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Abstract

Deontic conflicts pose an important challenge to deontic logicians. The

standard account —standard deontic logic, SDL— is not apt for address-

ing this challenge since it trivializes conflicts. Two main stratagems for

gaining conflict-tolerance have been proposed: to weaken SDL in various

ways, and to contextualize the reign of SDL to consistent subsets of the

premise set. The latter began with the work of van Fraassen and has been

further developed by Horty. In this paper we characterize this second ap-

proach in general terms. We also study three basic ways to contextualize

SDL and supplement each of these with a dynamic proof theory in the

framework of adaptive logics.

Keywords: deontic conflicts; maximal consistent subsets; adaptive log-

ics; nonmonotonic logic; conflict-tolerance;

1 Introduction

One of the major challenges for the deontic logic community is the handling of
deontic conflicts. A deontic conflict occurs in a situation in which an agent faces
conflicting norms. For instance, our agent may have made two promises: one –
to finish and send off a review this evening, and another – to take out his spouse
for a romantic dinner. However, it is impossible to fulfill the corresponding
obligations to keep both promises.

Let us write OA for an obligation to bring about A. Each of the following
principles may be considered a good candidate for a fundamental principle of
deontic reasoning (see [11]):

Agg OA and OB imply O(A ∧B)

Inh If A classically implies B then OA implies OB

D OA implies ¬O¬A

And, indeed, the three inference types are valid in standard deontic logic (hence-
forth – SDL).1 However, with these three principles we run into a serious com-

1We present the full axiomatization of SDL in Section 2.
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plication when facing a deontic conflict – the so-called deontic explosion. That
is to say, from any deontic conflict it follows that everything is obligatory (see
[12] for a careful analysis). There are two general ways this problem can be
(and has been) addressed: we can either soften the strict standards of SDL by
abandoning or weakening one of the above principles, or we can contextualize
the reign of SDL to parts of the premise set where trouble does not lurk.

As for the first option, various systems have been proposed: in [10] Agg
is given up, in [11] Inh is restricted, in [28] Agg and Inh are rejected in two
respective phases, and in [10, 9, 6, 5] a paraconsistent negation is used instead
of the classical one. However, with plenitude comes choice, and, in absence
of guiding meta-principles, the choice may feel somewhat arbitrary. Moreover,
compared to SDL the new systems are rather weak: many intuitively non-
problematic inferences are not anymore valid. A frequently proposed solution
is to strengthen these systems non-monotonically (see, e.g., [13, 25, 19, 9, 5,
6]). In addition to the strict rules provided by the weakened version of SDL
also defeasible reasoning steps are allowed that compensate for the previous
weakening.

In this paper we take the second route. Our standard of deontic reasoning
remains full SDL. However, we restrict or contextualize its reign to consistent
fragments of the given premise set. This approach is not entirely new. Both the
system that van Fraassen put forward in his [29] and the consequence relations
studied in Horty’s [14, 15, 16] qualify as its instances.2 Let us now characterize
van Fraassen’s system for exemplary purposes (the notational conventions are
adapted to this paper). In Section 2 we give a more abstract and general
characterization of the approach based on contextualizing, as well as some more
examples of concrete consequence relations based on this idea.

Suppose we are presented with a set of obligations3 ΓO = {OA1, . . . ,OAn}
where Ai (1 ≤ i ≤ n) are propositions without normative content (hence, with-
out occurrences of O). OB is a normative consequence of ΓO if and only if OB
follows by means of SDL from some consistent subset of ΓO. Now, it can easily
be established that OB follows by means of SDL from ΘO (where the propo-
sitions in Θ are without normative content) if and only if B follows from Θ in
classical propositional logic. Hence, we can alternatively and equivalently stip-
ulate: OB is a normative consequence of ΓO if and only if B follows classically
from some consistent subset of Γ.4

2The reader who is interested in a philosophical motivation for this second approach is
referred to Horty’s more recent [17]. The general idea is that instead of basing a theory of
deontic reasoning on general principles as Agg or Inh it is conceived as an instance of a more
general theory of reasoning in terms of reasons. The obligations (or norms, more generally)
are seen as reasons for acting, and they, rather than some abstract deontic principles, are
taken to be fundamental for deontic logic. It should be added that Horty takes great care in
linking this abstract picture to ethical conceptions.

3We will consider permissions in a follow-up paper. A brief discussion can be found in
Section 8.

4The characterization of van Fraassen’s system as a contextualization of SDL is only one
way to look at it. Neither van Fraassen, nor Horty characterize it as such. Moreover, in
contrast to the syntactic approach in terms of consistent subsets (that serve as contexts)
presented in this paper, van Fraassen’s approach is semantic. He looks at classes of models
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Let us give a small illustration. Suppose Anne’s mother tells her to wash
the dishes and not to do the homework (d ∧ ¬h), while her father orders her to
do the opposite —not to wash the dishes and to do the homework (¬d ∧ h)—,
and that, in addition, Anne’s grandmother requests that she brings her the
newspaper (n). According to the characterization of the normative consequences
just introduced, Anne has, for instance, to bring the newspaper (n), to wash
the dishes (d), but also not to wash the dishes (¬d). On the right hand side of
Figure 1 we see the valid contexts C1–C5. Every formula that follows from one
of these contexts is obligatory in van Fraassen’s system.

In this paper we present dynamic proof theories for consequence relations
based on contextualizing SDL. Let us now give the gist of the approach. (All
the technical details are specified in Sections 4–6.) Suppose we are interested in
a proof theory that is adequate with respect to the consequence relation of the
system just defined. We took the set of contexts C to which SDL is applied to
consist of all consistent subsets of the premise set ΓO. Now, in a dynamic proof,
a proof line is equipped with a column in which we keep track of the context that
is used to derive the respective formula of the given line. A retraction mechanism
marks lines whose associated context is not in C. Take our example with Anne.
This is schematically illustrated in Figure 1.5 Our consistent contexts are C1–
C5. Thus, lines l1–l6 are derived from consistent contexts. However, line l7 is
derived from a context that is not consistent and hence the respective line will
be marked and accordingly considered revoked.

...
...

...
...

l1 O(d ∧ ¬h) . . . C2
l2 On . . . C1
l3 Od Inh; l1 C2
l4 O(n ∧ d) Agg; l2, l3 C4
l5 O(¬d ∧ h) . . . C3
l6 Oh Inh; l5 C3
l7 O(d ∧ h) Agg; l3, l6 C2 ∪ C3 invalid context −→ retraction

C2
{

d ∧ ¬h

C1
{

n

C3
{

¬d ∧ h

C4

C5

Figure 1

We will spell out these proofs in terms of adaptive logics in standard format.
An advantage is that their meta-theory is well-investigated [3]. Adaptive logics
in the standard format consist of three parameters: the so-called lower limit
logic, a set of so-called abnormalities, and an adaptive strategy. All the adap-

with maximal score, where the score of a model consists of all the formulas in the premise
set that it satisfies. See the discussion in [16], especially, Fact 2 (p. 598), where the semantic
approach is shown to be equivalent to the syntactic approach.

5Figure 1 is slightly simplified for didactic purposes. As will be explained in Section 3, the
fourth column of an adaptive proof carries the so-called condition of a line. It is not identical
to a context (as in the simplified schematic representation of Figure 1), but is uniquely and
in a very straightforward way associated with a context.
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tive logics presented here are distinguished merely by the third parameter: the
strategy. They are all based on SDL as the lower-limit logic and use the same
abnormalities. We will see that the three standard strategies give rise to three
intuitive consequence relations two of which have already been described in the
deontic logic literature. Moreover, varying the parameters gives rise to other
consequence relations based on the idea of contextualizing SDL. We shortly
discuss them in Section 8.

The paper is structured as follows. In Section 2 we give a generic account of
the idea of contextualizing SDL and subsequently introduce some concrete basic
consequence relations: |∼C , |∼D, and |∼U . In Section 3 we introduce the three
components that make up the adaptive logics that are presented in this paper.
In Sections 4 (resp. 5, resp. 6) we introduce the dynamic proof theory for |∼C

(resp. |∼U , resp. |∼D). In Section 7 we have a brief look at the semantics of our
logics. Finally, in Section 8 we compare our systems to some other approaches
from the literature, indicate how other consequence relations based on the idea
of contextualizing SDL can be characterized by adaptive logics, and suggest
some directions for future research.

2 Contextualizing SDL

Our formal language. Where A is a set of propositional letters, we let Wpro

stand for the 〈∧,∨,⊃,¬〉-closure of A. We denote members of A by lower case
letters a, b, c, . . .. We write ⊢ for the consequence relation of classical proposi-
tional logic (CL) based on the language Wpro.

Since we are in a deontic setting, we must be able to represent obligations.
To this end we introduce two operators: ◦ and O. As we will see, the core
idea behind the contextualizing approach can be realized in several ways, thus,
giving rise to different consequence relations. In all of these, we will use ◦ to
indicate something like explicitly stated norms, norms which we consider but do
not yet have a commitment to, norms as they are when we start reasoning about
them.6 O, on the other hand, represents norms that we accept as consequences
of our deliberation process. The different consequence relations differ in their
treatment of O. Hence, the exact meaning of O depends on the formal system
and the application context in which it is used. We will give examples below.

Since we do not allow for nested occurrences of deontic operators, our full
set of well-formed formulas W is formed by taking the 〈∧,∨,⊃,¬〉-closure of
Wpro ∪W◦ ∪WO, where W◦ = {◦A | A ∈ Wpro} and WO = {OA | A ∈ Wpro}.
Lastly, given some Γ ⊆ Wpro, we use Γ◦ to refer to the set {◦A | A ∈ Γ}.

Standard Deontic Logic (SDL). One standard way to obtain SDL is by
means of:

If ⊢ A then ⊢ OA (NEC)

6For some additional discussion and motivation of ◦ see Section 8.1.
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⊢ O(A ⊃ B) ⊃ (OA ⊃ OB) (K)

⊢ OA ⊃ ¬O¬A (D)

Hence, O is a normal KD-modality. Note that in our setting ◦ is basically a
‘dummy’-operator: ◦A is treated just like a propositional atom. For instance,
we do not have weakening for such formulas (e.g., ◦A does not imply ◦(A∨B)),
nor replacement of equivalents (from ⊢ A ≡ B and ◦A it does not follow that
◦B).

