A2 ◦ . . . ◦ �An)→ B
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where B = �A if A is the goal formula, and B = �A otherwise.

Theorem 5. Extension of R (in two ways).
(1) When one removes� from the language of RR, one obtains the logic

R.
(2) For every theorem A of the relevance logic R, when one replaces every
occurrence of → in A by �, one obtains a theorem of RR.

Theorem 6. Paradox-free.

0RR B � (A� B)
0RR ¬A� (A� B)
0RR (¬A ∨B)� (A� B)
0RR ¬(A� B)� (A ∧ ¬B)
0RR ¬(A� B)� (B � A)
0RR (A� B) ∨ (B � A)
0RR (A� B) ∨ (A� ¬B)
0RR (A� B) ∨ (¬A� B)
0RR ((A ∧B)� C)� ((A� C) ∧ (B � C))
0RR ((A� B)� A)� A
0RR A→ (¬A� A)
0RR (A ∧ ¬A)� B
0RR B � (A ∨ ¬A)
0RR ¬(A� B)� A
0RR ¬(A� B)� ¬B

Theorem 7. No deduction theorem for the � implication.
It is not the case that, Γ `RR A� B whenever Γ, A `RR B.

Theorem 8. Non-transitivity of the �-implication.
A� B,B � C 0RR A� C.

Theorem 9. No Modus Ponens for the �-implication.
A,A� B 0RR B.

7. Discussion

In section 6 we showed that the logic RR respects all of the requirements
we listed in the introduction and that it is moreover a well defined logic
with a proof theory, a semantics and a Tarski consequence relation. So
the presented system does exactly what we expected from it. Nevertheless,
the results of this section also showed us that the relevant implication we
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defined has some unexpected properties. It turns out that our classical
relevant implication does not satisfy the deduction theorem, Modus Ponens
nor transitivity. Are these not essential properties for a connective to be
called an implication?

Well, in some sense one could say that it is indeed problematic that an
implication connective would not have these properties. It means that we
cannot use it as our main object language instrument for deduction, which is
rightfully considered as the most important use of an implication connective.

Still this does not make our approach useless. Remember that our aim
was never to define a new standard of deduction. Our aim was to define a
system that could separate the irrelevant (but possibly correct) implications
from the relevant ones in Classical Logic. There are no a priori reasons
to expect that given the information of there being a relevant connection
between A and B and between B and C, there would also be a relevant
connection between A and C. Of course A surely implies C if we know that
A implies B and B implies C, but why would one require that the relevance
of this implication also stays intact? In fact, we suspect that the confusion
here lies in the fact that we call a relevant implication an implication. Stating
that A� B means not only that A implies B but also that there is a relevant
connection between A and B. Given that our connective brings in this extra
meaning, transitivity becomes a (maybe desired but) no longer expected
property. Even in Classical Logic (A ⊃ B) ∧ RA,B and (B ⊃ C) ∧ RB,C

does not entail (A ⊃ C) ∧ RA,C . So, that the implication is not transitive
is of course inconvenient, but cannot be seen as a problem for our logic as a
filtering tool.

The lack of Modus Ponens is perhaps a bit harder to explain. This is
related to the fact that we loosen the requirement that the connectives in
the consequent of our relevant implication are at least as strong as the ones
in the antecedent (in the sense that the same can relevantly be done with
them). Of course a relevant implication should preserve the (classical) truth
from antecedent to consequent. This criterion is obviously met in view of
the fact that our logic R2 is a sub-logic of Classical Logic if one reads the
implication� as the classical ⊃-implication. But there is no a priori reason
why the relevant implication should also preserve the strength of the relevant
connection between antecedents and consequents of implications that occur
inside the antecedent and the consequent of the central implication. We
live up to the requirements set in the beginning of this paper, precisely
because we give up the presupposition that a relevant implication should
preserve all logical strength. If one gives up the strength preservation of
the relevant implication, it is obvious that one cannot have Modus Ponens.
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From accepting A� B, and accepting A in a strong way, it follows that we
can accept B, but not necessarily in the same strong sense. From accepting
A � B and accepting A in a weak sense, it may not even follow that we
accept B at all. So, no matter in which way we accept the premises, A and
A� B, we cannot accept the conclusion B in the same sense.

In order to solve the somewhat strange properties of the �-implication,
one could let it function inside a non-transitive and possibly even non-
monotonic consequence relation, which could be defined as follows:

Γ `1 A iff `RR B → A,

where B is the formula that results from conjoining the members of Γ by
means of the ◦-connective, or

Γ `2 A iff there is a ∆ ⊆ Γ such that ∆ `1 A.

`2 is not transitive but still monotonic and `1 is neither transitive nor mono-
tonic. We have Modus Ponens now for both `1 and `2: A,A� B `1 B and
A,A � B `2 B. Also transitivity holds for both relations: A � B,B �
C `1 A� C and A� B,B � C `1 A� C. The deduction theorem holds
for `1: if Γ∪{A} `1 B, then Γ `1 A� B, and a relevant version of it holds
for `2: if A is relevant for the deduction Γ ∪ {A} `2 B, then Γ `1 A � B.
By the way, this relevant deduction theorem already holds for RR itself.

