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Introduction 
The adolescent’s notion of rationality often encompasses the epistemological view of 
mathematics as knowledge which offers absolute certainty. He probably has heard of 
a geometry in which the parallel postulate does not hold, but most likely believes that 
Euclidian geometry is the “real one”. We can assume that he is not familiar with 
Gödel’s theorems and undecidability. It is further unlikely that he has been taught 
about the existence of inconsistent arithmetic that performs finite calculations as 
correct as traditional arithmetic. These findings provide strong arguments against the 
view that mathematics offers absolute truth. The static and unalterable mode of 
presentation of concepts in the mathematics curriculum, rather than  lack of 
knowledge, contributes to this misconception. Mathematical concepts, even the most 
elementary ones, have changed completely and repeatedly over time. Major 
contributions to the development of mathematics have been possible only because of 
significant revisions and expansions of the scope and contents of the objects of 
mathematics. Yet, we do not find this reflected in class room teaching. While the 
room for integrating philosophy in mathematics education is very limited, an 
emphasis on the understanding of mathematical concepts is a necessary condition for 
a philosophical discourse about mathematics. The conceptual history of mathematics 
provides ample material for such focus and leads to a better understanding of 
mathematics and our knowledge of mathematics. I will argue for the integration of the 
history of mathematics within the mathematics curriculum, as a way to teach students 
about the evolution and context-dependency of human knowledge. Such a view agrees 
with the contextual approach to rationality as proposed by Batens (2004). As a prime 
example, I will treat the development of the concept of a symbolic equation before the 
seventeenth century. In line with Lakatos (1976) and Kitcher (1984) my example is 
motivated by the epistemological relevance of the history of mathematics. 

Living with inconsistencies 
When asked for an example of an absolute truth, a student might likely answer “one 
plus one equals two”. This is a grateful example to expand on. One plus one equals 
two in a current axiomatization of arithmetic, and is therefore true with respect to that 
theory. However, it is rather easy to tailor the axiomatization in order to undermine 
the truth value of the given statement. Adapting the Peano axioms1 leading to one 
being the successor of one, would yield the example false in the new theory. Given 
that ‘one plus one equals two’ is true in one theory and not in another, refutes the 

                                                 
1 The first axiomatization of arithmetic was given by Giuseppe Peano in a Latin publication of 1889, 
Arithmetices principia, nova methodo exposita. For an annotated English translation see van Heijenoort 
1967, 83 – 97. 
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example as an absolute truth. The student might object that changing the rules of 
arithmetic would lead to complete anarchy in society. The more intelligent student 
might notice that changing the Peano axioms in the given way would lead to an 
inconsistent theory and that anything can be derived from inconsistencies. Let us look 
at these objections. The point that changing the truth value of the given example 
makes no sense might be true, for now. However, there can be reasons for changing 
the axioms of arithmetic. Van Bendegem (1994) did develop an inconsistent 
arithmetic by changing the Peano axioms so that there exist one number which is the 
successor of itself. His reason for doing so is to demonstrate the feasibility of a strict 
finite arithmetic. The fifth Peano axiom states that if equality applies for x = y then, x 
and y are the same number. This is the axiom that is tweaked by Van Bendegem so 
that starting from some number n, all its successors will be equal to n. If we take n to 
be one, then in this newly defined arithmetic 1 + 1 = 1. However, that would be a 
trivial arithmetic which is not the intention of this entreprise. Rather than using one, 
the number n can be any number you like. Given a sufficiently large n, all operations 
of arithmetic behave the same way, as long as this number n is not reached during 
calculations. Now, a problem arrives when we reach n. The statement n = n + 1 is thus 
both true and false at the same time. This makes the new arithmetic inconsistent. In 
classical logic you have the rule ex falso quodlibet (EFQ) which states that 
p p q∧¬ → , or from an inconsistency you can derive anything. This would render 