Semantically, SDL is characterized by a standard Kripke-frame for KD.
An SDL-model M is a tuple 〈W,R, v, a〉 where W is a set of points (called
worlds), R is an accessibility relation, v :W × (A ∪W◦) → {0, 1} assigns truth
values to atoms and formulas preceded by ◦ at each world,7 and a ∈ W is
the actual world. Usually, in SDL R is a serial relation between worlds, but,
since in this paper we do not allow for nested occurrences of O, we can simplify
the setup by letting R be a non-empty subset of W containing all the worlds
accessible from the actual world a. Similarly, since we do not allow for nested
occurrences of ◦, we need not consider v(w, ◦A) where w 6= a. Hence, we let
v : (W ×A) ∪ ({a} ×W◦) → {0, 1}. We let conventionally v◦(A) =df v(a, ◦A).

Truth at a world w ∈W is then defined as follows:
- M,w |= p iff v(w, p) = 1 where p ∈ A
- M,w |= ¬A iff M,w 6|= A where A ∈ W
- M,w |= A ∧B iff M,w |= A and M,w |= B where A,B ∈ W
- similarly for the other Boolean connectives
- M,a |= OA iff for all w ∈ R, M,w |= A, where A ∈ Wpro

- M,a |= ◦A iff v◦(A) = 1, where A ∈ Wpro

Contextualizing SDL. SDL can be contextualized in various different ways.
From an abstract point of view the idea is as follows (it is illustrated in Figure
2). Suppose our premise set is Γ◦, where Γ ⊆ Wpro.
a. First, we define a set of contexts C = ΓO

1 , . . . ,Γ
O
m where Γi ⊆ Γ for each

1 ≤ i ≤ m.
b. Second, SDL is applied to each context delivering CnSDL

(

ΓO
i

)

(where 1 ≤
i ≤ m).

c. Third, we define the consequence set in one of two ways: either credulously by
taking the union

⋃m
i=1 CnSDL

(

ΓO
i

)

, or skeptically by taking the intersection
⋂m

i=1 CnSDL

(

ΓO
i

)

.
If we focus on premise sets that consist of obligations only, there is even no

need to consider SDL since

Fact 2.1. OA1, . . . ,OAn ⊢SDL OB iff A1, . . . , An ⊢CL B where Ai (1 ≤ i ≤ n)
has no occurrences of O.

7Recall that formulas of the type ◦A are treated like atoms. Of course, instead of using
a unary ‘dummy’-operator ◦ we could have as well used an enriched set of atoms: A ∪ {A◦ |
A ∈ Wpro}.
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Premise set

Γ1

Γ2

Γ3

CnSDL(Γ
O
1 )

CnSDL(Γ
O
2 )

CnSDL(Γ
O
3 )

∪

∩
skeptical

consequences

credulous
consequences

Figure 2

The situation is different if more expressiveness is required, and we want,
for instance, also to deal with permissions. (Being a more involving topic,
permissions are beyond the scope of this paper, but see Section 8.)

Steps (a)–(c) are summarized in the following definition. (i) is the credulous
approach, and (ii) is the skeptical:

Definition 1. Where C(Γ) ⊆ ℘(Γ):

(i) Γ◦ |∼∩
C
OA iff for all Θ ∈ C(Γ), Θ ⊢ A

(ii) Γ◦ |∼∪
C
OA iff for some Θ ∈ C(Γ), Θ ⊢ A

Here are some examples.

1. Letting C consist of all consistent subsets of Γ and opting for a credulous
approach we get exactly the approach we have already discussed in Section
1. Formally,

Definition 2. |∼C =df |∼
∪
CS
, where CS(Γ) is the set of CL-consistent subsets of

Γ.

The fact that every consistent subset of Γ is contained in one of its maximally
consistent subsets and the monotonicity of CL immediately imply:

Fact 2.2. |∼C = |∼∪
MCS

, where MCS(Γ) =df max⊂(CS(Γ)) is the set of maxi-
mally consistent subsets of Γ.

2. Another option is to let the contexts C be the set of all maximally consistent
subsets of Γ and to use the skeptical approach.

Definition 3. |∼D =df |∼
∩
MCS

3. Let the only context in C be the set of all obligations in ΓO that are not
involved in deontic conflicts. Evidently, the credulous and skeptical approach
coincide in this case. Formally,
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Definition 4. |∼U =df |∼∩
IB
, where ib(Γ) =df

⋂

Λ∈MCS(Γ) Λ and IB(Γ) =df

{ib(Γ)}.8

4. Similarly, we can let C consist of all consistent subsets of Γ with maximal
cardinality.

Definition 5. |∼#
D =df |∼

∩
MCS#

, where MCS#(Γ) = max<#
(CS(Γ)) and Θ <#

Θ′ iff card(Θ) < card(Θ′).

In this paper we focus on the consequence relations |∼C , |∼D and |∼U . Let us,
therefore, comment more on these, as well as some of their possible application
contexts.

The first relation — the ‘C-consequence’ — is equivalent to the original
proposal of van Fraassen, and it also appears in Horty’s [14, 15] and [16]. Van
Fraassen’s motivation was to have a logic which, in contrast to SDL, would
allow for normative dilemmas. And, indeed, with the C-consequence we get an
abundance of conflicts among the derived norms. Thus, also the name: the ‘C’
stands for ‘Conflict’. Let us illustrate this approach with a simple example.

Recall the situation we considered in the introduction: Anne’s mother tells
her to wash the dishes and not do the homework — d∧¬h —, while her father
orders her to do the opposite — ¬d∧h—, and, in addition, Anne’s grandmother
requests that she brings her a newspaper: n. The explicitly given obligations in
this situation are represented by the set Γ◦

1 = {◦(d ∧ ¬h), ◦(¬d ∧ h), ◦n}. Now,
Γ1 = {d ∧ ¬h,¬d ∧ h, n} has two MCSs: {d ∧ ¬h, n} and {¬d ∧ h, n}, and, as a
consequence, we have both Γ◦

1 |∼C Od and Γ◦
1 |∼C O¬d. Thus, our poor Anne

is both obliged to do the dishes and obliged not to do the dishes. Although
this result may strike us as odd, it is exactly what we should get, given the
rationale behind the C-approach: anything that follows from a consistent set of
obligations is to be considered a derived obligation.

Apparently, this approach is not good for contexts such as deriving obliga-
tions that would form the basis of actions (e.g., Anne cannot both do and not do
the dishes), but it is useful for other contexts. For instance, it can be used when
we are interested in mapping out or analyzing all the obligations that we can
‘consistently’ derive and to discover inconsistencies — a job that is not at all a
trivial matter when this set is large or obligations themselves are complex. The
knowledge gained may, for instance, be useful for a subsequent revision of the
normative code(s) in question. On apprehending that she is both obliged and
forbidden to do the dishes, Anne might confront her parents with this apparent
problem and ask them to sort it out.

‘D’ in ‘D-consequence’ stands for ‘disjunctive’, and our toy example will
show why. Notice that for OA to be derivable from Γ◦

1, A has to be implied
by all Λ ∈ MCS(Γ1). This means that, unlike the case of |∼C , we get neither
Γ◦
1 |∼D O(d∧¬h) nor Γ◦

1 |∼D O(¬d∧h), but we get the corresponding disjunction,
i.e., Γ◦

1 |∼D O((d ∧ ¬h) ∨ (¬d ∧ h)). Now, this also happens to hold in general.
Whenever Γ◦ contains ◦A and ◦B such that ⊢ A ⊃ ¬B and both A and B

8Evidently, since {ib(Γ)} is a singleton we could have equivalently defined: |∼
U

=df |∼
∪
IB
.
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are consistent, the C-consequence gives us both OA and OB, while the D-
consequence allows only for a disjunctive obligation — O(A ∨ B) (given that
there is no consistent Θ ⊆ Γ for which Θ ⊢ ¬A ∧ ¬B). Notice that such an
obligation still constraints the agent’s actions: s/he has a choice between doing
A or B, but is committed to doing at least one. Since the D-approach always
gives a consistent set of O-obligations (as can be easily seen), one of its possible
contexts of application are situations in which we want to derive obligations
that would form the basis for action. The D-consequences were first introduced
in [15], and the reader can find an attempt to link them to ethical conceptions
in [16, pp. 569–71].

The ‘U ’ in |∼U stands for ‘un-conflicted’. The U -consequence is even more
cautious than the previous one. Intuitively, it does not take into account those
of the explicitly given obligations that give rise to conflicts. The set ib(Γ) — ‘ib’
standing for ‘innocent bystander’, a notion that was introduced already in [21],
— reflects this idea since it consists of exactly those formulas of Γ that in no
way contribute to its inconsistency. This can also be seen when characterizing
ib(Γ) in an alternative and equivalent way by means of minimally inconsistent
subsets:

Definition 6. A subset Γ′ of Γ is said to be minimally inconsistent iff it is
inconsistent and no subset Γ′′ of Γ′ is inconsistent. We write MIS (Γ) for the set
of all minimally inconsistent subsets of Γ.

As has been pointed out in [7],

Fact 2.3. A ∈ ib(Γ) iff A is not in any minimal inconsistent subset of Γ. In
signs: ib(Γ) = Γ \

⋃

Λ∈MIS(Γ) Λ.