However, we do not find sufficient reason to give up the transitivity of the
consequence relation. Because it should function as a filtering mechanism, it
is very practical that one can employ the full Tarski properties (monotonicity,
transitivity and reflexivity) for our consequence relation. Moreover, even if
the non-transitive consequence relation `2 gives us all the good implication
properties for �, it still remains the case that our relevant implication has
odd properties. We think it is of no use to sweep the oddness of the classical
relevant implication under the rug by defining an ill-motivated non-standard
consequent relation.

It is important to remark that the failure of those central properties of
implication is not a byproduct of the way in which we technically realize
our solution. The requirements set out at the beginning of this paper imme-
diately entail the failure of these properties. Let → be a classical relevant
implication that satisfies all the requirements. By Classical Strength we
obtain

` p→ p

and
` ¬p→ (¬p ∨ q).
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Applying (MO1) to both gives us

` (p ∧ ¬p)→ p

and

` (p ∧ ¬p)→ (¬p ∨ q).

(MO2) allows us to bring those two results together into

` (p ∧ ¬p)→ (p ∧ (¬p ∨ q)).

Moreover, by Classical Strength once again, we get

` (p ∧ (¬p ∨ q))→ q.

Transitivity would already allow us to derive from the latter two expressions
that

` (p ∧ ¬p)→ q,

which is obviously an irrelevant and therefore unwanted implication. So
transitivity has to go.

But Modus Ponens gives us the same result. The fourth requirement
says that all R-theorems should be valid, so also

` (A→ B)→ (((A ∧B)→ C)→ (A→ C))

and therefore

` (A→ B)→ ((B → C)→ (A→ C)) ,

which can be instantiated as follows:

` ((p ∧ ¬p)→ ((p ∧ (¬p ∨ q))))→ (((p ∧ (¬p ∨ q))→ q)→ ((p ∧ ¬p)→ q))

If one would allow Modus Ponens and apply it twice, one would also be able
conclude

` (p ∧ ¬p)→ q.

So also Modus Ponens has to go.

That the deduction theorem is invalid is probably less of a surprise. Since
the consequence relation is monotonic, one can add irrelevant premises as
much as one likes without invalidating the consequence. It would of course
be wrong to say that, in light of the other premises, there is a relevant
connection between any of these irrelevant premises and the consequence.
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8. Motivation of the proposed theory

So far we have argued that our proposed theory is not a priori inadequate
to formalize human reasoning about relevance. We did this by refuting
the potential objections against the strange properties (non-transitivity, no
modus ponens) of our approach, unmasking them as prejudices. However, we
did not motivate why our particular solution would be more plausible than
any other solution that respects the requirements. This is exactly what we
will do now.

Essentially, the core idea behind our proposal is that the classical symbols
are interpreted differently in the antecedent and in the consequent. More
particularly, disjunctions and conjunctions in antecedents are interpreted in
a strong sense, while those symbols are interpreted in a weak sense when
they occur in consequents.

One can pose the question whether this makes any sense. It seems that,
if one wants to respects the classical meaning of conjunction and disjunc-
tion, there is only one semantics for them, not two. We however did not
necessarily want to stick to the classical semantics of the classical symbols,
we only wanted to save their classical behaviour. If one sticks to the classical
semantics it is not possible to safeguard relevance and have the property of
classical strength. Satisfying this classical strength property is for us suffi-
cient to claim that the symbols have their classical meaning (we employ a
’meaning is use’-attitude towards logical symbols).

We realize relevance by making use of relevance logic. In relevance logic
there are two disjunctions and two conjunctions. With these two we dis-
ambiguate the classical use of conjunction and disjunction. Our proposal
assumes that in classical reasoning they are both referred to by means of the
same token. The context makes it clear which of the two meanings is the
correct one. In the context of (relevant) implications we would like to conjec-
ture that it makes sense that the correct disambiguation is the one proposed
in our logic: the conjunctions/disjunctions in antecedents are strong, i.e. ex-
tensional/intensional and the conjunctions/disjunctions in consequents are
weak, i.e. intensional/extensional.

Why does this indeed make sense from an everyday reasoning point of
view? Let us focus on the disjunction. An intensional disjunction is one
which is intended to enable Disjunctive Syllogism. It seems reasonable that
this is the kind of disjunction agents intentionally store in their memory as a
disjunction in order to later apply Disjunctive Syllogism. An agent stores a
disjunction because he is unaware which of the two disjuncts is the case (not
because the disjunction is some correct weakening of one of the disjuncts;
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it would be useless to store this kind of disjunction). He is unaware which
one of the two disjuncts is the case, but he knows that at least one of the
two is the case. If he later finds out that one of the disjuncts is not the
case, he knows that the other one is the case. So it seems reasonable to say
that rational agents want to apply Disjunctive Syllogism to the disjunctions
stored in their memories. On the other hand, an agent will not simply
have come to such a stored disjunction by means of the law of Addition
(from A derive A ∨ B), simply weakening one of the disjuncts. This would
only weaken the stored knowledge and introduce a completely irrelevant and
useless statement B. In this sense, the disjunctions in stored information are
of an intensional kind. They express that if one of the disjuncts would not be
the case, the other one is. Hence disjunctions that are stored in memories
of agents are supposed to be ones with which one can apply Disjunctive
Syllogism.