the arithmetic trivial within classical logic (CL). However, several paraconsistent 
logics now exist that do not have this problem, as well as inconsistency-adaptive 
logics, developed at the Center of Logic and Philosophy of Science (Batens, 2001). 
Van Bendegem used the three-valued paraconsistent logic PL from Priest (1987) in 
which EFQ does not hold. With this underlying logic he proved that if A is a valid 
statement in classical elementary number theory, then A is also valid in an elementary 
numbers theory based on a finite model. Gödel proved that every consistent formal 
theory, which is rich enough to model arithmetic, will contain true statements which 
cannot be proved within that theory. In other words, every consistent formal theory is 
incomplete. Giving up consistency, this new arithmetic, based on a finite model, has 
the advantage of being complete.  
There remains the objection of anarchy. What would happen if some people decided 
to change the rules of arithmetic? Would our accounting and wage calculation 
programs become unreliable when working with inconsistent arithmetic? In some 
sense we already use this finite and inconsistent arithmetic in computer programs. An 
unsigned integer in a programming language such as C is represented by a 32 or 64-
bit data structure, depending on the underlying hardware. Our inconsistent number n 
here becomes 232 – 1 or 264 – 1, while its successor is 0. Usually compilers warn for 
overflow situations such as these. When manipulating the binary structure with bit 
shift operations, the programmer has to reason within an inconsistent arithmetic and 
take care of the borderline situations himself. Apparently, many are more worried 
about giving up absolute certainty in mathematics than they are about their own life 
by relying on computers in daily situations. We do not have the slightest proof that the 
current commercial computers and compilers we use to create programs, function the 
way we think they do. Such programs activate the anti-braking system in our car, 
guide traffic lights and are used to calculate the structure of bridges and building. If 
they fail to work, human life may be at risk. There are attempts to prove the 
correctness of hardware design and computer programs but these are not for practical 
or commercial use. In fact, we have the proof of the contrary. Commercial computers 
have been known to be inconsistent in their arithmetic, as was shown with the famous 
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Intel Pentium bug2. The fact therefore is that we live with inconsistencies every day of 
our life. Why is it so hard to accept this on a philosophical level? 

Absolute certainty in mathematics? 
“Gentleman, that 1 0ie + = is surely true, but it is absolutely paradoxical; we 
cannot understand it, and we don’t know what it means, but we have proved 
it, and therefore we know it must be the truth”. 

 
This well-known quote by Benjamin Peirce, after proving Euler’s identity in a lecture, 
reflects the predominant view of mathematicians before 1930, when mathematical 
truth equalled provability3. When Gödel proved that there are true statements in any 
consistent formal system that cannot be proved within that system, truth became 
peremptory decoupled of provability.  
However, Peirce seems to imply something stronger: proving things in mathematics 
leads us to the truth. This goes beyond an epistemological view point and is a 
metaphysical statement about existence of mathematical objects and their truth, 
independent of human knowledge. The great mathematician Hardy formulates it more 
strongly, (Hardy 1929): 

 
“It seems to me that no philosophy can possibly be sympathetic to a 
mathematician which does not admit, in one manner or another, the 
immutable and unconditional validity of mathematical truth. Mathematical 
theorems are true or false; their truth or falsity is absolute and independent of 
our knowledge of them. In some sense, mathematical truth is part of 
objective reality”. 

 
Such statements are more than innocent metaphysical reflections open for discussion. 
They hide implicit values about the way mathematics develops and have important 
consequences for the education and research of mathematics. An objective reality 
implies the fixed and timeless nature of mathematical concepts. The history of 
mathematics provides evidence of the contrary. Mathematical concepts, even the most 
elementary ones, like the concept of number, continuously change over time. The 
objects signified by the ancient Greek concept of arithmos differ from that of 
‘number’ by Renaissance mathematicians, which in turn differs from our current view. 
One could object that not mathematics but our understanding of mathematical reality 
changes. However, Jacob Klein’s landmark study (1934-6) precisely focuses on the 
ontological shift in the number concept. In Greek arithmetic ‘one’ was not a number, 
later is was. After that, the root of two was accepted as a number and by the end of the 
sixteenth century the root of minus fifteen became a number.  
Another implicit value hidden in the predominant view is the superiority of modern 
ideas over past ones, and possibly of Western concepts over non-Western ones. Again, 
the history of mathematics shows that mathematics always adapted to the needs of 
society. Mathematics was born in the fertile crescent, extending to the belt from North 
Africa to Asia, where wild seeds were large enough and mammals capable of 

