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Example is better than precept  (身教胜于言传 Shēnjiào zhòngyú yānjiào)  
Old Chinese proverb 

 
 
Diophantos would use the rhetorical algebra, the Chinese Nine Chapters on 
Arithmetic would manipulate matrices, and the Liber abbaci would find the 
answer by means of proportions We should hence not ask, as commonly 
done, whether Diophantos (or the Greek arithmetical environment) was the 
source of the Chinese or vice versa. There was no specific source: The ground 
was everywhere wet. 
 

Jens Høyrup in In Measure, Number and Weight, 1993, p. 98. 
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2.  Introduction 
Comparing a randomly chosen arithmetic or algebra book from sixteenth-
century Europe with the Līlāvatī by Bhāskara II (written 1150), one cannot 
escape the feeling that the strong agreement in form and content must stem 
from a direct influence from Indian sources.1 However, a direct influence has 
not been demonstrated and is since more than a century the subject of 
scientific dispute. Late nineteenth-century histories, in particular Cantor 
(1880-1908) show an admiration for Hindu algebra but believes it must have 
originated from Greek sources. 2 Hankel takes a distance from these 
“humanistic prejudices” and allows for some influence of Hindu algebra on 
the Greeks.3 A likely intermediary between Hindu algebra and the abacus 
tradition is Arab algebra. It is well-established that our positional numbering 
system with Hindu-Arab ciphers was introduced in Western Europe from 
India through Arab and Persian translations (Kitāb al-hisāb al Hind). 
Furthermore, there are some rare occasions in which Latin algebraic treatises 
refer to Indian origins. As a clear influence from Hindu to Islamic 
mathematics could not be demonstrated, the question has led a continuous 
debate since the eighteenth century. Cossali concludes his discussion of al-
Khwārizmī with “not having taken algebra from the Greeks, he must have 
                                            
1 See Table 1. The arithmetic of Jacques Peletier (1552) deals with almost all of the 
subjects from the Līlāvatī. However, the exceptions, such as the rule of inversion and 
rule of concurrence appear frequently in earlier arithmetic books. Only the Indian 
treatment of zero, permutations and combinations are absent from sixteenth century 
arithmetic books. 
2 Cantor (1894, 2nd ed., vol. II) takes every opportunity to point out the Greek influences 
on Hindu algebra. Some examples are the Epanthema (discussed below); “Spuren 
griechischer Algebra müssen mit griechischer Geometrie nach Indien gedrungen sein 
und werden sich dort nachweisen lassen” (II, 562); “So glauben wir auch deutlich die 
griechische Auflösung der quadratischen Gleichung, wie Heron, wie Diophant sie übte, 
in der mit ihr nicht bloss zufällig übereinstimmenden Regel des Brahmagupta zu 
erkennen” (II, 584). 
3 Hankel (1874, 212): “Die Vermuthung, dass Diophant unter fremden Einflusse 
gestanden habe, war kaum mehr abzuweisen” and “Das uns durch die humanistische 
Erziehung tief eingeprägte Vorurtheil, dass alle höhere geistige Cultur im Orient, 
insbesondere alle Wissenschaft aus griechischem Boden entsprungen und das einzige 
geistig wahrhaft productive Volk das griechische gewezen sei, kann uns zwar einen 
Augenblick geneigt machen, das Vergältniss umzukehren”. 
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either invented it himself, or taken it from the Indians. Of the two, the 
second appears to me the most probable”.4 This opinion has been echoed by 
several historians throughout the nineteenth century. Colebrooke, as one of 
the first Western scholars to have studied Sanskrit mathematical manuscripts 
discusses at length the influence of Indian astronomy on the Arabs, but falls 
short in evidence for the Arab use of Indian algebra. He can only assume 
that al-Khwārizmī “must have learnt from the Hindus the resolution of 
simple and quadratic equations, or, in short algebra, a branch of their art of 
computation” (Colebrooke 1817, lxxix). Frederic Rosen, who was the first to 
translate the Kitab fī al-jābr wa’l-muqābala from Arab to English, draws 
further on Colebrooke and adds the argument that at least the 
determination of the circumference of the circle is derived from an Indian 
source (Rosen 1831, viii and 72). Again no substantial evidence is given in 
relation to algebra. Libri (1838, I, 118) asserts with certainty that “Quant à 
l’algèbre, tout concourt à prouver que les Arabes l’ont reçue des Indiens” 
but can only refer to Indian ciphers and Colebrooke on the circumference of 
the circle in support of his claim. All these in favor for the Indian influence 
have been criticised by Rodet, Hankel and Cantor, who took more effort in 
presenting their case. Rodet (1879) gives a detailled comparision of the Arab 
and Indian algebra with respect to four points: the role of negative terms in 
polynomials, the  way problems are formulated in algebraic terms, the way 
quadratic problems are solved, and the interpretation of two positive 
solutions to quadratic problems. For each, he demonstrates that the methods 
and practices of Brahmagupta and Bhāskara are completely opposite of 
those of Arab algebra. Hankel and Cantor have always stressed the Greek 
domination, but Cantor leaves some possibility for Indian influences.5 
Soloman Gandz (1936, 1937) believes al-Khwārizmī is most indebted to the 
Persian tradition leading back to Egyptian and Babylonian origins.  
The current agreement is that “Islamic algebra was in all probability not 
inspired from Indian algebra” (Høyrup 1994, 100). Hindu and Arab algebra 
are too structurally different to allow for a strong relationship. This brings us 
back to our original thought.   

                                            
4 Cossali 1779, I, 216-9, cited and translated by Colebrooke 1817, lxxx.  
5 Hankel (1874, 262) points at Diophantus as a likely source for the basic operations of 
Arab algebra: “So lernte der Araber vielleicht aus griechischen Schriften seine Algebra? 
Vergleichen wir das Werk des Mohammed mit der einzigen griechischen Quelle, die wir 
kennen, mit Diophant, so tritt zunächst als eine sehr bemerkenswerthe Analogie 
hervor, dass hier jene fundamentalen Operationen Mohammed’s allerdings an 
hervorragender Stelle erscheinen”. Cantor (1907, I, 679-80): “Was Alchwarizmī gibt 
kann griechischen, kann indischen Ursprungs sein, kann vielleicht einer aus beiden 
Quellen gemischten Strömung sein Dasein verdanken, wie wir ja auch in seinem 
Rechenbuche überwiegend Indisches und daneben einzelne griechische Spuren 
vorfanden. Wir wollen zu zeigen versuchen, dass, wenn die Algebra überhaupt als eine 
Mischung zu betrachten ist, jedenfalls griechische Elemente in ihr weitaus 
vorherrschen”. 
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C S Sūtra the Līlāvatī by Bhāskara Peletier, l’Arithmetique, 1552 Bk; Ch 
10-11 Numeration Diffinition de Nombre 1; 1 
12-13 Rule of addition and 

subtraction 
De l’Addition / Souztraction des 
nombres Entiers 

1; 3,4 

14-16 Rule of multiplication De la multiplication des Entiers 1; 5 
17 Rule of division De la Division des Entiers  
18-20 Rule for the square of a 

quantity 
21-22 Rule for the square root 

De l’extraction de la Racine 
Quarre 

3; 1 

23-26 Rule for the cube 

II 

27-28 Rule for the cube root 
De l’extraction des racines 
cubiques 

3; 3 

29-30 Simple reduction of 
fractions 

Reduction de diverses Fractions 2; 6 

31-32 Reduction of subdivided 
fractions 

Des Fractions de fractions et de 
la reduction dicelles 

2; 2 

33-35 Rules of quantities 
increased or decreased by a 
fraction 

La maniere de valuer les 
Fractions denommees de 
quelque espece 

2; 5 

36-37 Rule for addition and 
subtraction of fractions 

De l’Addition des Fractions 
De la Souztraction des Fractions 

2; 8 
2; 9 

38-39 Rule for multiplication of 
fractions 

De La Multiplication des 
Fractions 

2; 10 

40-41 Rule for division of fractions De la Division des Fractions 2, 11 

III 

42-43 Rule for involution and 
evolution of fractions 

  

II 

IV 44-46 Cipher [rules for zero]   
I 47-49 Rule of inversion   
II 50-54 Rule of supposition [regula 

falsi] 
De la Regle de Faux de deux 
Positions 

4; 6 

III 55-58 Rule of concurrence   
IV 59-61 Problems concerning 

squares 
  

V 62-69 Rule for assimilation of the 
root’s coefficient 

  

70-73 Rule of three terms De la Regle de Trois 1; 8 
74-78 Rule of three inverse De la Regle de Trois Everse  1; 9 
79-84 Rule of compound 

proportion 
De la Regle de 6 Quantitez 3; 20 

III 

VI 

85-86 Rule of barter   
  Investigation of mixture De la Regle d’Alligation 4; 4 
I 87-93 Interest   
II 94-95 Fractions [cistern problem] Aucune questions diversement 4; 10 
III 96-98 Purchase and sale De la Regle Double 4; 1 
IV 99-100 A present of gems   
V 101-109 Allegation De la Regle d’Alligation 4; 4 

IV 

VI 110-114 Permutation & 
combinations 

  

  Progressions 
I 115-126 Arithmetical progressions 

V 

II 127-132 Geometrical progressions 

De la Progression des Entiers 1; 7 

Table 1: A comparison of subjects in Indian and European arithmetic books 
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If there is no direct influence from Hindu algebra on algebraic practice 
within the abacus tradition, and if Arab algebra did not function as an 
intermediary, how to explain the strong similarity between Hindu and 
abacus problems and their solution methods? Høyrup leaves us with an 
opening for drawing the connection by stating that “below the level of 
direct scientific import, some influence of Indian Algebra is plausible” (1994, 
95). As a scholar working on a wide period of mathematical practice, from 
Babylonian algebra to the seventeenth century, Høyrup has always given 
much attention to the more informal transmission of mathematical 
knowledge which he calls sub-scientific structures. By their nature, sub-
scientific structures are not communicated in formal writings and thus their 
dissemination and influences are very difficult to determine. 
 
This paper is an exploration of the possible paths of transmission from Indian 
to Western problems and problem solving methods. The study of 
manuscripts and books passes by on the oral tradition. The narration of 
stories, riddles and recreational puzzles is the most important factor in the 
passing of arithmetical problems and their solution methods to other 
generations and continents. In order to get a grip on the oral tradition we 
will propose a concrete implementation for sub-scientific knowledge in the 
form of proto-algebraic rules. A proto-algebraic rule is a procedure or 
algorithm for solving one specific type of problem. Our main hypothesis is 
that many recipes or precepts for arithmetical problem solving, in abacus 
texts and arithmetic books before the second half of the sixteenth century, 
are based on proto-algebraic rules. We call these rules proto-algebraic 
because they are or could be based originally on algebraic derivations. Yet 
their explanation, communication and application does not involve algebra 
at all. Proto-algebraic rules are disseminated together with the problems to 
which they can be applied. The problem functions as a vehicle for the 
transmission of this sub-scientific structure. Little attention has yet been 
given to sub-scientific mathematics or proto-algebraic rules. However, 
viewing proto-algebraic rules as solidifications of algebraic problems solving, 
they function as fossils of algebraic practice in non-algebraic writings. As 
fossils provide important evolutionary data to paleontologists and 
archeologists, so do proto-algebraic rules for the historian of mathematics. 
Analysis and comparison of formulations and variations of these rules allow 
us to reconstruct possible paths of transmission.  
 
There are only limited sources from which the medieval and Renaissance 
proto-algebraic rules were derived: Byzantine, Arab, Indian and Chinese. Our 
hypothesis is that Hindu algebra played an important role in the formulation 
of proto-algebraic rules for solving linear problems. We will thus limit 
ourselves to Sanskrit texts as possible sources. Space and time does not allow 
us to give a complete overview of this subject, but we hope to provide the 
necessary arguments and a framework for pursuing such study further. We 



 CHAPTER 4: PROTO-ALGEBRAIC RULES 

 - 7 - 

will cover a typical example of linear problems in one, two and more 
unknowns and point at other types of problems that could be approached 
from the given framework. We will concentrate on the recipes as they 
appear in fifteenth and sixteenth-century abacus manuscripts and arithmetic. 

3. Terminology in Sanskrit mathematical texts  
We face multiple barriers with the interpretation of Hindu algebra  Most of 
our relevant source texts from the Classic period are Sanskrit verses written 
between 500 and 1200 AD. Some sources, such as the Bakhshālī manuscript, 
are preserved on beach bark and their transcription and interpretation 
requires a high level of scholarship in Sanskrit paleography, lexicography and 
language study. Fortunately, English translations and critical editions have 
become available for most of the important sources.6 The faithfulness of the 
translations and the level of scholarship has increased considerably with 
recent publications such as Hayashi (1995). The landmark study by Datta and 
Singh (1935, 1938) provides us with the framework for interpreting the 
sometimes obscure, formulations of rules. We will mainly follow this 
reference work as the most reliable outline for the mathematical 
interpretation. Still, from a conceptual viewpoint, earlier translations show 
insufficient restraint from modern reading of these ancient texts. The 
difference in interpretation between multiple translations learns us to be 
cautious about the use of modern concepts of algebra. For example, in the 
English rendition of the Sanskrit verses, Colebrooke (1817) refrains from using 
the terms ‘unknown’ and ‘coefficient’ while Dvivedin (1902) does use them. 
On the other hand, Colebrooke uses ‘equation’ while this does not appear in 
Dvivedin’s translations. We can therefore cast some doubt about the use of 
these modern terms in the translations of Sanskrit texts in general. We will 
give alternative translations when they are available. In the next section the 
meaning of some of the basic terms will be reviewed. Our approach is from 
the philosophy of science rather than from a linguistic point of view and we 
will try to determine the meaning within the context of the conceptual 
development of algebra. 

3.1. Coefficient 
In relation to ‘coefficient’, Datta and Singh (1962, II, 9) claim that “in Hindu 
algebra there is no systematic use of any special term for the coefficient”. 
This compares with the state of algebra in mid-sixteenth century Europe . 
The modern interpretation of the term ‘coefficient’ is inseparable from the 
study of the structure of equations which emerged with Viète and Girard. 
Viète (1591) introduced his symbolism of vowels for unknowns and 
consonants for constants and coefficients in order to be able to represent 
properties and reveal structures of equations. A cubus plus B quadratum in A 

                                            
6 For an overview of sources and a list of used abbreviations consult the table in § 10. 
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aequari B quadratum in Z represents the equation A3 + B2A = B2Z in which 
the coefficient of A should be a perfect square. The relation between the 
coefficients of the powers of the unknown, their signs and the roots of an 
equation have become part of algebraic theory developed during the early 
seventeenth century. As such, it should be used with prudence  in contexts 
before the late sixteenth century. Colebrooke (1817, 344), with some 
exceptions and Rodet (1879, 44) do not use ‘coefficient’. Datta and Singh 
(1935-38), in spite of their observation, quoted above, frequently use the 
term in translations. 

3.2. Unknowns  
The name for the unknown yā is derived from the expression yāvat-tāvat (as 
many as) and functions as a symbol for the unknown similar to the cossic 
symbol which originated in Germany during the fourteenth century.  
Datta and Singh (1938, II, 18) cite the Sanskrit lexicographer Amarasiṃha for 
an interpretation as a measure of quantity. As such, the meaning of the 
Sanskrit words yāvat-tāvat is not very different from the meaning of the 
Arab name māl, for property, possession or money.7 The term yāvat-tāvat 
was in use in Indian texts before 300 BC. Powers of the unknown are based 
on combinations of varga (square) and ghana (cube). Sanskrit texts used the 
multiplicative system for powers instead of the additive one as used by 
Diophantus and some Arab sources. The sixth power is thus called ghana-
varga.  
The use of multiple unknowns was already common before Brahmagupta 
(628). This can be derived from the fact that in the BSS Brahmagupta uses 
colors synonymous with unknowns without a formal explanation (e.g. 
Colebrooke 1818, 325, 348). The commentator Kṛṣṇa lists 13 colors in his notes 
to the BG (Colebrooke 1818, 228): kālaka (black), nīlaka (blue), pītaka 
(yellow), lohītaka (red), etc., the latter ones being different shades of black! 
These colors are used in addition to the yā and are abbreviated as kā, nī, pī, 
etc.8 
Known quantities are usually represented by rūpa as a monetary unit, as we 
also know from Arab and Byzantine texts. 

