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Abstract

The standard format for adaptive logics offers a generic and unifying
formal framework for defeasible reasoning forms. One of its main distin-
guishing features is a dynamic proof theory by means of which it is able
to explicate actual reasoning.

In many applications it has proven very useful to superpose sequences
of adaptive logics, such that each logic treats the consequence set of its
predecessor as premise set. Although attempts have been made to define
dynamic proof theories for some of the resulting logics, no generic proof
theory is available yet. Moreover, the existing proof theories for concrete
superpositions are suboptimal in various respects: the derivability rela-
tions characterized by these proposals are often not adequate with respect
to the consequence relation of the superposed adaptive logics and in some
cases they even trivialize premise sets. An adequate and generic proof the-
ory is needed in order to meet the requirement of explicating defeasible
reasoning in terms of superpositions of adaptive logics.

This paper presents two generic proof theories for superpositions of
adaptive logics in standard format. By means of simple examples, the
basic ideas behind these proof theories are illustrated and it is shown how
the older proposals are inadequate.

1 Introduction

Adaptive Logics (henceforth, ALs) have been suggested as a generic and uni-
fying framework to formally explicate defeasible reasoning. For this purpose a
standard format for ALs has been developed by Diderik Batens (see [5]) which
comes with a rich meta-theory. One of the most distinguishing features com-
pared to other formal frameworks for defeasible reasoning is the dynamic proof
theory of ALs. In adaptive proofs some rules are applied in a defeasible way,
i.e., they are applied conditionally. An inference is considered to be valid as long
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as there is no reason to suppose that its condition is not fulfilled. The standard
format of ALs gives a formally precise account of this idea (see Section 2).1

There are two types of dynamics that come with defeasible reasoning. First,
there is the external dynamics ([3], also known under the name synchronic

defeasibility [15, 16]). It occurs whenever new premises necessitate the retraction
of previous inferences. Most logics for defeasible reasoning forms take care of
the external dynamic by means of the nonmonotonicity of their consequence set.

Another, more neglected form of dynamics is the internal dynamics ([3], also
known under the name diachronic defeasibility [15, 16]). It occurs when new
insights gained by a logical analysis of the premises necessitate the retraction
of certain inferences. Note that here no new premises enter the picture.

The distinguishing feature of ALs is that by means of their dynamic proof
theory they explicate the actual reasoning processes that give rise to the two
types of dynamics. Due to the introduction of a new premise at a certain stage of
an adaptive proof, some inferences on previous lines may be invalidated, others
may be validated. Hence, adaptive proofs explicate the external dynamics of
defeasible reasoning. Similarly, by analyzing premises in an adaptive proof we
may derive formulas that cause that some previous conclusions are retracted,
or others are added again. This way, adaptive proofs also explicate the internal
dynamics of defeasible reasoning.

In order to model defeasible reasoning forms, their combinations and/or
defeasible reasoning with preferences and priorities, it is often very useful to
combine adaptive logics. Examples of such combinations can be found in [8,
6, 4, 14, 26, 24, 27, 2, 22, 12, 17]. The increasing plurality of these systems
makes it very useful to have a unifying, generic meta-theoretic account of them.
Hence, various recent publications offer results along these lines: in [21] the
authors present a generalized canonical form for prioritized ALs, in [19] the
author presents a new way of combining adaptive logics by means of merging
their consequence sets, in [23] the authors compare various ways of combining
ALs with the prioritized format from [21].

In this paper we focus on the most frequent way ALs are combined, i.e. on
superpositions of ALs. Given a premise set Γ, an AL AL2 is superposed on an-
other AL AL1 in case AL2 is applied to the consequence set CnAL1

(Γ) of AL1.
Given a sequence of adaptive logics 〈AL1,AL2, . . . ,ALn〉, the consequence set
of the associated superposition of ALs SAL is given by

CnSAL(Γ) = CnALn
(CnALn−1

(. . .CnAL2
(CnAL1

(Γ)) . . .))

In Section 3 we generalize this characterization to the infinite case.
This way we obtain the consequence set of a combined AL. Although the

standard format equips each ALi with a dynamic proof theory, we have no proof
theory for SAL. Proof theories have been developed for concrete superpositions
of ALs. However, neither of the proposals is apt for the generic case where each
ALi is any adaptive logic in standard format and where no restrictions on the

1We only give an informal account of ALs and their proof theory in this introduction. The
reader finds a formally precise formulation in Section 2.
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premise sets are made. This is a severe shortcoming, since the fact that ALs
explicate actual reasoning by means of their dynamic proof theory is, after all,
one of their most salient features.

This paper fills this gap by presenting two generic proof theories for super-
positions of ALs. As we will demonstrate, these proof theories are very similar
to the proof theory of ALs in standard format. This has the advantage that
users familiar with ALs will easily adjust to the superposed case, and, more im-
portantly, that all the attractive design features of usual adaptive proofs carry
over to the new formats.

In Section 2 we will introduce the reader to the standard format of ALs and
their dynamic proof format while in Section 3 we present superpositions of ALs.
In Sections 4 and 5 we explicate our generic proof theories for superpositions of
ALs. We discuss a simplification of both formats that is apt for a subclass of
superpositions of ALs in Section 6. Finally, in Section 7 we conclude by pointing
to related future research. In the appendix we present the meta-theoretical
proofs for the adequacy of our proof theories.

2 Adaptive Logics and Their Standard Format

ALs in standard format are characterized by means of three elements. We first
state them and then explicate them.

1. A lower limit logic: a reflexive, transitive, and monotonic logic that has a
characteristic semantics;2

2. A set of abnormalities Ω: a set of formulas that is characterized by a
logical form F; or a union of such sets;

3. An adaptive strategy : the Reliability or the Minimal Abnormality strategy.

The strategy is usually indicated by a superscript: we write ALr to indicate the
Reliability strategy, and ALm to indicate the Minimal Abnormality strategy.

The central idea behind ALs is to interpret a given set of premises “as
normally as possible”. The set of abnormalities and the adaptive strategy make
precise what “normally” and “as possible” mean in this phrase. But before we
elaborate more on this, we introduce some notation.

Let L be the language of the lower limit logic andW the set of all well-formed
formulas in L. In the remainder we presuppose that premise sets are formulated
in L. In ALs L is enhanced by “checked” classical connectives ¬̌, ∨̌, ∧̌, . . . and
in case of predicate logic also ∃̌ and ∀̌. These additional connectives are used in
order to express statements concerning normality and may hence also be part
of the logical form F that characterizes the set of abnormalities Ω. The set of
well-formed formulas is obtained by closing W under the checked symbols.3 Let

2A logic L is reflexive iff for all premise sets Γ, Γ ⊆ CnL(Γ); L is transitive iff for all
premise sets Γ, whenever Γ′ ⊆ CnL(Γ) then CnL(Γ

′) ⊆ CnL(Γ); L is monotonic iff for all
premise sets Γ, CnL(Γ) ⊆ CnL(Γ ∪ Γ′).

3This is done in the usual way respecting the arity of the checked connectives: e.g. where
A,B ∈ W, both A ∨̌B and ¬̌A are in the obtained set of well-formed formulas. Note that
checked connectives do not occur within the scope of non-checked connectives.
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in the remainder LLL be the lower limit logic enriched by the classical checked
connectives.4 As we will explicate below, (classical) disjunctions of abnormal-
ities play a central role in ALs. Thus, it is useful to introduce a notational
convention: We call a checked disjunction of abnormalities,

∨̌
∆ where ∆ ⊆ Ω,

a Dab-formula (Disjunction of abnormalities) and write Dab(∆).
Let us proceed with the adaptive proof theory. The idea is to take all the

inference rules of the lower limit logic for granted, but to additionally allow for
defeasible applications of some rules. Defeasible inferences in adaptive proofs
are conditional. Hence, the usual way lines in proofs are presented –by a line
number, a formula, and a justification– is enriched by a fourth element: a
condition. A condition in turn is a set of abnormalities.

Suppose some formula A is derived on the condition {B1, B2, . . . , Bn} ⊆ Ω.
The intended reading is that A is derived under the assumption that all the
abnormalities B1, . . . , Bn are false.

Adaptive proofs are characterized by three generic rules and marking con-
ditions. Let us first discuss the generic rules. In what follows we skip the line
numbers and justification of lines.

PREM If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An ⊢LLL B:

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, . . . , An ⊢LLL B ∨̌Dab(Θ):

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

By means of PREM any premise may be introduced on the empty condition.
Of course, we do not need any defeasible assumptions in order to state premises.
The unconditional rule RU makes it possible to apply any inference rule of LLL
in an adaptive proof. Note that these rules may also be applied to lines that
were derived under defeasible assumptions, i.e. where ∆i 6= ∅. The idea is that
all the defeasible conditions under which the Ai’s were derived carry forward
to the line at which B is derived. By means of PREM and RU, ALs inherit all
the derivative power of LLL: any LLL-proof can be rephrased as an AL-proof
just by adding the empty condition in the fourth column and by replacing the
respective LLL-rule by RU.

4In some papers this logic is denoted by LLL+, in others LLL ambiguously denotes both,
the lower limit logic and the enriched lower limit logic. Since in this paper we will not make
further references to the lower limit logic without the checked symbols, we drop the + from
the notation.
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What makes adaptive proofs distinctive is the third rule. It allows for defea-
sible inferences. Suppose we can derive B ∨̌Dab(Θ) by means of LLL, i.e. that
either B is the case or some of the abnormalities in Θ. Then the conditional rule
RC allows us to derive B under the assumption that none of the abnormalities
in Θ is true. This is formally realized by stating Θ in the fourth column for
conditions. Similarly as for RU, in case some of the lines that are used for the
inference step are conditional inferences, we carry forward their conditions as
well.

Obviously it is not enough to just be able to derive formulas conditionally. In
order to model defeasible reasoning we need to formally explicate the retraction
of inferences as well. In adaptive proofs this is realized by means of markings. A
line is marked in case the assumption under which it was derived is considered
as “unsafe”. This idea is made precise by two marking definitions: one for the
Reliability strategy and one for the Minimal Abnormality strategy.

The marking is determined by the Dab-formulas that have been derived at
a given stage of the proof. A stage of a proof is a list of consecutive lines
such that for each line in the list the lines called upon in its justification are
also contained in the list. A proof at stage s is extended to some stage s′ by
inserting or appending lines.5

Dab(∆) is a minimal Dab-formula at stage s of the proof in case (a) it is
derived on the empty condition at stage s and (b) there is no ∆′ ⊂ ∆ such that
Dab(∆′) is derived on the empty condition at stage s. Where Dab(∆1),Dab(∆2), . . .
are all the minimal Dab-formulas derived at stage s, Σs(Γ) =df {∆1,∆2, . . .}.
The set of unreliable formulas at stage s, Us(Γ) =df

⋃
Σs(Γ), contains all the

members of the minimal Dab-formulas.
In case Dab(∆) is a minimal Dab-formula at stage s of the proof, we know

according to the best insights available at stage s that some member of ∆ has to
be true. Since we don’t know which member, all the members of ∆ are labeled
unreliable. The marking according to the Reliability strategy makes sure that
any line whose condition contains an unreliable member is marked:

Definition 1 (Marking for Reliability). A line l with condition ∆ is marked at
stage s, iff ∆ ∩ Us(Γ) 6= ∅.

Example 1. We take as a lower limit logic the modal logic K.6 Moreover, we
enrich K by the “checked” connectives as discussed above.7 Read ♦A as “A is
plausible”. The idea is to defeasibly infer from “A is plausible” that A is the
case. This can be achieved by means of taking ♦A ∧ ¬A as the logical form for

5In case a line is inserted the following lines have to be renumbered accordingly. The
reason why we do not restrict the notion of extending proofs to the appending of lines is that
in order to define the derivability relation of ALs we need to be able to talk about extensions
of infinite proofs.

6Recall that K is axiomatized by all the axiom schemes of classical propositional logic,
the axiom scheme (K), ⊢ �(A ⊃ B) ⊃ (�A ⊃ �B), the rule (NEC), if ⊢ A then ⊢ �A, and
Modus Ponens.

7For the sake of simplicity we will denote this logic also by K.
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our set of abnormalities where A is a literal.8 Note that ♦A ⊢K A ∨̌(♦A∧¬A).
Hence, by the generic rule RC we may derive A on the condition {♦A ∧ ¬A}
from ♦A.

Now, let us have a look at the following proof from the premises {♦p,♦q,♦r, p ⊃
o, q ⊃ o,¬p ∨ ¬q} where p, q, r and o are sentential letters.