                                                 
2 Given the calculation 

xx y z
y

⎛ ⎞
− =⎜ ⎟
⎝ ⎠

, the first Pentium chip produced the solution z = 256 for x = 

4195835 and y = 3145727, instead of the correct z = 0.  For more see, Coe, e.a. 1995. 
3 Quoted in Kasner and Newman, 1940. 
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employable domestication4. Modern algebra fertilized in the mercantile context of 
merchants and craftsman of Renaissance Italy. Several important figures in the 
development of symbolic algebra wrote also on book keeping, as well as on algebra 
often in one and the same volume5. If we accept that double-entry book keeping 
emerged in the fifteenth century as a result of the expanding commercial structures of 
sedentary merchant in Renaissance Italy, why not considering symbolic algebra 
within the same context? Ideas should be interpreted within the historical context in 
which they emerged and perhaps their superiority is dependent on the degree in which 
they were adapted to the needs of society.  
Finally, the idea of an objective reality of mathematical concepts evades the reality of 
conceptual problems in mathematics. Time and again there have been serious crisis in 
the conceptual foundations of mathematics6. There have been inconsistent theories, 
such as the early use of analysis, and set theory which have existed for several 
decades. It is precisely in times of crisis and conceptual difficulties that new ideas 
emerge and breakthroughs are made.  

Looking behind the barrier of symbolic thinking 
Dealing with the development of symbolic algebra we must define some terms more 
explicitly. Let us call algebra an analytical problem-solving method for arithmetical 
problems in which an unknown quantity is represented by an abstract entity. There 
are two crucial conditions in this definition: analytical, meaning that the problem is 
solved by considering some unknown magnitudes as hypothetical and deductively 
deriving statements so that these unknowns can be expressed as a value, and secondly, 
an abstract entity is used to represent the unknowns. This entity can be a symbol, a 
figure or even a color as we shall see below. More strictly, symbolic algebra is an 
analytical problem-solving method for arithmetical and geometrical problems 
consisting of systematic manipulation of a symbolic representation of the problem. 
Symbolic algebra thus starts from a symbolic representation of a problem, meaning 
something more than a short-hand notation. There is no room here to expand on this 
important difference7. Instead we will focus on one important misunderstanding: “as 
arithmetical problems are solved algebraically for over 3000 years, an algebraic 
equation is a very old concept”. This is not the case, as we shall argue. The symbolic 
equation is an invention of the sixteenth century.  
 
We are all educated in the symbolic mode of thinking which is so predominant that it 
becomes very difficult to grasp how non-symbolic algebra really works. In fact, in the 
history of mathematics there are many cases in which one completely ignored the 
difference. Let us take one example of Babylonian algebra. That Babylonians had an 
advanced knowledge of algebra is a fact that became known rather late, around 1930. 
Many thousands of clay cuneiform tablets were found that contained either tables with 
numbers or the solutions to numerical problems. One such tablet is YBC 6967 from 

                                                 
4 For an eye-opening study on the relation between these coincidental factors and the development of 
culture and thus mathematics see the excellent work of Jared Diamond , 1996. 
5 Between 1494 and 1586: Luca Pacioli, Grammateus, Girolamo Cardano, Valentin Mennher, Elcius 
Mellema, Nicolas Petri and Simon Stevin. 
6 An important case study on crisis in mathematics is Carl Boyer (1959), The History of the Calculus 
and Its Conceptual Development. As the title suggests Boyer concentrates on the conceptual difficulties 
in developing the modern ideas of the calculus. 
7 Mahony (1980) is one of the few to clarify the distinction. See also my forthcoming “Sixteenth 
century algebra as a shift in predominant models”. 
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Yale University, written in the Akkadian dialect around 1500 BC. The most 
prominent scholar having studied and edited these mathematical tablets is Otto 
Neugebauer (1935-7, 1945). For the problem on YBC 6967 Neugebauer writes the 
following8:  
 

The problem treated here belongs to a well known class of quadratic 
equations characterized by the terms igi and igi-bi (in Akkadian igūm 
and igibūm respectively) (..) We must here assume the product  

60xy =  (1.1) 
as the first condition to which the unknowns x and y are subject. The 
second condition is explicitly given as 
 7x y− =  (1.2) 
From these two equations it follows that x and y can be found from  

 
27 7, 60

2 2
x y ⎛ ⎞= + ±⎜ ⎟

⎝ ⎠
 

a formula which is followed exactly by the text, leading to x = 12 
and y = 5. 
 