Let us illustrate this by an example. Let Γ◦
2 = {◦p, ◦(¬p ∧ q), ◦r}. Now,

the corresponding Γ2 is inconsistent because of formulas p and ¬p ∧ q, but r
is ‘innocent’, and we, therefore, get Γ◦

2 |∼U Or. Notice also that we can derive
O(p ∨ (¬p ∧ r)) on the D-approach, but we do not get Γ◦

2 |∼U O(p ∨ (¬p ∧ r)).
The U -consequence provides intuitive results in application contexts where

the risk of error is high. Let us narrow the interpretation of ◦A to ‘It is explicitly
stated that A should be done’ and that of OA to ‘A should be done’. Now,
consider a context in which a first expert system recommends that you should
invest 70% of your money into some stocks S while another expert system
recommends that you should rather invest 75% of your money into stocks S′.
In this case you may want to be careful and not to derive that you should either
invest 75% into S or 75% into S′. After all, the disagreement of the two expert
systems may itself indicate a high degree of risk.9

9To the best of our knowledge, Neither |∼
U
, nor |∼#

D
have been discussed in the context

of deontic logics yet. It should be noted that general versions of all four relations — i.e., not
restricted to deontic settings — have been considered in the literature. The ones corresponding
to the C- and the D-consequences have appeared under various names: they have been called
‘weak’ and ‘inevitable’ in [21], ‘existential’ and ‘universal’ in [7], and ‘weak’ and ‘strong’ in [1].

The more general version of |∼
U

is referred to as ‘free’ and that of |∼#
D

– as ‘cardinality-based’
in [7].
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In our opinion, all three of the relations defined give rise to reasonable conse-
quences — albeit, on different readings of ◦ and O —, and are therefore worthy
of further study. We will supply each of the three relations with a proof theory.
Before turning to this task, let us notice that the three consequence relations
are related as follows:

Proposition 2.1. Γ◦|∼U OA implies Γ◦|∼D OA implies Γ◦|∼C OA.

The following examples may help the reader to get a better grip on |∼C , |∼D,
and |∼U .

Example 1. Let Γ3 = {a ∧ b,¬a ∧ b},
- Γ◦

3 |∼C Oa,O¬a,Ob
- Γ◦

3 |∼D Ob while Γ◦
3 |∼D/ Oa and Γ◦

3 |∼D/ O¬a
- Γ◦

3 |∼U/ Ob; Γ◦
3 |∼U/ Oa and Γ◦

3 |∼U/ O¬a

Example 2. Let Γ4 = {a ∧ b,¬a, c}
- Γ◦

4 |∼C Oa,O¬a,Ob,Oc
- Γ◦

4 |∼D Oc; Γ◦
4 |∼D/ Ob; and Γ◦

4 |∼D O((a ∧ b) ∨ ¬a)
- Γ◦

4 |∼U Oc; Γ◦
4 |∼U/ Ob; and Γ◦

4 |∼U/ O((a ∧ b) ∨ ¬a)

3 Adaptive Logics in the Standard Format

From the next section on we develop adaptive proof theories for the three con-
sequence relations |∼C , |∼D, and |∼U . We will present three adaptive logics.
Since all of them are in the so-called standard format, we will immediately be
equipped with a rich meta-theory (see, e.g., [4]). Adaptive logics in the standard
format are characterized by triples (LLL, Ω, x) where:

1. LLL is the so-called Lower Limit Logic. It forms the nonmonotonic core-
logic: while all the axioms and inference rules of LLL are available in the
adaptive logic, the LLL is strengthened by means of allowing for additional
defeasible inferences (see below). We will use the lower limit logic SDL based
on the language W.

2. Ω is the set of abnormalities which are characterized by a logical form, in our
case: ◦A ∧ ¬OA where A ∈ Wpro. Let, thus,

Ω◦ =df {◦A ∧ ¬OA | A ∈ Wpro}

In order to avoid notational clutter we will often use the abbreviations:
 A =df ◦A∧¬OA and  ∆ =df { A | A ∈ ∆} where ∆ ⊆ Wpro and A ∈ Wpro.

It seems intuitive to regard formulas of this form as abnormal: although A
is an explicitly stated obligation (◦A), it is nevertheless not the case that A
is a derived obligation (¬OA). The core idea of adaptive logics is to regard
abnormalities as false, unless there is a reason to suppose that they are true,
or, in other words, to interpret abnormalities as false ‘as much as possible’.
Since ◦A ∧ ¬OA is equivalent to ¬(◦A ⊃ OA) this means that we want to
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verify ◦A ⊃ OA ‘as much as possible’. In other words, we want to derive OA
from ◦A ‘as much as possible’.

3. The phrase ‘as much as possible’ is disambiguated by means of the adaptive
strategy, indicated by x. In this paper, we will work with three different
strategies: normal selections (x = n), reliability (x = r), and minimal ab-
normality (x = m).10

In what follows we present three adaptive logics all based on the set of
abnormalities Ω◦ and the same lower limit logic SDL. The only difference
concerns the strategy. We begin with normal selections in Section 4 which
gives us a characterization of the C-consequence, then move to reliability in
Section 5 which gives a characterization of the U -consequence, and, lastly, we
discuss minimal abnormality in Section 6 characterizing the D-consequence. In
accordance with the main thrust of our paper, the presentation of adaptive logics
focuses on the proof theory and, hence, on the syntactic consequence relation. In
a nutshell, we will obtain the following representation theorem (which is proven
in the respective sections 4.2, 5.2, and 6.2):

Theorem 3.1. Where Γ ⊆ Wpro,

(i) Γ◦|∼C OA iff Γ◦ ⊢SDLn OA,

(ii) Γ◦|∼U OA iff, Γ◦ ⊢SDLr OA

(iii) Γ◦|∼D OA iff Γ◦ ⊢SDLm OA,

4 Normal Selections and C-Consequences

The first adaptive logic we introduce uses the normal selections strategy. Let,
thus, SDLn be characterized by the triple 〈SDL, Ω◦, n〉. We start by explain-
ing the proof format, which is common to all three systems to be presented.

4.1 The adaptive proof theory for C-consequences

Lines in adaptive proofs consist of four elements: a line number, a formula, a
justification (calling upon previous line numbers and a rule, see below), and
a condition which is a finite set of abnormalities. The general idea is this:
the formula is derived on the assumption that no abnormality occurring in the
condition is true. Inferences in proofs are made by means of three generic rules.

10Although the standard format only comprises reliability and minimal abnormality, it is
shown that normal selections is under a modal translation reducible to either of the two (see
[24]). The need to disambiguate the meaning of ‘as much as possible’ is due to the fact that
sometimes only disjunctions of abnormalities are derivable, but neither of the disjuncts are
derivable on their own. The reader will find examples below.
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The first rule is PREM. It allows introducing premises on the empty condi-
tion.

If A is a premise:
...

...
...

...
l A PREM ∅

Next, we have the unconditional rule RU. Where ln+1 > ln > . . . > l1,

If A1, . . . , An ⊢SDL B:

l1 A1 . . . ∆1

...
...

...
...

ln An . . . ∆n

ln+1 B l1, . . . , ln; RU
⋃n

i=1 ∆i

Because of these two rules all the derivative power of our lower limit logic
SDL is available in adaptive proofs: whenever A is derivable from A1, . . . , An in
SDL it can also be derived from A1, . . . , An in the adaptive logic. Notice that
the conditions of the lines at which A1, . . . , An have been derived are carried
forward and merged.

The most interesting rule is the conditional rule RC. It allows for defeasi-
ble, conditional derivations. Due to their central place in the adaptive proof-
and meta-theory it is practical to use a designated notation for disjunctions of
abnormalities: Dab(∆) =df

∨

A∈∆A where ∆ ⊆ Ω◦. RC allows to derive A on
the condition ∆ from A1, . . . , An iff A ∨ Dab(∆) is derivable from A1, . . . , An

in the lower limit logic. The intuitive meaning is that A is derived on the as-
sumption that neither of the abnormalities in ∆ is true. Evidently, we have
◦A ⊢SDL OA ∨  A. This enables us to derive OA from ◦A on the condition
{ A}. Similarly, we have for instance ◦B,OA ⊢SDL O(A∧B)∨ B. So, suppose
we have already derived OA on the condition { A} and we also have ◦B, then
we can derive O(A ∧B) from OA and ◦B by adding  B to the condition { A}
resulting in { A, B}. In this way we keep track of the context, i.e., of the ex-
plicitly stated obligations (preceded by ‘◦’) that we use to derive O-obligations,
such as {◦A, ◦B} in this case. More generally: a context ∆◦ is tracked as  ∆
in the condition column of an adaptive proof.

Let us now state the generic rule RC (where l1 < . . . < ln+1):

If A1, . . . , An ⊢SDL B ∨ Dab(Θ):

l1 A1 . . . ∆1

...
...

...
...

ln An . . . ∆n

ln+1 B l1, . . . , ln; RC
⋃m

i=1 ∆i ∪Θ

Let us make use of the example from Section 1 to illustrate these rules of
inference. Recall that the orders given to Anne were Γ◦

1 = {◦(d ∧ ¬h), ◦(¬d ∧
h), ◦n}. We begin our SDLn-proof by introducing all the premises.

1 ◦(d ∧ ¬h) PREM ∅
2 ◦(¬d ∧ h) PREM ∅
3 ◦n PREM ∅

11



At this point we apply RC to the first three lines. The proof is extended as
follows:

4 O(d ∧ ¬h) 1; RC { (d ∧ ¬h)}
5 O(¬d ∧ h) 2; RC { (¬d ∧ h)}
6 On 3; RC { n}

Take, for instance, line 4. Note that ◦(d ∧ ¬h) ⊢SDL O(d ∧ ¬h) ∨  (d ∧ ¬h).
Hence, we can ‘move  (d∧¬h) to the condition column’ and conditionally derive
O(d ∧ h).

Let us derive some more formulas using the unconditional rule. Notice how
the conditions of the lines to which RU is applied are carried over (and, in the
case of lines 9–11, also merged).

7 Od 4; RU { (d ∧ ¬h)}
8 O¬d 5; RU { (¬d ∧ h)}
9 O(¬d ∧ n) 6, 8; RU { (¬d ∧ h), n}

10 Od ∧ O¬d 7,8; RU { (d ∧ ¬h), (¬d ∧ h)}
11 O(d ∧ ¬d) 10; RU { (d ∧ ¬h), (¬d ∧ h)}

Recall the intuition behind the C-consequence: OA is a consequence iff it
is derived from a consistent context, i.e., a consistent subset of the premise
set. We have already mentioned that the conditions in our dynamic proofs
keep track of the contexts. Take a look at the conditions of lines 7–9. These
represent consistent contexts. The situation is different for the conditions of
lines 10 and 11. Obviously, (d ∧ ¬h) and (¬d ∧ h) are not classically consistent
(or, equivalently, O(d ∧ ¬h) and O(¬d ∧ h) are not SDL-consistent). Thus, we
expect that the formulas derived at these lines are retracted from the proof so
that they are not counted as consequences.