The extensional disjunctions correspond to mere weakenings of one of the
disjuncts. They are true if one of disjuncts is true (for example, one accepts
A ∨ B because A is known to be true) but will not explicitly be stored
by rational agents, because they contain no new information and hence are
redundant. One will moreover not apply Disjunctive Syllogism with them,
because this cannot produce new information and can possibly cause loss of
information in case former information turns out to be wrong (because of
mistakes or mistaken sources or because nature has changed). Suppose one
knows A and therefore accepts A ∨ B. In order for this disjunction to be
used in an application of Disjunctive Syllogism one needs extra knowledge
¬A or ¬B. With the second one, one can only obtain A, which was already
known. The first one indicates that there is a problem with regards to A.
Concluding from this that the arbitrary formula B is the case, makes our
knowledge trivial. Instead of applying rules like Disjunctive Syllogism in
such circumstances, one probably wants to revise some of one’s knowledge
and for this, one wants to stick to safe rules, i.e. rules with which one does
not risk triviality.

So in this picture of disjunction we can distinguish two kinds of informa-
tion. First core information: information that is explicitly stored in order to
be used later as valuable means to derive more information. This is the kind
of information from which further information is implied. The second kind
of information is only a consequence of what is already known. It is true
because of the way our classical disjunction works, but it is not explicitly
stored and only implicitly implied by what is explicitly stored. In the first
kind of information the logical symbols are interpreted in a strong way (with
a disjunction that allows for Disjunctive Syllogism). In the second kind the
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logical symbols do not need to be interpreted in the strong way. It is suf-
ficient that all the weakenings of the core information allowed by classical
logic can be part of the weak information. No further derivations are to be
done with this kind of information (which will not be stored anyway).

Now we come back to the relevant implication. The antecedents of po-
tentially relevant implications are statements from which other statements
can be implied. Given our distinction between two types of information, this
entails that the antecedents of implication are supposed to be of the core
kind of information. The consequents, on the other hand, may be treated
as containing information of the weak kind. All the weakenings of the core
information are also implied by the antecedents. That this information is
implied by the the antecedents does not entail that this information is again
of the strong kind, i.e. the kind one wants to store for further deduction.
This motivates why we defined our relevant implication A� B as �A 7→ B
which is equivalent to �A 7→ �B. The � formalizes ’interpret what follows
in the strong way’, while � expresses ’interpret what follows (at least) in
the weak way’. Given our intuitive framework, one may read A � B as
‘B is at least a weakening of relevant consequences of the core information
given by A’. This is a reasonable interpretation of the notion of a classically
relevant implication. Antecedents are here read as core information (oth-
erwise we would not want to imply stuff from it anyway). But given the
classical logic context in which we situate the implication, the agent should
still be able to imply every kind of classically true information from this core
information (to be more correct: every kind of classically true information
for which there is a relevant connection with the antecedent). So he should
also be able to imply the kind of information that is merely a weakening of
what is already in the antecedent. Consequents of relevant implications are
therefore interpreted to contain the weak kind of information.

Consider a simple toy-example situation. Suppose there is a room with a
lamp of which an agent knows that it can be lit by any of two switches. The
agent observes that the lamp is on. He concludes that (E1) ‘switch 1 is on or
switch 2 is on’. This is information worth storing, because it can later result
in the new information that either of the two switches is on. This disjunctive
statement is core information. If the agent later observes that (E2) ‘switch
1 is not on’, he is able to conclude (E3) ‘switch 2 is on’ from (E1) and (E2)
by means of Disjunctive Syllogism. The agent may also correctly conclude
from what he knows now that (E4) ‘switch 2 is on or the electricity is off’ by
Addition on (E3), but he will not store this in his memory and will not apply
Disjunctive Syllogism to it. He will not apply this rule because it can at best
result in again inferring (E3), which he already knows. In the worst case,
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there might be something wrong with (E3) (because of incorrect observation
or a mechanical malfunctioning that makes (E1) false) and the agent now
observes (E5) ‘switch 2 is not on’. Applying Disjunctive Syllogism to (E4)
may now result in the absurd conclusion (E6) ‘the electricity is off’. So
(E1) is here core information with a strong disjunction and (E4) is implicit
information with a weak disjunction. It makes sense to say that in this
situation (E2) and (E1) together relevantly imply (E3) and also (E4). On the
other hand, (E4) and (E5) do not imply (E6) in this situation. Nevertheless,
(E1) and (E4) seem to be both classical disjunctions. In this paper we
formalize (E1) as a formula of the form �(A ∨ B) (it is core information)
and (E5) as a formula �(A ∨B) (it is merely implicit information).