Important here is that Neugebauer claims that equations are “explicitly given” and 
that the problem is “found from a formula which is followed exactly by the text”. 
There are not so many people around who can go back to the cuneiform text and are 
able to check this claim. Fortunately, Neugebauer added an English translation which 
allows us to perform the task. 
For the “explicitly given” equation  we read “The igibūm exceeds the igūm by 7”. 
This indeed corresponds with the equation (1.2). For the formula we read “As for you 
– halve 7, by which the igibūm exceeded the igūm, and the result is 3.5. Multiply 
together 3.5 with 3.5 and the result is 12.25. To 12.25, which resulted you, add 60, the 
product and the result is 72.25. What is the square root of 72.25: 8.5. Lay down 8.5, 
its equal and then subtract 3.5, the takīlum, from the one, add it to the other. One is 12, 
the other 5. 12 is the igibūm, 5 the igūm”. Again the text seems to correspond with the 
formula. There are two minor details here: the ‘lay down’ part sounds a little strange 
in this context, and Neugebauer adds “we have refrained from translating takīlum”, 
because no sense could be given to it.  
Recently, Jens Høyrup (2002) published a book which completely overthrows the 
standard interpretation of Babylonian mathematics and adds a new one. For Høyrup, 
Babylonian algebra works with geometric figures. This went by completely unnoticed 
because no figures appear on the tablets. But Høyrup’s study is very convincing and 
its importance for the history of mathematics cannot be overestimated. In this problem, 
the unknowns, igibūm and igūm, are represented by the sides of a rectangle (Høyrup 
2002, 55-6). The term ‘product’ used by Neugebauer should be read as ‘surface’, 
‘square root’ as ‘equal side’ or the side of a square surface and adding means 
appending in length. According to Høyrup the term takīlum which should be read as 
‘make-hold’, or making the sides of a rectangle hold each other. Only within a 
geometrical interpretation, it makes sense to lay down something. Using a rectangle 

                                                 
8 Neugebauer and Sachs, 1945, 129-30. The Babylonians used the sexadecimal number system, which 
unit is represented by Neugebauer as 1,0. I have changed this to decimal numbers and added the 
reconstructed text fragments for easier reading, which leaves the problem text otherwise intact. 
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with sides igibūm and igūm, now everything fits together. The igibūm is 7 longer than 
the igūm. Cutting that part in half leads us to figure 1: 

 
Figure 1: an example of the geometric algebra from the Babylonians. 

If we paste one of the halves below the rectangle at the length of the igūm we get a 
figure with the same surface, equal to 60.   

 
Figure 2: Cut and paste method for solving quadratic problems. 

The part in the lower left corner must be a square, as its sides are both 3 ½. We can 
thus determine its surface as 12 ¼. The complete figure must also be a square with 
sides equal to igūm plus 3 ½. We know that the total surface is 72 ¼, the ‘equal side’ 
of that square therefore is 8 ½. That leads us to a value of the igūm being 5. Pasting 
the cut-out half back to its original place gives a length of the igibūm of 12. 
We are presented here with an interpretation completely different from that of 
Neugebauer. Høyrup accounts for anomalies in the standard interpretation and gives 
strong arguments for the reading of terms and actions in the geometrical sense. In this 
new interpretation it makes no sense to speak about equations. Babylonian algebra 
does not solve equations, as the concept of an equation was absent. But it fits in with 
our definition of algebra: the method is unquestionably analytical, it uses the 
unknowns igūm and igibūm and they are represented as abstract entities, namely the 
sides of a rectangle. We cannot blame Neugebauer for his symbolic reading of 
Babylonian algebra in 1945. Looking behind the barrier of symbolic thinking proves 
to be a difficult task. His book was a major contribution to the early history of 
mathematics. But the history of mathematics has changed in the past decades and 
conceptual analyses such as Høyrup’s have become the new methodological standard. 