In adaptive logics lines are revoked by means of the so-called marking. No-
tably, definitions of marking are what differentiates our three proof theories.
Before we specify the marking for normal selection it is instructive to make the
following observation. There is a close relation between, on the one hand, the
question whether the context presented by a condition ∆ is consistent, and, on
the other hand, the question whether Dab(∆) is derivable on the empty condi-
tion in a proof. As we will prove in the next section, the answers to the two
question coincide:

Corollary 4.1. Where ∆ ⊆ Γ ⊆ Wpro: ∆ is CL-inconsistent (resp. ∆O is
SDL-inconsistent) iff Dab( ∆) is derivable on the empty condition in a dynamic
proof from Γ◦.

And indeed, since ⊢SDL ¬O(d∧¬h)∨¬O(¬d∧h) we get: {◦(d∧¬h), ◦(¬d∧
h)} ⊢SDL  (d ∧ ¬h) ∨  (¬d ∧ h):

12  (d ∧ ¬h) ∨  (¬d ∧ h) 1,2; RU ∅
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Hence, at line 12 we derive a disjunction of two abnormal formulas. This
disjunction means that we cannot hold to the assumption that formulas  (d∧¬h)
and  (¬d ∧ h) are both false.11

Definition 7 (Marking for Normal Selections). A line l is marked at stage s
of a proof iff, where ∆ is its condition, Dab(∆) has been derived on the empty
condition at stage s.12

According to our definition, lines 10 and 11 are marked at stage 12. Let us
restate the last few lines of the proof so that we see Definition 7 at work.

7 Od 4; RU { (d ∧ ¬h)}
8 O¬d 5; RU { (¬d ∧ h)}
9 O(¬d ∧ n) 6, 8; RC { (¬d ∧ h), ◦n ∧ ¬On}

X10 Od ∧ O¬d 7,8; RU { (d ∧ ¬h), (¬d ∧ h)}
X11 O(d ∧ ¬d) 10; RU { (d ∧ ¬h), (¬d ∧ h)}
12  (d ∧ ¬h) ∨  (¬d ∧ h) 1,2; RU ∅

We see that lines whose conditions represent inconsistent contexts are marked,
just as expected. Corollary 4.1 and Definition 7 warrant this in general.

If a line is marked at a stage s, the formula occurring as its second element
is not considered derived at stage s. In view of the fact that lines that are not
marked at some stage may become marked at a later stage, we need a stable
— stage-independent — notion of derivability in order to define a consequence
relation. Thus, we have the following definition.

Definition 8. A formula A is finally derived in a proof from Γ at a stage s iff
(i) A occurs as the second element on some unmarked line l at stage s, and (ii)
line l does not get marked in any further extension of the proof.

The adaptive consequences of some given set Γ are exactly the formulas that
can be finally derived.

Definition 9. Γ ⊢SDLn A iff A is finally derivable in an SDLn-proof from Γ.

The following representation theorem establishes a link between the mark-
ing definition and final derivability. Instead of Dab-formulas derived at a given
stage on the empty condition, we now consider Dab-formulas that are SDL-
consequences. Instead of considering formulas derived on conditions in a dy-
namic proof we consider formulas derivable in disjunction with Dab-formulas.
It is easy to see that

11Note that we cannot, in general, know in advance whether the assumptions we make are
justified or not. This can only be discovered as the proof proceeds. The reader might not
immediately see this because of the simplicity of our toy example, where, indeed, it is clear
from the very beginning that there is something wrong with the orders of Anne’s parents. This,
however, does not hold in general. As sets of obligations grow large and obligations themselves
become complex, we have to draw inferences in order to analyze the given obligations before
we actually see which disjunctions of abnormalities are derivable.

12A stage of a proof is a list of proof lines such that all the lines referred to in any of the
justifications of lines in the list are also contained in the list.
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Fact 4.1 (see [3], Lemma 1). A is derivable in a dynamic proof from Γ on the
condition ∆ iff Γ ⊢SDL A ∨ Dab(∆).

Given these correlations, the following representation theorem for adaptive
consequences mirrors derivability at a stage in view of the adaptive marking.13

Theorem 4.1. Γ ⊢SDLn A iff there is a finite ∆ ⊆ Ω such that Γ ⊢SDL

A ∨ Dab(∆) and Γ 0SDL Dab(∆).

In our example we thus have both Γ◦
1 ⊢SDLn Od and Γ◦

1 ⊢SDLn O¬d, since
we have Γ◦

1 ⊢SDL Od∨ (d∧¬h) and Γ◦
1 ⊢SDL O¬d∨ (¬d∧ h), while Γ◦

1 0SDL

 (d ∧ ¬h) and Γ◦
1 0SDL  (¬d ∧ h).

Admittedly, some readers might find it puzzling (and, possibly, counter-
intuitive) that, as soon as we discovered that either  (d ∧ ¬h) or  (¬d ∧ h), we
marked the line at which the conjunction Od ∧ O¬d appears, but did nothing
about lines 7 and 8 where the two conjuncts appear isolated —, especially, since
the derivation of each conjunct depends on one of the ‘unsafe’ disjuncts. Two
notes are in order here.

First, recall that we had Γ◦
1|∼C Od and Γ◦

1|∼C O¬d and that SDLn equips
|∼C with a proof theory. Given that the C-consequence allows one to derive
contradictory obligations, but not their conjunction, it should not be very sur-
prising that in an SDLn-proof the two obligations are finally derivable, while
their conjunction gets marked. Second and more importantly, we have to recall
that the framework we are developing in this section (just as the C-consequence)
is meant to derive an obligation OA iff A follows from some consistent subset of
the explicitly stated obligations. Indeed, Od then follows in view of ◦(d ∧ ¬h)
and O¬d follows in view of ◦(¬d ∧ h). In other words, on one internally con-
sistent interpretation of Γ◦

1, Anne is obliged to do the dishes and not to do her
homework. On another one – she is obliged not to do the dishes while she is
obliged to do her homework. But on no consistent interpretation is she obliged
to do the dishes and also not to do them. Thus, we do not get O(d∧¬d). In fact,
this is something that our proof itself has taught us. For what the Dab-formula
on line 12 says is that we cannot consistently suppose that both ¬ (d∧¬h) and
¬ (¬d ∧ h) hold, which is exactly the working assumption at lines 10 and 11.

This concludes the exposition of the proof theory of SDLn, and now it only
remains to link it to the C-consequence relation.

4.2 Meta-Theoretic Results

First, note that we only need to consider those derivations in which only the
elements of Γ are featured in the conditions:

Lemma 4.1. Where ∆ ⊆ Γ ⊆ Wpro:

(i) Γ◦ ⊢SDL OA ∨ Dab( ∆) iff Γ◦ ⊢SDL OA ∨ Dab( (∆ ∩ Γ));

(ii) Γ◦ ⊢SDL Dab( ∆) iff Γ◦ ⊢SDL Dab( (∆ ∩ Γ)).

13This is an instance of a meta-theorem of adaptive logics: see [22, Thm. 2.8.2].
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Proof. Ad (i): (⇐) is trivial. (⇒) Suppose Γ◦
0SDL OA∨Dab( (∆∩Γ)). Hence,

there is a modelM = 〈W,R, v, a〉 of Γ◦ such thatM 6|= OA and for all B ∈ ∆∩Γ,
M 6|=  B and thus M |= OB. Let M ′ = 〈W,R, v′, a〉 where v′(w,C) = v(w,C)
for all C ∈ A and all w ∈ W , and v′◦ = 1Γ (the characteristic function of
Γ, i.e., C 7→ 1 if C ∈ Γ, else C 7→ 0). Obviously, M ′ is a model of Γ◦ and
M ′ 6|= OA ∨ Dab( ∆).

Ad (ii): Let in (i) A = B ∧¬B for some arbitrary B ∈ Wpro. Then Γ◦ ⊢SDL

Dab( ∆), iff [by SDL-properties], Γ◦ ⊢SDL OA∨Dab( ∆), iff [by (i)] Γ◦ ⊢SDL

OA ∨ Dab( (∆ ∩ Γ)), iff [by SDL-properties], Γ◦ ⊢SDL Dab( (∆ ∩ Γ)).

The next theorem shows that OA is derivable on a condition  ∆ iff ∆ implies
A classically:

Theorem 4.2. Where ∆ ⊆ Γ ⊆ Wpro: Γ◦ ⊢SDL OA ∨ Dab( ∆) iff ∆ ⊢ A.

Proof. (⇒) Suppose ∆ 0 A. Hence ∆ ∪ {¬A} is CL-consistent and there
is a maximal CL-consistent extension Λ ⊆ Wpro of ∆ ∪ {¬A}. Let M =

〈{a}, {a}, v, a〉 where v : (a,C) 7→

{

1 if C ∈ Λ ∩ A
0 else

and v◦ = 1Γ. Obvi-

ously, M is a model of Γ◦, M 6|= OA and M 6|=  B for all B ∈ ∆ (since
M |= OB). Hence, Γ◦

0SDL OA ∨ Dab( ∆).
(⇐) Suppose ∆ ⊢ A. Let M be a model of Γ◦ (note that for all Γ ⊆ Wpro,

Γ◦ is SDL◦-consistent). We have to show that M |= OA ∨ Dab( ∆) and hence
that M |= OA or M |= Dab( ∆). Suppose that M 6|= Dab( ∆). Hence, M |=
∧

B∈∆ ¬ B. Since, ∆ ⊆ Γ, M |=
∧

B∈∆ OB, and hence (by SDL properties)
M |= OA.