To wrap things up, we started this paper by sketching the outlines of
a new approach to relevance: one in which Classical Logic is not rejected
but treated as a useful and correct tool that is unfortunately insufficiently
expressive to make a proper distinction between implications that do express
a relevant connection between antecedent and consequent and the ones that
do not. Because implications with a relevant connection have a special sta-
tus in communication among human agents, we claim that it is very useful
to try to develop a filtering mechanism that sorts out all the relevant im-
plications in a Classical Logic context. Standard relevance logics do not
accept the full meaning of the classical connectives, and so they for exam-
ple reject the law of Disjunctive Syllogism. Our new approach on the other
hand, explicitly starts from the requirement that all classical consequences
with a relevant connection should be expressible by means of a valid impli-
cation. We achieved the realization of this project in the �-implication of
the logic RR. One can therefore conclude that the project of filtering out
classical relevant implication is feasible. However, the necessary failure of
essential principles like Modus Ponens and transitivity makes the filtering
mechanism unsuitable as a stand-alone deductive logic (which was never the
aim anyway).
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Appendix

8.1. Proof of Theorem 1

The reader can verify that all our axioms come out as verified by all R2-models.

8.2. Proof of Theorem 2

We prove that ‘if �R2 G then `R2 G’, by showing that the contraposition ‘if 0R2 G then
2R2 G’ holds.

Suppose 0R2 G.
We construct the Lindenbaum algebra of R2. Let [A] denote the ↔-equivalence class

of A, i.e. [A] =df {B |`R2 A↔ B}. That this is indeed an equivalence class follows from
`R2 A↔ A (reflexivity), if `R2 A↔ B then `R2 B ↔ A (symmetry) and if `R2 A↔ B
and `R2 B ↔ C then `R2 A↔ C (transitivity). Let S = {[A] | A ∈ W→}. The operations
on S are ◦,•, ∨ and ¬, such that [A] ◦ [B] = [¬(A → ¬B)], [A] • [B] = [¬(A 7→ ¬B)],
¬[A] = [¬A] and �[A] = [ �A]. Let the identity e = [t].

We need to prove that S = 〈S,∨, ◦, •,¬, �, e〉 is a R2-structure and that we can
construct a valuation function vS for which it is not the case that e ≤ vS(G).

As a helpful lemma we prove that `R2 A→ B iff [A] ≤ [B] in our structure S, where
a ≤ b abbreviates that b = a ∨ b.
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First we prove the left to right direction. Suppose `R2 A → B. This is sufficient to
prove that `R2 B → (A ∨ B) and `R2 (A ∨ B)→ B. The first part is evident because it
is an axiom of R2. `R2 (A ∨ B) → B holds because of `R2 (A → B) → ((B → B) →
((A ∨ B) → B)) hold and we obtain `R2 (A ∨ B) → B form this by applying Modus
Ponens twice.

For the right to left direction: suppose `R2 B ↔ (A ∨ B). Hence we obtain `R2

(A ∨ B) → B and `R2 A → (A ∨ B). Applying transitivity using both results we obtain
`R2 A→ B.

By means of the following properties of R2, we can prove that 〈S,∨, ◦,¬, e〉 is a De
Morgan monoid (for proofs of these properties, see [2]).

`R2 (t ◦A)↔ A
`R2 ((A ◦B) ◦ C)↔ (A ◦ (B ◦ C))
`R2 (A ◦B) = (B ◦A)
`R2 A→ (A ◦A)
`R2 ((A ∨B) ∨ C)↔ (A ∨ (B ∨ C))
`R2 (A ∨B)↔ (B ∨A)
`R2 (A ∨A)↔ A
`R2 ¬¬A↔ A
`R2 (A ◦ B)→ C iff `R2 (A ◦ ¬C)→ ¬B, in view of `R2 (A→ (B → C))↔ (A→
(¬C → ¬B))
`R2 ((A ∨B) ∧ C)↔ ((A ∧ C) ∨ (B ∧ C))
`R2 (A ◦ (B ∨ C))↔ (A ◦B) ∨ (A ◦ C)

Next, we prove that also `R2 A 7→ B iff [A] ≤ [B]. This follows immediately from
the fact that `R2 A → B iff `R2 A 7→ B. The latter fact holds in view of axiom
(A 7→ B)→ (A→ B) and rule A→ B/A 7→ B.

By means of the following properties of R2, we can then prove that also 〈S,∨, •,¬, e〉
is a De Morgan monoid (the proofs that the theorems (substituting 7→ everywhere by →)
below are R-theorems can be found in [2], the proofs for the 7→ versions proceed the same
way, because R2 has all the R-axioms for 7→; it should however be noted that some of the
standard R-axioms are absent in our axiomatization of the 7→-arrow, however the missing
axioms follow immediately from their counterparts with the →-arrow).