60 

12 ¼  

igibūm 

igūm 

igūm 

7
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Diophantus: algebra or theory of numbers? 
The Arithmetica of Diophantus is often considered the first work exclusively devoted 
to algebra9. This interpretation is questionable. The discovery of Diophantus in the 
fifteenth century had an important influence on the development of symbolic algebra. 
However, its influence is not as decisive as some want us to believe. The prime source 
for the myth that algebra was invented by Diophantus is Regiomontanus in his Padua 
lecture of 1464. Just having discovered the manuscript, Regiomontanus describes the 
Arithmetica enthusiastically as a book “in which the flower of the whole of arithmetic 
is hidden, namely the art of the thing and the census, which today is called algebra by 
an Arabic name. Here and there, the Latins have come in contact with this beautiful 
art”10. Later, humanist mathematicians of the sixteenth century, such as Petrus Ramus, 
will be more explicit in the idea that algebra originated with Diophantus and the 
Arabs learned the art from him11. Paradoxically, sixteenth-century humanists 
continued the program of reassessing mathematics from ancient sources, initiated by 
the Arabs, and in doing so precisely denied the contribution of the Arabs. Høyrup 
(1998) traces this evolution over several authors in Renaissance Europe. After Ramus, 
also Bombelli and Viète were well-acquainted with the Arithmetica and carefully 
avoided reference to Arab influences. On the other hand, the Arab roots of algebra 
have mostly been acknowledged by the Italian abacus tradition from Fibonacci (1202, 
Boncompagni 1857) through the fifteenth century up to Cardano (1545, Witmer 1968) 
and the German cossist tradition, with Stifel (1544) as most important author. It is 
probably thanks to them that we still use the name algebra today. 
In order to assess the Arithmetica it is important to draw a distinction between the 
context of the original text and its adaptations since its discovery by Regiomontanus. 
The treatment of problems from the Arithmetica by Bombelli (1572) and Simon 
Stevin (1585) are without doubt algebraic. Several editions of the Arithmetica have 
given an algebraic formulation to problems, as has been done with Euclid’s Elements. 
Such reformulation has been historically important for diophantine analysis but was 
not necessarily a correct interpretation of the original work. Let us look at problem 16 
from the first book as an illustration. This is a rather simple problem looking for three 
numbers given their sum two by two (table 1): 
 

Tannery 1893, p. 39 Ver Eecke, 1926, p. 21 
Invenire tres numeros tales ut bini 
simul additi faciant propositos 
numeros. Oportet propositorum 
trium dimidiam summam 
maiorem esse unoquoque horum.  

Trouver trois nombres qui, pris deux à deux, 
forment des nombres proposés. Il faut 
toutefois que la moitié de la somme des 
nombres proposés soit plus grande que chacun 
de ces nombres. 

Proponatur iam X1 + X2 = 20, X2 
+ X3 = 30,  X3 + X1 = 40 

Proposons donc que le premier nombre, 
augmenté du second, forme 20 unités; que le 
second, augmenté du troisième, forme 30 
unités, et que le troisième, augmenté du 
premier, forme 40 unités. 

Ponatur X1 + X2 + X3 = x Posons que la somme des trois nombres est 1 
arithme. 

Quoniam X1 + X2 = 20, si a x 
aufero 20, habebo X3 = x – 20 

Dès lors, puisque le premier nombre plus le 
second forment 20 unités, si nous retranchons 

                                                 
9 E.g. Varadarajan 1991, Bashmakova 1997. 
10 Regiomontanus, 1972, p. 47, cited and translated by Høyrup 1998, p. 30. 
11 Ramus gives a short history of mathematics in his Scholae mathematicae (1569). 
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20 unités de 1 arithme, nous aurons comme 
troisième nombre 1 arithme moins 20 unités. 

Eadem ratione erit X1 = x – 30, X2 
= x – 40 

Pour la même raison, le premier nombre sera 
1 arithme moins 30 unités, et le second 
nombre sera 1 arithme moins 40 unités. 

Linquitur summam trium aequari 
x, sed est haec summa 3x – 90; 
ista aequentur x; fit x = 45. 

Il faut encore que la somme des trois nombres 
devienne égale à 1 arithme. Mais, la somme 
des trois nombres forme 3 arithmes moins 90 
unités. Egalons-les à 1 arithme, et l’arithme 
devient 45 unités. 

Ad positiones. Erit X1 = 15, X2 = 
5, X3 = 25. Probatio evidens est. 