3.3. Equation 
In Indian mathematics, we find expressions such as ‘sāmya’, ‘samatva’, and 
‘samīkaraṇa’ meaning ‘sameness’, ‘equality’ or ‘making equal’. The concept 
of an equation in the texts of the period from the eleventh century to 
Nārāyaṇa (1350) is closer to that of the seventeenth century symbolic 

                                            
7 The correspondence of the meanings of the Sanskrit and Arab terms for the unknown 
was pointed out already by Gandz (1936, 273). For the possible influence of Hindu 
mathematics on Arab algebra see Heeffer 2006.  
8 A similar scheme of additional unknowns by the letters A, B, C was first introduced in 
Europe by Stifel (1544). 
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equation than is European algebra before 1500. However, an equation in 
these Sanskrit texts is not to be considered identical to our present notion. 
Especially the lack of a symbolism to express coefficients and relations 
between coefficients is a handicap. We would compare the equation in 
Sanskrit texts with the one of mid-sixteenth-century Europe. An advantage 
of the European symbolism was the use of numbers for powers of the 
unknown as in Chuquet (1484) where the Hindu texts use names. On the 
other hand, the Indian notions of an equation were more advanced with 
regards to negative terms, the equation to zero and the use of zero terms.  
What was lacking in symbolism in Sanskrit texts was compensated by 
structure. An organizational plan for writing down the quantities of an 
equation (nyāsa: putting down, to state) was probably in use before 
equations themselves. The BM show some “equations” involving roots 
without the use of the unknown (Sūtra 50, Hayashi 1995, 333).9 This 
corresponds somewhat with the omission of the base of the unknown as 
done by Chuquet (1484) and later Stevin and Bombelli (1572). The lower right 
corner of one strip of the BM (Figure 1) shows an example of a layout used 
for the quantities of a problem. This sūtra 52 deals with a problem of 
consumption of income and stock. A person earns 5 dīnāras every 2 days (a) 
and spends 9 dīnāras every 3 days (b). With a stock of 30 dīnāras (c), how 
long will it take to exhaust the stock? Evidently the rule in the transcription 
of Table 2 corresponds with the equation 
 

 
cx

b a
=

−
 the layout used in the example is a  b  c 

 
Using the values of the problem, this results in 
 

 
30 60

5 9
2 3

x = =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 
Using abbreviations for the unknown(s), the structure of an equation 
becomes more distinct. This first appears in the BSS by Brahmagupta (628) as 
in the example of a linear equation which we will discuss below:  
 

1 25
3 3

ya ru
ya ru

   corresponds with  25 3 3x x+ = +  

 
The terms of each side of the equation are ordered by base . Missing terms 
are denoted by zero, a practice which appears in Europe after Descartes 
(1637). 
                                            
9 We refer to the Hindu sources by abbreviations as summarized in 10. 
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Figure 1: One strip of BM (f. 60r from Kaye 1927, plate XL) 

 
āyavyayaviśeṣaṃ to vibha (ktaṃ) driṣyasaṃguṇaṃ / 
yal=labdhaṃ sā bhavet=kalaṃ ayaṃ praṣṭe (vya)ye 
vidhi // uda // dvidine ārjaye paṃca tṛdine nava 
(bhakṣay)e(t) (bh)āṇḍāgāraṃ tasya tṛnśa kiṃ kālaṃ 
ārjabhakṣaṇaṃ 
 

5 9
2 3 30

di dinaram dr
di dina

 

(kara)ṇaṃ / āyavyayaviśeṣan=tu / tatrāyaṃ 
5
2

 

(vyayaṃ) 
9
3

 (vartyaṃ) 
3
1

 anayor=v)i(ś)e(ṣa)ṃ 

(kṛtvā) 
1
2

 (vibhaktaṃ) 
2
1

 

 
(dṛśyasaṃguṇaṃ / dṛśyaṃ) <30> (anena guṇitaṃ 
jātaṃ) <60> (etatkālena ārjanabhakṣaṇaṃ //) 
(Hayashi 1995, 236) 
 

The difference of the income and the 
expense is divided (i.e., made into its 
reciprocal), and multiplied by the 
visible. What is obtained shall be the 
time (for consumption). This is a rule 
for a problem of expense. 
 
A certain man would earn five 
(dinaras) every other day, and spend 
nine (dindras) every three days. His 
stock is thirty (dindras). In what time 
does the consumption of his earnings 
(and stock take place)? 
 
5 9
2 3 30

dinaras dinaras visible
days days

 

 
Computation. `The difference of the 
income and the expense' 
 
(Hayashi 1995, 334) 
 

Table 2: Transcription and English translation by Hayashi (1995) 

3.4. Algebra 
The first use of algebra in India is found in the Śulba sūtras (800-500 BC). 
This early algebra was geometrical in nature, similar to Babylonian algebra. 
The first references to algebra use the word ‘bīja-chatuṣtaya’ which literally 
means “the fourfold of seeds”, or calculating with one unknown. The title of 
the treatise of Bhāskara, ‘bīja-gaṇita’ literally means “calculation with seeds”, 
is the closest term for what we call algebra. The seeds refer to the four types 
of equations and their representations. Algebra is later also characterized as 
‘avyakta-gaṇita’, the science of calculation with unknowns as opposed to 
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‘vyakta-gaṇita’, the science of calculation with known values (Datta and 
Singh 1962, II, 1). Still later references to algebra use the terms ‘ekavarṇa-
samīkaraṇa’ (equations in one unknown) for linear equations in the BG and 
the BSS and ‘anekavarṇa-samīkaraṇa’ (equations in more than one unknown) 
in the BG. The method for solving quadratic problems is called ‘madhyama-
āharaṇa’, meaning “the elimination of the middle term”. 
 

4. Linear problems in one unknown 

4.1. Difference of unknowns  
We have no general name for this type of problem and therefore use the 
translation of the corresponding Hindu recipe from Āryabhaṭa, “the 
difference of beads” or difference of unknown quantities. The general 
structure of this rule in symbolic form is as follows: 

From ax b cx d+ = + , we may derive 
d bx
a c
−

=
−

. 

 
We denote the values by (a, b, c, d). 

4.1.1. The rule in Hindu algebra (gulikā-antara) 
Our first source for a formulation of this rule is from Āryabhaṭa I, 499, (AB, ii, 
30). The Āryabhaṭīya is one of the basic works of Hindu mathematics and 
astronomy. The book is written as a collection of 123 verses or stanzas, 
divided into four sections. The second section, called Gaṇitapāda, covers 
mathematics in 33 stanzas.  The stanzas are rather short and each cover a 
complete subject such as the rule of three, the sum of an arithmetical 
progression or interest reckoning. Some of these stanzas are prime 
representations of what we call proto-algebraic rules. Stanza 30 describes in 
a very terse form, the equal possessions of two persons each consisting of a 
known and unknown part:  
 

Clark 1930, 41 Datta & Singh, 1938,II, 40 Rodet 1879, 403 
One should divide the 
difference between the 
pieces of money possessed 
by two men by the 
difference between the 
objects possessed by them. 
The quotient will be the 
value of one of the objects 
if the wealth of the two 
men is equal. 

The difference of the 
known “amounts” 
relating to the two 
persons should be divided 
by the difference of the 
coefficients of the 
unknown. The quotient 
will be the value of the 
unknown, if their 
possessions be equal. 

Par la différence 
entre des objets 
divises la différence 
des roupies que 
possèdent deux 
personnes, le 
quotient est la 
valeur d’un objet si 
les fortunes sont 
égales. 

 
The known part consists of money, or a number of rupies in Rodet’s 
translation. The other part is composed of a number of goods of an 
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unknown value. The commentator Parameśvara, in Kern’s edition gives the 
example of cows (Clark 1930, 41):  
 

If one man has 100 rupees and 6 cows and the other man has 60 rupees and 
8 cows, the value of a cow is 20 rupees provided the wealth of the two men 
is equal. 

 
Datta and Singh leave out the context and describe the rule in terms of 
unknowns. In Rodet’s translation the rule gives the value of the goods as a 
general recipe. The three translations and interpretations thus vary widely. 
Datta and Singh consider this fragment, and more general, the Āryabhaṭīya, 
as symbolic algebra. They go as far as to state that “the solution of a linear 
equation in one unknown is found in the Śulba” as early as 800 BC and that 
“classifications of equations” were given in the Stānānga-sūtra dated c. 300 
BC (Datta and Singh, 1962, 35-6). The translation by Clark is more neutral and, 
we believe, more convincing. As discussed previously, we consider a solution 
method algebraic 1) when it uses an unknown as an abstract entity and, 2) 
when the reasoning proceeds in an analytical way. In a yielding disposition, 
the we could consider the value of a cow as an unknown, but the text 
certainly gives no evidence of analytical reasoning. The rule simply prescribes 
to subtract 60 rupees from 100 and to divide it by 8 cows minus 6 cows to 
arrive at the price of 20 rupees for a cow. 
We find the remains of the same rule in a near pulverized bark leaf of the 
Bakhshālī manuscript, c700 (Sūtra 51, Hayashi 1995, 333): 
 

The difference of [the number of] the cows should be made. Make also [the 
difference of their] properties [in cash]. 

 
This formulation compares very well with the AB. There is an example added 
which mentions 10 cows and 8 rupees, but the explanation of the problem is 
on a leaf which is missing.  The BSS of Brahmagupta, 628, gives a somewhat 
different formulation of Āryabhaṭa’s rule: 
 

BSS 18.43, Dvivedin, 1902, xviii, 43  
(English: Datta & Singh 1938, II, 40) 

Colebrooke, 1817, 344 

In a [linear] equation in one 
unknown, the difference of the 
known terms taken in reverse order, 
divided by the difference of the 
coefficients of the unknown [is the 
value of the unknown] 

Rule for a simple equation: The 
difference of absolute numbers, 
inverted and divided by the 
difference of the unknown, is the 
[value of the ] unknown in an 
equation. 

 
Brahmagupta gives three examples, all related to astronomy. As an 
illustration of his solution, we take question 13.10 

                                            
10 Colebrooke (1817, 344) seems to take this as part of the BSS. However Hayashi pointed 
out that the example is from an anonymous commentator (personal communication). 
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If four times the twelfth part of one more than the remainder of degrees, 
being augmented by eight, be equal to the remainder of degrees with one 
added thereto, tell the elapsed days. 
Here remainder of degrees is put yāvat-tāvat viz. ya 1. With one added, it is 
ya 1 ru 1. Its twelfth part is  
 

1 1
12

ya ru
.   

 
This quadrupled is  
 

1 1
3

ya ru
.  

Augmented by eight absolute, it is  
 

1 25
3

ya ru
.  

 
It is equal to remainder of degrees with one added thereto. Statement of 
both sides tripled,  
 

1 25
3 3

ya ru
ya ru

.  

 
The difference of [terms of the] unknown is ya 2. By this the difference of 
absolute number, namely 22, being divided, yields the residue of degrees of 
the sun 11. This residue of degrees must be understood to be in least terms. 
The elapsed days are to be hence deduced, as before. 

 
Brahmagupta takes the unknown yā or x for the remainder of degrees. The 
second part of the equation thus is x + 1. The first part is “four times the 
twelfth part of one more than the remainder of degrees, being augmented 
by eight”, thus 
 

14 8
12
x +⎛ ⎞ +⎜ ⎟

⎝ ⎠
 or 

25
3

x +
 resulting in the equation 

25 1
3

x x+
= + .  

 
Multiplying both sides with three gives the equation for which the rule can 
be applied 25 3 3x x+ = + . The difference of the terms of the unknown is 2 x 
and the difference of the known quantities is 22. Applying the rule yields the 
solution 11. 
This fragment provides us with the necessary material to confer on the 
algebraic character of the solution. The use of yāvat-tāvat, with the 
lexicographical arguments discussed previously, gives a clear determination 
of an unknown. The solution method is also analytical in the way that the 
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original problem is reformulated using an unknown to arrive at the equation 
25 3 3x x+ = + . Now, the final part is of interest for our discussion. Datta and 

Singh (1962, 41) also give the problem and continue with “ 2 22x = , therefore 
11x = ”. But that is not what is written in the original text. In the text, the 

equation is not resolved by dividing both sides of the equation by two. 
Instead, quite literally, the final part describes the application of the rule of 
gulikāntara to the values of the known and unknown numbers. 
Brahmagupta thus employs algebra to reduce a problem in an analytical way 
to a form in which a general recipe of solution is applicable. He does not use 
algebra to resolve the value of the unknown. This method of analysis, typical 
for Hindu algebra is phrased very well by the commentary of 
Prthūdakasvāmī (Vāsānābhāshya, 860), on this specific rule (Colebrooke, 344): 
 

The value of the unknown quantity, in the example, as proposed by the 
question, is to be put yāvat-tāvat; and, upon that, performing multiplication, 
division, and other operations as requisite in the instance, two sides are to be 
carefully made equal. The equation being framed, the rule takes effect. 
Subtract the [term of the] unknown in the first of those two equal sides from 
the unknown of the second. The remainder is termed difference of the 
unknown. The absolute number on the other side is to be subtracted from 
the absolute number on the first side: and the residue is termed difference of 
the absolute. The residue of the absolute, divided by the remainder of the 
unknown, is the value of the unknown 

 
From the eleventh century on, we find descriptions of rules in Indian sources  
describing operations which are much closer to the manipulation of an 
equation. Śrīpati formulates the rule as follows (SS, xiv, 14; Sinha 1985, 38): 
 

The difference of the absolute numbers being taken in the reverse order and 
divided by the difference [of the coefficients] of the unknown, [the two sides 
of the equality] should be the measures of the unknown. Alternately, if one 
wishes [one side] to be added with, decreased by, multiplied, or divided [by 
an appropriate number], so also is [it] to be performed on the other side. 

 
The rule, as it is here presented, sounds more as the result of a derivation 
than as a recipe for solution. The additional comment on the possible 
operations is very much alike the operations on coequal polynomials as we 
find them in early Arab algebra (between 800 and 1050). After Śrīpati a very 
similar formulation is given by Bhāskara II, (AB 2.30, 1-5): 
 

Dvivedin, 1927, 44 
(Datta & Sing 1936, II, 41) 

Rodet 1879, 44 Colebrooke, 1817, 185 

Subtract the unknown 
on one side from that 
on the other and the 
absolute term on the 
second from that on the 
first side. The residual 

Les inconnues du premier 
se retranchent de celles 
du second, les espèces 
[sonnantes] du second de 
celles du premier; par la 
différence [des 

Subtract the unknown 
quantity of one side from 
that of the other; and the 
known number of the one 
from the other side; then 
by the remaining 
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absolute number should 
be divided by the 
residual coefficient of 
the unknown; thus the 
value of the unknown 
becomes known 

coefficients] des 
inconnues, on divise la 
différence des nombre; on 
connaîtra ainsi la valeur 
fixe de la quantité 
inconnue. 

unknown divide the 
remainder of the known 
quantity: the quotient is 
the distinct value of the 
unknown quantity. 

 
Comparing this formulation with the original rule from Āryabhaṭa, we 
distinguish an important evolution. While both provide a rule for solving the 
same type of problem, and both rules can be rendered into the same 
equation, the six centuries that separate the two authors mark a conceptual 
difference. Āryabhaṭa talks about possessions of two men having a known 
and an unknown part. Bhāskara’s rule is more abstract and deals with 
unknown quantities or numbers within the structure of an equation. 
Āryabhaṭa gives a recipe for deriving the value of the objects of the 
unknown part of the possession. Bhāskara describes a procedure for solving 
an equation of this particular structure. He does present the solution as a 
recipe but describes the steps necessary to arrive at a value of the unknown. 