Thus, we also have (to see this just let A = B ∧ ¬B in Theorem 4.2):

Corollary 4.2. Where ∆ ⊆ Γ ⊆ Wpro: Γ◦ ⊢SDL Dab( ∆) iff ∆ is CL-
inconsistent.

Note that Fact 4.1 implies that Dab(∆) is derivable on the empty condition
from Γ iff Γ ⊢SDL Dab(∆). Together with Corollary 4.2 this implies Corollary
4.1.

An immediate consequence is the following theorem that associates minimal
Dab-consequences with minimally inconsistent sets (see also Table 1).

Definition 10. Dab(∆) is a minimal Dab-consequence of Γ iff Γ ⊢SDL Dab(∆)
and for all Θ ⊂ ∆, Γ 0SDL Dab(Θ).

Theorem 4.3. Where ∆ ⊆ Γ ⊆ Wpro: Dab( ∆) is a minimal Dab-consequence
from Γ◦ iff ∆ ∈ MIS (Γ).

Proof. ∆ ∈ MIS (Γ), iff, ∆ is CL-inconsistent and for all ∆′ ⊂ ∆, ∆′ is not
CL-inconsistent, iff [by Corollary 4.2], Γ◦ ⊢SDL Dab( ∆) and for all ∆′ ⊂ ∆,
Γ◦

0SDL Dab( ∆′).
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The idea behind C-consequences is that they are derivable from a consistent
subset of Γ. Translated to adaptive proofs this means that a C-consequence
A is expected to be derivable on an assumption that is compatible with some
consistent subset of Γ: i.e., it is expected to be derivable on a condition  ∆
such that there is a Γ′ ∈ MCS(Γ) for which ∆ ⊆ Γ′. Corollary 4.4 below shows
exactly this. In order to see this, first note that:

Lemma 4.2. Where Γ ⊆ Wpro: Λ is an inconsistent subset of Γ iff Λ ⊆ Γ and
for all Θ ∈ MCS(Γ), Λ \Θ 6= ∅.

Proof. (⇐) Suppose Λ ⊆ Γ is consistent. Hence, there is a Θ ∈ MCS(Γ) such
that Λ ⊆ Θ and thus Λ \Θ = ∅. (⇒) Suppose there is a Θ ∈ MCS(Γ) for which
Λ \Θ = ∅ and hence Λ ⊆ Θ. Hence, Λ is a consistent subset of Γ.

By Lemma 4.2 and Theorem 4.3 we get:

Corollary 4.3. Where ∆ ⊆ Γ ⊆ Wpro:

(i) Γ◦ ⊢SDL Dab( ∆) iff for all Θ ∈ MCS(Γ), ∆ \Θ 6= ∅; and equivalently

(ii) Γ◦
0SDL Dab( ∆) iff there is a Θ ∈ MCS(Γ) such that ∆ ⊆ Θ.

By Corollary 4.3 and Theorem 4.1 we immediately get the expected:

Corollary 4.4. Where Γ ⊆ Wpro: Γ◦ ⊢SDLn OA iff there is a ∆ ∈ MCS(Γ)
and a ∆′ ⊆ ∆ for which Γ◦ ⊢SDL OA ∨ Dab( ∆′).

In view of Corollary 4.4 it is easy to prove our main theorem of this section.

Theorem 4.4. Where Γ ⊆ Wpro: Γ◦ ⊢SDLn OA iff Γ |∼C A.

Proof. Γ◦ ⊢SDLn OA, iff [by Corollary 4.4], there is a ∆ ∈ MCS(Γ) and a finite
∆′ ⊆ ∆ such that Γ◦ ⊢SDL OA ∨ Dab( ∆′), iff [by Theorem 4.2], there is a
∆ ∈ MCS(Γ) and a finite ∆′ ⊆ ∆ such that ∆′ ⊢ A, iff [by the compactness
of CL], there is a ∆ ∈ MCS(Γ) such that ∆ ⊢ A, iff [by the definition of |∼C ],
Γ |∼C A.

5 Reliability and U-consequences

In this section we introduce our second adaptive logic that relies on the so-called
reliability strategy. SDLr is characterized by the triple 〈SDL, Ω◦, r〉.

5.1 The adaptive proof theory for U-consequences

Recall that the U -consequences are the ones that follow from the unique context
consisting of the ‘innocent bystanders’ of the premise set, i.e., they follow from
those obligations that are not involved in conflicts. Hence, we expect that lines
are marked which are derived on conditions that contain obligations that are
not ‘innocent’ in this sense. In order to see how this is achieved, let us look
again at the premise set Γ◦

1.
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1 ◦n PREM ∅
2 On 1; RC { n}
3 ◦(d ∧ ¬h) PREM ∅
4 ◦(¬d ∧ h) PREM ∅

X5 O(d ∧ ¬h) 3; RC { (d ∧ ¬h)}
X6 Od ∧ On 2,5; RU { (d ∧ ¬h), n}
7  (d ∧ ¬h) ∨  (¬d ∧ h) 3,4; RU ∅

At lines 1, 3, and 4 we introduce premises, at lines 2 and 5 we have con-
ditional derivations in accordance with RC, and, finally, at lines 6 and 7 we
have applications of the unconditional rule RU. We have seen all this. What
has changed is the way marking works (recall that it is exactly what makes the
SDL-based proof theories differ from each other).

The idea is now as follows. Recall that some A ∈ Γ is not an innocent
bystander of Γ iff A is involved in a minimally inconsistent subset of Γ (see Fact
2.3). Hence, we expect to mark a line iff its condition contains some  A such
that A ∈ ∆ where ∆ ∈ MIS (Γ). By Theorem 4.3 this means that we expect
to mark a line iff its conditions contains some  A which is part of a minimal
Dab-formula. Since the marking is applied stage-wise we need a stage-dependent
notion of minimal Dab-formulas:

Definition 11. A disjunction of abnormalities Dab(∆) is aminimal Dab-formula
at stage s in a proof from Γ iff, at stage s Dab(∆) is derived on the condition ∅
and if Dab(Θ) with Θ ⊆ ∆ is derived at stage s on the empty condition, then
Θ = ∆.

It is obvious that the Dab-formula occurring at line 7 is minimal. Whenever
several Dab-formulas are derived in the same proof, all of their disjuncts together
are deemed to be unreliable:

Definition 12. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas
derived at stage s of a proof from Γ, the abnormalities in Us(Γ) = ∆1 ∪∆2 ∪ . . .
are called unreliable at stage s.

With these definitions in place, we can state the marking definition for reli-
ability:

Definition 13 (Marking for Reliability). A line l with condition ∆ is marked
at stage s of a proof from Γ iff, ∆ ∩ Us(Γ) 6= ∅.

Note the difference from SDLn. There, for some line l to get marked, all
the members of its conditions had to be derived in the form of a disjunction,
showing, explicitly, that at least one of them has to hold. Here, on the other
hand, we mark l as soon as we get to know that one of them is involved in
a minimal disjunction of abnormalities. In fact, this is just what happens in
the proof above: when we discover at stage 7 that  (d ∧ ¬h) is unreliable, we
conclude that lines 5 and 6 are based on unreliable assumptions and mark them.
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In SDLn-proofs marking could only come, but in SDLr-proofs (and in
SDLm-proofs, see Section 6) we also have cases of ‘unmarking’. This is due
to the fact that previously minimal Dab-formulas cease to be minimal when
some of their sub-disjunctions are derived (they are ‘shortened’). This double
dynamics is taken into account in the following definition —in fact, a generaliza-
tion of Definition 8— which is used for both strategies: reliability and minimal
abnormality.

Definition 14. A formula A is finally derived in a proof from Γ at a stage s
iff, (i) there is a non-marked line l with formula A at stage s, (ii) if l is marked
in any extension of the proof, the proof can be further extended in a way such
that l is unmarked again.

Again, the adaptive consequences of Γ are the formulas that are finally deriv-
able (but now with respect to Definition 14):

Definition 15. Γ ⊢SDLr A iff A is finally derivable in an SDLr-proof from Γ.

This consequence relation can be characterized by means of SDL, which
will give us an interesting link to the U -consequences. First, we define a stage-
independent notion of unreliable formulas:

Definition 16. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences
of Γ, the set of unreliable formulas is given by U(Γ) =df ∆1 ∪∆2 ∪ . . .

The SDLr-consequences from Γ can be characterized by means of U(Γ) and
SDL as follows: where Θ¬ =df {¬A | A ∈ Θ},14

Theorem 5.1. Γ ⊢SDLr A iff Γ ∪ (Ω◦ \ U(Γ))¬ ⊢SDL A.

5.2 Meta-Theoretic Results

In the remainder of this section we relate SDLr to the U -consequences. The
idea was that A is a U -consequence from Γ iff we can derive A from the inno-
cent bystanders of Γ, ib(Γ). Translated in the context of adaptive proofs, this
means that we expect a U -consequence to be derivable on an assumption that
is compatible with ib(Γ): i.e., on a condition  ∆ such that ∆ ⊆ ib(Γ). And,
indeed, we can immediately rephrase Theorem 5.1 as Theorem 5.2 below. First,
however, note that by Theorem 4.3:

Corollary 5.1. Where Γ ⊆ Wpro: U(Γ◦) =
⋃

∆∈MIS(Γ)  ∆.

Theorem 5.2. Where Γ ⊆ Wpro: Γ◦ ⊢SDLr OA iff there is a ∆ ⊆ ib(Γ) such
that Γ◦ ⊢SDL OA ∨ Dab( ∆).

Proof. Γ◦ ⊢SDLr OA, iff [by Theorem 5.1], Γ◦ ∪ (Ω \ U(Γ◦))¬ ⊢SDL OA, iff [by
classical properties (compactness, deduction and resolution theorem)], there is
a finite  ∆ ⊆ Ω \ U(Γ◦) such that Γ◦ ⊢SDL OA ∨ Dab( ∆), iff [by Corollary

14This is an instance of a meta-theorem of the standard format: see [4, Thm. 6].