1 ♦p PREM ∅
2 ♦q PREM ∅
3 ♦r PREM ∅
4 p ⊃ o PREM ∅
5 q ⊃ o PREM ∅

X 6 r 3; RC {♦r ∧ ¬r}
X 7 p 1; RC {♦p ∧ ¬p}
X 8 q 2; RC {♦q ∧ ¬q}
X 9 o 7; RU {♦p ∧ ¬p}
X10 o 8; RU {♦q ∧ ¬q}
11 ¬p ∨ ¬q PREM ∅
12 (♦p ∧ ¬p) ∨̌(♦q ∧ ¬q) 1,2,11; RU ∅

According to the Reliability strategy, line 6 is unmarked since the abnor-
mality in its condition is not part of any minimal Dab-formula and hence not
unreliable: ♦r∧¬r /∈ U12(Γ). However, lines 7–10 are marked since each of these
lines contains one of the two unreliable formulas, either ♦p∧¬p or ♦q∧¬q. After
all, by means of line 12 we know that either ♦p ∧ ¬p or ♦q ∧ ¬q is the case.
Interestingly, o is derived on both conditions (at lines 9 and 10).

The idea behind the Minimal Abnormality strategy is to give a more rigorous
account of “interpreting the premises as normally as possible” compared to the
Reliability strategy. As a consequence, the marking for Minimal Abnormality is
less skeptical in nature. Let us demonstrate this by means of Example 1. Line
12 indeed indicates that one of the two abnormalities is the case and we don’t
know which one. However, we may still defeasibly assume that one of the two
abnormalities is false. This is in contrast to the Reliability strategy which treats
both abnormalities as unreliable. As a consequence, if a formula is derivable
on both conditions, then the inference is considered safe. Hence, according to
the Minimal Abnormality strategy, lines 9 and 10 are not marked while lines 7
and 8 are marked. Take for instance p: it is only derivable on one of the two
abnormalities, namely ♦p ∧ ¬p. This abnormality may very well be the one

8A literal is a sentential letter or a negated sentential letter. The reader may wonder why
we restrict the logical form that characterizes our abnormalities to literals. The reason is that
otherwise we would obtain a so-called flip-flop AL. In flip-flop ALs any abnormality can be
involved in a minimal Dab-formula whenever some Dab-formula is derivable by means of the
lower limit logic: a rather unwanted property in most applications. Take for instance the
premise set Γff = {♦p,♦q,¬p}. Obviously the abnormality ♦p∧¬p is K-derivable. Intuitively
we would derive q on the condition {♦q ∧ ¬q} from ♦q at some line l and expect this line not
to get marked in any extension of the proof. However, we can also derive A = ♦q∧¬q ∨̌(♦(p∨
¬q)∧¬(p∨¬q)) from Γff by means of K. Hence, would we not restrict the logical form of our
abnormalities to literals, we would have to mark l as soon as we derived A and there would
be no way to remove the marking in a further extension of the proof.
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which is true. Hence, line 7 is marked.
In order to spell out the marking definition for Minimal Abnormality we

introduce some more notions. A choice set of a set of sets {∆1,∆2, . . .} is a set
that contains a member out of each ∆i. A choice set ϕ isminimal in case there is
no choice set ϕ′ of {∆1,∆2, . . .} for which ϕ′ ⊂ ϕ. We denote the set of minimal
choice sets of Σs(Γ) by Φs(Γ). In our example Φ12(Γ) = {{♦p∧¬p}, {♦q∧¬q}}.
The marking for Minimal Abnormality is defined as follows:

Definition 2 (Marking for Minimal Abnormality). A line l with formula A and
condition ∆ is marked at stage s iff

(i) there is no ϕ ∈ Φs(Γ) such that ∆ ∩ ϕ 6= ∅, or
(ii) for a ϕ ∈ Φs(Γ): there is no line l′ at stage s with formula A and condition

Θ such that Θ ∩ ϕ = ∅.

One way to interpret the marking definition is in terms of an argumentation
game. Suppose the proponent derives a formula A on a line with condition ∆ at
stage s. Each minimal choice sets ϕ ∈ Φs(Γ) represents a minimally abnormal
interpretation of the Dab-formulas derived at stage s: each B ∈ ϕ is true in this
interpretation while each B ∈ Ω \ ϕ is false. Each minimal choice set ϕ thus
represents a potential counter-argument against the defeasible assumption used
by our proponent in order to derive A (namely that all members of ∆ are false).
ϕ is a counter-argument in case the defeasible assumption, i.e. the condition of
line l, contains elements of ϕ. In this case the assumption of line l is not valid
in the interpretation offered by ϕ.

In case there is no minimally abnormal interpretation ϕ in which the as-
sumption holds (see point (i)), the proponent cannot defend herself and her
inference to A is retracted in terms of being marked. But suppose there is a
ϕ such that ∆ ∩ ϕ = ∅. In this case there is at least one minimally abnormal
interpretation in which the assumption of our proponent holds. But what about
minimally abnormal interpretations in which the assumption does not hold, i.e.
ϕ’s for which ϕ∩∆ 6= ∅? In this case the proponent has to offer for each such ϕ
another argument whose assumption is valid in ϕ (see point (ii)). If she is able
to do so, i.e. if she is able to defend herself against all counter-arguments, then
her argument is valid and hence line l is not marked at stage s.

Marking is a dynamic enterprise. Suppose for instance that the premise set
of Example 1 is enriched by ♦q ∧ ¬q and that at line 13 of the proof above
♦q ∧ ¬q is derived on the empty condition. In that case the Dab-formula at
line 12 would not be anymore minimal at that stage. Also, the only minimal
choice set would be {♦q∧¬q}. Hence, according to both, the Reliability and the
Minimal Abnormality strategy, line 7 would be unmarked, while line 8 remains
marked.

Altogether, markings come and go: previously marked lines may be un-
marked at a later stage and previously unmarked lines may be marked. In
order to define the consequence set of ALs we hence need a more stable notion
than derivability at a stage.
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Definition 3. A is finally derived at a line l of a finite stage s in an AL-proof,
iff (i) line l is unmarked at stage s, and (ii) every extension of the proof in which
l is marked can be further extended in such a way that l is unmarked.

A is finally derivable from Γ in AL iff there is a proof from Γ in which A is
finally derived.

We write Γ ⊢AL A in case A is finally derivable from Γ and define the
consequence set of AL by: CnAL(Γ) = {A | Γ ⊢AL A}.

One way of looking at final derivability is by means of a two-person-game
(see [7]). The proponent conditionally derives A on a line l by means of a finite
argument. Now the opponent has the opportunity to extend the proof of the
proponent in such a way that line l is marked. If the proponent can extend the
proof further in such a way that l is unmarked again, she wins. A is finally
derived at l iff there is a winning strategy for the proponent, i.e., whatever the
opponent replies, she always has a way of winning the game.9

Note also that ALs are equipped with a semantics that is based on the
semantics of the lower limit logic. The idea for Minimal Abnormality is to select
all so-called minimally abnormal models from the LLL-models of a premise set
Γ, i.e., models that validate a minimal set of abnormalities. For Reliability
LLL-models are selected that verify only abnormalities that are also verified by
some of the minimally abnormal models (see [5, 25, 20]).

The standard format of ALs comes with a rich meta-theory. For a more
detailed overview see e.g. [5]. Here we only list some important properties.

Theorem 1. Γ ⊆ CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ).

Moreover, the consequence set of ALs in standard format is a fixed point
(CnAL(Γ) = CnAL(CnAL(Γ))) and satisfies the cumulativity property intro-
duced in [13] (CnAL(Γ) = CnAL(Γ ∪ Γ′) for all Γ′ ⊆ CnAL(Γ)).

3 Superpositions of Adaptive Logics

3.1 The consequence relation characterized by SAL

In this section we characterize superpositions of ALs in a generic way. Let
〈AL

xi

i 〉I be an sequence of adaptive logics AL
xi

i = 〈LLL,Ωi,xi〉 that all share
the same lower limit logic LLL. The index set I is either a initial set of natural
numbers {1, . . . , n} or I = N. Each ALxi

i comes with a strategy, either Minimal
Abnormality (xi = m) or Reliability (xi = r). For each i ∈ I we can define the
consequence set that corresponds to the superposition of all logics up to AL

xi

i :

CnSALi
(Γ) =df CnAL

xi
i
(. . . (CnAL

x2
2
(CnAL

x1
1
(Γ))))

9One of the subtleties of the adaptive proof theory is that both extensions of the proof, the
one of the opponent and the one of the proponent, may be infinite (see [5] for a more detailed
discussion). For Reliability the definition can be restricted to finite extensions.

8



In case I is finite we define CnSAL(Γ) =df CnSALn
(Γ), otherwise:

CnSAL(Γ) =df lim inf
i→∞

CnSALi
(Γ) = lim sup

i→∞

CnSALi
(Γ)

Note that the sequence 〈CnSALi
(Γ)〉i∈N converges to its limes inferior resp. to

its limes superior due to the fact that the sequence is monotonic (see Theorem
1).

Example 2. In what follows we generalize the idea presented in Example 1 in
such a way that we allow for different degrees of plausibility. We will use the
resulting class of logics for demonstrative purposes in the remainder of the paper.

Recall that ♦A was read as “A is plausible”. The idea is now to indicate the
degree of plausibility of a formula by means of sequences of ♦’s, i.e., the degree
of plausibility of A is inversely proportional to the number of ♦’s that proceed
it. We write ♦k for a sequence of k ♦’s.

Each degree i of plausibility is associated with an AL Kix where x ∈ {r,m}
that has K as its lower limit logic and ΩK

i = {♦iA ∧ ¬A | A is a literal} as
its set of abnormalities. Given an index set I we can define logics by means of
sequences 〈Kixi〉i∈I where xi ∈ {r,m}.

Let us take a look at the simple example SK2r which is the superposition
of K2r on K1r. Our premise set is Γs = {♦p,♦2q,♦2r,¬p ∨ ¬q}. Note that
although we can derive the disjunction of abnormalities (♦p ∧ ¬p) ∨̌(♦2q ∧ ¬q)
in K, there are no Dab-formulas derivable with respect to K1r. Hence, since
♦p ∈ Γs, Γs ⊢K1r p. Hence also Γs ⊢K1r ¬q since we also have ¬p ∨ ¬q ∈ Γs.
The only Dab-formula in CnK1r(Γs) with respect to K2r is ♦2q ∧ ¬q. Hence,
CnK1r(Γs) ⊢K2r r since ♦2r ∈ Γs.

Most superpositions of ALs in the literature (see [14, 26, 24, 27, 2, 12, 17])
are defined in such a way that the following holds:

(†) for every i, j ∈ I such that i 6= j, Ωi ∩ Ωj = ∅.

If (†) holds, then we can slightly simplify the two proof theories that are pre-
sented below (see Section 6). However, for the sake of generality, we will not
assume (†) to hold when defining our generic proof theories for superpositions
of ALs.

There are also two more concrete motivations to include other kinds of super-
positions. First of all, in some more recent papers [8, 6, 4], logics are developed
for which the following holds:

(‡) Where i, i+ 1 ∈ I: Ωi ⊆ Ωi+1.

As shown in [23, 20], such logics have several interesting meta-theoretic prop-
erties. Given some additional restrictions, they are cautiously monotonic and
cumulatively transitive, just like ALs in standard format. This also means that
they are a fixed point, and have the reciprocity property – see again [23, 20] for
the details and related results. There it was also shown that these properties
fail for SAL in the more general case.

Secondly, as shown in [23], logics in the format of lexicographic adaptive logics
from [21] that have the Minimal Abnormality strategy are often equivalent to
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a specific class of superpositions for which (‡) holds. Hence, the proof theories
for SAL presented in the current section can serve as proof theories for those
lexicographic ALs as well.

Before we present a proof theory for SAL, we list some meta-theoretic prop-
erties which are proven in the appendix.

Theorem 2. For all i, i+ 1 ∈ I, CnSALi
(Γ) ⊆ CnSALi+1

(Γ) ⊆ CnSAL(Γ).

Theorem 3 (LLL-closure of SAL). CnSAL(Γ) = CnLLL(CnSAL(Γ)).

Corollary 1. If CnLLL(Γ) = CnLLL(Γ
′) then CnSAL(Γ) = CnSAL(Γ

′).

Theorem 4. If CnLLL(Γ) not trivial, then CnSAL(Γ) is not trivial.

3.2 Previous proposals for proof theories for SAL

In this section we briefly take a look at previous proposals for defining adequate
proof theories for SAL. By “adequate” we mean the following property: A ∈
CnSAL(Γ) iff A is (finally) derivable in an SAL-proof.