Revenons à ce que nous avons posé : le 
premier nombre sera 15 unités, le second sera 
5 unités, le troisième sera, 25 unités, et la 
preuve est claire. 

Table 1: Two interpretations of problem 16 from Book I of the Arithmetica by Diophantus 

Paul Tannery’s respected critical edition of 1893 gives the original Greek text, 
reconstructed from several manuscripts, together with a Latin translation. As shown, 
the Latin translation presents the problem as one of three linear equations with three 
unknowns X1, X2 and X3 and the use of an auxiliary x. However, the idea of linear 
equations with several unknowns did not emerge before the mid-sixteenth century. 
Ver Eecke (1926) performed his French translation from the same Greek text as 
Tannery but gives a more cautious interpretation. He does not use any symbols and 
draws a distinction between number and arithmos. The unknowns X1, X2 and X3 of 
Tannery are numbers in the French translation. Instead, the arithmos designates the 
unknown. After stating the problem, Diophantus reformulates the problem expressing 
the numbers in terms of a chosen unknown. 
The interpretation of the Arithmetica as symbolic algebra is highly problematic. Even 
its designation as algebra cannot go without careful qualification. Nesselmann (1842) 
called it syncopated algebra as an intermediate stage between rhetoric and symbolic 
algebra. This would consist of short-hand notations which have not yet developed to 
full symbolism. The Greek text uses the letters ∆γ and Κγ which have been interpreted 
by many as the powers of an unknown, x2 and x3. Ver Eecke simply translates this as 
‘square’ and ‘cube’ respectively. And this is without doubt closer to the original 
context than Tannery’s Latin translation. Diophantus is primarily interested in the 
properties of numbers. A typical problem sounds like “Find two numbers with their 
sum and the difference of their squares given” (Book I, Problem 29; Tannery 1893, 
65). The aim is to find numbers which satisfy the given property rather than solving 
the equations 2 220, 80x y x y+ = − = . All problems of the Arithmetica are stated in 
the general way. A reading of the Arithmetica as a general theory of numbers is 
further emphasized by the character of diophantine problems having an infinity of 
numbers satisfying a given property. Diophantus’s Arithmetica can be equally or 
better understood as a study on the properties of natural numbers than as early algebra. 
To read the text as an early form of symbolic algebra cannot be reconciled with the 
definition we have given above. 

The colorful algebra of the Hindus 
Hindu tradition has passed down to us several important works on arithmetic and 
algebra, the importance of which to the development of algebra is still underestimated. 
The major handicap in drawing a line of influence of Indian sources on the 
development of Renaissance arithmetic and algebra is its indirect character and lack 
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of written evidence. We can trace some important paths of transmission for arithmetic 
and the Hindu-Arabic number system we currently use today. Some Arab texts that 
were translated into Latin clearly refer to Hindu sources12. Early arithmetic books are 
structurally very similar, for example, to Bhramagupta’s Brāhmasphuṭasiddhānta 
(BSS) of 628 AD (Colebrook 1817). However, there is no textual evidence known 
which shows a direct influence of Hindu algebra in the West. Comparing many 
problems treated in Hindu sources as well as in Renaissance algebra, we cannot avoid 
the particular similarity of both the formulation of the problems and most of the 
solution methods. Many linear problems solved algebraically in the abacus tradition 
have their counterpart in Hindu sources, while they are only rarely treated in Arab 
texts. We can discern an important influence of  the oral tradition of recreational 
problems. Practical and recreational problems have functioned as vehicles for problem 
prototypes with typical solution patterns13. The solution method for typical problems 
are given as rules in Hindu texts. These rules are mostly formulated in Sanskrit verse, 
as stanzas or sūtras. Given the scarcity and cost of writing aids, memorizing aids in 
the form of verse has been very important in mathematical texts before the age of 
printing. As an example, consider the following rule for solving linear problems given 
both in the BSS and the Bīja-Ganita (BG) of Bhāskarācārya of c. 1150:  
 

Colebrook, 1817, 227: Dvivedi, 1902: 
Subtract the first color [or letter] from 
the other side of the equation; and the 
rest of the colors [or letters] as well as 
the known quantities, from the first 
side: the other side being then divided 
by the [coefficient of the] first, a value 
of the first color will be obtained. If 
there be several values of one color, 
making in such case equations of them 
and dropping the denominator, the 
values of the rest of the colors are to 
be found from them. 