4.1.2. The regula augmenti 
The rule appears occasionally in Western arithmetic books but less frequently 
than the negative case discussed below. Johannes Widmann (1489, f. 110v) is 
the first to coin a name for the rule as the regula augmenti.11 He formulates 
it as follows: 
 

Subtrahir die kleyner anzal vonn der grossern und das uberig behalt zu 
deinen teyler. Darnach subtrahir auch die kleyner residuum von dem 
grossern. Und das uberig geteylt surch deynen vorbehalten teyler bericht die 
frag des gewichtes ad des gleichen. 

 
Because the rule is poorly represented in other works we suspect that 
Widmann derived the rule from the negative case. It probably is one of the 
several variations of mercantile rules to be included in his vast exposition of 
rules. He adds one example of a man buying cinnamon (zimmantrinden). 
When buying 9 pounds he is left with 13 guilders, when buying 14 pound, 
one guilder is left. The rule gives an answer for the weight of the goods 
bought. 

4.1.3. The negative case  
When we account for the signs of the known values, we get another rule 
which appears more frequently in Western arithmetic. The general structure 
of this rule is  

                                            
11 This rule should not be confused with the regula augmentationis involving two 
unknowns, discussed below.  
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ax b cx d+ = −  with solution 
b dx
c a
+

=
−

 

 
Rodet (1879, 428) argues that the rule of gulikāntara given by Āryabhaṭa is 
formulated in a general way and that it makes abstraction of the sign. This 
would mean that the this case is also covered by Āryabhaṭa’s rule, discussed 
above. Without further examples and more explanation from Āryabhaṭa, 
such assertion is difficult to confirm or disprove. The fact is, that there are 
indeed no separate rules formulated for this case in Hindu texts. Bhāskara I 
gives an example of the gulikāntara rule with a negative value.12 The more 
general formulation by Śrīpati and Bhāskara II indeed allows for the 
abstraction of the signs. The example is given in the BG of Bhaskara II (c.1150), 
stanza 103: 
 

One person has three hundred of known species and six horses. Another has 
ten horses of like price, but he owes a debt of one hundred of known 
species. They are both equally rich. What is the price of a horse ? 

 
The solution given in the BG is 13: 
 

Example 1st: Here the price of a horse is unknown. Its value is put one so much 
as (yāvat-tāvat) ya 1 and by rule of three, if the price of one horse yāvat-tāvat, 

what is the price of six? Statement: 1 1 6ya . The fruit, multiplied by the 

demand, and divided by the argument, gives the price of six horses, ya 6. 
Three hundred of known species being superadded, the wealth of the first 
person results; ya 6 ru 300. In  like manner the price of ten horses is ya 
10.To this being superadded a hundred of known species made negative, the 
wealth of the second person results; 10 100ya ru � . These two persons are 

equally rich. The two sides, therefore, are of themselves become equal. 

Statement of them for equal 
6 300

10 100
ya ru
ya ru � . 

 
“The fruit multiplied by the demand and divided by the argument” is an 
implicit reference to the Līlāvatī  where the rule of three is explained in 
terms of species of fruit, not unlike the expression “comparing apples and 
oranges” (Colebrooke 1817, 33). Again, as with Bhaskara above, the analytical 
part of the problems solution reformulates the problem in terms of an 

                                            
12 Takao Hayashi pointed my attention to the commentary on the Āryabhaṭīya by Bhāskara 
in which he cites a Prakrit verse with relation to Āryabhaṭa’s example which prescribes the 
addition and subtraction of negative terms (English translation in Keller 2006, I, 123). 
13 BG stanza 104 (Colebrooke 1817, 188-9). This example is also discussed by Datta and 
Singh (1962, 42) and by Rodet (1879, 46-). Rodet gives the sanskrit text with a French 
translation.  
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unknown, and reduces the expressions to the point at which the general rule 
can be applied: 
 

Then, by the rule (§ 101), the unknown of first side being subtracted from the 
unknown of the other, the residue is ya 4. And the known numbers of the 
second side being subtracted from the known numbers of the first, the 
remainder is 400. The remainder of known number 400, being divided by 
the residue of unknown ya 4, the quotient is the value in known species, of 
one so much as (yavat-tavat) viz. 100. 

 
Clearly, the final part of the solution is the application of the general rule. 
Interestingly, the difference between known numbers, meaning 300 and – 
100 is 400. So, Hindu authors have no problem adding or subtracting 
negative values.  
 
Rodet, who was keen in demonstrating that Arab algebra was influenced by 
India, makes the connection between this problem and the way quadratic 
problems are treated by Mohammed ibn Mūsa al-Khwārizmī.14 This rather 
forced connection can currently not be maintained. However, we share his 
view that the importance of Hindu algebra for the development in the West 
has been underestimated. We will make the connection between the 
gulikāntara  and proto-algebraic rules which were widely used and 
circulated in arithmetic books in Western-Europe.  

4.1.4. The rule in European arithmetic and algebra treatises 
The problem type was named zuviel – zu wenig by Tropfke (1980, 601), who 
cites Chinese, Arab and Hindu sources for its origin. We find three 
formulations of the problem set in the practical contexts: 
 

1. Distributing figs to children 
2. The division of money as payment to workers, soldiers, etc. 
3. The payment of bought goods 

 
The distribution of figs to children appears in the Algorismus Ratisbonensis 
(AR, c. 1460, Munich Cod. lat. 14908, f 91v-92r; Vogel 1954, 75-6) and the 
Bamberg Mathematical Manuscript (BMM, c. 1460, Inc. IC I 44, f. 40v; 
Schröder 1995, 274-5) with the same values 12x + 37 = 15x – 44. The solution is 
a literal application of the Hindu solution recipe. The BMM is most specific, 
referring to the positive and the negative part: 

                                            
14 Rodet 1879, 50, in conclusion of the problem discussed above: “Ces mêmes procédés 
que nous venons de voir appliquer aux equations du premier degré servent également 
à transformer les équations du second, pour les amener à la forme toujours trinòme, 
dans l’Inde, tantôt trinòme, suivant les problèmes, pour les Grecs et les Arabes, ces 
derniers distinguant, nous l’avons vu, cinq cas (six avec celui du premier degré) de ces 
équations définitives”. 
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Machs also: addiere plus und minus fazit 81, und nimm 12 von 15, bleiben 3. 
Dividiere 81 per 3, fazit 27 Kinder. Und multipliziere 12 mit 27 und addiere 37, 
fazit 361 Feigen. 

 
The payment of the rent by students in a bottega appears in the Trattato 
d’Abacho of Maestro Benedetto (c. 1470, Florence, Magl. Cl. XI, 76, f. 89v; 
Arrighi 1987). It is presented as the first of a series recreational problems 
(“alchuno chaso di diletto”) for which no general rules are formulated. The 
values for the example are 10x – 30 = 8x + 20 and the given solution is an 
application of the general recipe.  
 
The third practical context in which the rule applies, can be found in one of 
the first printed arithmetic books. Borghi (1484) includes the problem of a 
master who has to pay wages to his workers with a given sum of money in 
his purse. When he pays each 12 denari he is left with 50 denari, but paying 
each 15 denari, he has 70 denari short. The question is how much the master 
has to pay each.15 
 
Borghi writes that the problem can be solved in the following way: 
  

First add the 50 d. which is left, with the 
70 d. which is short. This gives 120 d. Then 
subtract 12 from 15 which leaves 3. Now 
divide 120 by 3, which is 40 and that is the 
number of masters. And to know how 
much denari he has, because it is told that 
giving each 12 leaves 50 in the purse, the 
amount the winegrower has is 480 to 
which we have to add 50 which gives 530, 
and this how much he has. 

 
The first part is a direct application of the 
recipe  
 

b dx
c a
+

=
−

, thus 
70 50 40
15 12

+
=

−
.  

 
The rest is the calculation of the contents of 
the purse, leading to the value 530. The final 
part is a test of the validity of the solution. 

 
Figure 2 : the regula 
augmenti applied by 
Borghi (1484) 

 

                                            
15 Borghi, (1484, 112r): “Esel te fusse dito le uno che ano una quantita de danari e ano 
apagar maistraze e chostui fa le suo raxon che sel desse azaschun maiestro lire 12, li 
restera i borsa d. 50 e sel volesse dar azaschun d. 15 li mancheria d. 70. Adimando quanti 
danari laveva e quanti maistri laveva apagar”. 
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4.1.5. Regula augmenti et decrementi 
Again Widmann (1489, f. 112r) is the first to coin a name for the rule:16 

 
Regula augmenti + decrementi 
An dieser regel soltn dich alszo halten. Subtrahiere die kleyner zal von der 
grosseren und das ubrige teyl mit der minderung und merung zusam 
geaddiert und derselben teylung quocient saget dyr zal der person, weliche, 
szo sy mit gemultiplicirt wirt mit der kleynern anzal und die nymmerung von 
dem product subtrahirt, wirt ader widerumb das dar noch uberpleybet 
bericht die ander frag. 

 
Thus for ax b cx d+ = − , the merung and minderung refers to b and d 
respectively. Evidently, c is the larger number and a the smaller one. The rule 
thus prescribes that “the number of persons [receiving a payment]” equals 
 

 
b dx
c a
+

=
−

 

 
The “other question” about the total payment is ax b+ . 
Widmann adds two examples, one on paying wages to workers with (5, 11, 9, 
17) and one about a merchant buying anisette with (12, 37, 15, 44). Some 
pages further he discusses a rule by the name Regula Pulchra III (Widmann 
1989, f. 114v): 
 

Nu szoltu diesze Regel alszo verfuren. Addir die geminderte zal der d. zur 
furgelegten zal der d. Und subtrahir die zal des Dinges von der andern zal 
yrss gleychen. Unnd dividir die ubrige zal der d. mit der ubrigen zal der 
gekaufften war. Und der selbigen teylung quocient bericht die frag. 

 
This “pretty rule” is structurally identical with Regula augmenti et 
decrementi, only the context is different. The example provided by Widmann 
compares the price of 6 eggs minus 5 denari with 4 eggs plus one denari. The 
price of an egg can be determined with this rule. This compares very well 
with problem 112 of the AR on the price of cheese (f. 83v-84r ; Vogel 1954, 63). 
The AR does not mention a name for the rule. 
 
Widmann must have been aware of the redundancy of so many mercantile 
rules because he applied algebra for this and other types of mercantile 
problems in the margins of the Dresden C80 manuscript. On folio 355r he 
provided an algebraic solution for the problem (Wappler 1899, 544): 
 

Quidam habuit pueros et denarios et dixit: si cuilibet do 2 d. manent in 
residuo 5 denarij, si autem cuilibet do 3 d. deficio in 6. Queritur quot sint 
denarij, et quot sint pueri. 

                                            
16 Also discussed by Eneström (1907, 195). 
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The monk Fridericus Amann included an algebraic solution prior to 
Widmann in an algebra treatise written in 1461 (Cod. Lat. Monacensis 14908, 
153r; transcription by Curtze, 1895, 68): 
 

Quidam habuit laboratores et pecunias. si cuilibet laboratori dedit 5, 
habundat in 30; si vero daret cuilibet 7, deficiet in 30. Queritur, quot sunt 
laboratores. 
 
Sit numerus istorum 1 x, et fiunt primo 5 x et 30, fiet secundo 7 x minus 30 
equande 5 x et 30.   2 x equande 60, venit x 30 

 
While the rule appears frequently in later arithmetic books, the names 
coined by Widmann seem to have found little use. 

4.1.6. The rule of abstraction 
One other alternative name for the regula augmenti et decrementi is worth 
mentioning. A Flemish manuscript by Van Varenbrakens (1532) talks about 
“Den reghel van abstractie” (the rule of abstraction). He refers to the Latin 
expression Regula que dicitur de re, which we have not found in any extant 
text. His source must have been an algebraic text as he cites (f. 157r, Kool 
1988): 
 

Ad sciendum regulam de re scribatur res sub re et numerus sub numero, 
videlicet in exemplo sequenti. Tunc subtrahur res sub re aut res de re et 
addatur numerus numero et dividatur numerus perveniens ex illa additione 
per numerum exemplum.  

 
The terms res and re apparently refer to the unknowns. In an example 
comparing the price of four eggs minus 2 denari with one egg plus seven 
denari, the equation would be  
 
 4 2 7x x− = +  
 
The rule prescribes the subtraction of the unknown (re, x) from the 
unknowns (res, 4x) and the addition of “the numbers” 2 and 7. The solution 
is the quotient of second by the first. We here witness how a proto-algebraic 
rule is created from an algebraic solution. Van Varenbrakens (1532) does not 
mention algebra at all in his text. Most likely he did not master algebra at all. 
Instead, he recommends his own interpretation of the rule “because not 
everyone knows Latin, I shall explain this rule in Flemish according to my 
own understanding” (“Omne dat al de werelt gheen latijn en can, so sal ic u 
exponeren desen regel in platten vlaemsche na mijnen verstande”,  f. 157r). 
Van Varenbrakens uses the representation of a cross, typical for many other 
rules of arithmetic. For the second example, about laborers in a vineyard, he 
plots the values (12, 37, 15, 44) as follows: 
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     12   |   37      12x  + 37   
3 --------------- 81 corresponding with 
     15   |   44      15x – 44    

 
Van Varenbrakens takes two pages to explain step by step how to place and 
manipulate the numbers to arrive at a certain solution. The lack of 
symbolism is compensated by a specific arrangement of the values in the 
form of this cross. 
Exactly the same values, on distributing figs to children, appears in problem 
158 of the AR (Vogel 1954, 75) and problem 212 of the Bamberg Inc. Typ. IC 
I44 (Schröder 1995, 274-5). However, the name for the rule does not appear 
in these texts. Two centuries later, Isaac Newton includes a problem about 
the money of beggars in his Arithmetica Universalis with 3x – 8 = 2x + 3 
(Newton 1707; 1720, 71). 

5. Linear problems in two unknowns 

5.1. Regula augmentationis 

5.1.1. The rule in Hindu texts 
The rule refers to a specific type of problem with two persons asking for a 
share of the other’s money in order to make his sum a given ratio of the 
other’s. In modern symbolism this can be represented as follows: 
 

( )
( )

x a c y a
y b d x b
+ = −
+ = −

 (1.1) 

 
Other versions involve multiple persons in which the relations are expresses 
cyclically, which we will not consider here. The earliest source for the two 
person’s version is a Greek epigram attributed to Euclid.17 A mule and ass are 
carrying several sacks. The mule tells the ass, “If you gave me one of your 
sacks, I would have as many as you”. The ass replies, “If you gave one of your 
sacks, I would have twice as many as you”. The question is how many sacks 
they each have. With 1 1, 1 2( 1)x y y x+ = − + = −  the solution is (5, 7). 
 
In Hindu mathematics the first occurrence of this type of problem is in the 
BM (c. 700), Sūtra 10 (Hayashi 1995, 288, 363-4).18 The rule for solving the 
problem is formulated as follows: 
 
                                            
17 Heiberg and Menge, 1986, VIII, 286-7. For a history of the problems see Singmaster 
1999b, 2000, 2004. 
18 This was previously unnoticed by Kaye (1933, II, 168) writing “I have not yet made out 
the meaning of this sūtra”, and is therefore not covered by Datta and Singh (1938). 
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The two multipliers are each increased by a unity, multiplied by the sum of 
the beggings, divided by the product of the multipliers less unity, and 
increased by the opposite beggings. This is a rule for [solving] equations 
involving [two] multipliers. 

 
The example provided for the rule is on a missing leaf, but the context of the 
problem obviously refers to two beggars asking money from each other. 
Hayashi give the following rule in modern symbols, which is a literal 
representation from the text: 
 

( 1)( )
1

( 1)( )
1

c a bx b
cd

d a by a
cd

+ +
= +

−
+ +

= +
−

  (1.2)  with values (a, b, c, d) 

 
The formulation of the rule is thus very specific to this type of problems. In 
later arithmetic books we also find this connection between a rule and 
prototypical problems. A more general approach for solving the problem is 
taken by Bhāskara II in the BG (106, Colebrooke 191): 
 

Example: One says “give me a hundred, and I shall be twice as rich as you, 
friend!” The other replies, “if you deliver ten to me, I shall be six times as 
rich as you.” Tell me what was the amount of their respective capitals? 