In [1], Diderik Batens proposed an attractive proof theory for a specific class
of superpositions of ALs 〈ALxi

i 〉i∈I , i.e. superpositions where all ALi’s have
the same adaptive strategy (i.e., either Reliability or Minimal Abnormality)
and that satisfy (†). This proof theory is very similar to that of flat ALs: the
same generic rules are used, with a conditional rule that allows one to push
abnormalities to the condition; a marking definition determines which lines are
in and which are out at a given stage s of the proof; the notions of derivability
at a stage and final derivability are exactly the same as for flat ALs.

The proof theory from [1] has a certain intuitive appeal. Whether or not
a line is marked is defined recursively. If the user of a logic wants to find out
whether or not a line is marked or not at stage s, she can follow a sequential
marking procedure. Roughly speaking, such a procedure goes as follows: at a
stage s, mark lines according to a first marking criterion. This criterion solely
depends on the lines that have been derived on the empty condition. In view of
the lines that remain unmarked after this first step, we obtain a new marking
criterion, which then allows us to determine a third marking criterion, etc.
Lines that remain unmarked at the end of the whole procedure are said to be
unmarked at stage s.

For superpositions where all logics in the sequence have the Reliability strat-
egy and that obey restriction (†) this proof theory is adequate. However, in the
case in which the logics have the Minimal Abnormality strategy adequacy with
respect to the consequence relation fails and these proof theories even trivialize
some (fairly simple) premise sets– we will return to this point in Section 4.4.

Christian Straßer made a different attempt to characterize some sequential
superpositions by a dynamic proof theory in his [25]. On the one hand, Straßer
broadens the scope to include superpositions of ALs with mixed strategies. On
the other hand, Straßer restricts himself again to logics that obey (†), and only
considers the case in which I = {1, . . . , n}. Again, for all superpositions in which
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all logics have the Reliability strategy, this proof theory is adequate, whereas
for the Minimal Abnormality-variants and those with mixed strategies, Straßer’s
proposal faces the same problem as Batens’ older proposal.

* * *

In the following sections we will define a proof theory for SAL that is char-
acterized in a very generic manner:

1. the index set I is an arbitrary (possibly infinite) set
2. we allow for mixed strategies such that some logics AL

xi

i may be charac-
terized by the Reliability strategy while other logics AL

xj

j may be char-
acterized by the Minimal Abnormality strategy

3. there is no restriction on the sequence of sets of abnormalities 〈Ωi〉I , i.e.,
some Ωi and Ωj may intersect, others may be distinct.

4 A proof theory for superpositions of ALs

4.1 The proof format

The proof format of sequential superpositions which we present here is nearly
identical to the one of flat ALs. Again, a line is a quadruple consisting of a line
number, a formula, a justification and a condition. The only difference concerns
the last element. A condition is not just a set of abnormalities, but instead a
sequence of sets of abnormalities 〈∆i〉i∈I where each ∆i is a subset of Ωi. In
the following, we write ∆ for 〈∆i〉i∈I , ∅ for the sequence 〈∅, ∅, . . .〉,10

⋃
∆ for⋃

i∈I ∆i and Dab(∆) for Dab(
⋃

i∈I ∆i) where ∆ = 〈∆1, . . . ,∆m, ∅, . . .〉 in case
I is infinite.

Suppose we have the following line in a proof:11

l A k1, . . . , kn;R 〈∆1,∆2, ∅, . . .〉

where ∆1 6= ∅ 6= ∆2. Suppose moreover that line l is unmarked. The idea
is that A is derived on the assumption that no abnormality in ∆1 ∪∆2 is true.
Hence, we make use of the defeasible reasoning forms represented by both AL1

andAL2. Moreover, in case A is finally derived at line l (see Definition 6 below),
then A is a consequence of the superposition of AL2 on AL1, since no defeasible
assumptions were made that correspond to ALs higher in the sequence of SAL.

In order to realize this idea we will again make use of three generic rules and
marking definitions.

Similar as in flat adaptive proofs we need to merge the conditions of two or
more lines. In the flat case we could just take the union of the respective sets
of abnormalities. This idea can easily be generalized to the sequential case in
the following way: ∆ ⋒Θ =df 〈∆i ∪Θi〉i∈I . For instance,

〈{A,B}, {C}, ∅〉 ⋒ 〈∅, {D}, {E}〉 = 〈{A,B}, {C,D}, {E}〉

10The number of members in ∅ will of course depend on the cardinality of I.
11We use R as a metavariable for a generic inference rule.

11



As in the proof theory of flat ALs, we make use of three generic rules: a premise
introduction rule PREM, an unconditional rule RU, and a conditional rule RC.
Let us start with the first two:

PREM If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An ⊢LLL B:

A1 ∆1

...
...

An ∆n

B ∆1 ⋒ . . . ⋒∆n

As in the flat case, by the rule PREM premises can be introduced on the
empty condition (which is now a sequence of empty sets). Also, the uncon-
ditional rule RU is analogous to the flat case. In case B is derivable from
A1, . . . , An in the lower limit logic, we may derive B also in an adaptive proof
from A1, . . . , An whereby the conditions ∆i on which the Ai’s were derived are
carried forward and merged to ∆1 ⋒ . . . ⋒∆n.

The generic conditional rule for our proof theory also closely resembles the
conditional rule of Section 2:

RC If A1, . . . , An ⊢LLL B ∨̌Dab(Θ):

A1 ∆1

...
...

An ∆n

B ∆1 ⋒ . . . ⋒∆n ⋒Θ

Suppose we are able to derive B ∨̌Dab(Θ1∪. . .∪Θn) in LLL from A1, . . . , An,
where each Θi ⊂ Ωi. In that case the proof theory allows us to defeasibly derive
B from A1, . . . , An, namely on the assumption that none of the abnormalities
in Θ1 ∪ . . . ∪ Θn is true. This is realized by merging Θ = 〈Θ1, . . . ,Θn, ∅, . . .〉
with all the conditions on which the Ai’s were derived.

We close the discussion on the generic rules with two observations. In case
some Ωi’s are intersecting, sometimes B can be derived in various ways on the
basis of the same abnormalities that are assumed to be false. Take for instance
the case that C1 ∈ Ω1 ∩ Ω2 and that C2 ∈ Ω2 \ Ω1. Suppose furthermore that
A1, A2 ⊢LLL B ∨̌(C1 ∨̌C2). Then the following lines may occur in a proof:

l1 A1 . . . ∆1

l2 A2 . . . ∆2

l3 B l1, l2; RC ∆1 ⋒∆2 ⋒ 〈{C1}, {C2}, ∅, . . . 〉
l4 B l1, l2; RC ∆1 ⋒∆2 ⋒ 〈∅, {C1, C2}, ∅, . . .〉

Note that RC allows for both inferences, the one at line l3 and the one at
line l4, and hence leaves room for a choice.12 We will return to this point at
the end of this section, and show that in some cases, it is crucial to warrant

12Note that B ∨̌(C1 ∨̌C2) corresponds to both B ∨̌Dab(Θ) and B ∨̌Dab(Θ′) where Θ =
〈{C1}, {C2}〉 and Θ′ = 〈∅, {C1, C2}〉.

12



the completeness of the proof theory with respect to the syntactic consequence
relation of SAL.

Finally, note that the generic conditional rule RC only allows for a finite
amount of assumptions to be put in the condition column of the proof with
each application. As a consequence, for each proof line l with condition 〈∆i〉i∈I

there is a maximal k ∈ I such that for all j > k, ∆j = ∅. Or, in other words,
given that I is infinite we know that for each line of the proof the condition has
the format 〈∆1, . . . ,∆k, ∅, ∅, . . .〉 for some k ∈ I.

4.2 Preparing for the marking definitions

Of course, in order to explicate defeasible reasoning it is not enough to be able
to apply certain rules conditionally. What is still missing is a mechanism that
makes it possible to retract defeasible inferences. As in the case of flat ALs,
lines in an SAL-proof are marked at a certain stage of the proof in order to
signify that the corresponding inference is retracted at that stage.

The marking definitions reflect the hierarchical structure of the superposi-
tion. For each level i ∈ I we will state i-marking definitions. That a line is not
i-marked for any i ∈ I indicates that we have no reason to suspect that line.
If a line in an SAL-proof is i-marked for an i ∈ I, then this means the line is
retracted at the given stage of the proof.

Since either xi = r or xi = m, and since we also include superpositions
of ALs with mixed strategies, we need to state i-marking definitions for both
strategies. In order to do so it is useful to define sequential counter-parts to
various notions that play a central role for the marking definitions in Section 2.

We first give a sequential account of minimal Dab-formulas resulting in the
notion of a minimal Dabi-formula for each i ∈ I, i.e. a disjunction of members
of Ωi. Similar as the marking at stage s for flat ALs was determined by a set
of minimal Dab-formulas relative to s, the i-marking in the sequential case will
be determined by a set of Dabi-formulas relative to s.

Definition 4. Let s be the stage of an SAL-proof from Γ and i ∈ I.

• A proof line l with condition ∆ is a [≤0]-line iff ∆ = ∅.
• A proof line l with condition ∆ is a [≤i]-line iff ∆ = 〈∆1, . . . ,∆i, ∅, . . .〉.
• A proof line l is an i-line iff it is a [≤i]-line and not a [≤i−1]-line.
• Where ∆ ⊆ Ωi, Dab(∆) is a minimal Dabi-formula at stage s in case (i)
Dab(∆) is derived at some [≤i−1]-line l at stage s, (ii) line l is not marked
at stage s (see below for the marking definition), and (iii) for no ∆′ ⊂ ∆,
Dab(∆′) is derived at an unmarked [≤i−1]-line at stage s.

• Where {Dab(∆j) | j ∈ J} is the set of the minimal Dabi-formulas at stage
s, let CΣi

s(Γ) =df {∆j | j ∈ J}.
• CU i

s(Γ) =df

⋃
CΣi

s(Γ)
• CΦi

s(Γ) is the set of minimal choice sets of CΣi
s(Γ)
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4.3 The i-Marking for Reliability

Now we are able to define the i-marking at a stage s. Let us begin with the
marking definition for the Reliability Strategy.

Definition 5 (i-marking for Reliability). A line l with condition ∆ is i-marked
at stage s iff ∆i ∩

CU i
s(Γ) 6= ∅.

We say a line is marked in case it is i-marked for some i ∈ I (see also the
i-marking Definition 7 for Minimal Abnormality below).

Before we turn to the i-marking definition for Minimal Abnormality, let us
illustrate the generic inference rules and the above marking definition by means
of a simple example. Recall that the logic SK2r from Example 2 is defined as
the superposition of the logic K2r on the logic K1r. Now consider the premise
set Γp1 = {♦p,♦♦q,♦♦r,¬p ∨ ¬r}. According to this premise set, p, q and r
are all three plausible, but p is more plausible than the other two propositions.
However, we also know that either p or r is false. Hence we can expect that the
prioritized logic will only allow us to finally derive p, and hence by disjunctive
syllogism ¬r. Also, since q is not involved in the conflict, we expect it to be
finally derivable. This can be done as follows.

We start by introducing the premises on the condition 〈∅, ∅〉:

1 ♦p PREM 〈∅, ∅〉
2 ♦♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ¬p ∨ ¬r PREM 〈∅, ∅〉

By the rule RC, we may subsequently derive p, q and r from the first three
premises. In order to avoid notational clutter let us from now on abbreviate
abnormalities ♦iA ∧ ¬A by !iA. Note that Γp1 ⊢K p ∨̌ !1p, Γp1 ⊢K q ∨̌ !2q and
Γp1 ⊢K r ∨̌ !2r. Hence we can derive e.g. p on the assumption that !1p is false.
In the adaptive proof this means that we derive p on the condition 〈!1p, ∅〉 and
similar for q and r:

5 p 1;RC 〈{!1p}, ∅〉
6 q 2;RC 〈∅, {!2q}〉
7 r 3;RC 〈∅, {!2r}〉

To understand the rule RU, consider the following continuation of the proof,
in which the conditions of lines 5 and 6 are merged:13

8 p ∧ q 5,6;RU 〈{!1p}, {!2q}〉

Let us now turn to the marking. We useXi to denote that a line is i-marked.
To avoid clutter, we only represent the marks at one stage: where k is the last
line in the example proof the displayed marks represent marking at stage k.

In order to render line 7 marked, we first have to derive the Dab2-formula
!2r. This is done as follows:

13Note that it is also possible to derive p ∧ q from lines 1 and 2, using the rule RC.
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...
...

...
...