`R2 (t •A)↔ A
`R2 ((A •B) • C)↔ (A • (B • C))
`R2 (A •B) = (B •A)
`R2 A→ (A •A)
`R2 ((A ∨B) ∨ C)↔ (A ∨ (B ∨ C))
`R2 (A ∨B)↔ (B ∨A)
`R2 (A ∨A)↔ A
`R2 ¬¬A↔ A
`R2 (A • B)→ C iff `R2 (A • ¬C)→ ¬B, in view of `R2 (A 7→ (B 7→ C))↔ (A 7→
(¬C 7→ ¬B))
`R2 ((A ∨B) ∧ C)↔ ((A ∧ C) ∨ (B ∧ C))
`R2 (A • (B ∨ C))↔ (A •B) ∨ (A • C)

In order to establish that S is an R2-structure, we also need to prove that the five
other properties for being a R2-structure are satisfied by S:

(1) a◦b ≤ a•b. This holds because the contraposition of `R2 (A 7→ ¬B)→ (A→ ¬B)
gives `R2 ¬(A→ ¬B)→ ¬(A 7→ ¬B) or `R2 (A ◦B)→ (A •B).
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(2) a ≤ �a. Ths holds because of `R2 A→ �A
(3) ¬ �¬a ≤ a. This holds because of `R2 ¬ �¬A→ A

(4) �e = e. This holds because of `R2 �t↔ t

(5) �¬e = ¬e. This holds because of `R2 �¬t↔ ¬t
Now, define a valuation function in such a way that vS(A) = [A].

We need to prove that

(S14) vS(t) = e,
(S15) vS(A ∨B) = vS(A) ∨ vS(B),
(S16) vS(A→ B) = ¬(vS(A) ◦ ¬vS(B)),
(S17) vS(A 7→ B) = ¬(vS(A) • ¬vS(B)),
(S18) vS(¬A) = ¬vS(A),
(S19) vS( �(A ∨B)) = vS( �A) ∨ vS( �B),
(S20) vS( �¬(A ∨B)) = vS( �¬A) ◦ vS( �¬B),
(S21) vS( �(A→ B)) = ¬(vS(¬ �¬A) ◦ ¬vS( �B)),
(S22) vS( �¬(A→ B)) = vS( �A) ◦ vS( �¬B),
(S23) vS( �(A 7→ B)) = ¬(vS(¬ �¬A) • ¬vS( �B)),
(S24) vS( �¬(A 7→ B)) = vS( �A) • vS( �¬B),
(S25) vS( � �A) = vS( �A)
(S26) vS( �¬ �A) = vS( �¬A).

Clause (S14) to (S18) follow immediately from the construction of our algebra. The
other clauses follow immediately from the axioms for � and the fact that [A] = [B] iff
`R2 A↔ B.

It only remains to prove that it is not the case that e ≤ vS(G) and hence that not
e ≤ [G]. Suppose that the latter would be the case. Then `R2 t → G, but `R2 t in view
of `R2 (t → t) → t and `R2 t → t, whence, by Modus Ponens `R2 G would be the case,
which is in contradiction with our assumption made at the start of the proof.

We can conclude that 2R2 G, which completes our proof.

8.3. Proof of Theorem 6 (Paradox-freedom)

Paradox 1: 0RR B � (A� B). 0R2 �p 7→ (�q 7→ �p)
Assuming that (�p 7→ (�q 7→ �p) would be a theorem, 7→ would be an irrelevant

implication, because �q is completely independent from p. This is impossible because 7→
is an R-implication.

Paradox 2: 0 ¬A� (A� B). Similar reasoning as Paradox 1.

Paradox 3: 0RR (¬A∨B)� (A� B). Suppose `RR (¬p∨q)� (p� q) would
be the case. Then also `R2 �(¬p∨q) 7→ (�p 7→ �q) and `R2 ( �p→ �q) 7→ (�p 7→ �q).
We can construct a model that gives the same value a to each of ¬� p, �q, ¬ �p and �q
but different values b = ¬(a ◦ a) and c = ¬(a • a) to resp. �p→ �q and �p 7→ �q. There
is no reason to require that b ≤ c, the R2-algebra only requires that c ≤ b, not vice versa.
This model is therefore a counterexample to `R2 ( �p→ �q) 7→ (�p 7→ �q).

Paradox 4: 0RR ¬(A � B) � (A ∧ ¬B). If this paradox would be derivable,
paradox 3 would also be derivable in view of the validity of contraposition for � and the
inter-definability of disjunction and conjunction.
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Paradox 5: 0RR ¬(A � B) � (B � A). If this would be the case then
¬(�p 7→ �q) 7→ (�p 7→ �q) would be a R2-theorem. Given the R2-theorem (¬A →
A)→ A, this would entail that �p 7→ �q is a R2-theorem, but we can construct a model
that assigns entirely independent values to �p and �q.