 
Here, putting the capital of the first 1002ya ru � , and that of the second, ya 

1 ru 100; the first of these, taking a hundred from the other, is twice as rich 
as he is: and thus one of the conditions is fulfilled. But taking ten from the 
first, the capital of the last with the addition of ten is six times as great as 
that of the first: therefore multiplying the first by six, the statement is 

12 660ya ru � . Hence by the equation, the value of “so much as” is found, 70. 

Thence, by “raising” the answer, the original capitals are deduced 40 and 
170. 

 
Curiously, the solution is based on the general rule for a linear equation in 
one unknown (yavat-tavat) instead of two. Rather than using the unknown 
for one of the capitals, Bhāskara II uses 2x – 100 for the capital of the first 
and x + 100 for the capital of the second. This agrees with the first condition 
because if we subtract 100 from the second and add it to the capital of the 
first he becomes twice as rich as the second. If we use these values for the 
second condition we arrive at 

 
100 10 6(2 100 10)x x+ + = − −  or  110 12 660x x+ = −  
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This leads to a value of 70 for the unknown. Using this value in the original 
expressions of the two capitals we get 40 and 170 as the solution to the 
problem. 
In chapter six of the BG, Bhāskara II repeats the problem, but solves it this 
time by anekavarṇa-samīkaraṇa, or multiple unknowns. These are in 
addition to yā, typically black (kālaka), blue (nīlaka), yellow (pītaka), etc. The 
second unknown is thus represented by ka. The solution goes as follows 
(§156, Colebrooke 231): 
 

Example: One says ‘give me a hundred, and I shall be twice as rich as you,’ 
&c.  
Let the respective capitals be ya 1 ka 1. Taking a hundred from the capital of 
the last, and adding it to that of the first, they become 1 100ya ru  and 

1 100ka ru � . The wealth of the first is double that of the second therefore 

equating it with twice the second’s capital, a value of yāvat-tāvat  is 

obtained 
2 300

1
ka ru

ya

�
 

Again, ten being taken from the first and added to the capital of the second, 
there results 1 10ya ru �  and 1 10ka ru . But the second is become six times 

as rich as the first: wherefore making the second equal to the sextuple of the 

first, a value of yāvat-tāvat is obtained 
1 70

6
ka ru

ya
. With these reduced to a 

common denomination and dropping the denominator, an equation is 
formed; from which, as being one containing a single color (or character of 
unknown quantity), the value of ka comes out by the foregoing analysis (Ch. 
4); viz. 170. With which substituting for ca, in the two values of yāvat-tāvat, 
and adding it to the absolute number, and dividing by the appertinent 
denominator, the value of yāvat-tāvat is found, 40. 

 
Bhāskara II constructs the equation 100 2( 100)x y+ = −  from the problem text 
and derives that 2 300x y= − . From the second condition he arrives at the 
identity  

70
6

yx +
= .  

 
The rest of the solution has unfortunately been omitted, but the standard 
procedure “reduced to a common denomination and dropping the 
denominator, an equation is formed” is a recurring expression which refers 
to the following steps: 
 

• bring the “value” of x, 2 300x y= −  to the same denominator as the 

other “value” of yā, thus 
12 1800

6
yx −

=  
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• drop the common denomination and form the equation, leading to 
70 12 1800y y+ = −  

• this is a simple equation in one unknown with the solution 11 1870y =  
or y = 170. 

 
Only then Bhāskara uses ‘substitution’ to replace the value of ka in either 
 

2 300x y= −  or 
70

6
yx +

=  

 
which can be solved again by yāvat-tāvat. This specific solution reveals two 
interesting aspects of Hindu algebra. The first unknown has a status which is 
different from the other unknown(s). Its value is determined by the rule of 
yāvat-tāvat while the other unknown is found through ‘analysis of several 
colors’ Secondly, the solution has to follow certain steps in a specific order. 
The application of yāvat-tāvat has to come last. By accident the construction 
of the first equation gave us a direct expression for the first unknown 

2 300x y= − . Substituting this in the second equation gives us a value for y 
which again could be substituted in the first. However, all solutions to linear 
problems in more than one unknown follow this strict procedure. 
 
Mahāvīra gives a formulation in the GSS which refers back to the context of 
beggars as in the BM but generalizes the rule for more than two (stanza 251 
½ , Padmavathamma 2000, 369): 
 

The sums of the moneys begged are multiplied each by its own 
corresponding multiple quantity as increased by one. With the aid of these 
[products] the moneys on hand are arrived at according to the rule given in 
stanza 241. These quantities [so obtained] are reduced so as to have a 
common denominator. Then they are [severally] divided by the sum as 
diminished by the unity of the specified multiple quantities [respectively] 
divided by [those same] multiple quantities as increased by one. [The 
resulting quotients] themselves should be understood to be the money on 
hand [with the various persons].  
 

The rule refers not to the cyclical case but the type of problems in which the 
ratio is expressed to the sum of all the others. If we use S for the sum of all 
the shares, the general format of the conditions can be written in modern 
symbolism as ( )i i i i ix a b S x a+ = − − . The rule then gives the following solution 
 

( 1)
i

i i
i

b Sx a
b

= −
+

 

 
One of the two examples is worked out by this rule in the section called 
‘citrakuṭṭīkāra-miśra’, or “various analyses on mixtures”. 
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5.1.2. The rule in European arithmetic 
Our problem appears in the early medieval Problems to Sharpen the Youth 
by Alcuin (c. 800, Folkerts 1993) and thus predates Bhāskara II and Mahāvīra. 
However, the interpretation by Alcuin is somewhat different and comes 
down to ( )y a c d x a c− + = + −  providing a simple numerical recipe which 
shows no resemblance to the Indian rule. Fibonacci (1202) has many versions 
of the problems and gives no less than five solution methods. Most simple 
types are solved by the so-called tree method which is the rule of single false 
position dating back to Babylonian sources (Høyrup 2002). The reference to a 
tree originates from a prototype problem of determining the height of a 
tree with fractional sums given.19 The second method he calls the Regula 
recta or “direct method that is used by the Arabs” and this is one of the 
three occasions in the Liber Abbaci where algebra is used outside chapter 15. 
This solution is all the more unusual because Fibonacci rarely uses algebra for 
linear problems. For the following problem (Boncompagni 1857, 191; Sigler 
2002, 291), 
 

7 5( 7)
5 7( 5)

a b
b a
+ = −
+ = −

 

 
he poses that the second man has the thing plus 7 denari, thus b = x + 7. The 
first man therefore will have x – 7. Using the values x + 7 and x – 7 for the 
two persons in the second expression yields x + 12 = 7(5x – 12). It is 
worthwhile to follow Fibonacci’s solution to this equation in detail because 
it is an essential witness account for an early algebraic solution to a linear 
equation. The text is somewhat confusing because Fibonacci switches from 
denari to soldi which we will discount (1 soldi = 12 denari). He first multiplies 
the terms so that  x + 12 = 35x – 84. Then he adds 84 to both parts, and 
“because if equals are added to equals, then the results will be equal” x + 96 
= 35x. And “from the above written two parts are subtracted one thing, then 
those which remain will be equal”, thus 34x = 96. To find the value of the 
thing you have to divide 96 by 34, resulting in the solution  
 

167 121,
17 17

⎛ ⎞
⎜ ⎟
⎝ ⎠

.  

 
Another instance of the problem is solved in the same way (Sigler 2002, 300). 
The three other methods apply to a variant of the problem with the 
following structure  (Sigler 2002, 294-9):  
 

                                            
19 For a comprehensive discussion of the method used by Fibonacci and a French 
translation, see appendix 6 in Spiesser (2003, 641-5).  
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( )
( )

x a b y a c
y b a x b d
+ = − −
+ = − −

 

 
These three alternative solutions operate on what Fibonacci calls the least 
sum (x + y ), the intermediate sum (x + y + c ) and the greatest sum (x + y + 
d ). Yet another approach for the same problem is taken in chapter 12 using 
the rule of double false position. However, an application of the Hindu rule 
for this type of problem does not appear in the Liber Abbaci. 
 
Several abacus manuscripts during the next centuries deal with the problem. 
The most common solution is by double false position. Some examples are 
Lucca codex 1754 (c. 1330, Arrighi 1963). Question 5 of the Clm14908 (f. 49v, 
Curtze 1895, 43). Pellos (1494, f. 70v) in the Compenio de l’abaco. Adam Ries 
(1572, f. 62v) formulates the problem with the values 
 

1 1
1 3( 1)

a b
b a
+ = −
+ = −

 

 
The pseudo Paolo dell’Abbaco of  c. 1440 includes two problems. Problem 69, 
with values (8, 2, 10, 3) and problem 126 with (3, 2, 5, 3) (Arrighi 1964, 63-5, 
100-2). 
 
The Arte Giamata Aresmetica (c. 1417, Turin, N. III. 53) contains one version of 
the problem not solved by double false position. The solution method is 
incomprehensible without the background of the Indian solution recipe (f. 
32v; Rivoli 1982, 41-2). In modern symbolism the problem is: 
 

9 2( 9)
11 3( 11)

x y
y x
+ = −
+ = −

 

 
In her commentary Rivoli (1982, x) classifies the method under false position, 
possibly because the text gives “per le primo che dice 2 cotanti pone 2/3, per 
lo segondo che dice 3 cotanti pone ¾”. However, we believe this to be 
erroneous as the author of the manuscript clearly refers to a rule which is 
different from the rule of double false (”Questa è la sula regula”). Let us 
attempt to reconstruct the original rule from the numerical application in 
this example. The text reads as follows: 
 

ora di’: 2/3 e ¾ se trova in 12; li 2/3 de 12 è 8, li ¾ de 12 è 9; ora azonze 8 e 9, 
fano 17, trane 12, resta 5 e questo è lo partitore. Ora azone le loro domande, 
zoè 9 e 11, che sono 20, po’ di’: per lo primo: 8 via 20 fa 160, parte per 5, vene 
32, trane 9, resta 23 e tanti d. aveva lo primo; per lo segondo di’: 9 per 20 fa 
180, parte per 5, vene 36, cava 11, resta 25 e tanti d. avea lo segondo. È fata. 
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If we use the general formulation of the problem from (1.1) we have for (a, b, 
c, d) the values (9, 11, 2, 3). Using the abstract form, we can reconstruct the 
rule as follows. The fractional parts 2/3 and ¾ must refer to  
 

1
c

c +
 and 

1
d

d +
.  

 
The sum of these fractions is multiplied by 12. This part is most difficult to 
determine, but from further evidence from the AR, discussed below, this 
stands for the product ( 1)( 1)c d+ + . Then multiply  
 

1 1
c d

c d
⎛ ⎞+⎜ ⎟+ +⎝ ⎠

 with ( 1)( 1)c d+ +   

 
which gives 8 + 9 or ( 1)c d +  and ( 1)d c +  respectively. Now subtract from this 
sum equal to 17 the product ( 1)( 1)c d+ + , or 12, which results in 1cd − . This is 
called the partitore or divisor. Next, add the parts a and b together to (a + b), 
producing 20. Now for the money of the first, multiply 8 with 20 which 
results in 160 or ( 1)( )c d a b+ + . If we divide this by the divisor we get 32 or  
 

( )( 1)
1

c a b d
cd
+ +

−
.  

 
Finally, 9, or a,  is subtracted from this and we get the money of the first 
person.  The rule thus amounts to the expression 
 

 
( )( 1)

1
c a b dx a

cd
+ +

= −
−

.  

 
If we bring the this formulation to the same denominator with that of the 
BM, 
 

 
( 1)( )

1
c a bx b

cd
+ +

= +
−

 

 

we see that indeed both are equal to 
1

a ac bc bcdx
cd

+ + +
=

−
.  

 
Although formulated slightly different, the two rules thus correspond. The 
rest of the text formulates a rule for the money of the second person, 
multiplying 9 with 20, or ( )( 1)d a b c+ + . This is divided by the divisor and 
subtracted with b results in the amount of the second. We can therefore 
conclude that the solution to problem depend on these two rules: 
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( )( 1)

1
( )( 1)

1

c a b dx a
cd

d a b cy b
cd

+ +
= −

−
+ +

= −
−

 (1.3) 

 
The Trattato dell’Acibra amuchabile of an anonymous Florence master deals 
primarily with algebra. The author makes an exception by applying the 
proto-algebraic rule instead of algebra. This abacus treatise predates the 
previous one but because of an added complexity, we discuss it here.20 The 
text formulates the problem as follows: 
 

There are two men having a number of denari. The first one tells the second: 
“if you give me 16 of your denari to me, I have twice as many as you”. Tells 
the second to the first: “if you give me as much denari as the proportion of 
your part and mine of what you have given to me, I will have three times as 
much as you. I want to know how much each has. 

 
The added complexity lies in the extra condition that for the amount asked 
by the second person. This results in the follow formulation using modern 
symbolism: 
 

2( )
3( )

16

x a y a
y b x b
a

xb a
y

+ = −
+ = −
=

=

 

 
The author solves the problem through the application of a ‘beautiful rule’ 
which again has to be deciphered from the solution: 
 

Questa ragione ti voglio io insegniare per una bella reghola per la quale tu 
potrai fare tutte le somiglianti raxoni. Sapi che tanto è a dire due cotanti, 
come due terzi di tutta la quantità e tre cotanti è tanto a dire come 3/4 di 
tutta la quantità. Ora sapi in che numero si truova 2/3 e 3/4, che si truova in 
12. Ora piglia i 2/3 di 12, ch’è 8; ora piglia 3/4 di 12 ch’è 9; giugni con 8, fanno 
17, chavane 12, in che si truovò il numero, rimane 5 e 5 è nostro partitore. Ora 
fa il primo al secondo, cioè contra 16, fanno 192, partitolo per 5 che tu 
serbasti, vienne 38 2/5 e 38 2/5 avia il secondo. 

                                            
20 Florence, Ricc. 2263, problem 35, f. 48v; van Egmond (1980, 151) dates this part of the 
manuscript c. 1365, based on the watermark. Transcription by Simi (1994, 57-8) : “E sono 
2 huomini ch’àno denari. Dicie il primo al secondo: se ttu mi dessi xvj de denari tuoi, io 
avrei due cotanti di te. Dicie il secondo al primo: se ttu mi dessi tal parte de’ tuoi che ’n 
t’io òe dato a tte de’ miei, io avrei tre cotanti di te. Vo’ sapere quanto avea chatuno”, 
translation mine. 
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The first part corresponds fully with the Turin manuscript, to the point of 
deriving the devisor 1cd −  equal to 5. Then the 12 is multiplied with 16. This 
corresponds with a times product of the augmented multipliers or 

( 1)( 1)a c d+ + . This divided by the divisor gives immediately the money of the 
second and the rule amount to: 
 

( 1)( 1)
1

a c dy
cd
+ +

=
−

 (1.4) 

 
The rest of the text substitutes the numerical value for y in the first condition. 
It remains a mystery by who or how this rule was derived from (1.3) for the 
relation with the canonical form is not an evident one. If we bring the two 
equations to the same denominator we get: 
 

2(2 1)
1

( 1)
1

a c cx
cd

a c d cdy
cd

+ +
=

−
+ + +

=
−

 

 

Substituting these in 
xb a
y

=  results in   

 
2(2 1)

( 1)
a c cb a

a c d cd
+ +

=
+ + +

. 