5 p 1;RC 〈{!1p}, ∅〉
6 q 2;RC 〈∅, {!2q}〉

X2 7 r 3;RC 〈∅, {!2r}〉
8 p ∧ q 5,6;RU 〈{!1p}, {!2q}〉
9 !1p ∨̌ !2r 1,3,4;RU 〈∅, ∅〉
10 !2r 9;RC 〈{!1p}, ∅〉

Let us discuss the marking at stage 10 step by step. First of all, note that
at stage 10, no Dab1-formula has been derived on the condition 〈∅, ∅〉.14 This
means that CΣ1

10(Γp1) = ∅, whence also CU1
10(Γp1) = ∅. As a result, no line is

1-marked at stage 10.
Now consider line 10 and its formula !2r. This is a Dab2-formula, derived on

a condition of the form 〈∆, ∅〉. Moreover, line 10 is not 1-marked. As a result, !2r
is a minimal Dab2-formula at stage 10. This implies that CΣ2

10(Γp1) = {{!2r}},
whence CU2

10(Γp1) = {!2r}. As a result, line 7 is 2-marked at stage 10, as
indicated by the symbol X2.

We define final derivability for our proof theory exactly in the same way as
it was defined for flat adaptive logics in Definition 3.15

Definition 6. A is finally derived at a line l of a finite stage s in an SAL-proof,
iff (i) line l is unmarked at stage s, and (ii) every extension of the proof in which
l is marked can be further extended in such a way that l is unmarked.

A is finally derivable from Γ in SAL iff there is a proof from Γ in which A
is finally derived. We write Γ ⊢SAL A in case A is finally derivable from Γ.

As a matter of fact, p, q and p ∧ q are finally derived in the proof from Γp1

above. Note that no Dab1-formula is derivable from this premise set, and the
only minimal Dab2-formula that can be derived from Γp1 is !

2r. This means that
in every extension of the proof, the marking of lines 1–10 remains unchanged.

4.4 The i-Marking for Minimal Abnormality

The i-marking for Minimal Abnormality is slightly more complicated:

Definition 7 (i-marking for Minimal Abnormality). A line l with formula A
and condition ∆ is i-marked at stage s iff one of the following conditions hold:

(i) there is no ϕ ∈ CΦi
s(Γ) such that ∆i ∩ ϕ 6= ∅

(ii) for a ϕ ∈ CΦi
s(Γ): there is no line l′ that is not j-marked for some j < i

at stage s, with formula A and condition 〈Θ1, . . . ,Θi,∆i+1,∆i+2, . . .〉, and
Θi ∩ ϕ = ∅.

14The formula on line 9 is not a Dab1-formula, since it contains the abnormality !2r which
is not a member of ΩK

1 .
15In case some xi = m this definition also makes reference to the i-marking for Minimal

Abnormality which we define in Section 4.4.
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Recall that final derivability as defined in Definition 6 also applies to su-
perpositions that feature ALs with Minimal Abnormality. This completes the
technical characterization of our first proof theory for SAL. In the appendix
we prove its adequacy:

Theorem 5. Γ ⊢SAL A iff A ∈ CnSAL(Γ)

Let us in the remainder of this section illustrate the proof theory and discuss
some noteworthy point concerning the marking for Minimal Abnormality.

Requirement (ii) in marking definition for Minimal Abnormality may strike
some as surprising. The marking condition has a prospective character since it
also takes into account sets of abnormalities in ∆ that belong to higher levels
than i. Naively it may be expected that requirement (ii) reads as follows:

(ii’) for a ϕ ∈ CΦi
s(Γ): there is no line l′ that is not j-marked for some j < i

at stage s, with formula A and condition Θ such that Θi ∩ ϕ = ∅.

Let us interpret Definition 7 in terms of an argumentation game. Suppose
our proponent derives formula A on the condition ∆ at stage s. The i-marking
concerns the question whether the defeasible assumption that corresponds to
level i in the superposition is feasible. The minimal choice sets of CΣi

s(Γ) offer
minimally abnormal interpretations (in terms of abnormalities in Ωi) of the
premises with respect to the Dabi-formulas at the given stage s. That is, they
offer possible counter-arguments against the defeasible assumption ∆ of line l.
However, there is a slight complication involved.

The assumptions used in order to derive A may involve abnormalities of
lower and higher levels than i. Concerning the lower levels we adopt a bottom-
up approach. In case one of the defeasible assumptions at a lower level is
not feasible we rely on the marking corresponding to the lower level to retract
the line. In this sense the i-marking procedure safely ignores the defeasible
assumptions belonging to lower levels. However, the i-marking is sensitive with
respect to the defeasible assumptions that belong to higher levels.

The idea is as follows. According to point (i) there should be at least one
minimally abnormal interpretation ϕ ∈ CΦi

s(Γ) in which the ith defeasible as-
sumption is valid, i.e., ∆i ∩ ϕ = ∅. Moreover, for each counter-argument, i.e.,
for each ϕ ∈ CΦi

s(Γ) for which ∆i ∩ ϕ 6= ∅, our proponent should be able to
defend herself in the following way. She should be able to produce an argument
such that the ith defeasible assumption is valid in ϕ and such that all the higher
level defeasible assumptions are the same as in her original argument at line l
(see point (ii)).

It is crucial that in her defense, the proponent uses the same higher level de-
feasible assumptions as in her original argument. Let us demonstrate this by a
simple example. As before, we use a K-based prioritized logic with only two lev-
els of abnormalities. This time however, we consider the Minimal Abnormality-
variant, i.e. SK2m characterized by the sequence 〈K1m,K2m〉.

Let Γp2 = {♦p,♦q,♦♦r,♦♦s,¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬s}. Note that the
following disjunctions of abnormalities are K-derivable from Γp2:
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(i) !1p ∨̌ !1q
(ii) !1p ∨̌ !2r
(iii) !1q ∨̌ !2s

However, (ii) and (iii) are neither Dab1-formulas nor Dab2-formulas. The
following SK2m-proof shows how we can derive Dab2-formulas from Γp2:

1 ♦p PREM 〈∅, ∅〉
2 ♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ♦♦s PREM 〈∅, ∅〉
5 ¬p ∨ ¬q PREM 〈∅, ∅〉
6 ¬p ∨ ¬r PREM 〈∅, ∅〉
7 ¬q ∨ ¬s PREM 〈∅, ∅〉
8 !1p ∨̌ !1q 1,2,5;RU 〈∅, ∅〉
9 !1p ∨̌ !2r 1,3,6;RU 〈∅, ∅〉
10 !1q ∨̌ !2s 2,4,7;RU 〈∅, ∅〉
11 !2r ∨̌ !2s 9;RC 〈{!1p}, ∅〉
12 !2r ∨̌ !2s 10;RC 〈{!1q}, ∅〉

X1 13 !2r 9;RC 〈{!1p}, ∅〉
X1 14 !2s 10;RC 〈{!1q}, ∅〉

Note that CΣ1
14(Γp2) = {{!1p, !1q}}, whence CΦ1

14(Γp2) = {{!1p}, {!1q}}.
Hence, at the current stage of our proof there are two minimally abnormal
interpretations with respect to the abnormalities in Ω1: one according to which
!1p is the only true abnormality, and another one according to which !1q is the
only true abnormality. This means that we cannot finally derive !2r on the
condition 〈{!1p}, ∅〉, since we cannot derive !2r on an assumption that is valid in
the minimally abnormal interpretation offered by means of the minimal choice
set {!1q} (see condition (ii) in Definition 7).

For the same reason, we cannot finally derive !2s. Both lines 13 and 14
are 1-marked. However, the disjunction of both level 2-abnormalities is finally
derived at stage 12. This follows immediately from the fact that Dab(∆1) where
∆1 = {!1p, !1q} is the only minimal Dab1-consequence of Γp2. Also, it can
easily be verified that Dab(∆2) where ∆2 = {!2r, !2s} is the only minimal Dab2-
consequence of CnK1m(Γp2).

In view of the preceding, it is easy to see that the sets CΣ1
s(Γp2) and

CΣ2
s(Γp2)

remain stable from stage 12 on. Put differently, in every further stage s of the
proof,

(†1)
CΦ1

s(Γp2) =
CΦ1

12(Γp2) = {{!1p}, {!1q}}
(†2)

CΦ2
s(Γp2) =

CΦ2
12(Γp2) = {{!2r}, {!2s}}

Let us now return to the prospective character of clause (ii) in Definition 7.
Consider the following extension, in which the (arbitrarily chosen) formula t is
derived:

9 !1p ∨̌ !2r 1,3,6;RU 〈∅, ∅〉
10 !1q ∨̌ !2s 2,4,7;RU 〈∅, ∅〉
...

...
...

...
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15 t ∨̌ !1p ∨̌ !2r 9;RU 〈∅, ∅〉
X1 16 t 15;RC 〈{!1p}, {!2r}〉

17 t ∨̌ !1q ∨̌ !2s 10;RU 〈∅, ∅〉
X1 18 t 17;RC 〈{!1q}, {!2s}〉

Since we obtained lines 15 and 17 by the rule of addition, we can make a
similar move with any formula A instead of t. Let Θ be the condition of line
16. The following facts hold:

(i.t.1) there is a ϕ ∈ SΦ1
18(Γp2) such that Θ1 ∩ ϕ = ∅ (viz. ψ1 = {!1q})

(ii.t.1)’ for every ϕ ∈ SΦ1
18(Γp2), t is derived on a condition Θ′ such that

Θ′

1 ∩ ϕ = ∅ at stage 18
(i.t.2) there is a ϕ ∈ SΦ2

18(Γp2) such that Θ2 ∩ ϕ = ∅ (viz. ψ2 = {!2s})
(ii.t.2)’ for every ϕ ∈ SΦ2

18(Γp2), t is derived on a condition Θ′ such that
Θ′

2 ∩ ϕ = ∅ at stage 18

In other words, replacing clause (ii) with (ii)’ in the definition of i-marking for
Minimal Abnormality, would imply that line 16, and by an analogous argument
line 18, are not marked at stage 18 of the proof. Moreover, in view of (†1) and
(†2), these lines would not be marked in any further extension of the proof.

This is where the prospective character of item (ii) in Definition 7 comes into
play. Take for instance line 16. It is not the case that for every ϕ ∈ SΦ1

18(Γp2),
t is derived on a condition 〈∆, {!2r}〉 such that ∆ ∩ ϕ = ∅ – this requirement
fails for {!1p}, which is a minimal choice set of level 1. According to item (ii)
t would also have to be derived on the condition 〈{!1q}, {!2r}〉 in order for line
16 not to be 1-marked. An analogous argument applies to line 18. As a result,
lines 16 and 18 are 1-marked at stage 18. Moreover, there is no way to extend
this proof such that these lines are not 1-marked.

Recall the remark in Section 3.2 that the proof theories proposed in [1] and
[25] are not adequate with respect to the consequence relation of SALm. This
negative result holds even in very simple (finite) cases and under the assumption
that for every i, j ∈ I such that i 6= j, Ωi ∩ Ωj = ∅. The above example is one
of those cases. What was lacking in those earlier proposals, is precisely the
prospective character of (ii) in the marking for Minimal Abnormality.

The following continuation of the proof shows how the formula (p ∧ s) ∨
(q ∧ r) can be finally SK2m-derived from Γp2. In this case, requirement (ii) of
Definition 7 is fulfilled for both i = 1 and i = 2, whence lines 21–24 are neither
1-marked nor 2-marked.

...
...

...
...

X1 19 p ∧ s 1,4;RC 〈{!1p}, {!2s}〉
X1 20 q ∧ r 2,3;RC 〈{!1q}, {!2r}〉

21 (p ∧ s) ∨ (q ∧ r) 19;RU 〈{!1p}, {!2s}〉
22 (p ∧ s) ∨ (q ∧ r) 20;RU 〈{!1q}, {!2r}〉
23 (p ∧ s) ∨ (q ∧ r) 9;RU 〈{!1p}, {!2r}〉
24 (p ∧ s) ∨ (q ∧ r) 10;RU 〈{!1q}, {!2s}〉
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4.5 The need for sequences of abnormalities as conditions

In Section 6, we will show how the SAL-proof theory can be simplified whenever
restriction (†) from Section 3.1 holds. More specifically, given this restriction,
we can just use sets of abnormalities for the conditions, instead of sequences of
such sets. However, as we will now show, we need sequences in the more general
case.

Consider the superposition-logic SKP, whose consequence relation defined
as follows: CnSKP(Γ) =df CnK1r(CnK2r(CnK1r(Γ))).

Note that in this specific superposition, Ω1 = Ω3 = ΩK
1 . Let Γp3 = {♦p,♦q,

♦♦r,¬p ∨ ¬q,¬p ∨ ¬r}. The following are minimal Dab-consequences of Γp3:

!1p ∨̌ !1q (1)

!1p ∨̌ !2r (2)

In view of (1), both !1p and !1q are unreliable for the first logic in the super-
position. This means that we cannot finally derive !2r on the condition {!1p}
in a K1r-proof from Γp3. More generally, !2r /∈ CnK1r(Γp3). Hence !2r is a
reliable abnormality in view of the second logic in the superposition. Since also
!1p ∨̌ !2r ∈ CnK1r(Γ), it follows that we can derive !1p on the condition !2r in
a K2r-proof from CnK1r(Γp3). But then !1p ∨̌ !1q is no longer a minimal Dab-
formula for the third logic in the superposition, whence q is finallyK1r-derivable
from ♦q on the condition {!1q}, and hence q ∈ CnSKP(Γp3).