18



5.1 and Lemma 4.1], there is a finite ∆ ⊆ Γ \
⋃

Θ∈MIS(Γ) Θ such that Γ◦ ⊢SDL

OA ∨ Dab( ∆), iff [by Fact 2.3], there is a finite ∆ ⊆ ib(Γ) such that Γ◦ ⊢SDL

OA ∨ Dab( ∆).

With Theorem 4.2 we gain a representation theorem:

Theorem 5.3. Where Γ ⊆ Wpro: Γ◦ ⊢SDLr OA iff Γ |∼U A.

Proof. Γ◦ ⊢SDLr OA, iff [by Theorem 5.2], there is a ∆ ⊆ ib(Γ) such that
Γ◦ ⊢SDL OA ∨ Dab( ∆), iff [by Theorem 4.2], there is a ∆ ⊆ ib(Γ) such that
∆ ⊢ A, iff [by the compactness of CL], ib(Γ) ⊢ A, iff [by the definition of |∼U ],
Γ |∼U A.

6 Minimal Abnormality and D-consequences

In this section we present a proof theory for the D-consequence relation. SDLm

is characterized by the triple 〈SDL,Ω◦,m〉.

6.1 The adaptive proof theory for D-consequences

The marking definition for SDLm is more engaged in comparison to the previous
two strategies. It relies on the idea of minimal choice sets. Here we explain how
it works, while in Section 6.2 we show how it captures the idea behind the
D-consequence relation.

Suppose that we have an SDLm-proof from some set Γ, and that the follow-
ing minimal Dab-formulas occur in this proof at stage s: Dab(∆1), . . . ,Dab(∆n).
Consider the set of all choice sets of {∆1, . . . ,∆n}, that is to say, all the sets that
contain a member of every ∆i. The minimal choice sets are those that are not
proper subsets of other choice sets. We let Φs(Γ) stand for the set of minimal
choice sets of {∆1, . . . ,∆n}. We can now state the definition for marking:

Definition 17 (Marking for Minimal Abnormality). A line on which A is de-
rived on the condition ∆ is marked at stage s iff

(i) there is no φ ∈ Φs(Γ) such that φ ∩∆ = ∅, or,

(ii) for some φ ∈ Φs(Γ), there is no line at stage s on which A is derived on a
condition Θ for which φ ∩Θ = ∅.

This becomes more transparent when ‘reversed’, i.e., if we consider when
lines are not marked : Where A is derived on the condition ∆ on line l, this line
l is not marked at a stage s iff (a) there is a minimal choice set φ ∈ Φs(Γ) for
which φ∩∆ = ∅, and (b) for every other choice set φ′ ∈ Φs(Γ) there is some line
l′ (possibly l itself) at which A is derived on a condition Θ such that φ′∩Θ = ∅.

Let us have a look at a concrete SDLm-proof to see this version of marking at
work. Again, we reason about orders issued to Anne, albeit her grandmother’s
order is left out of consideration.
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1 ◦(d ∧ ¬h) PREM ∅
2 ◦(¬d ∧ h) PREM ∅

X3 O(d ∧ ¬h) 1; RC { (d ∧ ¬h)}
X4 Od 3; RU { (d ∧ ¬h)}
X5 O(d ∨ h) 4; RU { (d ∧ ¬h)}
6  (d ∧ ¬h) ∨  (¬d ∧ h) 1,2; RU ∅

As in the previous cases, we have done some defeasible reasoning on the
basis of the premises —lines 3, 4, and 5— and afterwards we discovered that
something may not be right with the previous steps since we derived the Dab-
formula at line 6. Note that at the given stage  (d ∧ ¬h) ∨  (¬d ∧ h) is the
only minimal Dab-formula occurring in this proof. Thus, the set of minimal
choice sets Φ6(Γ

◦
1) of {{ (d ∧ ¬h), (¬d ∧ h)}} contains exactly two singleton

sets: φ1 = { (d ∧ ¬h)} and φ2 = { (¬d ∧ h)}. Let us now see why lines 3–5
are marked. If they were to be unmarked, two conditions would have to hold.
First, for each line there would have to be some minimal choice set which does
not share a single element with the respective conditions of these lines. It is
immediate to see that this holds, for φ2 is such a set. Second, for each other
minimal choice set that intersects with the respective conditions — such as φ1
— the respective formulas have to be derived without relying on any of its
elements. This is evidently not the case for φ1. Now let us continue our proof
a bit further and see how this changes.

X3 O(d ∧ ¬h) 1; RC { (d ∧ ¬h)}
X4 Od 3; RU { (d ∧ ¬h)}
5 O(d ∨ h) 4; RU { (d ∧ ¬h)}
6  (d ∧ ¬h) ∨  (¬d ∧ h) 1,2; RU ∅

X7 O(¬d ∧ h) 2; RC { (¬d ∧ h)}
X8 Oh 7; RU { (¬d ∧ h)}
9 O(d ∨ h) 8; RU { (¬d ∧ h)}

In view of the minimal Dab-formula at line 6, as soon as lines 7 and 8 are
added, they get marked. Note that there is nothing wrong with adding new
lines to the proof on the basis of others that are already marked. Now, at stage
9 something noteworthy happens: we have again derived O(d∨h), but this time
on a different condition. This makes a difference for marking, for now we have
both: (1) the minimal choice set φ1 which does not share any elements with the
condition of line 9 — point (a) above —, and (2) another line at which O(d∨h)
is derived on a different condition at line 5 that does not share any elements
with the second minimal choice set φ2. Given that here Φ9(Γ

◦
1) contains only

the two elements φ1 and φ2, (2) is enough to satisfy point (b). What is more,
now the situation has also changed for line 5 which, therefore, gets unmarked.
The reader is welcome to verify that both line 5 and line 9 will never get marked
in any extension of the proof, and are, thus, finally derived (Definition 14).

It is worth pausing here to say a few words about the intuition behind the
minimal abnormality strategy. In short, it is already contained in its name.
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When a minimal Dab-formula is derived in a proof, it is clear that at least one
of its disjuncts δ1, . . . , δn must be true. Where reliability strategy considers all of
these disjuncts unreliable —allowing that all of them may be true—, minimal
abnormality assumes that only a minimal number of them are true. These
minimal sets of abnormalities that are true are determined by the minimal
choice sets in view of all the minimal Dab-formulas derived at some stage of the
proof.

It still remains to define derivability for SDLm. Recall that we already
specified when a formula is counted as finally derived in Definition 14.

Definition 18. Γ ⊢SDLm A iff A is finally derivable in an SDLm-proof from Γ.

The following representation theorem establishes a link between the marking
definition and final derivability.

Definition 19. Where Σ(Γ) is the set of all ∆ ⊆ Ω such that Dab(∆) is a
minimal Dab-consequence from Γ, Φ(Γ) is the set of minimal choice sets over
Σ(Γ).

Theorem 6.1. Γ ⊢SDLm A iff for each φ ∈ Φ(Γ) there is a ∆ ⊆ Ω◦ \ φ such
that Γ ⊢SDL A ∨ Dab(∆).15

6.2 Meta-Theoretic Results

The minimal choice sets in Φ(Γ◦) correspond exactly to the complements of the
maximal consistent subsets of Γ. In order to see that we first show:

Lemma 6.1. Where Γ ⊆ Wpro: φ is a minimal choice set of MIS (Γ) iff Γ \φ ∈
MCS(Γ).

Proof. (⇒) Suppose Γ \φ /∈ MCS(Γ). If Γ \φ is inconsistent then evidently φ is
not a (minimal) choice set of MIS (Γ) since φ∩ (Γ \φ) = ∅. If Γ \φ is consistent
then there is a non-empty φ′ ⊆ φ such that (Γ \ φ) ∪ φ′ ∈ MCS(Γ). By Lemma
4.2, for all ∆ ∈ MIS (Γ), ∆ \ ((Γ \ φ) ∪ φ′) = (∆ ∩ φ) \ φ′ 6= ∅. Hence, φ \ φ′ is a
choice set of MIS (Γ) and since φ′ 6= ∅, φ is not a minimal choice set of MIS (Γ).

(⇐) Suppose Γ \ φ ∈ MCS(Γ). By Lemma 4.2, for all ∆ ∈ MIS (Γ), ∆ \
(Γ \ φ) = ∆ ∩ φ 6= ∅. Hence, φ is a choice set of MIS (Γ). Where ∅ ⊂ φ′ ⊆ φ,
(Γ \φ)∪φ′ is inconsistent by our supposition. Since (φ \φ′)∩ ((Γ \φ)∪φ′) = ∅,
φ \ φ′ is not a choice set of MIS (Γ).

Now we can show the announced result (see also Table 1):

Theorem 6.2. Where Γ ⊆ Wpro:  φ ∈ Φ(Γ◦) iff Γ \ φ ∈ MCS(Γ).

Proof. By Theorem 4.3, Φ(Γ◦) is the set of minimal choice sets over { ∆ | ∆ ∈
MIS (Γ)}. The rest follows immediately by Lemma 6.1.

In view of Theorem 6.1, Theorem 6.2 and Lemma 4.1 we get:

15This is an instance of a meta-theorem of the standard format: see [4, Thm. 8].
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adaptive logic MCS-approach
minimal Dab-consequence of Γ◦: minimal inconsistent sets:

Dab( ∆) ∆ ∈ MIS (Γ)
reliable abnormalities: innocent bystanders:
 A ∈  Γ \ U(Γ◦) A ∈ ib(Γ)

maximal choice sets: maximal consistent sets:
 φ ∈ Φ(Γ◦) Γ \ φ ∈ MCS(Γ)

Table 1: Correspondences

Corollary 6.1. Where Γ ⊆ Wpro: Γ
◦ ⊢SDLm OA iff for each φ ∈ MCS(Γ) there

is a ∆ ⊆ φ such that Γ◦ ⊢SDL OA ∨ Dab( ∆).

Together with Theorem 4.2 this implies the following representation theorem:

Theorem 6.3. Where Γ ⊆ Wpro: Γ◦ ⊢SDLm OA iff Γ |∼D A.