 
Simplifying this to: 
 

2( 1)
( 1)( 1)

cb a
c d

+
=

+ +
 

 
this results in a value for the proportion and a value for b 
 

( 1)
( 1)
cb a
d
+

=
+

 or 
3 (16) 12
4

b = =   
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In the Columbia algorismus there are four problems of this type (c. 1350, 
Vogel 1977, 113-7). The most extensive argumentation is offered in relation to 
problem 104.21 The problem can be represented as follows:  
 

4 9( 4)
7 5( 7)

x y
y x
+ = −
+ = −

 

 
The author starts by assuming the value 7 for x. From the first condition, this 
leads to a value of  
 

y  as 
25
9

. Then he adds 7 which gives 
27 12
9

y + = .  

 
At this point a tacit rule is applied in which the following happens (Vogel 
1977, 11?): 

tanto supra 7, che te nne de’ 
2

12
9

 a parttire per 5 via 9 meno 1, cioiè di 44, e 

cholui che àne 
2
9

5  uno novero quente veni di 
2

12
9

 a parttire per 44. Dunqua 

ill’uno aveva 9 e ½ e ll’altro aveva 5 ½. E per questo modo si fanno tucte le 
similigliante rascioni e di più d’ e di più rotto. 

 
Our observation that this solution depends on a general rule stems from the 
last sentence which recommends this method “for all similar problems”. The 
choice of 7 for x has nothing to do with the method of false position but is 
value b in (1.1). Thus the first step is to use b as the value of x in the first 
condition to arrive at a value of y1. This value, added with b and divided by 
cd – 1 gives the share of the second. The general rule can therefore be 
translated in modern symbolism as follows: 
 

 
1

1
11

a by a
c

y by y
cd

+
= +

+
= +

−

  (1.5) 

 
To compare with the rule of the BM we can substitute y1 in the second 
equation: 

 
1

a b a b a bcy a
cd c

+
+ + +

= + +
−

 

                                            
21 Columbia Univerisity, X511 A13, f. 51v: “Fammi questa rascione: sonno 2 compagni che 
ànno d. in borschia. Disse ill’uno all’altro: se mme dai 4, io n’avarò 9 chotanta di tie. 
Disse ill’altro: se me nne dai 7, io n’avarò 5 chotanta di ti”.  
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Bringing the first two terms to the same denominator gives 
 

( 1)( )
1

d a by a
cd
+ +

= +
−

 which is the same as the second equation of (1.2). 

 

5.1.2.1. Regula augmentationis 
The term regula augmentationis originates from the Algorismus 
Ratisbonensis (AR) and is mentioned in relation to the problem 138 (c. 1450, 
Vogel 1954, 70): 
 

1 2( 1)
1 3( 1)

a b
b a
+ = −
+ = −

 

 
The use of two multipliers allows us to decipher the structure of the rule 
while the amounts asked for are unfortunately both one. Another example 
with an application of the rule is problem 220 but also here the amounts are 
the same. 
The application of the rule goes as follows: 
 

Machss also 
1/ 2 1/ 3

3 4
 und mer ydlichen nenner mit einem und multiplicir dy 

nenner miteinander, facit 12. Nu 2/3 und ¾ von 12 facit 17. Nu zeuch 12 von 17, 
pleiben 5, [der] divisor. Nu addir 1 und 1 zesam, erit 2. Nu 2/3 von 12 machen 
8, multiplicir 8 mit 2 erit 16. Dy dividir mit 5, erit 3 1/5. Nu subtrahir 1, manet 2 
1/5 und alz vil hat a. 

 
In his commentary Vogel (1954, 218) explains the name Regula 
augmentationis as derived from the operation of adding one to the 
coefficient, which also appears in the case with multiple unknowns. However, 
he provides no further explanation for the rule. Let us therefore reconstruct 
the general formulation of the solution method. Using the symbolic form 
from (1.1) we have here for (a, b, c, d) the values (1, 1, 2, 3). Using symbols, the 
rule applied in the AR can be reformulated as we did with for the Italian text: 
 

Add one to each of the multipliers c and d. Multiply these results and we 

arrive at ( 1)( 1)c d+ + . Then multiply 
1 1

c d
c d

⎛ ⎞+⎜ ⎟+ +⎝ ⎠
 with ( 1)( 1)c d+ +  which 

gives ( 1) ( 1)c d d c+ + + . Now subtract from this result the product 

( 1)( 1)c d+ +  which results in 1cd − . We will call the divisor. Now add a and 

b to (a + b). Multiply this with [ ]( 1)( 1)
1

c c d
c

+ +
+

 which results in 
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( )( 1)c a b d+ + . If we divide this by the divisor and subtract a, we arrive at 

( )( 1)
1

c a b dx a
cd
+ +

= −
−

.  

 
The AR gives also a rule for the other value corresponding with  
 

 
( )( 1)

1
d a b cy b

cd
+ +

= −
−

 (Vogel 1954, ): 

 
Danarch ¾ von 12, erit 9; multiplicir 9 per 2, erit 18, divide per 5, facit 3 3/5. 
Subtrahe 1, facit 2 3/5; in tantum habet b und dy zwue zal sein radices dic: da 
mihi 3, so triplir radices. Spricht du, gib mir 10, so multiplicir radices durch 10, 
etc. 

 
We can therefore conclude that the solution to problems 138 and 220 
depend on the rules formulated in (1.3). From the structure of the solution 
and the use of the terms partitore and divisor  we believe that the German 
formulation is derived from this or another fifteenth-century Italian abacus 
text. The use of radices in the German text is intriguing. It seems to be a relic 
from an earlier algebraic solution.  
 
The rules are rather complex for the fifteenth-century, and they do not 
appear very frequently in other arithmetic books. The Bamberg Inc. Typ IC 
144, (Schröder 1995) which shares 78 problems with the AR, does not include 
this problem, possibly because it was not easy to understand. 
 
The Compendy de la Practique des Nombres of 1476 by Barthelemy of 
Romans has several versions of the problem (f. 186v – 200v, Spiesser 2003, 
295-316). The solution is still different from what we have seen before. 
Barthelemy gives two rules called multiplex and submultiplex. The first rule 
amounts to finding a number x  so that the following condition holds: 
 

( )
1 1

c d x x a b
c d

⎛ ⎞+ − = +⎜ ⎟+ +⎝ ⎠
 

 
The method proposed by Barthelemy is that of single false position. Thus for 
the problem 
 

7 5( 7)
5 7( 5)

a b
b a
+ = −
+ = −

 (1.6) 

 

the condition becomes 
5 7 12
6 8

x x⎛ ⎞+ − =⎜ ⎟
⎝ ⎠

.  
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He poses x = 24 which leads to 17 instead of 12. Applying the rule of three,  
 

 
12

24 17
x
=  the value for x is 

1616
17

. 

 
The submultiplex rule asks for a number such that the following condition 
holds: 
 

1 1( )
1 1

x a b x
c d

⎛ ⎞− + = +⎜ ⎟+ +⎝ ⎠
 

 
and is solved in the same way.  

5.1.2.2. Regula pulchra 
This rule is also discussed by Widmann (1489, f. 120v). It is the fourth time in 
one and the same book in which he uses the name, Regula pulchra for a 
different rule. Instead of using numerical quantities, Widmann formulates 
the rule in general terms such as ‘parts’, ‘denominator’, ‘sum’ and ‘divisor’, 
where the Turin text only used ‘divisor’. By doing so Widmann’s text 
corresponds with the formulation in the Turin manuscript as well as with the 
AR, which is his most likely source. 
 

An dieser regel soltu also procediren. Secz die teyl in die kleynste zal und 
multiplicir die nenner zu sammen und addir die teyl des geneynen nenner 
zusam und von dem aggregat subtrahir den gemein nenner. Pleypt uberig 
deyn teyler. Darnach addir die czeler der furgab zu sammen. Und das 
aggregat secz den zeler des ersten gefunden nenner und nym den aber die 
teyl von den ersten gemeynen nenner und das selbige multiplicir mit dem 
zeler. Und teyl darnach dieser product mit deynen teyler und von dem das 
auss solicher teylung kumpt subtrahir den ersten zeler wyder von und pleybt 
die zal des ersten und also gleycher weys ihr auch den anderen und pleybt 
zum letzten die zal des anderen und ist gemacht. 

 
Widman presents the example of two men comparing their money. Without 
such example the rule would be incomprehensible.  
 

Of the same. One man meets another and tell him “When you give me 1 d. I 
have twice the money you have”. The other answers the first “if you give me 
1 d. from your money I will have three times as much as you have”. The 
question is how much each of the men had. 

 
The problem is exactly the same as the one in the AR, discussed above. With 
the parts (teyl) Widmann refers to  
 

1
c

c +
 and 

1
d

d +
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in our symbolic formulation.  The first line thus describes how to multiply the 
denominators ( 1)( 1)c d+ +  and to multiply this with the two parts. From this, 
subtract the product again, and this is called the divisor. This corresponds 
with 
 

 ( 1)( 1) ( 1)( 1)
1 1

c d c d c d
c d

⎛ ⎞+ + + − + +⎜ ⎟+ +⎝ ⎠
  which simplifies to ( 1)cd − . 

 
Next, add the multipliers of the problem together as in (a + b). This is 
multiplied with the first of the previously found products, results in  
 

 ( 1)( 1)( )
1

c c d a b
c

⎛ ⎞ + + +⎜ ⎟+⎝ ⎠
  or  ( 1)( )c d a b+ + . 

 
Dividing this by the divisor and subtracting the first part a, the resulting 
value is the money of the first person. In conclusion, Widmann’s regula 
pulchra IV corresponds with the rules of (1.3). 
 

5.1.3. Algebraic solutions 
The first algebraic solution to this type of problem appears in the early 
fifteenth century in the writing of Giovanni di Bartolo dell’Abacho (1364-
1440). There are no extant manuscripts by di Bartolo, but several parts of his 
treatises have been preserved in other abacus collections. The Siena L. IV. 21 
manuscript has problems 13 and 14 as we discussed from the anonymous ms. 
Florence, Ricc. 2263. Let us look at problem 14:22  
 

Two have a number of denari. The first one tells the second: “if you give me 
12 of your denari to me, I have twice as many as you”. The second to the 
first: “if you give me as much denari as the proportion of your part and mine 
of what you have given to me, I will have three times as much as you. I want 
to know how much each has. 

 
di Bartolo uses the unknown for the number of denari of the second. In 
symbolic notation he interprets the problem 
 

                                            
22 Siena L. IV. 21, ff. 435v-436r; Pancanti 1982, 25-6: “Due ànno danari; il primo àl 
sechondo: se ttu mi dessi 12 de’ tuoj danari, io arej due chotanti di te. Il sechondo al 
primo :se ttu mi dessi tal parte de’ tuoj danari chente tu chiedesti a mme de’ miej, io 
arej 3 chotanti di te. Adimandasi quanti danari aveva ciaschuno ... da ssé” (the missing 
part is illegible). 
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12 2( 12)

3( )

12

a b
b c a c

ac
b

+ = −
+ = −

=

 as 
12 2( 12)

3( )

12

a x
x c a c

ac
x

+ = −
+ = −

=

 

 
The first, after receiving 12 from the second has twice of what is left for the 
second, or 2(x – 12). Before receiving the 12, he thus originally had  
 

2 36a x= −  
 
The statement of the problem tells us that the amount given by the first to 
the second is 12 times the proportion of the two amounts, thus  
 

2 3612 xc
x
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
  or  

24 432xc
x
−

= .  

 
This allows to express the first statement of the problem by the equation 
 

24 432 24 4323 2 36x xx x
x x
− −⎛ ⎞+ = − −⎜ ⎟

⎝ ⎠
  

 
Taking several steps to simplify this, di Bartolo arrives at   
 

96 17285 108 xx
x
−

= +   

 
and multiplies both parts to get to the form 25 1728 204x x+ =  which fits his 
canonical fifth rule (the quadratic equation 2ax c bx+ = ) with solution  

428
5

 for x or the second and 
321
5

 for the first person. 

 
Later during the fifteenth century the problem is frequently discussed but 
algebraic solutions are an exception. The Florence, Magl. Cl. XI, 76, includes 
an algebraic solution in one unknown (quantità) (f. 100r; Arrighi 1987). 
However Rafaello Canacci who wrote an extensive treatise on algebra (c. 
1495) finds it necessary to include the proto-algebraic rule after having 
explained his algebraic solution. His version of the problem is about two 
men comparing their money. The  problem corresponds with the values of 
Barthelemy (1.6). His alternative solution is an exact reformulation of the 
proto-algebraic rule.23  

                                            
23 Florence Pal. 567, f. 69r-69v; problem 57; Procissi 1983, 38-9: “sella vuoi per altro modo; 
si debbi sapere che parte è caschuno di tutta la somma el primo che adimanda 7 d. arà 5 
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6. Indeterminate linear problems in three or more unknowns 
We identified several candidates of proto-algebraic rules for problems 
involving more than two unknown quantities. Most of these are 
indeterminate ones. We will discuss one type which has a complex but 
interesting history. The rule has a special interest for our discussion as we 
have both a Greek and a Hindu tradition of its use. There has been a 
controversy on the alleged influence from Greece to India, as defended by 
Cantor and Kaye and disputed by Rodet. The controversy can be explained as 
a misunderstanding of the rule. We will demonstrate in detail that the Greek 
and Indian version are in fact two different rules. 

6.1. The original formulation in Hindu sources  
The first Indian source for a formulation of this rule is from Āryabhaṭa I, 499, 
(AB, ii, 29) as follows:  
 

Clark 1930, 40 Datta and Singh, 49 Rodet 1879, 402-3 
If you know the results 
obtained by subtracting 
successively from a sum of 
quantities each one of 
these quantities set these 
results down separately. 
Add them all together 
and divide by the number 
of terms less one. The 
result will be the sum of 
all the quantities. 

The [given] sums of 
certain [unknown] 
numbers, leaving out 
one number in 
succession, are added 
together separately and 
divided by the number 
of terms less one; that 
[quotient] will be the 
value of the whole. 

La somme d’un certain 
nombre de termes 
diminuée successivement 
de chacun de ces termes 
[forme une série de 
nombres] qu’on ajoute tous 
ensemble ; on divise par le 
nombre de termes moins 
un, et l’on obtient la valeur 
de la somme [primitive]. 

 
Three observations are central with respect to the type of problems 
Āryabhaṭa’s rule applies to: 
 

1) The rule is valid for any number of quantities 
2) The sum of all the quantities is unknown and given by the rule  

 
Not evident from the rule, as cited above, is that  
 

3) The partial sums relate to the total of all the quantities, except one 

                                                                                                                                  
chotanti di lui si arà 5/6 di tutta la somma meno 7 d. el sechondo che adimanda all ui 
arà 7 chotanti di lui siara 7/8 di tutta la somma meno 5d. e tramandue arrano 7/8 5/6 di 
tutta la somma meno 12 d Orsappi in che si truova e 7/8 5/6 chessi truova in 24 e 5/6 di 
24 e 20 e 7/8 di 24 e 21 ragiuni insieme 20 e 21 fa 41 trane 24 coe il numero inche si trovò 
5/6 e 7/8 resta 17 dove multipricha 12 vie 20 fa 240 e parti p 17 vienne 14 2/7 trane 7 che 
gle meno resta 7 2/17 e tanti al primo pello sechondo multipricha 12 vie 21 fa 252 e parti 
p 17 vienne 14 14/17 trane 5 chegli è meno resta 9 14/17 ettanto ae il sechondo e chosì 
vedi che torna chome dice mmo nella passata ad unche oserva quale modo più ti piace 
inn elle simile ragione”. 
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In modern symbolism the general structure of the problem thus is: 
 

Suppose n amounts ( )1 2, , , na a a…  with unknown sum S, and with the 

partial sums ( )1 2, , , ns s s…  given, where i is S a= − , then 1

1

n

i
i

s
S

n
==
−

∑
 (1.7) 

 
The rule and the problems it applies to, should not be confused with a 
similar problem in which the partial sums of two consecutive quantities are 
given. For three numbers, the problems are evidently the same, but they 
diverge for more than three quantities. E.g. for five quantities the 
corresponding equations are: 
 

 

1 2 3 4 1

1 3 4 5 2

1 2 4 5 3

1 2 3 5 4

2 3 4 5 5

a a a a s
a a a a s
a a a a s
a a a a s
a a a a s

+ + + =
+ + + =
+ + + =
+ + + =

+ + + =

 and  

1 2 1

2 3 2

3 4 3

4 5 4

5 1 5

a a s
a a s
a a s
a a s
a a s

+ =
+ =
+ =
+ =

+ =

 for consecutive quantities 

 
Kaye (1927, 40, note 2) was the first to point out that “a similar rule” can be 
found in the BM. The rule is formulated in Sūtra N15 as follows (Hayashi 1995, 
324): 
 

Having put down any optional number for the first (unknown), one should 
subtract successively that (number) and the rest (from the given numbers). 
One should point out half the sum of the optional number and the (final) 
remainder as the value of the first (unknown). 