The following proof illustrates the fact that q is not K1r-derivable from Γp3,
but only from CnK2r(CnK1r(Γp3)), whence it is SKP-derivable from Γp3:

1 ♦p PREM 〈∅, ∅, ∅〉
2 ♦q PREM 〈∅, ∅, ∅〉
3 ♦♦r PREM 〈∅, ∅, ∅〉
4 ¬p ∨ ¬q PREM 〈∅, ∅, ∅〉
5 ¬p ∨ ¬r PREM 〈∅, ∅, ∅〉
6 !1p ∨̌ !1q 1,2,4;RU 〈∅, ∅, ∅〉
7 !1p ∨̌ !2r 1,3,5;RU 〈∅, ∅, ∅〉
8 !1p 7;RC 〈∅, {!2r}, ∅〉

X1 9 q 2;RC 〈{!1q}, ∅, ∅〉
10 r 3;RC 〈∅, {!2r}, ∅〉
11 q 2;RC 〈∅, ∅, {!1q}〉

Note that CU1
11(Γp3) = {!1p, !1q}. This explains why line 9 is 1-marked: the

first member of its condition contains the abnormality {!1q}, which is unreliable
at level 1. Since CΣ2

11(Γp3) = ∅, lines 8 and 10 are not 1- or 2-marked. But
this means that !1p, the formula derived on line 8, is a Dab3-formula at stage
11 of the proof. Hence, !1p ∨̌ !1q is no longer a minimal Dab3-formula at stage
11, whence CU3

11(Γp3) = {!1p}. The last crucial move takes place at line 11.
Here, q is derived, but this time by pushing !1q to the third set in the condition
– note that this is perfectly in line with the generic rule RC, which leaves room
for choice in this case. Since {!1q} ∩ CU3

11(Γp3) = ∅, line 11 is unmarked and
will remain so in every further extension of the proof.
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5 A Bottom-Up Proof Theory

In this section we define a proof theory that is more in the “bottom-up” sequen-
tial spirit of SAL. Taking over the proof format of Section 4.1, the variant is
realized in three respects:

1. The generic rule RC of the proof theory in Section 4 has a holistic character
in the sense that defeasible assumptions corresponding to various ALs in the
sequence 〈ALi〉i∈I can be applied in one and the same inference step. In
what follows we replace RC by generic conditional rules RCi for each ALi

in the sequence. Where l1, . . . , ln are [≤i]-lines, Θ ⊆ Ωi, and Θ is such that
Θi = Θ and Θj = ∅ for all j 6= i:

RCi If A1, . . . , An ⊢LLL B ∨̌Dab(Θ):

A1 ∆1

...
...

An ∆n

B ∆1 ⋒ . . . ⋒∆n ⋒Θ

Each conditional rule RCi forces the user to make inferences that make use
of one defeasible reasoning form at a time, i.e., those modeled by ALi. This
way the proofs are more analytic and transparent in explicating the reasoning
processes leading to the SAL-consequences.
We employ the rules PREM and RU just as before.

2. The i-marking definitions for Reliability and Minimal Abnormality only ap-
ply to i-lines. This is realized by making efficient use of the markings gained
in the previous steps in the sense that these markings get inherited to higher
levels.

3. This allows us furthermore to replace the prospective character of require-
ment (ii) in the definition for the marking with Minimal Abnormality by its
simplified version (ii’) (see Section 4.4).

The latter two points can be summarized as follows: the i-marking of a
line l with condition ∆ concerns for both adaptive strategies only i-lines and
depends only on ∆i. In contrast, before we also had to check whether some
i-line is j-marked for any j < i. This may introduce some complexity overhead
especially if the strategy is Minimal Abnormality. In this variant we use a less
expensive forward-chaining of the markings from previous inference steps that
belong to lower levels: If the justification of an i-line l calls upon a marked j-line
l′ (where j < i), the marking of l′ is inherited to l. Similarly, if the justification
of l calls upon a line l′ and l′ already inherits some marking from a lower level,
this marking is inherited to l (see Definition 10 below).

We say that a line is marked iff it is i-marked for some i ∈ I according to
Definitions 8 or 9 (depending on the strategy), or it is inh-marked according to
Definition 10, where:

Definition 8 (i-marking for Reliability). An i-line l with condition ∆ is i-
marked at stage s iff ∆i ∩

CU i
s(Γ) 6= ∅.
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Definition 9 (i-marking for Minimal Abnormality). An i-line l with formula A
and condition ∆ is i-marked at stage s iff one of the following conditions hold:

(i) there is no ϕ ∈ CΦi
s(Γ) such that ∆i ∩ ϕ 6= ∅

(ii) for a ϕ ∈ CΦi
s(Γ): there is no unmarked [≤i]-line l′ at stage s with formula

A and condition Θ such that Θi ∩ ϕ = ∅.

Definition 10 (inh-marking of lines). An i-line l with condition ∆ and jus-
tification l1, . . . , ln;R is inh-marked in case some lj (where 1 ≤ j ≤ n) is (i)
k-marked for some k < i, or (ii) inh-marked.

This completes the characterization of our variant. Final derivability and
the derivability relation ⊢SAL are defined as in Definition 6. In the appendix
we prove the following adequacy result:

Theorem 6. Γ ⊢SAL A iff A ∈ CnSAL(Γ)

In order to illustrate our new variant we take again a look at our premise
set Γp1 (we skip the introduction of premises in lines 1–7, see Section 4.4):

...
... PREM 〈∅, ∅〉

8 !1p ∨̌ !1q 1,2,5;RU 〈∅, ∅〉
9 !1p ∨̌ !2r 1,3,6;RU 〈∅, ∅〉
10 !1q ∨̌ !2s 2,4,7;RU 〈∅, ∅〉
11 !2r ∨̌ !2s 9;RC1 〈{!1p}, ∅〉
12 !2r ∨̌ !2s 10;RC1 〈{!1q}, ∅〉

X1 13 !2r 9;RC1 〈{!1p}, ∅〉
X1 14 !2s 10;RC1 〈{!1q}, ∅〉

15 t ∨̌ !1p ∨̌ !2r 9;RU 〈∅, ∅〉
X1 16 t ∨̌ !2r 15;RC1 〈{!1p}, ∅〉
inh 17 t 16;RC2 〈{!1p}, {!2r}〉

18 t ∨̌!1q ∨̌ !2s 10;RU 〈∅, ∅〉
X1 19 t ∨̌ !2s 18;RC1 〈{!1q}, ∅〉
inh 20 t 19;RC2 〈{!1q}, {!2s}〉

Note that t cannot be inferred in one step on the condition 〈{!1p}, {!2r}〉,
but we need first to derive t ∨̌ !2r on the condition 〈{!1p}, ∅〉 by means of RC1

at line 16. Then we can derive t by means of RC2 at line 17. An analogous
argument applies to the derivation of t at line 20. What ensures the marking
of lines 17 and 20 is the inh-marking. Note that e.g. line 16 gets 1-marked due
to the fact that t ∨̌ !2r is not derived on the condition 〈{!1q}, ∅〉 (recall that
Φ1

20(Γ) = {{!1p}, {!1q}}). This marking carries forward to line 17 since it calls
upon the 1-marked line 16. This ensures that the arbitrary formula t is not
derivable.

Were we only to proceed along the lines of points 2 and 3 and hence use a
generic conditional rule RC as in the proof theory of Section 4, then we would
immediately be confronted with problems. In that case we would be able to
produce the following proof fragment:
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15 t ∨̌ !1p ∨̌ !2r 9;RU 〈∅, ∅〉
16 t 15;RC 〈{!1p}, {!2r}〉
17 t ∨̌ !1q ∨̌ !2s 10;RU 〈∅, ∅〉
18 t 17;RC 〈{!1q}, {!2s}〉

Recall that the arbitrarily introduced formula t is not SK2m-derivable.
Hence, lines 16 and 18 should get marked. According to the marking defini-
tion 9, we only have to check whether lines 16 and 18 are 2-marked, since both
lines 16 and 18 are 2-lines. However, neither line is 2-marked and hence t would
be finally derivable.

6 A Simplification for Non-Intersecting Ωi’s

We will now consider the special case in which (†) for all i, j ∈ I for which
i 6= j we have Ωi 6= Ωj . In this case the logical form of an abnormality A
unambiguously determines an i ∈ I such that A ∈ Ωi. This means in turn
that we do not need to represent the condition of lines in the proof in terms of
sequences of sets of abnormalities but can instead just represent them by means
of sets of abnormalities in

⋃
i∈I Ωi.

To implement this simplification, we need to slightly adjust our terminology.
Let i ∈ I and l be a proof line with condition ∆. First, we say line l is a [≤0]-line
iff ∆ = ∅, it is a [≤i]-line iff ∆ ⊆ Ω1 ∪ . . . ∪ Ωi. Given these adjustments, we
can use the same definitions of CU i

s(Γ) and
CΦi

s(Γ) as before – see Definition 4.
Let us now turn to the proof theory from Section 4. The generic rules are

very straightforward: just take the generic rules of the standard format, but
treat the sets ∆i and Θ as metavariables for subsets of

⋃
i∈I Ωi. The marking

definitions are adjusted as follows:

Definition 11 (i-marking for Reliability, special case). A line l with condition
∆ is i-marked at stage s iff ∆ ∩ CU i

s(Γ) 6= ∅.

Definition 12 (i-marking for Minimal Abnormality, special case). A line l
with formula A and condition ∆ is i-marked at stage s iff one of the following
conditions hold:

(i) there is no ϕ ∈ CΦi
s(Γ) such that ∆ ∩ ϕ 6= ∅, or

(ii) there is a ϕ ∈ CΦi
s(Γ) such that there is no line l′ that is not j-marked

for some j < i at stage s, with formula A and condition Θ such that
Θ ∩ ϕ = ∅, and Θ ∩ (Ωi+1 ∪ Ωi+2 ∪ . . .) = ∆ ∩ (Ωi+1 ∪ Ωi+2 ∪ . . .).

Note that even in this special case, we cannot do without the prospective
character of the marking definition for Minimal Abnormality – this follows im-
mediately from the example Γp2 which we discussed in Section 4.4.

To spell out the simplification for the proof theory of Section 5, we first
redefine the generic rule RCi. Where for each ∆j (1 ≤ j ≤ n), ∆j ⊆ Ω1∪. . .∪Ωi,
and where Θ ⊆ Ωi, we have:
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RCi If A1, . . . , An ⊢LLL B ∨̌Dab(Θ):

A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

Next, we adjust the marking definitions, in the same way as this was done
with the first proof theory. In this case, it suffices to just replace ∆ and ∆i

with ∆, and Θ and Θi with Θ in Definitions 8–10. We leave it to the reader to
check that this proof theory is equivalent to the original version from Section 5.
Also, by the same example as the one spelled out in Section 4.5, it follows that
in some cases where the restriction (†) fails, one still needs sequential conditions
in order to obtain an adequate proof theory along the lines of that defined in
Section 5.

7 Outlook and Conclusion

In this paper we have presented two proof theories for superpositions of ALs in
standard format. We bring it to a closing by indicating some interesting further
developments to which the research presented here provides a fruitful basis.

First of all, as pointed out in Section 3.1, there is a specific class of superpo-
sitions that are very interesting from a metatheoretic perspective, i.e. those for
which (‡) Ω1 ⊆ Ω2 ⊆ . . .. It remains to be seen whether we can also simplify the
SAL-proof theory for these superpositions in a way similar to the simplification
we provided in Section 6.

In [21] the authors presented a generalization of the standard format to rea-
son with prioritized defeasible assumptions, resulting in so-called lexicographic
ALs. There they also presented proof theories for Reliability and Minimal Ab-
normality, which have the same generic rules as those of the standard format.
The marking definitions are analogous to the marking definitions of the stan-
dard format, with the difference that they also take into account priorities among
the abnormalities. Altogether, the structural similarity between ALs in stan-
dard format and lexicographic ALs makes it plausible that we may use the
same techniques as presented in this paper in order to define proof theories for
superpositions of lexicographic ALs.

We also intend to adjust the presented proof theories to other (non-standard)
strategies such as the normal selections strategy [10, 25] or the counting strategy
[18, 11].