Paradox 6: 0RR (A � B) ∨ (B � A). We can construct a R2-counter-model
for (�p 7→ �q) ∨ (�q 7→ �p). Assign two completely different values a to both �p and

�p and b to both �q and �q. Assign another value c = ¬(a ◦ ¬b) to �p 7→ �q and
another value d = ¬(¬a ◦ b) to �q 7→ �p. There is no reason why the join of c and d
would be greater than or equal to the identity element t.

Paradox 7: 0RR (A� B)∨ (A� ¬B). We can construct a R2-counter-model
for (�p 7→ �q)∨(�p 7→ �¬q). Assign the same value a to both �p and �p and a different
value b to both �q and �q. Although the join of ¬a and a is greater than e, there is no
reason why the join of the independent ¬(a • ¬b) and ¬(¬a • ¬b) would be greater than e.

Paradox 8: 0RR (A� B) ∨ (¬A� B). Similar to paradox 7.

Paradox 9: 0RR ((A∧B)� C)� ((A� C)∧ (B � C)). 0RR ((A∧B)�
C)� ((A� C) ∧ (B � C)) in view of

0R2 (( �A ◦ �B) 7→ �C) 7→ ((�A 7→ �C) ◦ (�B 7→ �C)). This last expression is
the case because

0R2 ((A ◦ B) 7→ C) → ((A 7→ C) ◦ (B 7→ C)) (otherwise 7→ would not be an R-
implication).

Paradox 10: 0RR ((A � B) � A) � A. Suppose `RR ((A � B) � A) � A.
Then also `R2 ((�p 7→ �q) 7→ �p) 7→ �p. One can construct a counter-model by
assigning the same value a to �p and �p and value b to �q. In regular De Morgan
monoids there is no reason why ((a → b) → a) → a, where c → b =df ¬(a ◦ ¬b), would
be at least as great as the identity e. The same holds in R2-structures, where • behaves
exactly like ◦ in a regular De Morgan monoid.

Paradox 11: 0RR A � (¬A � A). Suppose `RR A � (¬A � A). Hence
`R2 �p 7→ (�¬p 7→ �p). We construct a counter-model by assigning the value a to both

�p and �p. This makes ¬a the value of �¬p. There is no reason why a • ¬a would be at
least as small as a and so (�p •�¬p) 7→ �p is not verified by this model.

Paradox 12: 0RR (A ∧ ¬A) � B. Suppose `RR (A ∧ ¬A) � B. Then also
`R2 (�p ∧ �¬p) 7→ �q. Construct a counter-model by assigning the value a to both �p
and �p and the value b to �q. Although a ∧ ¬a is at least as small as ¬e, this does
not make (a ∧ ¬a) • ¬b at least as small as ¬e. So there is no reason why in this algebra
¬((a ∧ ¬a) • ¬b) would be at least as great as e, which means that this model does not
verify (�p ∧�¬p) 7→ �q.

Paradox 13: 0RR B � (A ∨ ¬A). If this paradox would be derivable, paradox
12 would also be derivable in view of the validity of contraposition for � and the inter-
definability of disjunction and conjunction.
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Paradox 14: 0RR ¬(A � B) � A. Suppose `RR ¬(A � B) � A. Then also
`R2 (�p • �¬q) 7→ �p. Construct a counter-model by assigning the value a to both
�p and �p and the value b to �¬q. Although a ∧ b is at least as small as a, this does
not make a • b at least as small as a. So there is no reason why this model would verify
(�p ∧�¬q) 7→ �p.

Paradox 15: 0RR ¬(A� B)� ¬B. Similar to Paradox 14.

8.4. Proof of Theorem 5

First we recursively define what a positive and a negative part of a formula is. For the
basic case: A is a positive part of A. For the resursion: ¬B is a positive part of B iff B
is a negative part of A. If C ∨D is a positive part of A, then C and D are both positive
parts of A. If C ∨D is a negative part of A, then C, D are both negative parts of A. If
C V D is a positive part of A, where V∈ {→,�, 7→}, then C is a negative part of A and
D is a positive part of A. If C V D is a negative part of A, whereV∈ {→,�, 7→}, then C
is a positive part of A and D is a negative part of A. Finally, if �A is a positive/negative
part of A then A is a positive/negative part of A. Let pp(B,A) and np(B,A) abbreviate
that B is a positive resp. a negative part of A.

We prove that all R-theorems can be translated into theorems of RR. Take A to be
a theorem of R. Change every occurrence of → in A to 7→ (for short A→/7→) and call this
B. This gives us

B = A→/7→

Given that we defined 7→ as an arrow that behaves exactly like → (see R3), B will be
an R2-theorem. And, because of A35, if B is an R2-theorem, so is �B.

Now comes the tricky part. We prove that C, defined as the result of changing all
occurrences of 7→ in B to �, is equivalent to �B: if

C = B7→/�

then
C ↔ �B

Note that, if A does not contain any →-arrows, B will be equal to A and thus C to B
and C will evidently be a theorem of RR. We thus presume that A contains at least one
→-arrow and thus B at least one 7→-arrow.