Removing the other 
unknowns from [the side of] 
the first unknown and 
dividing the coefficient of the 
first unknown, the value of 
the first unknown [is 
obtained]. In case of more 
[values of the first 
unknown], two and two [of 
them] should be considered 
after reducing them to 
common denominators.  

 
In the English rendition of the Sanskrit verses, Colebrook uses the term ‘equation’ but 
he is not followed by Dvivedi. Instead Dvivedi uses the terms ‘unknown’ and 
‘coefficient’, which in turn are not used by Colebrook. We can therefore cast some 
doubt about the use of these modern terms. Furthermore, Datta and Singh (1962, II, 9) 
claim that “in Hindu algebra there is no systematic use of any special term for the 
coefficient”.  
Prthūdakasvāmī (860), Srīpati (1039) and later Bhāskara (1150) solved linear 
problems by the use of several colors, representing the unknowns. In other cases also 
flavors such as sweet (madhura), or flowers were used for the same purpose. 
Solutions were mostly based on rules for prototypical cases such as the rule of 
concurrence (sankramana ) { },x y a x y b+ = − =  or the pulverizer (Kuttaka) 
ax by c− = . In several texts, starting with the BSS, we find reference to samīcarana, 
samīcarā, or samīcriyā, often translated as ‘equation’. The rationale for this is that 

                                                 
12 Dixit Algorizmi c. 825. For a French translation see Allard, 1992, 1 – 22. 
13 I have argued this more extensively in “How algebra spoiled Renaissance’s practical and recreational 
problems”, forthcoming. 



Learning concepts through the history of algebra 

 - 10 - 

sama means ‘equal’ and cri stands for ‘to do’. As with the terms aequatio and 
aequationis in early Latin works on algebra we should be careful interpreting these 
terms in the modern way. They basically mean the act of making even, an essential 
operation in the algebraic solution of problems. They not necessarily mean an 
equation in the sense of symbolic algebra. The basis of Hindu algebra is to reduce 
problems to the form of given precepts that provide a proven solution to the problem. 
The method is algebraic as it uses abstract entities for the unknowns and is analytical 
in its approach. The Hindu methods for solving linear problems were transmitted to 
the West by prototypical problems, mostly of the recreational type, which served as 
vehicles for the corresponding problem-solving recipes. An example is the case 
{ }( ), ( )x a c y a y b d x b+ = − + = −  which we find in the Ganitasārasangraha of 
Mahāvīra and the BG but also in several fifteenth-century arithmetics under the name 
regula augmentationis. 

Arab algebra 
Arab algebra was introduced in Europe by the translations of the Algebra of 
Mohammed ibn Mūsa al-Kwārizmī by Guglielmo de Lunis, Gerhard von Cremona 
(1145) and Robert of Chester (1450; Hughes, 1981). Most importantly however was 
the Liber Abaci of Fibonacci (1202). Fibonacci devoted the last part of his book to 
algebra and used mostly problems and solution methods from al-Kwārizmī and Al-
Karkhī. Although Arab algebra developed to a high degree of sophistication during 
the next centuries, it was mostly the content of these early works that were known in 
Europe. Recent studies have provided us with a new picture on the continuous 
development of  algebra in the Italian abacus schools between Fibonacci and Luca 
Pacioli’s Summa de arithmetica geometria proportioni (1494) (Franci and Rigatelli, 
1985). It took about four centuries before the transition to symbolic algebra was 
completed.  
al-Kwārizmī gives solutions to algebraic problems by applying proven procedures in 
an algorithmic way. The validity of the solution is further demonstrated by 
geometrical diagrams. In contrast with Babylonian algebra the method is not 
geometrical in nature, only the demonstration and interpretation is. As an example let 
us look at the way al-Kwārizmī solves case 4 of the quadratic problem which can be 
represented by the well-know equation 2 10 39x x+ =  (Rosen, 1831, italics mine): 
 

For instance, one square, and ten roots of the same, amount to thirty-nine dirhems. 
That is to say, what must be the square which, when increased by ten of its own 
roots, amounts to thirty-nine? The solution is this: you halve the number of the 
roots, which in the present instance yields five. This you multiply by itself; the 
product is twenty-five. Add this to thirty-nine; the sum is sixty-four. Now take the 
root of this, which is eight, and subtract from it half the number of the roots, which 
is five; the remainder is three. This is the root of the square which you sought for; 
the square itself is nine. 