APPENDIX

Preliminaries Due to the more technical nature of the appendix we drop the
supposition Γ ⊆ W that was used throughout the paper. In the remainder W+

denotes all well-formed formulas in the extension of the language L by the checked
classical connectives (see Section 2). From now on, if not stated differently, Γ ⊆ W+.

Let SAL be a superposition of the ALs ALi in the sequence 〈ALi〉i∈I with lower
limit logic LLL and set of abnormalities Ωi. All ALi’s are in standard format.
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Let Ω =
⋃
i∈I

Ωi. Where ∆ ⊆ Ω is finite, we say that a sequence ∆ = 〈∆i〉i∈I
corresponds to ∆ iff (i)

⋃
∆ = ∆ and (ii) there is an i ∈ I such that for all j ∈ I for

which j > i, ∆j = ∅.

Lemma 1. The set of ∆ that correspond to ∆ is countable.

Proof. We prove the Lemma for the case I = N. The other cases are trivial. Let
i ∈ I be minimal such that ∆ ⊆ Ω1 ∪ . . . ∪ Ωi. Where n ≥ i, since ∆ is finite
also the set of all ∆ = 〈∆1, . . . ,∆n, ∅〉 where ∆n 6= ∅ that correspond to ∆ is
finite (possibly empty). Let ∆n

1 , . . . ,∆
n
nm

be a list of all these ∆’s. Altogether,
∆i

1, . . . ,∆
i
im ,∆

i+1
1 , . . . ,∆i+1

(i+1)m
,∆i+2

1 , . . . , . . . is a list of all ∆’s that correspond to
∆.

We say that Dab(∆) is a minimal Dabi-consequence of Γ iff ∆ ⊆ Ωi, Dab(∆) ∈
CnLLL(Γ), and for all ∆′ ⊆ ∆: if Dab(∆′) ∈ CnLLL(Γ) then ∆′ = ∆. Where
Dab(∆1),Dab(∆2), . . . are the minimal Dabi-consequences from Γ, let Σi(Γ) =df {∆1,∆2, . . .}.
Let Φi(Γ) be the set of all minimal choice sets of Σi(Γ) and U i(Γ) =df

⋃
Σi(Γ).

In the remainder, AL is a flat AL in standard format with lower limit logic LLL

and the set of abnormalities Ω. Dab(∆) is a minimal Dab-consequence of Γ iff ∆ ⊆ Ω,
Dab(∆) ∈ CnLLL(Γ) and for all ∆′ ⊆ ∆: if Dab(∆′) ∈ CnLLL(Γ) then ∆′ = ∆.
Where Dab(∆1),Dab(∆2), . . . are all the minimal Dab-consequences of Γ, Σ(Γ) =df

{∆1,∆2, . . .}. Φ(Γ) is the set of minimal choice sets of Σ(Γ) and U(Γ) =df

⋃
Σ(Γ).

In the following, ∨̌Dab(∆) denotes the empty string in case ∆ = ∅. For the sake
of convenience we will sometimes speak about the empty proof, meaning the “proof”
which consists of 0 lines. We denote this proof by Pε.

In what follows we will first show the adequacy for the proof theory of Section 4
and in the last subsection we will show the adequacy of the proof theory presented in
Section 5. Hence, before this last subsection, whenever we refer to a SAL-proof we
mean a proof in the system presented in Section 4.

A complete proof stage g In the following it will be very useful to speak about
the extension of a given (possibly empty) AL-, resp. SAL-proof P in which (a) A is
derived on the condition ∆ whenever Γ ⊢LLL A ∨̌Dab(∆) resp. A is derived on the
condition ∆ whenever Γ ⊢LLL A ∨̌Dab(∆) where ∆ corresponds to ∆, and (b) A is
derived on the condition ∅ resp. ∅ whenever Γ ⊢LLL A. We dub a corresponding stage
g(P) a complete stage.

This stage exists and can be constructed along the following lines (we show the
variant for SAL, the one for AL is analogous). Note that each well-formed formula
has a Gödel-number. From this it follows immediately that Θ = {A | Γ ⊢LLL A} is
enumerable, e.g. Θ = {B1, B2, . . .}. Moreover, due to the compactness of LLL, for
each Bi ∈ Θ there are some {A1, . . . , An} such that A1, . . . , An ⊢LLL Bi. Hence, for
each Bi ∈ Θ we have the following proof Pi:

li1 A1 PREM ∅

...
...

...
...

lin An PREM ∅

lin+1 Bi li1, . . . , l
i
n;RU ∅

In case Bi is of the form A ∨̌Dab(∆) we add some further lines. By Lemma 1 there
is a list ∆i

1,∆
i
2, . . . of all ∆’s that correspond to ∆. We add a line lin+1+j for each ∆i

j

that corresponds to ∆:
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lin+j+1 A lin+1;RC ∆

Where P consists of lines l01, l
0
2, . . ., we now combine the proofs P,P1,P2, . . . to a

proof P ′ that extends P to the stage g(P) by means of listing the respective lines as
follows (and by renumbering the lines accordingly):

l01, l
0
2, l

1
1, l

1
2, l

0
3, l

1
3, l

2
1, l

2
2, l

2
3, l

0
4, . . . , l

2
4, l

3
1, . . . , l

3
4, l

0
5, . . . , l

3
5, l

4
1, . . . , l

4
5, . . . (3)

Fact 1. If a line l is marked at stage g(P), then it is marked in every further extension.
Hence, the markings remain stable from stage g(P) on.

Note that the marking at a stage is determined by the minimal Dabi-formulas
derived at this stage (where i ∈ I). Since in g(P) every possible Dabi-formula is
derived on every possible condition, the marking remains stable from g(P) on.

Some results for flat ALs In order to prove Lemma 8 and Corollary 2 it is
useful to first prove some lemmas about flat ALs.

The following fact holds for the extension of an AL proof P to the stage g(P):

Fact 2. Σg(P)(Γ) = Σ(Γ) and hence Ug(P)(Γ) = U(Γ) and Φg(P)(Γ) = Φ(Γ).

The following fact follows immediately by the reflexivity, the monotonicity, and
the transitivity of LLL.

Fact 3 (Fixed point property for LLL). CnLLL(CnLLL(Γ)) = CnLLL(Γ)

The following two lemmas are known to hold where Γ ⊆ W (see [5]). In what
follows it is useful to show that they also hold where Γ = CnLLL(Γ).

16

Lemma 2. Where Γ = CnLLL(Γ) or Γ ⊆ W: if Γ ⊢LLL A ∨̌Dab(∆) and ∆∩U(Γ) = ∅
then A ∈ CnALr(Γ).

Proof. The case Γ ⊆ W has been proven in [5]. Suppose Γ = CnLLL(Γ) and that
the antecedent is true. Suppose first A ∈ Ω. Since ∆ ∩ U(Γ) = ∅ and A ∨̌Dab(∆) ∈
CnLLL(Γ), also A ∈ CnLLL(Γ) = Γ. Hence we can finally derive A in one step by
means of PREM. Suppose now that A /∈ Ω. Note that A ∨̌Dab(∆) ∈ Γ. Hence we
can prove A on the condition ∆ in two steps: in line 1 we introduce the premise
A ∨̌Dab(∆) by PREM, in line 2 we derive A on the condition ∆ by RC. Since A /∈ Ω,
line 2 is not marked. Suppose it is marked in an extension P of the proof, then we
can further extend the proof to stage g(P). In this stage line 2 is not marked due to
the supposition, Fact 2 and the marking Definition 1.

Lemma 3. Where Γ = CnLLL(Γ) or Γ ⊆ W: if for every ϕ ∈ Φ(Γ) there is a ∆ϕ

such that ϕ ∩∆ϕ = ∅ and Γ ⊢LLL A ∨̌Dab(∆ϕ), then A ∈ CnALm(Γ).

Proof. The case Γ ⊆ W is proven in [5]. The other case is similar to the previous
proof and left to the reader.

The following two Lemmas have been proven in [5]:

16Note that they do not hold for just any premise set that also contains formulas with
“checked” symbols as the example in [25] (for Minimal Abnormality), [9] (for Minimal Ab-
normality), and [20] (for both strategies) show.
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Lemma 4. If A ∈ CnALr(Γ) then there is a ∆ ⊆ Ω for which Γ ⊢LLL A ∨̌Dab(∆)
and ∆ ∩ U(Γ) = ∅.

Lemma 5. If A ∈ CnALm(Γ) then for every ϕ ∈ Φ(Γ) there is a ∆ϕ ⊆ Ω for which
Γ ⊢LLL A ∨̌Dab(∆ϕ) and ∆ϕ ∩ ϕ = ∅.

Lemma 6. Where Γ = CnLLL(Γ) or Γ ⊆ W: CnAL(Γ) = CnLLL(CnAL(Γ)).

Proof. The left-right direction is trivial due to the reflexivity of LLL. Suppose A ∈
CnLLL(CnAL(Γ)). By the compactness of LLL there are B1, . . . , Bn ∈ CnAL(Γ) such
that B1, . . . , Bn ⊢LLL A. Suppose the strategy of AL is Reliability. By Lemma 4, for
each i ≤ n there is a ∆i ⊆ Ω such that ∆i ∩ U(Γ) = ∅ and Γ ⊢LLL Bi ∨̌Dab(∆i).
Hence Γ ⊢LLL A ∨̌Dab(∆1 ∪ . . .∪∆n). Since (∆1 ∪ . . .∪∆n)∩U(Γ) = ∅, by Lemma 2
also A ∈ CnAL(Γ). The case for Minimal Abnormality is similar and left to the reader
(we use Lemmas 3 and 5 instead of Lemmas 2 and 4).

Lemma 7 (Dab-conservatism ofAL). If Dab(∆) ∈ CnAL(Γ) then Dab(∆) ∈ CnLLL(Γ).

Proof. Suppose Γ ⊢ALx Dab(∆). Case 1: x = r. By Lemma 4, Γ ⊢LLL Dab(∆) ∨̌Dab(Θ),
for Θ ⊆ Ω\U(Γ). Let ∆′ ⊆ ∆ and Θ′ ⊆ Θ be minimal such that Γ ⊢LLL Dab(∆′) ∨̌Dab(Θ′).
It follows that ∆′∪Θ′ ⊆ U(Γ). If Θ′ 6= ∅, then Θ∩U(Γ) 6= ∅ — a contradiction. Hence
Θ′ = ∅, which means that Γ ⊢LLL Dab(∆′), and by CL-properties, Γ ⊢LLL Dab(∆).

Case 2: x = m. By Lemma 5, for every ϕ ∈ Φ(Γ), there is a Θϕ ⊆ Ω \ ϕ such
that Γ ⊢LLL Dab(∆) ∨̌Dab(Θϕ). Let each ∆ϕ ⊆ ∆ and Θ′

ϕ ⊆ Θϕ be minimal such
that Γ ⊢LLL Dab(∆ϕ) ∨̌Dab(Θ′

ϕ). It follows that each Dab(∆ϕ ∪ Θ′
ϕ) is a minimal

Dab-consequence of Γ.
Assume now that each Θ′

ϕ 6= ∅. Let ψ be a minimal choice set of {Θ′
ϕ | ϕ ∈ Φ(Γ)}

and let ψ′ be a minimal choice set of {Λ ∈ Σ(Γ) | Λ∩ψ = ∅}. It can be easily verified
that ψ ∪ ψ′ is a minimal choice set of Σ(Γ).17 It follows that there is a Θψ∪ψ′ ⊆
Ω \ (ψ ∪ψ′) such that Γ ⊢LLL Dab(∆) ∨̌Dab(Θψ∪ψ′). But in view of the construction,
there is a B ∈ Θψ∪ψ′ such that B ∈ ψ,— a contradiction. Hence, some Θ′

ϕ = ∅. Thus,
Dab(∆ϕ) is a minimal Dab-consequence and hence Dab(∆) ∈ CnLLL(Γ).

Some results for SAL and SALi

Lemma 8 (LLL-closure of SALi). Where Γ ⊆ W: CnSALi
(Γ) = CnLLL(CnSALi

(Γ)).

Proof. “i = 1”: This follows by Lemma 6. “i ⇒ i+1”: Note that CnSALi+1
(Γ) =

CnALi+1
(CnSALi

(Γ)). By the induction hypothesis and Lemma 6, CnSALi+1
(Γ) =

CnLLL(CnALi+1
(CnSALi

(Γ))) = CnSALi+1
(Γ) = CnLLL(CnSALi+1

(Γ)).