We can characterise B as a wff in which only 7→, ∨ and ¬ occur as connectives. The
same thus holds for �B. When we look more closely at the influence of the �-operator,
we can furthermore see that it spreads out over the subwffs of B in such a way that all
positive parts of B are given a � and all negative parts of B are given a �. This is in
agreement with A23-A33:

�(p 7→ q)↔ �p 7→ �q

�(p ∨ q)↔ �p ∨ �q

�¬p↔ ¬� p
We can thus state the following:

Lemma 2. �B is R2-equivalent to a formula D defined as the wff resulting from substi-
tuting all positive parts P of B by �P and substituting all negative parts N of B by �N .
Then, for any subwff S of B:
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if
pp(S,B)

then

�S is a subwff of D

and if
np(S,B)

then

�S is a subwff of D

Given this, we now prove that if

C = B7→/�

then
`R2 C ↔ �B

by mathematical induction. Since B only had 7→, ∨ and ¬ as connectives, C will only
have �, ∨ and ¬. Let n denote the depth of embedding of the connective in question.

Base case: n = 1: B = D 7→ E, where D and E are implication-free. Then

C = D � E

From D4 we can easily see that

(D � E) ↔ �(D 7→ E)

Thus
C ↔ �B

Note that since B must contain at least one �, this is the only possibility.
Induction step: Assume that the equality holds to depth n. We now show that it

holds for a connective on depth n + 1 as well. Take D (and E) to be the subwffs on the
n + 1-depth. There are thus three possible subwffs of depth n: D � E, D ∨ E and ¬D.
Given that the equality holds to depth n, the subwffs will have gotten either a � or a �
operator, depending on whether it was a positive or negative part of B. We consider both
possibilities for each of the possible subwffs:

If D � E was a positive part of B, then it received a �. The analysis of the �-arrow
then delivers a � to D and a � to E, because of the R2-axioms. This is in agreement
with lemma 2. Since D � E was a positive part of B, D (a negative part of a positive
part of B) will be a negative part of B and thus receive a �. And since E is a positive
part of a positive part of B, it will also be a positive part of B and receive a �.

If D � E was a negative part of B, it received a �. The analysis of the �-arrow
then delivers a � to D and a � to E. This is in agreement with lemma 2. Since D is a
negative part of a negative part of B, it will be a positive part of B and thus receive a �.
And E, a positive part of a negative part of B and thus a negative part of B, will get a �.

If ¬D was a positive part of B, then it received a �. The analysis of the ¬-connective
then delivers a � to D, since �¬D ↔ ¬ �D. This is in agreement with lemma 2. Since
¬D was a positive part of B, D (a negative part of a positive part of B) will be a negative
part of B and thus receive a �.
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If ¬D was a negative part of B, then it received a �. The analysis of the ¬-connective
then delivers a � to D, since �¬D ↔ ¬ �D. This is in agreement with lemma 2. Since
¬D was a negative part of B, D (a negative part of a negative part of B) will be a negative
part of B and thus receive a �.

If D ∨ E was a positive part of B, then it received a �. The analysis of the ∨-
connective then delivers a � to D and a � to E, because of A24. This is in agreement
with lemma 2. Since D ∨E was a positive part of B, D (a positive part of a positive part
of B) will also be a positive part of B and thus receive a �. The same holds for E.

If D∨E was a negative part of B, then it received a �. The analysis of the ∨-connective
following A23 (presuming that we account for the double negation) then delivers a � to
¬D and thus a � to D (see the previous case). It also delivers a � to E. This is in
agreement with lemma 2. Since D ∨ E was a negative part of B, D (a positive part of a
negative part of B) will also be a negative part of B and thus receive a �. The same holds
for E.

We conclude that for any occurring connective, no matter the depth, for every theorem
of R A, if

B = A→/7→

and
C = B�/7→

then
C ↔ �B.

Therefore, because `R A, we obtain `R2 B and by `R2 ♦A → A, �B is a R2-
theorem. Hence, C is a R2-theorem and moreover a RR-theorem. This concludes the
proof that every R-theorem can be translated into a RR-theorem, by substituting →
everywhere into �.

8.5. Proof of Lemma 1

This proof of course relies on notions (the ∗-complement operator, α and β formulas,
lines of the form [A1, A2, . . . , An]B, etc.) related to goal directed proofs as defined and
employed in [6]. The reader should consult this paper in order to be able to understand
this proof.

Where Γ ∪ {A} ⊂ W, if a line

[A1, A2, . . . An]A

can occur in a goal directed proof from Γ then

Γ� `RR (�A1 ◦ �A2 ◦ . . . ◦ �An)→ B

where B = �A if A is the goal formula, and B = �A otherwise.
We prove that all the rules of the goal directed proof-system hold in RR. Given

that the proof-system works via a procedure, which restricts the applicability of the rules,
this suffices to ensure that we have at least classical strength for RR. Take ∆ to be
[�A1 ◦ �A2 ◦ . . . ◦ �An].