 
The two examples added in the BM  allow us to understand the meaning of 
the rule (ibid.): 
 

Quantities ... There, the mixed quantity of the first and the second is 
thirteen; the mixed quantity of the second and the third is fourteen; and the 
mixed quantity of the first and the third is said to be fifteen. What shall be 
the value of each? Let it be told to me, if you know it. 

 
Computation. “Having put down any optional number for the first” (Sūtra 
N15). In the present case, the optional is (taken to be) five: 5. This is 
(supposed to be) the value of the first. Statement: “One should subtract 
successively that (number) and the rest (from the given numbers)” [Sūtra 
N15]. Five should be subtracted from the first (given) number; the remainder 
is 8. This is to be subtracted from fourteen; the remainder is 6. This is to be 
subtracted from fifteen; the remainder is [9]... . 
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The example describes the problem, which can be formulated symbolically as: 
 

1 2

2 3

1 3

13
14
15

x x
x x
x x

+ =
+ =
+ =

 

 
Applying Āryabhaṭa’s rule, the solution would be based on the rule for 
deriving the sum of the three unknown quantities as follows: 
 

1 2 3
13 14 15 21

3 1
x x x + +
+ + = =

−
 

 
This allows to determine the value of the quantities by subtracting the 
partial sums from the total. Instead, the solution is the BM is based on 
choosing the arbitrary value 5 for x1 and then calculating the values of the 
other quantities as x2 = 13 – 5 = 8, x3 = 14 – 8 = 6 and using this value in the 
third sum to arrive at 15 – 6 = 9 for the “final remainder”. The rule gives the 
correct value of the first unknown quantity as half the sum of the supposed 
value and the final remainder, thus (5 + 9)/2 = 7.24 Not only is this rule 
different from Āryabhaṭa’s, its validity also depends on particular number of 
sums. For an even number of sums the problem becomes indeterminate.   
 
A commentator of the Āryabhaṭīya, called Bhāskara I (written 629, not to be 
confused with Bhāskara II), gives two examples of problems that can be 
solved with Āryabhaṭa’s rule with the partial sums (30, 36, 49, 50) and (28, 27, 
26, 25, 24, 23, 21) (Shukla and Sarma 1976, 307-308). 

6.2. The derived problem in Hindu sources 
From the ninth century we find a derived version of the previous problem in 
Hindu sources.  
Mahāvīra gives an elaborate description of the rule in the GSS (stanza 233-5, 
pp. 357-9) which we here reproduce: 
 

The rule for arriving at [the value of the money contents of] a purse which 
[when added to what is on hand with each of certain persons] becomes a 
specified multiple [of the sum of what is on hand with the others]: 
The quantities obtained by adding one to [each of the specified] multiple 
numbers [in the problem and then] multiplying these sums with each other, 
giving up in each case the sum relating to the particular specified multiple, 
are to be reduced to their lowest terms by the removal of common factors. 
[These reduced quantities are then] to be added. [Thereafter] the square 
root [of this resulting sum] is to be obtained, from which one is [to be 

                                            
24 For a proof of the validity, see Hayashi (1995, 405). Several authors misinterpret the 
rule as the method of false position, e.g. Flegg (1983, 206) 
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subsequently] subtracted. Then the reduced quantities referred to above are 
to be multiplied by [this] square root as diminished by one. Then these are to 
be separately subtracted from the sum of those same reduced quantities. 
Thus the moneys on hand with each [of the several persons] are arrived at. 
These [quantities measuring the moneys on hand] have to be added to one 
another, excluding from the addition in each case the value of the money on 
the hand of one of the persons and the several sums so obtained are to be 
written down separately. These are [then to be respectively] multiplied by 
[the specified] multiple quantities [mentioned above]; from the several 
products so obtained the [already found out] values of the moneys on hand 
are [to be separately subtracted]. Then the [same] value of the money in the 
purse is obtained [separately in relation to each of the several moneys on 
hand]. 

 
The introductory sentence states that the rule is to be used for determining 
the value of a purse. The rule is followed by a number of problems that 
begin as “Four men saw on their way a purse containing money” (ibid. 
stanza 245 ½, 367). This is the earliest instance, in our investigation of the 
sources, in which the popular problem of men finding a purse is discussed. 
While problems with the same structure and numerical values have been 
formulated before, the context of men finding a purse seems to have 
originated in India before 850 AD. Formulations with the purse turn up in 
Arab algebra with al-Karkhī’s Fakhrī (c. 1050) and in the Miftāh al-mu‘āmalāt 
of al-Tabari (c. 1075). Fibonacci has many variations of it in the Liber Abbaci 
(1202) and after that it becomes the most common problem in western 
arithmetic until the later sixteenth century. For an understanding of the rule, 
let us look at its application to a given problem (GSS, stanza 236-7, pp. 360): 
 

Three merchants saw [dropped] on the way a purse [containing money]. One 
[of them] said [to the others], “If I secure this purse, I shall become twice as 
rich as both of you with your moneys on hand”. Then the second [of them] 
said, “I shall become three times as rich”. Then the other, [the third], said, “I 
shall become five times as rich”. What is the value of the money in the purse, 
as also the money on hand [with each of the three merchants]? 

 
We can represent the problem in symbolic equations as follows: 
 

2( )
3( )
5( )

x p y z
y p x z
z p x y

+ = +
+ = +
+ = +

 (1.8) 

 
Let us apply the recipe of Mahāvīra’s to this problem, step by step. By 
“adding one to [each of the specified] multiple numbers” we have 3, 4 and 6. 
“Multiplying these sums with each other” we get 72. This has to be “reduced 
to their lowest terms by the removal of common factors”. This least common 
multiple is 12. The reduced quantities are then 4, 3 and 2 respectively. Adding 
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these together gives 9. From this the square root is 3. Then the reduced 
quantities “are to be multiplied by the square root as diminished by one”, 
which is 2. This leads to 8, 6 and 4. The money in hand for each of the 
persons now is the difference of these values with the sum of the reduced 
quantities, being 9. The solution thus is 1, 3 and 5. The rest of the rule is an 
elaborate way to derive the value of the purse. Using the values in any one 
of the equations of (1.8) immediately leads to 15 for the value of the purse. 
Mahāvīra provides no explanation or derivation of the rule. However, a 
mathematical argumentation for the validity of the rules goes as follows. 
Given that 
 

 

( )
( )
( )

x p a y z
y p b x z
z p c x y

+ = +
+ = +
+ = +

 

 
the sum of the three shares with the purse is 
 
 ( 1)( ) ( 1)( ) ( 1)( )x y z p a y z b x z c x y+ + + = + + = + + = + +  which we call S. 
 
Thus 
 

 

( 1)( 1)( 1)( 1)( 1) ( )

( 1)( 1)( 1)( 1)( 1) ( )

( 1)( 1)( 1)( 1)( 1) ( )

a b cb c y z
S

a b ca c x z
S

a b ca b x y
S

+ + +
+ + = +

+ + +
+ + = +

+ + +
+ + = +

 

 
Adding these three equations together leads to 
 

 
( 1)( 1)( 1)( 1)( 1) ( 1)( 1) ( 1)( 1) 2( ) a b ca b a c b c x y s

S
+ + +

+ + + + + + + + = + +  

 which we denote as T. 
 
Multiplying each of the three previous equations by two and subtracting the 
result from T this leads us to three new equations: 
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( 1)( 1)( 1)2 ( 1)( 1)

( 1)( 1)( 1)2 ( 1)( 1)

( 1)( 1)( 1)2 ( 1)( 1)

a b cx T b c
S

a b cy T a c
S

a b cz T a b
S

+ + +
= − + +

+ + +
= − + +

+ + +
= − + +

 

 
Thus x, y, and z are in proportion to each other as 
 
 2( 1)( 1) : 2( 1)( 1) : 2( 1)( 1)T b c T a c T a b− + + − + + − + +   
 
By removing the common factors in these proportions, the procedure arrives 
at the smallest integral solution, as in the example 1 : 3 : 5. 

6.3. The problem in Greek sources 

6.3.1. The Bloom of Thymaridas 
We know almost nothing about Thymaridas of Paros, but he is supposed to 
have lived between 400 and 350 BC (Tannery 1887, 385-6). The only extant 
witness is Iamblichus, in his comments on the Introduction to Arithmetic by 
Nicomachus of Gerasa. The best known source for The Bloom of Thymaridas 
is Heath’s classic on Greek mathematics. Heath (1921, 94) does not formulate 
the rule, he only observes that “the rule is very obscurely worded” and 
writes out the equations. The text from Iamblichus was first published in 
Holland with a Latin translation by Samuel Tennulius (1668) from the Paris 
manuscript BNF Gr. 2093. A critical edition, based on multiple manuscripts 
was published by Pistelli (1884). Nesselmann (1842, 233) quotes the Greek text 
and the Latin translation from Tennulius, who translated the method as 
florida sententia. We give here the Pistelli version and our own literal 
translation from the Latin and German. 
 

eντευθεν καί ή εφοδος του Θυμαριδείου 
επανθήματος ελήφθη. ώρισμένων γαρ η 
αορίστων μερισαμένων ώρισμένον τι 
καί ένος ούτινοσουν τοίς λοιποίς καθ' 
έκαστον συντεθέντος, τό εκ πάντων 
αθροισθέν πλήθος επί μεν τριών μετά 
τήν εξ αρχής όρισθείσαν ποσότητα όλον τω 
συγκριθέντι προσνέμει τ' αφ' ού τό λεί.πον 
καθ' έκαστον τών λοιπών άφαιρεθήσεται, 
επί δέ τεσσάρων τό ήμίσυ και επί πέντε τό 
τρίτον καί επί έξ τό τέταρτον και αεί 
άκολουθως. 

From this we are also acquainted with the 
method of the Epanthema, passed down 
to us by Thymaridas. Indeed, when a 
given quantity divides into determined 
and unknown parts, and the unknown 
quantity is paired with each of the others, 
so will the sum of these pairs, diminished 
by the sum [of all the quantities] be equal 
to the unknown quantity in case of three 
quantities. With four quantities it will be 
half of it, with five it will be the third, 
with six, the fourth and do on.  
 

Thymaridas’ rule (from Pistelli 1884, 62) 
 



 CHAPTER 4: PROTO-ALGEBRAIC RULES 

 - 42 - 

The rule is not as obscure as considered by Heath. Let us extract the basic 
elements of the rule, and compare these with the version of Āryabhaṭa: 
 

• The rule applies, to any number of quantities as does Āryabhaṭa’s. 
• The sum is given in the problem. The rule is described as the division 

of a known quantity in determined and undetermined parts. In 
Āryabhaṭa’s rule the sum is what is looked for. 

• The partial sums are the sums of the pairs of the unknown part with 
each of the known quantities. In Āryabhaṭa’s rule the partial sums 
include all the numbers except one. 

 
In short, this rule is different from Āryabhaṭa’s in two important aspects. Its 
intention is to find one unknown part of a determined quantity. Āryabhaṭa’s 
rule is meant for finding the sum of numbers of which the partial sums of all 
minus one is given. Even in the case of three numbers, when the partial sums 
are the same, the rules have different applications. To make it clear to the 
modern eye, here is a symbolic version in the general case: 
 

 

1 2 1
1

1 1
1

2 2

1 1

2

n
n

i
i

n n

x a a a s
x a s s s
x a s x

n

x a s

−
−

=

− −

+ + + + =⎧ ⎫
⎪ ⎪+ = −⎪ ⎪⎪ ⎪+ = =⎨ ⎬ −⎪ ⎪
⎪ ⎪

+ =⎪ ⎪⎩ ⎭

∑
…

#
 

 

6.3.2. Diophantus 
In the first book of the Arithmetica of Diophantus we find four instances of 
the problem type. Problems 16 and 17 are of the original type as covered by 
Āryabhaṭa’s rule. Let us first look at problem 17 with four unknown 
quantities. In modern symbolism, the problem reads as follows:25 
 

20
22
24
27

a b c
b c d
a c d
a b d

+ + =
+ + =
+ + =
+ + =

 

                                            
25 We use Ver Eecke (1926, 22) as the best translation of the Arithmetica: “Trouver 
quatre nombres qui, additionnés trois à trois, forment des nombres proposés. Il faut 
toutefois que le tiers de la somme des quatre nombres soit plus grand que chacun 
d'eux. Proposons donc que les trois nombres, additionnés à la suite à partir du premier, 
forment 20 unités; que les trois à partir du second forment 22 unités, que les trois à 
partir du troisième forment 24 unités, et que les trois à partir du quatrième forment 27 
unités”. 
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Diophantus’ solution is not based on a proto-algebraic rule but has all the 
characteristics of algebra. He uses the arithmos as an abstract quantity for 
the unknown, to represent the sum of the four quantities (Ver Eecke 1926, 
22): 
 

Posons que la somme des quatre nombres est 1 arithme. Dès lors, si nous 
retranchons les trois premiers nombres, c’est-à-dire 20 unités, de 1 arithme, il 
nous restera, comme quatrième nombre, 1 arithme moins 20 unités. Pour les 
mêmes raisons, le premier nombre sera 1 arithme moins 22 unités; lé second 
sera 1 arithme moins 24 unités, et le troisième 1 arithme moins 27 unités. Il 
faut enfin que les quatre nombres additionnés deviennent égaux à 1 
arithme. Mais, les quatre nombres additionnés forment 4 arithmes moins 93 
unités; ce que nous égalons à 1 arithme, et l’arithme devient 31 unités. 

 
If a + b + c + d = x, then the four numbers not included in the partial sums 
are x – 20, x – 22, x – 24, and x – 27 respectively. Adding these four together is 
equal to their sum or x, thus 4x – 93 = x and x  = 31. 
This problem in the Arithmetica is followed by problems 18 and 19, of a 
related type, but not the one covered by Mahāvīra’s formulation. We show 
here only the symbolic translation of problem 19: 
 

20
30
40
50

a b c d
b c d a
a c d b
a b d c

+ + = +
+ + = +
+ + = +
+ + = +

 

 
The solution is similar as the previous problem but depends on the choice of 
2x for the sum of the four numbers. 

6.3.3. The extended rule from Iamblichus 
Iamblichus extends the rule of Thymaridas to another problem type which 
will become very popular during the next centuries. In modern symbolism 
this amounts to the set of equations: 
 

 

( )
( )
( )

x p a y z
y p b x z
z p c x y

+ = +
+ = +
+ = +

 (1.9) 

 
Iamblichus gives two examples of the problem. The first example can be 
formulated symbolically as follows:26 

                                            
26 Nesselmann (1842, 234-5) gives the literal German translation from the Greek. We will 
follow Nesselmann rather than Heath’s reconstruction. 
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2( )
3( )
4( )

5( )

a b c d
a c b d
a d b c
a b c d b c

+ = +
+ = +
+ = +
+ + + = +

 

 
The problem is formulated in a way that reminds us of Diophantus: “Find 
four numbers such that …”. Although Diophantus’s Arithmetica has no 
problems like this, problems 18 to 20 of the first book are variations on the 
original epanthema problem. Iamblichus’s own variation is in some way 
analogous to the versions of the Arithmetica and might be influenced by it. 
However, while Diophantus’s solution is algebraic, this one depends on a 
proto-algebraic rule. The fourth expression in the problem formulation is 
superfluous and also recognized as such by Iamblichus, as he adds “this 
follows directly from the previous statements”. It is added to facilitate the 
application of the rule. The procedure is explained by Iamblichus in three 
steps: 
 
1) Set the sum of the four numbers equal to the number found by 

multiplying the four factors together. Thus 2 . 3 . 4 . 5 = 120. 
 