Corollary 2. Where Γ ⊆ W: A ∈ CnSALi
(Γ) iff there is a ∆ ⊆ Ωi such that

A ∨̌Dab(∆) ∈ CnSALi−1
(Γ) and

1. where xi = r, ∆ ∩ U i(CnSALi−1
(Γ)) = ∅, or

2. where xi = m, there is a ϕ ∈ Φi(CnSALi−1
(Γ)) such that ϕ∩∆ = ∅ and for each

ϕ ∈ Φi(CnSALi−1
(Γ)) there is a Θ ⊆ Ωi such that A ∨̌Dab(Θ) ∈ CnSALi−1

(Γ)
and Θ ∩ ϕ = ∅.

Proof. “i = 1” follows directly Lemmas 2, 3, 4, 5 and the fact that CnSAL1(Γ) =
CnAL1(Γ). “i ⇒ i + 1”: Note that CnSALi+1

(Γ) = CnALi+1
(CnSALi

(Γ)) and by
Lemma 8 CnSALi

(Γ) = CnLLL(CnSALi
(Γ)). Thus, the corollary follows by Lemmas

2, 3, 4, and 5.

17The reasoning proceeds wholly analogous to the proof of Lemma 6 in [21].
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Now we are also able to prove Theorem 3 which we restate here.18

Theorem 3 (LLL-closure of SAL). Where Γ ⊆ W: CnSAL(Γ) = CnLLL(CnSAL(Γ)).

Proof. The left-right direction follows immediately due to the reflexivity of LLL. Sup-
pose now A ∈ CnLLL(CnSAL(Γ)). By the compactness of LLL there is a finite
Γ′ ⊆ CnSAL(Γ) such that A ∈ CnLLL(Γ

′). For each B ∈ Γ′ there is a i ∈ I such that
B ∈ CnSALi

(Γ). Let k be the maximal such i. By Theorem 2, Γ′ ⊆ CnSALk
(Γ). By

Lemma 8, A ∈ CnSALk
(Γ) and hence A ∈ CnSAL(Γ).

The following corollary follows immediately by Lemma 7 and Lemma 8.

Corollary 3 (Dab-conservatism of SALi). Where ∆ ⊂ Ωi: if Dab(∆) ∈ CnSALi
(Γ)

then Dab(∆) ∈ CnSALi−1
(Γ).

The adequacy of the proof theory from Section 4 As we will see below,
given some proof P, a formula A is derived on an unmarked line at stage g(P) iff
A ∈ CnSAL(Γ).

Lemma 9. Where Γ ⊆ W and P is a SAL-proof from Γ, each of the following holds
for every i ∈ I:

1a. CΣig(P)(Γ) = Σi(CnSALi−1
(Γ)), whence also

1b. CU ig(P)(Γ) = U i(CnSALi−1
(Γ)) and

1c. CΦig(P)(Γ) = Φi(CnSALi−1
(Γ))

2a. there is a line l with formula A and condition 〈∆j〉j∈I that is not j-marked for
all j ≤ i at stage g(P) iff A ∨̌Dab(∆i+1 ∪∆i+2 ∪ . . .) ∈ CnSALi

(Γ), and hence
2b. there is a line l with formula A and a condition 〈∆1, . . . ,∆i, ∅, . . .〉 that is not

marked at stage g(P) iff A ∈ CnSALi
(Γ).

Proof. “i = 1”: Ad 1. Immediate in view of Fact 3.
Ad 2. Case x1 = r. There is a line with formula A and with a condition ∆ that is

1-unmarked iff [by the construction of stage g(P) and Definition 5] Γ ⊢LLL A ∨̌Dab(∆)
and ∆1∩

CU1
g(P)(Γ) = ∅ iff [by 1.] Γ ⊢LLL A ∨̌Dab(∆) and ∆1∩U

1(CnLLL(Γ)) = ∅ iff

[by Fact 3] Γ ⊢LLL A ∨̌Dab(∆) and ∆1∩U
1(Γ) = ∅ iff [by Corollary 2.1] A ∨̌Dab(∆2∪

∆3 ∪ . . .) ∈ CnSAL1(Γ).
Case x1 = m. There is a line with formula A and with a condition ∆ that is

1-unmarked iff [by Definition 7] for each ϕ ∈ CΦig(P)(Γ) there is a line with formula A
and a condition 〈Θϕ,∆2,∆3, . . .〉 such that ϕ ∩ Θϕ = ∅ and ∆1 = Θϕ for some ϕ ∈
CΦig(P)(Γ) iff [by the construction of stage g(P) and 1.] for each ϕ ∈ Φ1(CnLLL(Γ))
there is a Θϕ such that Γ ⊢LLL A ∨̌Dab(Θϕ ∪ ∆2 ∪ . . .) iff [by Fact 3 and Corollary
2.2] A ∨̌Dab(∆2 ∪∆3 ∪ . . .) ∈ CnSAL1(Γ).

“i⇒ i+1”: Ad 1. Where ∆ ⊂ Ωi+1, the following are equivalent in view of (1) the
definition of CΣig(P)(Γ), (2) item 2b of the induction hypothesis, (3) Lemma 8 and (4)

the definition of Σi(Γ):

• ∆ ∈ CΣi+1
g(P)(Γ)

• Dab(∆) is derived at an unmarked [≤i]-line at stage g(P) and for no ∆′ ⊂ ∆:
Dab(∆′) is derived at an unmarked [≤i]-line at stage g(P)

18Note that throughout the main paper we presupposed that Γ ⊆ W. This supposition was
dropped in the Appendix, whence the slightly different formulation of the Theorem here.
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• Dab(∆) ∈ CnSALi
(Γ), and for no ∆′ ⊂ ∆: Dab(∆′) ∈ CnSALi

(Γ)
• Dab(∆) ∈ CnLLL(CnSALi

(Γ)), and for no ∆′ ⊂ ∆: Dab(∆′) ∈ CnLLL(CnSALi
(Γ))

• ∆ ∈ Σi+1(CnSALi
(Γ)).

Ad 2. Case xi+1 = r. At stage g(P), each of the following are equivalent in view of
(1) Definition 5, (2) item 1b and (3) item 2a of the induction hypothesis, (4) Corollary
2.1 and Lemma 8:

• there is a line l with formula A and condition 〈∆j〉j∈I that is not j-marked for any
j ≤ i+1

• there is a line l with formula A and condition 〈∆j〉j∈I that is not j-marked for any
j ≤ i, and ∆i+1 ∩

CU i+1
g(P)(Γ) = ∅

• there is a line l with formula A and condition 〈∆j〉j∈I that is not j-marked for any
j ≤ i, and ∆i+1 ∩ U

i+1(CnSALi
(Γ)) = ∅

• there are ∆i+1 ⊂ Ωi+1,∆i+2 ⊂ Ωi+2, . . . , such that A ∨̌Dab(∆i+1 ∪ ∆i+2 ∪ . . .) ∈
CnSALi

(Γ) and ∆i+1 ∩ U
i+1(CnSALi

(Γ)) = ∅
• there are ∆i+2 ⊂ Ωi+2,∆i+3 ⊂ Ωi+3, . . . , such that A ∨̌Dab(∆i+2 ∪ ∆i+3 ∪ . . .) ∈
CnSALi+1

(Γ)

Case xi+1 = m. At stage g(P), each of the following are equivalent in view of (1)
Definition 7, (2) item 1c, (3) item 2a of the induction hypothesis and (4) Corollary 2.2
and Lemma 8:

• there is a line l with formula A and condition 〈∆j〉j∈I that is not j-marked for any
j ≤ i+1

• there is a line l with formula A and condition 〈∆j〉j∈I such that
(a) l is not j-marked for any j ≤ i,
(b) ∆i+1 ∩ ϕ = ∅ for a ϕ ∈ CΦi+1

g(P)(Γ), and

(c) for every ϕ ∈ CΦi+1
g(P)(Γ): A is derived on a line lϕ with condition

〈Θ1, . . . ,Θi+1,∆i+2,∆i+3, . . .〉 such that Θi+1 ∩ ϕ = ∅, and each line lϕ is not
j-marked for any j ≤ i

• there is a line l with formula A and condition 〈∆j〉j∈I such that
(a) l is not j-marked for any j ≤ i,
(b) ∆i+1 ∩ ϕ = ∅ for a ϕ ∈ Φi+1(CnSALi

(Γ)), and
(c) for every ϕ ∈ Φi+1(CnSALi

(Γ)): A is derived on a line lϕ with condition
〈Θ1, . . . ,Θi+1,∆i+2,∆i+3, . . .〉 such that Θi+1 ∩ ϕ = ∅, and each line lϕ is not
j-marked for any j ≤ i

• There are ∆i+2 ⊂ Ωi+2,∆i+3 ⊂ Ωi+3, . . . , such that for every ϕ ∈
Φi+1(CnSALi

(Γ)), A ∨̌Dab(Θi+1 ∪ ∆i+2 ∪ ∆i+3 ∪ . . .) ∈ CnSALi
(Γ) for a Θi+1 ⊆

Ωi+1 \ ϕ
• A ∨̌Dab(∆i+2 ∪∆i+3 ∪ . . .) ∈ CnSALi+1

(Γ)

Lemma 10. Where Γ ⊆ W and P is a SAL-proof from Γ: A ∈ CnSAL(Γ) iff A is
derived at an unmarked line at stage g(P).

Proof. A ∈ CnSAL(Γ) iff there is an i ∈ I for which A ∈ CnSALi
(Γ) iff [by Lemma

9.2b] A is derived on an unmarked line l at stage g(P) with some condition ∆ =
〈∆1, . . . ,∆i, ∅, ∅, . . .〉 iff A is derived at an unmarked line at stage g(P).

Theorem 7. Where Γ ⊆ W: if Γ ⊢SAL A, then A ∈ CnSAL(Γ).

Proof. Suppose Γ ⊢SAL A. By Definition 6, A is derived at an unmarked line l of
a finite SAL-proof P from Γ. Suppose we extend P to stage g(P). By Fact 1, if l
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is marked in this extension, then l is marked in every further extension of the proof,
which contradicts the fact that A is finally derived at line l. Hence line l is unmarked
at stage g(P). By Lemma 10, A ∈ CnSAL(Γ).

Theorem 8. Where Γ ⊆ W: if A ∈ CnSAL(Γ), then Γ ⊢SAL A.

Proof. Suppose A ∈ CnSAL(Γ). By Lemma 10, (†) A is derived at an unmarked line
l with condition ∆ at stage g(Pε). In view of Lemma 9.1 and the marking definitions
5 and 7, we can infer that for all i ∈ I and any SAL-proof P ′ from Γ:

(†r) where xi = r: ∆i∩U
i(CnSALi−1

(Γ)) = ∆i∩
CU ig(P′)(Γ) = ∆i∩

CU ig(Pε)
(Γ) =

∅
(†m) where xi = m: ∆i ∩ ϕ = ∅, for a ϕ ∈ Φi(CnSALi−1

(Γ)) = CΦig(P′)(Γ) =
CΦig(Pε)

(Γ)

By the construction of stage g(Pε), Γ ⊢LLL A ∨̌Dab(∆), whence by the compact-
ness of LLL, there is a Γ′ = {B1, . . . , Bm} ⊆ Γ such that Γ′ ⊢LLL A ∨̌Dab(∆).

Let the SAL-proof P be constructed as follows. At line 1 we introduce the premise
B1 by PREM, . . . , and at line m we introduce the premise Bm by PREM. At line
m+1 we derive A by RC on the condition ∆. Let s be the stage consisting of lines 1
up to m+1.

Since Γ′ ⊆ Γ ⊆ W, for every i ∈ I, all Dabi-formulas that are derived at stage s (if
any) are singletons C ∈ Ωi. Moreover, by the reflexivity of each logic SALi, for every
such C, C ∈ CnSALi−1

(Γ), whence also C ∈ U i(CnSALi−1
(Γ)) and C ∈ ϕ for every

ϕ ∈ Φi(CnSALi−1
(Γ)). Hence for every i ∈ I:

(‡r) CU is(Γ) ⊆ U i(CnSALi−1
(Γ))

(‡m)
⋃

CΦis(Γ) ⊆ ϕ for every ϕ ∈ Φi(CnSALi−1
(Γ))

By (†r), (†m), (‡r) and (‡m), we can infer that there is no i ∈ I such that line m+1
is i-marked at stage s. Suppose that line m+1 is marked in an extension P ′ of the
proof. In that case, we may further extend the proof to stage g(P ′). Hence in view
of (†r) and (†m), line m+1 is unmarked in the second extension. By Definition 6, A
is finally derived at stage s.

The adequacy of the proof theory from Section 5 First we have to show
how we construct a complete stage g(P) for a given SAL-proof P from Γ. Let again
Θ = {B1, B2, . . .} = {A | Γ ⊢LLL A}. For each Bi ∈ Θ we have the following proof Pi:

li1 A1 PREM ∅

...
...