Goal-rule [G]G

If we translate this into RR, we get �A → �A. From A1, we immediately see that this
rule holds in RR.
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Formula-analysing rule: α
[∆]α

[∆]α1 [∆]α2

If we translate this into RR, we get (�A1 ◦�A2 ◦ . . . ◦�An)→ �α. From this, A5 and A6
allow us to derive both (�A1 ◦�A2 ◦ . . .◦�An)→ �α1 and (�A1 ◦�A2 ◦ . . .◦�An)→ �α2.
This rule thus holds in RR.

Formula-analysing rule: β
[∆]β

[∆ ∪ {∗β2}]β1 [∆ ∪ {∗β1}]β2

If we translate the first line into RR, we get (�A1 ◦ �A2 ◦ . . . ◦ �An) → �β. From
this translation, T2 and T4 we can derive both (�A1 ◦�A2 ◦ . . . ◦�An ◦�¬β1)→ �β2 and
(�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �¬β2)→ �β1. This rule thus holds in RR.

Notice that we have presupposed that neither the α- nor the β-formula were the
goalformula, since they immediately got a �. This has to do with the procedure of the
goal directed proofs. This ensures that a formula-analysing rule is never applied to a
goal-descendent, which is roughly put any formula that has the main goal as its formula
element. This corresponds to the where B = �A if A is the goal formula, and B = �A
otherwise-part of the translation.

Condition-analysing rule: α
[∆ ∪ {α}]A

[∆ ∪ {α1, α2}]A

If we translate the first line into RR, we get (�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �α)→ �A. Given
that �(A∧B)↔ �A ◦�B, we can derive (�A1 ◦�A2 ◦ . . . ◦�An ◦�α1 ◦�α2)→ �A. This
rule thus holds in RR. Note that, since we do not know whether A is the goal formula or
not, we proved it for the stronger �A, but simply replacing �A by �A results in the proof
for the case where A is the goal formula. The same holds for the reasoning with respect
to the following rule.

Condition-analysing rule: β
[∆ ∪ {β}]A

[∆ ∪ {β1}]A [∆ ∪ {β2}]A

If we translate the first line into RR, we get (�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �β)→ �A. Given
A24, A8 and A9, we can derive (�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �β1) → �A and (�A1 ◦ �A2 ◦
. . . ◦ �An ◦ �β2)→ �A. This rule thus holds in RR.

Transitivity

[∆ ∪ {B}]A
[∆′]B

[∆ ∪∆′]A

If we translate the first line into RR, we get (�A1◦�A2◦. . .◦�An◦�B)→ �A. The second
line becomes (�A′1 ◦ �A′2 ◦ . . . ◦ �A′n) → �B (since B is definitely not the goalformula) .
If we apply contraposition (A12) to both wffs, we can then apply A2 to eliminate B from
the implications and derive (�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �A′1 ◦ �A′2 ◦ . . . ◦ �A′n) → �A by
contraposition. This rule thus holds in RR.

Excluded Middle

[∆ ∪ {B}]A
[∆′ ∪ {∗B}]A

[∆ ∪∆′]A

If we translate the first line into RR, we get

1.(�A1 ◦ �A2 ◦ . . . ◦ �An ◦ �B)→ �A
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Because of DM3, this is equal to

2.(�B ◦ �A1 ◦ �A2 ◦ . . . ◦ �An)→ �A

This is furthermore equivalent to

3.�B → ((�A1 ◦ �A2 ◦ . . . ◦ �An)→ �A)

since
(A→ (B → C))↔ (A ◦B)→ C.

The second line of the EM-rule translated into RR becomes

4.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �¬B)→ �A

We can use the same principle we used on 3 to derive

5.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n)→ (�¬B → �A)

This then gives us, by means of A12

6.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n)→ (¬�A→ ¬�¬B)

or
7.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n)→ (�¬A→ �B).

Because of A34 and A35, we can derive

8.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n)→ (�¬A→ �B)

and by
(A→ (B → C))↔ (A ◦B)→ C

we can transform this to

9.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �¬A)→ �B.

We can now apply transitivity (A2) to 3 and 9 to derive

10.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �¬A)→ ((�A1 ◦ �A2 ◦ . . . ◦ �An)→ �A).

This is equivalent to

11.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �¬A ◦ �A1 ◦ �A2 ◦ . . . ◦ �An)→ �A

and thus to

12.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �A1 ◦ �A2 ◦ . . . ◦ �An)→ (�¬A→ �A)

and to

13.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �A1 ◦ �A2 ◦ . . . ◦ �An)→ (¬�A→ �A).

Because of `R2 (¬A→ A)→ A, this gives us

14.(�A′1 ◦ �A′2 ◦ . . . ◦ �A′n ◦ �A1 ◦ �A2 ◦ . . . ◦ �An)→ �A

which is what the EM-rule tells us. This rule thus holds in RR.
Since all the rules of the goal directed proof-system hold in RR, we can transform any

proof of the goal directed system into a proof in RR. Any Classical Logic consequence
for a consistent premise set thus holds in RR.