Proof. Γ◦ ⊢SDLm OA, iff [by Corollary 6.1], for each φ ∈ MCS(Γ) there is a
finite ∆ ⊆ φ such that Γ◦ ⊢SDL OA ∨ Dab( ∆), iff [by Theorem 4.2], for each
φ ∈ MCS(Γ) there is a finite ∆ ⊆ φ such that ∆ ⊢ A, iff [by the compactness of
CL], for each φ ∈ MCS(Γ), φ ⊢ A, iff [by the definition of |∼D], Γ |∼D A.

7 Semantics

In this section we define semantics corresponding to the three systems developed
above: SDLn, SDLr, and SDLm. Since in this paper we focus on proof theory,
our treatment of the semantics is brief.

In general, semantics for adaptive logics in the standard format are obtained
by selecting a subset of those LLL-models (in our case — SDL-models) that
verify some given Γ. On the intuitive level, we restrict our attention to exactly
those models of the lower limit logic that are the ‘most normal’ in view of the
given adaptive strategy. It is very important to note that this selection is made
on the basis of some set of premises Γ. Thus, it is not accurate to say that some
LLL-model is an adaptive model per se. Rather we should say that it is an
adaptive model of the given premise set.

The selection of the ‘most normal’ models is carried out by an appeal to the
notion of the abnormal part of a model. It is defined as follows. Let M be an
arbitrary model of SDL. Its abnormal part — Ab(M) — is the set of all and
only those abnormalities that it verifies, i.e., Ab(M) = {A ∈ Ω◦ |M |= A}. The
semantics of minimal abnormality is the simplest of the three, and, hence, is a
good point to start with.

Definition 20. An SDL-model M of Γ is minimally abnormal iff there is no
SDL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).
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Definition 21. Γ 
SDLm A iff A is verified by all minimally abnormal models
of Γ.

Surprising as it might be, these definitions do not appeal to the minimal
choice sets that were so important for the definition of marking. Nevertheless,
the latter are tightly connected to abnormal parts of the models picked out by
Definition 20. More concretely, in [1] it was proven that for every φ ∈ Φ(Γ)
there is some minimally abnormal model M of Γ such that Ab(M) = φ, and
vice versa, whenever M is a minimally abnormal model of Γ, Ab(M) ∈ Φ(Γ).
There are, usually, more minimally abnormal models than choice sets, and a
natural question arises: which formulas are made true by all minimally abnormal
LLL-models of Γ that share the same abnormal part? As it turns out, after
we formalize the intuition behind this question, we arrive at the semantics for
normal selections.

Definition 22. A set M of SDL-models of Γ is a normal selection of Γ iff for
some φ ∈ Φ(Γ), M = {M is a SDL-model of Γ | Ab(M) = φ}.

In view of the fact that the abnormal parts of minimally abnormal models of
Γ constitute exactly Φ(Γ), we can equivalently define: M is a normal selection
of Γ iff there is a minimally modelM of Γ such that M = {M ′ is an SDL-model
of Γ | Ab(M ′) = Ab(M)}.

Definition 23. Γ 
SDLn A iff A is verified by every model of some normal
selection M of Γ.

Now it only remains to introduce the semantics of SDLr. Recall that the
marking for reliability was carried out by a reference to the set of unreliable
formulas — U(Γ). In the corresponding semantics we also appeal to it.

Definition 24. An SDL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Definition 25. Γ 
SDLr A iff A is verified by all reliable models of Γ.

This concludes the exposition of the semantics. In view of the previous
discussion and the fact that all three of our logics are in the standard format we
immediately get the following result, which also serves as a summary of Sections
4–7.

Theorem 7.1. Where Γ ⊆ Wpro,

(i) Γ◦|∼C OA iff Γ◦ ⊢SDLn OA iff Γ◦ 
SDLn OA,

(ii) Γ◦|∼U OA iff Γ◦ ⊢SDLr OA iff Γ◦ 
SDLr OA,

(iii) Γ◦|∼D OA iff, Γ◦ ⊢SDLm OA iff Γ◦ 
SDLm OA.
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8 Discussion

In this section we make two remarks on premise sets (Section 8.1) and compare
ours systems to other approaches from the literature (Section 8.2). We then
discuss some directions for future research (Section 8.3). In particular, we indi-
cate how other consequence relations based on the idea of contextualizing SDL
can be characterized by adaptive logics and consider various ways the systems
defined above can be extended.

8.1 Two Remarks Concerning Premises

So far we have mainly focused on the setup for which van Fraassen’s original
account and for that matter also Horty’s systems are defined, namely, the situ-
ation in which our premise set is simply a set of norms Γ◦. It is important to
notice that our adaptive logics can deal with more complex premise sets as well.

We can, for instance, deal with disjunctions of obligations, such as ◦A∨◦B.
This may be relevant in situations in which our information about the given
norms is incomplete: e.g., Anne may know that either her mother asked her to
wash the dishes, or she asked her to bring out the garbage (◦d∨◦g). Later Anne
may learn that she was not asked to do the dishes ¬◦d, from which Anne can infer
that her mother asked her to bring out the garbage ◦g. Similarly, we can enforce
constraints as part of our premises: e.g., we can add ¬O(p∧q) to the premise set
in order to make sure that O(p∧ q) will not be derived in the reasoning process.
In this way we can represent physical constraints. Similarly, in some modeling
situations we might be interested in adding Op to the premise set. Recall our
reading of Op: the obligation to p is a result of our deliberation process. So far,
we have only considered reasons for accepting Op that are internal, i.e., provided
by the underlying logic (e.g., in SDLm due to the fact that p follows from all
MCSs of Γ). Of course, the reasoning agent may also have external reasons
for accepting Op. She may, for instance, face a deontic system which contains
both ◦p and ◦¬p, but, for some (external) reasons, may have a preference for
◦p. The easiest, albeit somewhat coarse, way of modeling this preference and
making sure that Op is accepted as a consequence is by adding it to the premise
set. In the end, in (dogmatic) political discourse it is not uncommon for all
the reasoning process to be structured around a pre-established conclusion. We
discuss a more sophisticated way of modeling preferences in Section 8.3.

Our second remarks concerns the motivations behind the distinction between
◦ and O. We have already pointed out in Section 2 that the two operators have
different meanings. Still some readers may feel that an application of Occam’s
Razor is in order, unless there are some technical reasons that necessitate the
usage of ◦. The technical reason here is the reflexivity of the consequence
relation of adaptive logics in the standard format: Γ ⊢AL A for all A ∈ Γ.
Were we to use exclusively O and, hence, ΓO instead of Γ◦, we would get OA
for all A ∈ Γ as a consequence. This is obviously inadequate for |∼D and |∼U :
e.g., {◦p, ◦¬p} 6 |∼D Op. Also |∼C does not support a reflexive treatment, since
we have, for instance, {◦(p ∧ ¬p)} 6 |∼C O(p ∧ ¬p). Now, when facing a choice
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between either giving up reflexivity or adding a second normative operator,
it seems more natural to go for the latter. For, first, a distinction between
explicitly given norms and norms that are accepted as a consequence of our
deliberation process is conceptually transparent, and, second, reflexivity seems
to be warranted under our reading of ◦. It is obvious that an explicitly given
norm does not cease to be explicitly given after we have scrutinized it (the
same concerns the ‘prima facie’ reading). Also note that, even if such a ◦A
is not turned into OA at the end of our reasoning process, it can still have a
normative force which may be witnessed by feelings of guilt or regret if A is not
realized (cf. [30]).

8.2 Comparisons

In [11] Lou Goble distinguished three basic ways of devising conflict-tolerant
deontic logics. All three are based on the idea of weakening SDL. According
to the first approach, we invalidate or restrict aggregation [10], according to
the second, we invalidate or restrict inheritance [10, 11], and, according to the
third, we go paraconsistent and weaken our negation (at least in the scope of
the deontic modalities, [10, 9, 5]). The basic thrust behind these approaches is
ampliative. They equip us with basic principles of normative reasoning which
are rather weak so that we have to supplement them with further, more con-
textual reasoning in order to get a more encompassing and realistic model.
For instance, inheritance is only applicable to OA in Goble’s DPM-systems
if we have ¬O¬A, i.e., in case A is non-conflicted: e.g., O(A ∧ B) 0DPM OA
while {O(A ∧ B),¬O¬(A ∧ B)} ⊢DPM OA. These systems have been non-
monotonically strengthened by means of adaptive logics in such a way that the
given normative code is interpreted as ‘non-conflicting as possible’ (see e.g.,
[13, 25, 19, 9, 5, 6]). Hence, in the adaptive strengthening we can derive OA
from the premise set {O(A ∧B)}.

Some of these adaptive systems are quite powerful. For instance, many of
the systems presented in [13] allow for the following inferences, neither of which
is possible in the systems presented above (however, see Section 8.3):

{O(t ∧ r),O(¬t ∧ v)} ⊢ Or ∧ Ov (1)

{O(t ∧ r),O(¬t ∧ v)} ⊢ O(r ∧ v) (2)

{O(t ∧ (f ∨ s)),O(¬t ∧ ¬f)} ⊢ Os (3)

Goble criticized the adaptive approach based on lower-limit logics that are
weakenings of SDL since they treat normative conflicts as ‘abnormal’ while, ac-
cording to Goble, “if one regards such conflicts as real, as commonplace, there is
no reason to consider them abnormal, or as presumptively false” [13, p. 27]. This
more philosophical problem has repercussions for the adaptive consequences.
For instance, in none of the proposed adaptive systems based on weakenings of
SDL do we get: {O(f ∨ s),O¬f,O¬s} ⊢ Os, although according to Goble this
inference “should stand” (ibid.). Note that (a) in the systems presented in this

25



paper deontic conflicts are not treated as abnormalities, rather an abnormality
is an explicitly stated obligation which is not part of the consequence set, and
(b) the inference {◦(f ∨ s), ◦¬f, ◦¬s} |∼C Os holds in the C-account.