...
...

lin An PREM ∅

lin+1 Bi li1, . . . , l
i
n;RU ∅

In case Bi is of the form A ∨̌Dab(∆) we extend the proof further. By Lemma
1 there is a list {∆1,∆2, . . .} of all ∆’s that correspond to ∆. For each ∆j =
〈∆j

1, . . . ,∆
j
m, ∅, . . .〉 we append a sub-proof Pji to Pi as follows:

li,j1 A ∨̌Dab(∆j
2 ∪ . . . ∪∆j

m) lin+1; RC1 〈∆j
1, ∅, . . .〉

...
...

...
...

li,jm−1 A ∨̌Dab(∆j
m) li,jm−1; RCm−1 〈∆j

1, . . . ,∆
j
m−1, ∅, . . .〉

li,jm A li,jm ; RCm 〈∆j
1, . . . ,∆

j
m, ∅, . . .〉
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We combine the proofs P,P1,P2, . . . by means of the construction in (3) to an
extension of P at stage g(P).

Analogous to Fact 1 we get:

Fact 4. The markings of the lines at stage g(P) remain stable in every further exten-
sion of the proof at stage g(P).

Lemma 11. Where Γ ⊆ W and P is a SAL-proof from Γ, we have for each i ∈ I:

1. CΣ
i

g(P)(Γ) = Σi(CnSALi−1
(Γ)) and hence CU

i

g(P)(Γ) = U i(CnSALi−1
(Γ)) and

CΦ
i

g(P)(Γ) = Φi(CnSALi−1
(Γ));

2. there is a [≤i]-line l with formula A and that is unmarked at stage g(P) iff
A ∈ CnSALi

(Γ).

Proof. “i=1”: Ad 1. Immediate in view of Fact 3.
Ad 2. Case x1 = r. There is a [≤1]-line l with formula A and condition ∆ that is

unmarked iff [by the construction of stage g(P) and Definition 8] Γ ⊢LLL A ∨̌Dab(∆)

and
⋃

∆∩CU
1
g(P)(Γ) = ∅, iff [by 1.] Γ ⊢LLL A ∨̌Dab(∆) and

⋃
∆∩U1(CnLLL(Γ)) =

∅, iff [by Fact 3] Γ ⊢LLL A ∨̌Dab(∆) and
⋃

∆ ∩ U1(Γ) = ∅, iff [by Lemma 2 and 4]
A ∈ CnAL1(Γ), iff A ∈ CnSAL1(Γ).

Case x1 = m. The proof is similar and left to the reader.

“i⇒ i+1”: Ad 1. Where ∆ ⊆ Ωi+1, we have: ∆ ∈ CΣ
i+1
g(P)(Γ) iff Dab(∆) is derived

at an unmarked [≤i]-line and there is no ∆′ ⊂ ∆ such that Dab(∆′) is derived at an
unmarked [≤i]-line, iff [by 2. and the induction hypothesis] Dab(∆) ∈ CnSALi

(Γ) and
for no ∆′ ⊂ ∆, Dab(∆′) ∈ CnSALi

(Γ), iff [by Lemma 8] Dab(∆) ∈ CnLLL(CnSALi
(Γ))

and for no ∆′ ⊂ ∆, Dab(∆′) ∈ CnLLL(CnSALi
(Γ)), iff ∆ ∈ Σi+1(CnSALi

(Γ)).
Ad 2. Case xi+1 = r. Let l be some [≤i+1]-line with formula A and condition

∆. Suppose line l is unmarked. If l is a j-line with j ≤ i we get A ∈ CnSALi+1
(Γ)

due to the induction hypothesis and Theorem 2. Thus, suppose l is a i+1-line. We
prove the statement by another induction on the number of steps j needed to derive
A. “j = 1”: Only premises can be introduced in one inference step, but this does not
lead to a i+1-line. “j = 2”: The proof looks as follows: A is derived by RCi+1 from
some line l′ at which some B is introduced as a premise and B ⊢LLL A ∨̌Dab(∆i+1).

Since l is unmarked at stage g(P), ∆i+1 ∩ CU
i+1
g(P)(Γ) = ∅ and hence by 1., ∆i+1 ∩

U i+1(CnSALi
(Γ)) = ∅. By Corollary 2.1, A ∈ CnSALi+1

(Γ). “j ⇒ j + 1”: Suppose
A is derived with the justification l1, . . . , ln;R where R ∈ {RU, RCi+1} and each line
lk (where 1 ≤ k ≤ n) features a formula Ak and a condition ∆k. By the definition
of RU and RCi+1, (†) A1, . . . , An ⊢LLL A ∨̌Dab(∆′

i+1) for some (possibly empty)
∆′
i+1 ⊆ ∆i+1 ⊂ Ωi+1, and ∆′

i+1 ∪ ∆1
i+1 ∪ . . . ∪ ∆n

i+1 = ∆i+1. Since l is unmarked,

(a) by Definition 8 and 1., ∆′
i+1 ∩ U

i+1(CnSALi
(Γ)) = ∆′

i+1 ∩
CU

i+1
g(P)(Γ) = ∅, (b) by

the definition of inh-marking each of the lines lk is neither o-marked for any o ≤ i nor
inh-marked, (c) neither line lk is i+1-marked since ∆k

i+1 ⊆ ∆i+1 and by (a). By our
induction hypothesis, (b) and (c), Ak ∈ CnSALi+1

(Γ) and by (†) and Lemma 8 also
(‡) A ∨̌Dab(∆′

i+1) ∈ CnSALi+1
(Γ). By (a), ¬̌Dab(∆′

i+1) ∈ CnSALi+1
(Γ) and hence

by Lemma 8 and (‡), A ∈ CnSALi+1
(Γ).

For the other direction suppose A ∈ CnSALi+1
(Γ). By Corollary 2.1 there is

a ∆ ⊆ Ωi+1 for which A ∨̌Dab(∆) ∈ CnSALi
(Γ) and ∆ ∩ U i+1(CnSALi

(Γ)) = ∅.
By the induction hypothesis there is an unmarked [≤i]-line l at which A ∨̌Dab(∆)
is derived on some condition ∆. By the construction of stage g(P) there is a line
l′ with formula A, justification l; RCi+1 and condition 〈∆1, . . . ,∆i,∆, ∅, . . .〉. Since
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by 1., ∆ ∩ CU
i+1
g(P)(Γ) = ∅, line l′ is not marked according to the i+1-marking with

Reliability. Moreover, since l is unmarked, l′ is also not inh-marked.
Let xi+1 = m. The proof is similar and left to the reader.

Since A ∈ CnSAL(Γ) iff there is an i ∈ I such that A ∈ CnSALi
(Γ), we get by item

2 of the previous lemma:

Corollary 4. Where Γ ⊆ W and P is a SAL-proof from Γ: A ∈ CnSAL(Γ) iff A is
derived at an unmarked line at stage g(P).

Theorem 9. Where Γ ⊆ W: if Γ ⊢SAL A then A ∈ CnSAL(Γ).

Proof. Suppose Γ ⊢SAL A. Hence, there is a finite SAL-proof P in which A is finally
derived at some line l. We extend P to stage g(P). By Definition 6 and Fact 4, line l
is unmarked and hence A ∈ CnSAL(Γ) by Corollary 4.

Suppose A is derived at an unmarked line at stage g(Pε). Let ∆ = {∆1,∆2, . . .}
be the set of conditions on which A is derived at stage g(Pε) at an unmarked line. We
say that ∆ is a minimal sequence for A iff ∆ ∈ min≺(∆) where ≺ is the partial order
defined as follows: ∆ ≺ Θ iff there is a k ∈ I such that (i) for all j ∈ I for which
j > k, ∆j = Θj , and (ii) ∅ = ∆k ⊂ Θk.

19 Obviously,

Fact 5. If A is derived at an unmarked line at stage g(Pε), then there is a minimal
such sequence for A (there may be many).

Lemma 12. Where Θ = 〈Θ1, . . . ,Θm, ∅, . . .〉 is a minimal sequence for A: there are
no l, k ≤ m such that l ≤ k, {A} ∪Θl ∪ . . . ∪Θm ⊆ Ωk, and Θk 6= ∅.

Proof. Assume there are l and k such that {A} ∪ Θl ∪ . . . ∪ Θm ⊆ Ωk, l ≤ k and
Θk 6= ∅. Case k < m: Evidently also (†) {A} ∪ Θk+1 ∪ . . . ∪ Θm ⊆ Ωk. Since,
by the construction of stage g(Pε) and Lemma 11.2, A ∨̌Dab(Θk+1 ∪ . . . ∪ Θm) ∈
CnSALk

(Γ), by Corollary 3 and (†) also A ∨̌Dab(Θk+1 ∪ . . . ∪ Θm) ∈ CnSALk−1
(Γ).

Hence, by Lemma 11.2, there is an unmarked [≤ k−1]-line at stage g(Pε) at which
A ∨̌Dab(Θk+1 ∪ . . . ∪ Θm) is derived on some condition 〈∆1, . . . ,∆k−1, ∅, . . .〉. Note
that also ∆ = 〈∆1, . . . ,∆k−1, ∅,Θk+1, . . . ,Θm, ∅, . . .〉 is a sequence for A. But then,
∆ ≺ Θ since (i) for all i > k, ∆i = Θi and (ii) ∅ = ∆k ⊂ Θk. Thus, Θ is not a
minimal sequence for A,— a contradiction.

Case k = m: Evidently also A ∈ Ωm. Since by Lemma 11.2, A ∈ CnSALm(Γ), by
Corollary 3, also A ∈ CnSALm−1

(Γ). Hence, by Lemma 11.2, there is an unmarked
[≤m−1]-line at stage g(Pε) at whichA is derived on a condition∆ = 〈∆1, . . . ,∆m−1, ∅, . . .〉.
Note that also ∆ is a sequence for A. But then ∆ ≺ Θ since (i) for all i > m,
∆i = Θi = ∅, and (ii) ∅ = ∆m ⊂ Θm. Thus, Θ is not a minimal sequence for A,— a
contradiction.

Theorem 10. Where Γ ⊆ W: if A ∈ CnSAL(Γ) then Γ ⊢SAL A.

Proof. Suppose A ∈ CnSAL(Γ). Hence by Corollary 4, A is derived at an unmarked
line at stage g(Pε). Let (†) Θ = 〈Θ1, . . . ,Θn, ∅, . . .〉 be a minimal sequence for A.
Since Γ ⊢LLL A ∨̌Dab(Θ1 ∪ . . . ∪ Θn) and by the compactness of LLL, there are
B1, . . . , Bo ∈ Γ such that {B1, . . . , B0} ⊢LLL A ∨̌Dab(Θ1∪. . .∪Θn). We now construct
a SAL-proof P for A as follows:

19E.g., where ∆1,∆2,∆3,∆4 6= ∅, we have 〈∆1,∆2,∆3, ∅, ∅, . . .〉 ≺ 〈∆1, ∅,∆3,∆4, ∅, ∅, . . .〉
and 〈∆1, ∅, ∅,∆4, ∅, ∅, . . .〉 ≺ 〈∆2,∆3, ∅,∆4, ∅, ∅, . . .〉.
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1 B1 PREM ∅
...

...
...

...
o B0 PREM ∅

o+1 A ∨̌Dab(Θ1 ∪ . . . ∪Θm) 1, . . . , o; RU ∅
...

...
...

...
o+n A ∨̌Dab(Θn) o+n−1;RCn−1 〈Θ1, . . . ,Θn−1〉

o+n+1 A o+n; RCn 〈Θ1, . . . ,Θn〉

Let s be the stage of our proof. Since Γ ⊆ W, the only Dab-formulas in {B1, . . . , Bo}

are abnormalities and hence for every j ∈ I, {B1, . . . , Bo} ∩ Ωj ⊆ CU
j

g(P)(Γ) =
CU

j

g(Pε)(Γ); and for every ϕ ∈ CΦ
j

g(P)(Γ) = CΦ
j

g(Pε)(Γ), {B1, . . . , Bo} ∩ Ωj ⊆ ϕ.
By Lemma 12 and (†), for all j ≤ n there is no j-Dab-formula at any line o+ j′ where
j′ ≤ j and Θj 6= ∅. From these facts, one can easily infer that line o+n+1 is unmarked.

Suppose line o+n+1 is marked in an extension of the proof resulting in the proof
P ′. We can extend the proof further to stage g(P ′). That line o+n+1 is unmarked is
an immediate consequence of the construction of line o+n+1, (†), and the fact that

by Lemma 11 CΦ
j

g(P′)(Γ) =
CΦ

j

g(Pε)(Γ) and
CU

j

g(P′)(Γ) =
CU

j

g(Pε)(Γ).
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