Iamblichus does not explain why this is necessary, but it can be 
demonstrated in the following way: Completing the left side of the 
equations in (1.9) to the sum of the four numbers we arrive at: 
 

( 1)( )
( 1)( )
( 1)( )

x y z p a y z
x y z p b x z
x y z p c x y

+ + + = + +
+ + + = + +
+ + + = + +

 

 
Therefore, the sum of the four integers must be divisible by (a + 1), (b + 1) 
and (c + 1). This can be represented by means of the least common 
multiple s. Now Iamblichus does not use s but 2s for a reason that will 
become apparent later. In the example the least common multiple is 60, 
therefore 2s is 120. So, Let us suppose that 2x y z p s+ + + = . 
 

2) The sum of each pair can be found by taking 
1

a
a +

, 
1

b
b +

 and 
1

c
c +

 from 

the sum 2s respectively.  
 

This becomes apparent from  
( )

( 1)( ) ( )
x p a y z
a x p a x y z p
+ = +
+ + = + + +
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The three sums (x + p), (y + p) and (z + p) in the example become 80, 90 
and 96. 

  
3) Only now, Iamblichus refers to the use of the Epanthema rule. Indeed, 

we have the partial sums (x + p), (y + p), (z + p) and we have the total 
sum 2s. The Epanthema therefore determines the common part p as 
follows: 

 
( ) ( ) ( ) 2

2
x p y p z p sp + + + + + −

=  or  
80 90 96 120 73

2
p + + −
= =  

which leads to the other values as 7, 17 and 23. 
 
The reason why Iamblichus used 2s instead of the least common multiple s, is 
that s would lead to the non-integral solution: 

 
40 45 48 60 136

2 2
p + + −
= =  

 
In summary, we discern two important factors which are relevant for the 
understanding of the controversy that follows.  
1) Our only source for the Epanthema is Iamblichus. There are at least six 
centuries between Thymaridas and the extant witness. In the absence of any 
written source we should consider Iamblichus’s discussion of the method as a 
late interpretation of Pythagorean number theory. The formulation of the 
rule with determined and unknown quantities fits better the context of third 
century Greek analysis than it can be brought into agreement with the world 
of Pythagorean number mysticism.  
2) The extended problem, which has become know as the problem of men 
finding a purse, is in itself quite different from the original problem to which 
the Epanthema rule applies. The problem, devised by Iamblichus, could be 
considered a variation such as several others in the Arithmetica of 
Diophantus. Iamblichus gives the rules to reduce the problem to a form in 
which the Epanthema can be used. This distinction is important because 
many have identified the men-find-a-purse problem wrongfully with the 
Bloom of Thymaridas. 

6.3.4. The controversy 
We now come to the discussion of the relevance of the Epanthema method 
and the controversy on the influences to and from Indian mathematics. As 
there are two aspects of the discussion we will deal with the issues 
separately. Firstly, the historical question of the main source of the men-find-
a-purse problem. Secondly, the more philosophical question of the relevance 
of the Bloom on the conceptual development of algebra. 
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6.3.4.1. The origin of linear problems of men finding a purse 
Nesselmann (1842) restrains from much comments or interpretations on the 
Bloom of Thymaridas in his Algebra of the Greeks. He treats the method 
with full respect for the extant Greek text by Iamblichus. After Nesselmann, 
the problem was discussed by several scholars in relation to Hindu algebra. 
Rodet (1879), in his French translation of the Āryabhaṭa’s treatise, does not 
mention the Epanthema. Rodet was no believer of the influence of Greek 
mathematics in Asia. We can assume that he did not discuss the Epanthema 
because, in from his point of view, there simply is no relation with 
Āryabhaṭa’s rule. 
On the other hand, Cantor (II, 584) after discussing Āryabhaṭa’s stanza 29, 
remarks “Wir fürchten keinen Widerspruch, wenn wir in dieser Aufgabe und 
in dem Epantheme des Thymaridas so nahe Verwandte erkenne, dass an 
einen Zufall nicht zu denken ist”. Kaye (1927, 40, note 2) writes “The 
examples in the text are undoubtedly akin to the ‘Epanthema’” and cites 
Cantor and Heath. Tropfke (1980, 399) words it more sharply and considers 
the formulation of Āryabhaṭa’s stanza 29 “equivalent with the Epanthema 
of Thymaridas” and BM “contains problems of the same sort”.27 
All the suppositions of the Greek influence are solely based on the alleged 
resemblance of the problems. As we have shown, Āryabhaṭa’s rule is very 
different from the Epanthema. The argument that both are equivalent is 
plainly wrong. The suggestion that the Epanthema provides evidence for an 
influence of Greek mathematics on Hindu algebra has very little to base on. 
The motivation for the influence seems to stem from normative grounds on 
the superiority of Greek culture. Let us now proceed to the second question 
on conceptual influences. 

6.3.4.2. A case of Pythagorean algebra? 
This single problem, which became known to us through Iamblichus, six 
centuries after Thymaridas, has convinced many that Greek algebra 
originated with the  Pythagoreans. After writing out the equations, Cantor 
(1894, I, 148) concludes: 
 

Das ist, wie man sieht, volständig gesprochene Algebra, welcher nur Symbole 
fehlen, um mit einer modernen Gleichungsauflösung durchaus übereinzu-
stimmen, und insbesondere ist mit Recht auf die beiden Kunstausdrücke der 
gegebene und unbekannten Grösse aufmerksam gemacht worden. 

 
Heath’s interpretation is copied in many other works including Smith (1925, 
91), Cajori (59), van der Waerden (1988, 116), Flegg (1983, 205) and Kaplan 

                                            
27 In the original edition, Tropfke (1937, III, 42) is more prudent: “Āryabhaṭa bietet 
einige solcher Wortgleichungen, unter denen uns eine wegen ihren Änlichkeit mit dem 
Epanthem des Thymaridas ausffält”. Apparently it is Kurt Vogel, who edited the 1980 
edition, who believes in a strong connection. 
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(2001, 62). Cajori finds in the Thymaridas “investigations of subjects which 
are really algebraic in their nature”. Van der Waerden goes as far as to claim 
that “we see from this that the Pythagoreans, like the Babylonians, occupied 
themselves with the solution of systems of equations with more than one 
unknown”. Instead, Klein (1968, 36) sees in the problem an intent to 
“determine special relations between numbers” and places it as “the 
counterparts in the realm of ‘pure’ units of the computational problems 
proper to practical logistic”. We agree with Klein’s interpretation. Even if 
Iamblichus’s depiction of the problem from Thymaridas is faithful, the six 
centuries separating the two require an interpretation accounting for two 
different contexts. Pythagoreans were concerned with the properties of 
numbers and relations between numbers. Lacking any further evidence we 
cannot attribute an algebraic interpretation to Pythagorean number theory. 
On the other hand, the context of the late Greek period of Diophantus and 
Iamblichus does allow for an algebraic reading. The Bloom is thus an old 
number problem revived and extended in an algebraic context. 

6.3.5. The rules in European arithmetic books 
Because of the vast number of manuscripts and books in which these 
problems are discussed, we will not attempt to give an overview. We refer to 
Singmaster (2004, 7.R.1) for a complete history. Also Kurt Vogel (1940, 1954) 
provided a systematic treatment of some of these problem types. We will 
limit our further discussion to the demonstration that both types of Hindu 
recipes are represented in European arithmetic books.  
  
First the rule of Āryabhaṭa as described by (1.7). This rule is applied as a 
recipe at many occasions. We present one example not included in 
Singmaster’s overview. Francés Pellos applies the rule to solve problem 20 of 
the Compendion de l’abaco, written in the occitane dialect (1492, f. 50v; 
Lafont 1967, 140): 
 

Item sont quatre merchans che han d’argent ieu non sabi cant, mays ieu 
dieuc que ay audit dire que tres d’ellos sensa lo prumier merchant han 30 
ducats, et tres sensa lo segont merchant han 36 ducats, et tres sensa lo ters 
merchant han 40 ducats, he tres sensa lo quart han 41 ducats. Ademandi 
quantos ducats ha cascun d’aquellos merchans per solet, en maniera che 
aquesta question sy trobe vera. Fay ensins: ajustas aquestas quatre summas 
ensemble, coma 30, 36, 40, 41 et fan ducats 147, et aquesta regula vol che tu 
deves la principala summa tostemps partir per un ponch mens che non son 
los companhons. Empero partas 147 per 3, et troberas che ven 49, de laqual 
summa leva 30 et restan 19, et tantos ducats ha lo prumier. Apres leva 36 de 
49, et restan 13, et tantos ducats ha lo segont. Apres leva 40 de 49, et restan 
9, et tantos ducats ha lo ters. Apres leva 41 de 49, et restan 8, et tantos 
ducats ha lo quart merchant, et ensins aves fach. 

 
The problem in symbolic notation amounts to 
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1 2 3

2 3 4

1 3 4

1 2 4

41
30
36
40

x x x
x x x
x x x
x x x

+ + =
+ + =
+ + =
+ + =

 

 
Pellos adds the four partial sums together and divides it by “one less then 
the number of companions” which leads to the sum of all four as prescribed 
by Āryabhaṭa. Subtracting the partial sums leads to the shares of each. 
 
The derived problem from Hindu algebra with men finding a purse is even 
better represented in European arithmetic. Recipes very close in formulation 
to the one of Mahāvīra appear frequently in the fifteenth century such as 
the Memoriale of Bartoli (Sesiano 1984a, 136-7). We take an example from 
the AR (f. 84r; Vogel 1954, 63-4): 
 

Item: Es sein 3 gesellen, dy haben 1 peutel gefunden mit gelt. Nu spricht der 
erst zw den anderen zwaijen: het ich daz gelt, daz in dem peutel ist, so het 
ich alz vil als ir paid. Spricht der ander zw den zwayen: het ich daz gelt, daz 
in dem peutel ist, so het ich zwir als vil alz ir peud. Spricht der drit zw den 
andern 2: het ich daz gelt, daz in dem peutel ist, het ich 3 mol als vil alz ir 
paid. Queritur, wye vil ydlicher peij im hat gehapt und wie vil in dem peutel 
ist.  
 
Daz setz also augmentaliter: ½, 2/3, ¾. Nu vind 1 zal, in der du hast 1/2 1/3 1/4, 
daz ist 24. Nu 1/2 von 24 ist 12 und 2/3 von 24 ist 16 und 3/4 ist 18. Addirß 
zesamm, facit 46. Nu zeuch dy du gefunden hast, daz ist 24, da von, pleibt 
22. So vil ist gewesen in dem peutel. Nu wist tu wissen, wievil ydlicher hat 
gehabt, daz mach also: duplir 12, ist 24. Da von zeuch 22, da pleibt [2]. So vil 
hat der erst gehabt. Darnach duplir 16, wirt 32, da von zeuch 22, pleibt 10. 
Daz hat der ander gehabt. Darnach duplir 18, wirt 36, dovon zeuch 22, pleibt 
14. So hat der drit gehabt. 

 
Except for the reference to the square root, which is an oddity in Mahāvīra’s 
rule, all other steps of the Hindu procedure are repeated in this formulation 
of the recipe. Vogel (1954, 217) wrongly refers to Iamblichos as he claims that 
“Diese unbestimmte Problem hat seinen Ursprung in ältester griechischer 
Algebra”. Comparing the text of the AR with our analysis of Mahāvīra and 
Iamblichos above, the connection points in the direction of the Hindu 
sources. 

7. Other problems 
Not all recipes are from Hindu origin. Some common types of problems that 
appear throughout the Middle-Ages are solved with recipes for which we 
have no corresponding rules in Hindu sources. A typical example is about 
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two men buying some commodity which none of them can pay. They need a 
fractional part of the other’s money to buy the commodity. This problem 
corresponds with the equations 
 

1

1

x y p
b

y x p
a

+ =

+ =
  with values (a, b, p)  

 
The recipe provides a procedure to determine the value for the first or 
second unknown quantity, corresponding with the equations: 
 

 
( 1)

1
a bx p
ab

−
=

−
  and  

( 1)
1

b ay p
ab

−
=

−
 

 
The most common values are (2, 3, 20) and found in al-Karkhī’s Fakhrī 
(Woepcke 80),  
Our first source for the recipe is a Byzantian text (c. 1305, Paris, Suppl. Gr. 387, 
f. 120r; Vogel 1968, 27-9) for the problem with values (3, 4, 100). It appears 
with the same values and the same recipe as problem 173 in the Algorismus 
Ratisbonensis (Munchen, f. 98; Vogel 1954, 82). We list here the text 
explaining the recipe for the two unknown values: 
 

Fac sic: multiplica denominatores, facit 12. Post hoc multiplica numeratores, 
facit 1, illud subtrahe ab 12, manet 11, divisor. Darnach subtrahir ab communi 
denominatore, hoc est 12, daz der erst begert, hoc est 1/3. Nu 1/3, ab 12 est 4, 
dy nym von 12, manet 8, dein merer. Den mer oder multiplicir in 100 vnd waz 
da kumpt, daz dividir per 11, facit 72 8/11 [sic]. Alz vil hat der erst. Post hoc 
subtrahir ab 12 id est communi denominatore 1/4. Nu 1/4, ab 12 est 3, 
subtrahir ab 12, manet 9. Illa multipicir per 100 et quod manet, divide per 11, 
facit 81 9/11 habet secundus. 

 
Although the recipe is found in arithmetic books of the next two centuries, 
the problem is later solved by the rule of double false or by algebra.  

7.1. Rules for other linear problems 
An overview of determinate linear problems in one, two and three 
unknowns is shown in Table 3. We have not undertaken a study of these 
rules in relation to the Hindu sources. We shall briefly describe rules known 
from Indian algebra and provide some clues for corresponding proto-
algebraic rules in European arithmetic. 

7.1.1. Rule of inversion (viparītakarma) 
This rule applies to linear problems in one unknown of the type 
 



 CHAPTER 4: PROTO-ALGEBRAIC RULES 

 - 50 - 

 1 1 2 2((( ) ) ) n na x b a b a b c− − − =…  
 
This type of a problem was popular in Europe before the end of the 
sixteenth century. The problem class is called Schachtelaufgaben by Tropfke 
(1980, 592) but better known under its twentieth-century name “monkey 
and coconut problem”.  The name is derived from a short story by Ben Ames 
Williams, published in a newspaper in 1926.28  It is about five sailors that are 
shipwrecked on an island. They gather coconuts all day. During the night 
each of the sailors takes one fifth of the remaining coconuts and gives one 
to the monkey. In the morning they each get one fifth, again leaving one 
coconut for the monkey. The question is how many coconuts they had 
gathered. The problem can easily be solved by reversing the order and 
calculating backwards. In Indian mathematics the method was called 
viparītakarma or Rule of inversion. Āryabhaṭa prescribes the viparītakarma 
for the four arithmetical operations, but this was extended to include 
squaring and roots by Brahmagupta and Bhāskara. The BM has examples 
formulated as business trips (Hayashi 1995, Sūtra C1). 
Many European arithmetic books describe the rule in the same way as it was 
first formulated by Āryabhaṭa. Folkerts (1978) found 17 instances of this type 
of problems in fourteenth and fifteenth-century manuscripts. The AR has 2 
examples of the problem (c. 1450, Vogel 1964, prob. 185 and 187). All 
important Renaissance treatises deal with it: Bartoli’s Memoriale (Sesiano 
1984, 138, 148), Cod. lat. Mon. 14684 (Curtze 1895a, prob. 5), Chuquet (1484, 
prob. 30-33), Calandri (1491, F. 66v, 74r), Pacioli (1494, prob. 22), Köbel (1514), 
Ghaligai (1521), Tunstall (1522, question 43 and 44), Riese (1524, aufgabe 53), 
Tartaglia (1556, Book 17, art 9 and 20), Trenchant (1558, prob. 6) and Buteo 
(1559, prob. 21). In the Initius algebras the rule is called regula Salomonis and 
attributed to king Salomon (Curtze 1902, 461). The name could be a 
corruption of regula sermonis (Cantor 1892, II, 247). Widmann (1489) called 
the method Regula pulchra I or Regula transversa.  