 
If we write the case as 2x bx c+ = , the solution fully depends on the application of the 

procedure which corresponds to
2

2 2
b bc⎛ ⎞ + −⎜ ⎟

⎝ ⎠
. Solving problems in Arab algebra 

consists of formulating the problem in terms of the unknown and reducing the form to 
one of the known cases. Methods for solving quadratic problems were given before in 
Babylonian and Hindu algebra. Again we see no equations in Arab algebra. However, 
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new is the explicit treatment of operations on polynomials. The basic operations 
addition, subtraction, multiplication and division, which were applied before to 
numbers, are now extended to an aggregation of algebraic terms. A further expansion 
of these operations would lead to the concept of a symbolic equation in the sixteenth 
century. 

The emergence of the concept of an equation 
So, what is it that constitutes the concept of an equation? I propose to adopt an 
operational definition of the term in order to reconstruct the historical emergence of 
the concept. We now consider an equation as a mathematical object on which certain 
operations are allowed. Let us therefore look at the precise point in time in which an 
equation is named, consistently used and operated upon as a mathematical object. As 
said before, the use of the term aequatio is not a sufficient condition for the existence 
of an equation. The observation that two polynomials are numerically identical does 
not in itself constitute an equation. However, an operation on an equation would. The 
first historical instance that I could find is in Cardano’s Practica arithmetice (1539, f. 
91r).  

 
Figure 3: The first operation on an equation in Cardano's Practica arithmetice of 1539. 

This is probably the most important page in the development of symbolic algebra as it 
combines two important conceptual innovations in a single problem solution: the use 
of a second unknown and the first operation on an equation. Cardano uses co. for the 
primary unknown and quan. for a secondary one. We can justly write this as x and y 
without misinterpreting the original context. In the example given in figure 3, 
Cardano manipulates several polynomials, but at some point moves to equations. We 
find 7 co. aequales 151 p. 27 quan. ( 7 151 27x y= + ) and 10 co. aequales 1018 p 18 
quant (10 1018 18x y= + ). He divides these equations by 7 and 10 respectively, 
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without explicitly saying so. But then by equating both he arrives at 8 280 2
35 35

y=  

which he explicitly multiplies by 35 to arrive at 72y = 2808 or y = 39 (misprinted as 
2008 = 72y). From this moment onwards algebra changed drastically. Cardano’s book 
was widely read and several authors build further on this milestone. Stifel (1545) 
introduces the letters 1A, 1B and 1C to differentiate multiple unknowns, which 
removes most of the ambiguities from earlier notations. But it is Johannes Buteo 
(1559) who establishes a method for solving simultaneous linear equations by 
systematically substituting, multiplying and subtracting equations to eliminate 
unknowns. These developments between 1539 and 1559 constituted the concept of a 
symbolic equation. The equation became not only a representation of an arithmetical 
equivalence but also represented the combinatorial operations possible on the 
symbolic structure. This paved the road for Viète (1591) and Harriot to study the 
structure of symbolic equations.  

Conclusion 
We treated the history of 3000 years of algebra in a few paragraphs with the risk of 
over simplification. However, one important conclusion emerges: at some point in 
history there was a dramatic change in the way arithmetical problems were solved. By 
the second half of the sixteenth century algebraic problem solving became the 
systematic manipulation of symbolic equations. We argued that the concept of an 
equation, as we understand it today, did not exist before that time. The development 
of sixteenth-century algebra is one of these occasions in which we see the birth of a 
new important concept in mathematics. Algebra did exist before, but functioned in a 
different way. The aim of this paper is to show that the history of mathematics offers 
ample opportunities to illustrate the plurality of methods and the dynamics of 
concepts in mathematics. Integrating threads of conceptual development of 
mathematics in classroom teaching contributes to students’ philosophical 
attentiveness. Such examples will alert students of the relativity of mathematical 
methods, truth and knowledge and will put mathematics back in the perspective of 
time, culture and context. 
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