Horty has proposed a way to model the reasoning leading to the consequence
relations |∼C and |∼D using Reiter’s default logic. Since his system is developed
for conditional obligations, let us restrict our attention to the non-conditional
case — which is in line with the setting of this paper. Given some Γ◦ we
consider the default theory 〈F ,D〉 where the set of facts F is empty and the
set of defaults is defined by DΓ = {(⊤ :A/A) | A ∈ Γ}. We reason on the
basis of our default theory by building so-called extensions. Here is how it
works. A default (A :B /C) is interpreted as follows: if A is the case, we can
conclude C unless the set of formulas derived so far is inconsistent with B. An
extension of a default theory D is a set of formulas E ⊆ Wpro that is a fixed
point (E = CnCL (E)) and that satisfies: for all (A :B /C) ∈ D, if A ∈ E and
¬B /∈ E then C ∈ E . In our simplified scenario the latter condition reads: for
all (⊤ :A/A) ∈ DΓ, if ¬A /∈ E then A ∈ E . The credulous consequences are
obtained by the union of all the obtained extensions, the skeptical consequences
are obtained by their intersection.

Looking at our adaptive proofs we can see interesting connections. First note
that the obtained extensions correspond to the classical closure of the maximal
consistent subsets of Γ. In view of this, Fact 4.1, and Theorem 4.2, it is easy
to see that some OA is derivable on a condition  ∆ where ∆ ⊆ Γ and ∆ is
CL-consistent iff A ∈ CnCL (E) for some extension E of DΓ. Looking back
at Section 4.2, the bridge is even stronger for SDLn: recall that a line with
a condition  ∆ will get marked according to the normal selections strategy iff
∆ is classically inconsistent. In view of Corollary 4.4 we have: OA is finally
derivable from Γ◦ iff it is derivable on a condition ∆ ⊆ E for some extension E
of DΓ and A ∈ CnCL (E). In this sense one can interpret proofs in SDLn in
terms of ‘building extensions’.

There are also some advantages in terms of transparency that comes with our
dynamic proofs. The first concerns the compactness of the modeling. This works
as follows. In the dynamic proof we can easily make a reasoning step on the
basis of previous inferences that are based on different conditions. All we have
to do is simply merge the conditions of the previous inferences. The marking
mechanism takes care of the cases in which the newly obtained conditions are
‘too strong’. Altogether the reasoning process is unified in one dynamic proof.
In the default approach we build extensions one-by-one, and, thus, the reasoning
process is modeled in a more fragmented manner.

Another interesting aspect is that we can use one and the same proof as a
basis for all three consequence relations. All we need is to alter the adaptive
strategy, i.e., the marking definition, in order to model the reasoning that is
adequate with respect to the three different consequence relations.

We should also note that the idea to use a dummy operator (like ◦) was
first utilized in the adaptive systems presented in [22] and [20]. There the idea
was to apply ◦A ⊃ A as much as possible: in [22] the focus was propositional
logic, while in [20] it was generalized to the predicative case. In the latter
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paper it was shown that the standard adaptive strategies (reliability, minimal
abnormality, and normal selections) exactly characterize predicative versions of
the consequence relations of Rescher and Manor, [21].16

8.3 Some directions for future research

So far, our adaptive characterizations concerned only three consequence rela-
tions that are based on the idea of contextualizing SDL. We begin this section
by briefly describing how other consequence relations could be characterized by
adaptive logics and, hence, — equipped with dynamic proof theories.

Recently a general framework has been proposed for adaptive logics that are,
for instance, able to handle quantitative considerations and priorities (see [22,
Chapter 5]). The semantic characterization and the dynamic proof theory of
any adaptive logic that fits this format is similar to, respectively, the semantics
and the proof theory of minimal abnormality. Let us explain the basic idea in
semantic terms (for the proof theory the reader is referred to [22]). Given a
premise set Γ, we again select specific models out of the lower limit logic models
of Γ that are deemed ‘normal enough’ in view of their abnormal part. The latter
is determined by means of the so-called selection function Λ. For instance, for
minimal abnormality Λ simply selects the models of Γ whose abnormal part is
minimal. However, the framework also allows for selection functions that do not
correspond to a strategy in the standard format. For instance, it can be used to
devise adaptive logics characterizing quantitative variants of the consequences
studied in this paper. Consider |∼#

D which was defined in Section 2. In this case
the selection function Λ selects all SDL-models of Γ◦ for which the cardinality
of their respective abnormal parts is minimal.

Furthermore, this framework also allows us to introduce priorities. We
can use different ◦i-s (where i ≥ 1) to model the priority of the source of
an obligation (with 1 being the highest priority). Let us give two examples
for consequence relations based on the idea of contextualizing SDL that are
informed by priorities. Where Γ⋆ is a set of obligations of the form ◦iA let
Γi = {A | ◦iA ∈ Γ⋆} (where i ≥ 1) and Γ = {A | ◦iA ∈ Γ⋆ where i ≥ 1}.
Analogously to Definition 1, we need to specify a function C(Γ) that generates
contexts for a given Γ⋆. Given these contexts we can then define: Γ⋆ |∼∩

C
OA iff

for all Θ ∈ C(Γ), Θ ⊢ A; and Γ⋆ |∼∪
C
OA iff for some Θ ∈ C(Γ), Θ ⊢ A. Here are

two examples:

1. We let C(Γ) be max
⊏

Γ⋆

lex

(MCS(Γ)) where ϕ ⊏Γ⋆

lex
ψ iff there is an i ∈ N such

that (i) for all j < i, ϕ ∩ Γj = ψ ∩ Γj and (ii) ϕ ∩ Γi ⊂ ψ ∩ Γi.
17 Let e.g.,

16These were not the first adaptive systems that give characterizations of the conse-
quence relations defined by Rescher and Manor: in [1] they were characterized by means
of inconsistency-adaptive logics and in [2] strengthenings were proposed on the basis of the
modal logic S5. It should be noted that the ALs presented in these papers are not in the
standard format.

17In [27] the so-called lexicographic adaptive logics (see also [26]) were used to model this
(lexicographic) preference order in a prioritization of the deontic logic from [19]. Lexicographic
adaptive logics fall within the generic framework of [22, Chapter 5]. Outside of the context of
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Γ⋆ = {◦1a, ◦2b, ◦3¬b}. We have two MCSs, φ = {a, b} and ψ = {a,¬b}.
Since ψ ⊏Γ⋆

lex
φ we get Oa and Ob in this account.

2. In another approach we could associate obligations in Γ⋆ that are not
selected in a given context with a penalty that is relative to the prior-
ity of the obligation. E.g., we could use the penalty function µΓ⋆(φ) =
∑

A∈Γ\φ

∑

◦iA∈ΓA

1
i
, where ΓA = {◦iA | ◦iA ∈ Γ⋆}, and define ϕ ⊏Γ⋆ ψ

iff µΓ⋆(ϕ) < µΓ⋆(ψ).18 Now, we let C(Γ) be min⊏Γ⋆ (MCS(Γ)).

For instance, Γ⋆ = {◦2a, ◦2b, ◦3¬a} has two MCSs: φ1 = {a, b} and φ2 =
{¬a, b} where φ1 ⊏Γ⋆ φ2 since µΓ⋆(φ1) = 1

3 < µΓ⋆(φ2) = 1
2 . This is

as expected, since a is an obligation stemming from a prioritized source
compared to the source of ¬a. However, if we add ◦4¬a to Γ⋆ resulting
in Γ′⋆ the situation is different. Now, φ2 ⊏Γ′⋆ φ1, since µΓ′⋆(φ2) = 1

2 <
µΓ′⋆(φ1) = 1

3 + 1
4 = 1

2 + 1
12 . Here, two obligations concerning ¬a that

stem from ‘weaker’ sources overpower the obligation a from the stronger
source.

The corresponding selection functions for adaptive logics in the generalized
format of [22, Chapter 5] are fairly straightforward (see [22, Chapter 5.8.3] for a
selection function for (1) and [22, Chapter 5.8.4] for an example that is similar
to (2)).

In this paper we presented a framework for non-conditional obligations. Ex-
tending it to the conditional setting is another direction for future research.
Two approaches from the literature are especially interesting since they deal
with conflicts on the basis of consistency considerations similar to the approach
we presented for non-conditional obligations: (i) Input-Output logics (with con-
straints) [18] and (ii) Horty’s approach in terms of defaults that we discussed
above [14, 15, 16]. An adaptive characterization of the former is carried out in
[23] while a characterization of the latter is a topic for future research.

In a follow-up paper that is in preparation we demonstrate how to over-
come a well-known shortcoming of almost any approach based on consistency
considerations, namely, the fact that conjunctions (conjunctive obligations, in
our case) are treated as indivisible wholes. Recall the inferences in (1)–(3).
Presently they do not go through in any of our systems because the premises
are treated as indivisible wholes. Note that the only maximal consistent sub-
sets of {◦(t ∧ r), ◦(¬t ∧ v)} are {◦(t ∧ r)} and {◦(¬t ∧ v)}. We will show how
to integrate an approach into our dynamic proof theories in which premises are
analyzed or, intuitively speaking, broken into their constituent parts. In the
case of {◦(t ∧ r), ◦(¬t ∧ v)} it will give us the following maximally consistent
contexts: {t, r, v} and {¬t, r, v}. Now, it should be apparent that this is just
a step away from having, say, Or as a consequence on any of the strengthened
version of our standard systems.

deontic logic this preference order has been used in Brewka’s ‘preferred subtheories’ approach
[8].

18We suppose here that Γ is finite.
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In this follow-up research we will also extend the above consequence relations
(as well as the corresponding adaptive logics) in a way that allows us to model
permissive norms. Notice that with the introduction of permissions we also have
to deal with a new kind of normative conflicts. Let us use another variation on
our hackneyed example as an illustration. Suppose Anne’s father requests her to
wash the dishes, while her mother allows her not to do so (since, for instance, it
is her birthday). This shows that normative conflicts can occur not only between
obligations, but also between, for instance, an obligation and a permissive norm.
It is true that here, unlike the other examples we have considered, Anne has
a practical option in which neither of the norms is violated (i.e., doing the
dishes). However, this situation is still a genuine conflict, for Anne is confronted
with a practical choice between two conflicting options both of which can be
normatively justified, and, in the absence of any further higher-order deontic
principles, none of the two should be given priority.
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