7.1.2. Rule of concurrence (sankramana) 
This simple rule for finding two quantities given their sum and their 
difference appears first in the BSS (Colebrooke 1818, 340). Brahmagupta 
formulates the rules as “the sum set down twice and having the difference 
added and subtracted and being in both instances halved, the moieties are 
the residues” (ibid. 376), and applies it to a problem from astronomy. The 
rule corresponds with the symbolic representation: 
 

x y a
x y b
+ =
− =

 with  
2

a bx +
=  and 

2
a by −

=  

                                            
28 The story about the publication and the many reactions it provoked is described by 
Martin Gardner (1958). See also Singmaster, 1997, and 2004. 
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We have not looked for remnants of this rule in European arithmetic books. 

Table 3: An overview of recipes possibly derived from rules of Hindu algebra 

 Meta-description Name of the rule Problem type Hindu sources 
ax c bx d+ = +  
 

Difference of 
unknowns 
(gulikāntara) 

If I had x from 
you.. 

Āryabhaṭa I, 499 
Bakhshālī, c. 700 
Bhāskara II, 1150 

ax c bx d+ = −  Regula augmenti + 
decrementi 

Figs for children 
Paying wages 

Bhāskara II, 1150 

1 

1 1 2 2((( ) ) ) na x b a b a− − …  

nb c− =  
 

Rule of inversion 
(viparītakarma) 

Monkey and 
coconut 

Āryabhaṭa I, 499 
Brāhmagupta, 628
Bakhshālī, c. 700 
Śrīdhara, c. 900 

x y c
ax by d
+ =
− =

 
 Lazy worker  

x y a
x y b
+ =
− =

 
Rule of concurrence 
(sankramana) 

 Brāhmagupta, 628
Bhāskara, I, 18 

x ap cy
y bp dx
+ =
+ =

 
 Two men find a 

purse 
 

x ay y bx c− = − =    Mahāvīra, 850 

( )
( )

x a c y a
y b d c b
+ = −
+ = −

 
Regula 
augmentationis 

Mule and ass 
Geben und 
Nehmen 

Bakhshālī, c700 
Mahāvīra, 850 
Bhāskara II, 1150 

ax by c
bx ay d
a b e

+ =
+ =
+ =

 

 Buying cloth 
Price of goods 

Mahāvīra, c 850 
Bhāskara II, 1150 
Euler, 1770, Ch. 4 

ax by c
dx ey f

= +
= −

 
Rekeninghe van Plus 
ende Min 

  

x y a
x b
y

+ =

=  
 Split a number 

in two parts 
Diophantus 
Al-Kwārizmi 

2 

x p ay
y p bx
+ =
+ =

 
 two cups and 

one cover 
 

( )
( )
( )

x p a y z
y p b x z
z p c x y

+ = +
+ = +
+ = +

 

Epanthema Men find a 
purse 
 

Iamblichos, c 300 
Aryabhaṭa I, 499 
Mahāvīra, c 850  

x y a
x z b
y z c

+ =
+ =
+ =

 
  Diophantus 

Bakhshālī, c 700 

3 

ax by cz
x y z d

= =
+ + =

 
  Bhāskara II, 1150 
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7.1.3. Price of goods 
By lack of a better name, we call this the rule for determining the price of 
goods. Mahāvīra calls it vyastārghapaṇyapramāṇānayanasūtram in the GSS, 
or a “rule for arriving at the measure of two given commodities whose prices 
are interchanged” (Padmavathamma 2000, 314). 
 
The rule has the following form: 
 

ax by c
bx ay d
a b e

+ =
+ =
+ =

 

 
The Hindu rule consists of reducing the problem to a form in which the rule 
of concurrence can be applied. Indeed, adding the first two equations 
together gives us 
 
 ( )( )a b x y c d+ + = +  
 
Dividing this by the third leads to 
 

 
c dx y

e
+

+ =  

 
Subtracting the first two equations gives 
 

 ( )( )a b x y c d− − = −  or  
c dx y
a b
−

− =
−

 

 
With the sum and the difference given, this allows to apply the sankramana. 

7.2. Rules for linear indeterminate problems 

7.2.1. Regula coecis or regula virginum 
The problem known as “the hundred fowls problem” is definitely of Chinese 
origin. The problem gives the total number of birds bought, the price of 
each bird and the total sum paid. The question is how many of each bird are 
bought. With more than two types of birds, the problem is indeterminate. A 
typical problem involves three kinds and amounts to the equations: 
 

x y z d
ax by cz d
+ + =
+ + =

 or 
x y z d
ax by cz e
+ + =
+ + =
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We have several Chinese sources for the problem, starting with Nine 
chapters of the mathematical art (Jiŭ zhāng suàn shù 九章算術) of the first 
century (Vogel, 1968). Its first appearance in Hindu sources is through the BM. 
The first occurrence in Europe is through Alcuin’s Propositiones ad Acuendos 
Juvenes (Propositions for Sharpening Youths) of the ninth century, with no 
less than eight problems. The most likely route of transmission from China is 
through India.  
 

Meta-description Name of the rule Problem type Hindu sources 
ax by c− =  Pulversizer (kuṭṭaka) 

 
Problem of 
remainders 

Āryabhaṭa I, 499 
Bhāskara I, 522 

1ax by= ±  Constant pulverizer  
(sthira- kuṭṭaka) 

 Bhāskara I, 522 
Brahmagupta, 628 
Bhāskara II, 1150 

x y z d
ax by cz d
+ + =
+ + =

 
Regula Coecis, Type I  Bakhshālī, c 700 

Śrīdhara, c 750 
Mahāvira, 850 
Bhāskara II, 1150 

x y z d
ax by cz e
+ + =
+ + =

 
Regula Coecis, Type II 100 fowls 

problem 
Bakhshālī, c 700 
Śrīdhara, c 750 
Mahāvîra, c 850  
Śrīpati, 1039 
Bhāskara II, 1150 

  Selling different 
amounts  

Bakhshālī, c700 
Śrīdhara, c 750 
Mahāvira, 850 
Fibonacci, 1202 

1 1 1 2 2 2a x r a x r+ = + =… Regula Ta-yen Chinese 
Remainder 
problem 
Basket of eggs 

Āryabhaṭa I, 499 
Bhāskara I, 522 
Mahāvīra, 850 
Śrīpati, 1039 
Bhāskara II, 1150 

xy ax by= +  bhāvita  Bakhshālī, c 700 
Brahmagupta, 628 
Śrīpati, 1039 
Bhāskara II, 1150 

 

Table 4: Similar recipes for indeterminate problems in multiple unknowns 

 
Interestingly, a sixteenth-century German and Latin text, which includes the 
problem, refers to Indian sources (Gottingen Codex Philos. 30). The Prologus 
in algebram  contains a short history in which the author claims that Arab 
algebra was translated and brought to India during Alexandrian times. This 
is one of the few references to Indian algebra we can find in extant texts. 
The hundred fowls problem is introduced with special reference to Indian 
algebra (Curtze 1902, 449): 
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Von disetn Text schrifftlich ein vorstentnus zu geben, so ist zu wissen das 
ALIABRAS, der Indus, gepraucht an vielen orten die so gemelte Regeln, und 
khumbt ursprunglich aus den communicirenden zaln, als wir figuriren wollen 
exemplariter, damit wir auf den vorstandt des texts khomen. 
Es hat einer willen zu kaufen 100 stuckh viehes umb 100 fl., nemlich schaf, 
Esel und Ochsen, das dann die Kinder ratende vorgeschlagen, aber uns 
hieher zu geprauchen. Erofnen wir, souil vns not ist der rationalischen zaln 
halber, welcher kauft 20 schaf vor 1 fl., 1 Esel pro 1 fl. und 1 Ochs pro 3 fl., 
und solch summe der fl. ist 100 und ' des viches ist auch 100 stukh.  

 
The solution text, cited in chapter 2, corresponds with the Hindu recipe.  

7.2.2. Tangible arithmetic 
There is one particular formulation of the regula coecis which deserves 
mentioning. It demonstrates how proto-algebraic rules can become tangible 
operations and actions.  
The most common version of the hundred fowls problem in European 
arithmetic is about a number of men, woman and children who have to pay 
the bill at a tavern. This formulation, which explains the name Regula 
virginum,  first appears in the Parmiers manuscript written around 1430 
(Sesiano 1984b). The first arithmetic book written in Swedish (Aurelius, 1614) 
describes a rule for solving such problems by specific actions with the left 
and right hand: 29 
 

Thus is the way to use this rule. Put the number of men at the left hand and 
what is eaten at the right hand. In between you must place every person and 
the money they spent. Then you must “resolve” all the spent money you 
have; then you must multiply the smallest coin with the number of all the 
persons; the product you must subtract from all the spent money, the rest 
will be put aside.. At last you always must subtract the lesser number from 
the greatest; and the rest will be the divisor. When this is done, take the 
number which was put aside and divide it into certain parts. 

 
While the procedure described by the rule can be matched with the one 
from the GSS by Mahāvīra (Sūtra 143 ½; Padmavathamma 2002, 303), a 
depiction by manual actions is apparently a European invention. Through 
several intermediaries we could trace the original formulation back to the 
second arithmetic by Adam Ries (1522, 135) under the name Regula cecis oder 

                                            
29 Aurelius, Aegidius Matthiae (1622) Arithmetica eller Een Kort och Eenfaldigh 
Räknebook uthi heele och brutne Taal medh lustige och sköne Exempel med 
Eenfaldigom som til thenne Konst lust och behagh hafwe kortelighen och 
eenfaldelighen til Nytto och Gagn författat och tilsammandraghen aff Aegideo Aurelio, 
Eshillo Matthiae, Upsala. The book was reprinted in 1622, 1628, 1633, 1636, 1642, 1665. 
Staffan Rodhe pointed me to the reference of Aurelius on occasion of the conference 
The Origins of Algebra: From al-Khwārizmī to Descartes at the University of Pompeu 
Fabra, Barcelona, March 27-29, 2003. He provided the translation from Swedish.  



 CHAPTER 4: PROTO-ALGEBRAIC RULES 

 - 55 - 

virginum. In a later edition of 1574, the operation is described as Zech 
rechnen (Ries 1574, f. 69v): 
 

Schreib vor dich gegen der lincken handt die anzahl de Personen. Gegen der 
rechten handt / wie viel sie vertruncken / und  in die mitte / wie vil 
einjegliche Person / jeglichs geschlechts in sonderheit gibt. Darnach mach das 
gelt dem menigsten uberall gleich / als dann multiplicir das kleinest an der 
bezahlung mit den Personen / und nimb von dem das sie vertruncten haben/ 
Das da bleibt ist die zahl / welche getheilt sol werden. 

 
The problems added as illustration correspond with the equations : 
 

21
3 5 81
x y
x y
+ =
+ =

 and  
20

3 2 40
x y z
x y z
+ + =
+ + =

 

 
The same tanglible procedure is discussed in the Flemish arithmetic of 
Vander Gucht (1569, ff. 80v-81v, 1594, ff. 70r-71r, small differences in 
formulation): 
 

Om desen reghel te maken soo schrijft tghetal der persoonen altijt teghen 
der luchter ofte lincker handt en tghelt dat zij verdroncken hebben tegen de 
rechter hand en int middel settet jeghelicks ghelt dat zy verdroncken 
hebben. Daer naer neemt t’minste ghetal vande meesten. De reste settet 
bezijden. Twelcke deelders werden. Alsdan multipliceert den ondersten 
ghetale (welck die cleynste is inder betalinghe) met die persoonen. Dat 
product substraheert vanden ghelde dat zij betalen souden. En de reste 
deelt gelijck in soo veeldeelen als deelders voorhouden in sulcher voughen 
dat een jeghelick ghetal met zijnen behoorlicken deelder ghedeelt ghelijck 
op sta. En what uit zuclcken deelinghe comt beteekent den ghetal der 
persoonen eens jeghelicks gheslachts besonder uitghenomen de persoonen 
die dat minste gheven, welken ghi dan hehtelicken bevinden cont wanneer 
ghij die ghetalen der persoonen die uit der deelinghe commen tezamen 
addeert. En dat zelve van tghetal der persoonen teghen de lincker handt 
substraheert, en de reste beteeckent de persoonen de welcke het minste 
gheven. 

 
Vander Gucht adds four examples: 
 

16
30 18 348
x y

x y
+ =
+ =

 
34

48 24 12 816
x y z

x y z
+ + =
+ + =

 
27

18 16 8 348
x y z

x y z
+ + =
+ + =

 

 

 
80

112 10 8 6 35
2

x y z u

x y z u

+ + + =

+ + + =
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8. Conclusion 
We have selected three types of recipes from European arithmetic and 
algebra treatises and demonstrated their structural correspondence with 
rules for solving algebraic problems in the Hindu tradition. Some proto-
algebraic rules from Renaissance texts are strikingly similar to rules from 
Hindu algebra. Others vary slightly in formulation and structure. Still other 
recipes, in addition to three examples worked out, suggest a high correlation 
with rules from Hindu algebra. What can we infer from such striking 
correspondence? 
 
No textual evidence substantiates an influence from Hindu algebra on 
fourteenth to sixteenth-century European arithmetic. For example, the 
Indian rules relating to linear problems with multiple unknowns are 
formulated with reference to colors. No such reference to colors could be 
found in Rennaisance texts.  
  
Jens Høyrup (2002, 96) used the term ‘sub-scientific source traditions’ as 
opposed to the scientific source traditions. Only the latter are studied by 
historians, by means of extant texts. He discusses commercial calculation and 
practical geometry as two disciplines which thrived in sub-scientific grounds. 
Such knowledge is disseminated orally through stories, riddles, tangible and 
mnemonic aids.  Because of the lack of written evidence, science historians 
have neglected these traditions. Høyrup has always recognized the 
importance of these traditions and his assessment of Islamic science and 
mathematics is partially based on such influences. The wertern appropriation 
of rules from Hindu algebra may be situated within the sub-scientific 
tradition of solving recreational problems. As we have shown for the ‘men 
find a purse”-problem, the practical context in which some of these 
recreational problems are formulated, is Indian. If, in addition, recipes for 
solving the riddles correspond with the rules from the scientific tradition of 
Hindu algebra, it becomes warranted to think in lines of an effective 
influence. Algebraic procedures from Hindu algebra have migrated to the 
West in the form of proto-algebraic rules connected with and imbedded in 
recreational and practical problems.  
 
What is the relevance of these proto-algebraic rules is for the development 
of Renaissance algebra? Probably there is no direct influence from Hindu 
algebra on the abacus and cossist traditions. However, the procedures for 
problem solving, transmitted through proto-algebraic rules, hold important 
clues for an algebraic approach to these problems. A recipe for solving the 
problem of men finding a purse, depending on the sum of the shares of the 
persons and the value of the purse, leads to the idea of using the unknown 
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for that sum in abacus algebra.30 Proto-algebraic rules have therefore a 
heuristic value for algebraic problem solving. 

9. Acknowledgments 
This paper is a slightly revised version of chapter 4 of my PhD dissertation, 
From Precepts to Equations: The Conceptual Development of Symbolic 
Algebra in the Sixteenth Century, supervised by Diderik Batens, Ghent 
University Belgium. Funding for this research was provided  by the research 
project G.0193.04 from the Flemish fund for scientific research (FWO 
Vlaanderen). I much indebted to valuable comments by Takao Hayashi, the 
scholar of Sanskrit mathematics who edited the BM, and also Jan Hogendijk 
and Saskia Willaert. 
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(commentory on BG) 
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