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Abstract

In [1, Section 4.1], a deontic logic is proposed which explicates the idea
that a formula ϕ is obligatory if and only if it is (semantically speaking) the
weakest permission. We give a sound and strongly complete, Hilbert style
axiomatization for this logic. As a corollary, it is compact, contradicting
earlier claims from [1]. In addition, we prove that our axiomatization is
equivalent to Anglberger et al.’s infinitary proof system, and show that
our results are robust w.r.t. certain changes in the underlying semantics.

1 Intro

In [6], [5], and [1], a logic is developed for “obligation as weakest permission”.1

The semantics proposed by Anglberger et al. in [1] is meant to capture the
deontic aspects of reasoning in strategic games, where we speak about properties
of the best actions available to a given agent. Whereas usually in formal models
of such games, actions and/or agents are modeled explicitly at the object level,
the present logic only speaks about action tokens (which correspond to states
in a Kripke-model) and action types (set of action tokens). Let us explain this
briefly – we refer to the cited works for a more elaborate discussion.

Consider a situation in which an agent can choose from a number of distinct
action tokens, where at least some of these are optimal. Whereas the agent is
permitted to perform one of those optimal action tokens, his sole obligation (if
there is one at all – mind this important caveat) is to just perform one of the

∗Research for this paper was supported by the Flemish Fund for Scientific Research – FWO
Vlaanderen. We are indebted to Olivier Roy and two anonymous referees for comments on
previous versions. Special thanks go to one of the referees in particular for spotting a flaw
in the previous version and making insightful remarks, which helped improve this paper to a
considerable extent.

1In more recent work [2, 7], the logic is compared to other constructions in deontic logic.
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optimal action tokens. This means that the deontic operators O and P can be
read as follows, where ϕ refers to an arbitrary action type:

Oϕ: “ϕ is the (only) action type that is obligatory”, or more elaborately: “an
action token is optimal if and only if it is of type ϕ”

Pϕ: “if an action is of type ϕ, then it is optimal”

Anglberger et al. moreover introduce an alethic modality �, which they
interpret as a universal modality. �ϕ thus means that all available action tokens
are of type ϕ.

They then propose what they call a “minimal logic” 5HD for these three
operators. However, as they argue, 5HD only captures one half of the notion
of “obligation as weakest permission”. That is, if ϕ is obligatory, then the
logic stipulates that ϕ is the weakest permitted action type. The converse does
not hold: something can be the weakest permitted action type without being
obligatory.

In the fourth section of [1], a brief discussion of this converse direction is
given, and it is shown how this translates to the semantics of 5HD. Let us call
the resulting logic 5HD∗; it will be defined in Section 2. It is argued in [1] that
5HD∗ is not compact, and a proof system with an infinitary rule (R-Conv) is
shown to be (weakly) sound and complete w.r.t. 5HD∗.

The main aim of the present paper is to give a sound and strongly complete,
Hilbert-style axiomatization for 5HD∗ (Section 3). As a corollary, this conse-
quence relation is compact, contradicting the claims mentioned in the previous
paragraph. We prove in addition that the proof system proposed by Anglberger
et al. is equivalent to 5HD∗ (Section 4). Finally, we show that these results can
be generalized to other, similar logics for “obligation as weakest permission”
(Section 5).

2 Definitions

This section is meant to fix notation; it contains no new material. See [1] for
the original definitions and notation.

We work with a modal propositional language, obtained by closing the set
of propositional letters S = {p1, p2, . . .} and ⊥,> under boolean connectives
¬,∨,∧,⊃,≡ and the unary operators �, O, P . Call the resulting set of formu-
las W. We treat only ¬,∨,⊥, O, P,� as primitive; ∧,⊃,≡ are defined in the
usual way. In the remainder, let the metavariables ϕ,ψ, . . . range over arbitrary
members of W and Γ,∆, . . . over arbitrary subsets of W.

Definition 1. A strict deontic frame F is a quadruple 〈W,R�, nP , nO〉, where
W is a non-empty set (the domain of F ), R� = W × W , and nP : W →
℘(℘(W )) and nO : W → ℘(℘(W )) satisfy the following conditions

(OR) If X ∪ Y ∈ nP (w), then X ∈ nP (w) and Y ∈ nP (w)
(WP) If X ∈ nO(w) and Y ∈ nP (w), then Y ⊆ X
(OP) If X ∈ nO(w) then X ∈ nP (w)
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(OC) If X ∈ nO(w), then X 6= ∅
(Conv) If X ∈ nP (w) and for all Y ∈ nP (w), Y ⊆ X, then X ∈ nO(w)

If a frame obeys all the above conditions except (possibly) (Conv), it is just
a deontic frame.

A (strict) deontic model is a (strict) deontic frame F together with a valua-
tion v that maps every propositional atom to a subset of the domain of F .

Definition 2. Let M = 〈W,R�, nO, nP , v〉 be a (strict) deontic model and
w ∈W .

M,w 6|= ⊥
M,w |= p iff w ∈ v(p)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ
M,w |= �ϕ iff M,w′ |= ϕ for all w′ ∈ R�(w)
M,w |= Oϕ iff ‖ϕ‖M ∈ nO(w)
M,w |= Pϕ iff ‖ϕ‖M ∈ nP (w)

where ‖ϕ‖M = {u ∈W |M,u |= ϕ}.

Definition 3. Γ 
5HD∗ ϕ iff for all strict deontic models M : if M,w |= ψ for
all ψ ∈ Γ, then M,w |= ϕ.

3 Axiomatization of 5HD∗

Definition 4. The set of 5HD∗-theorems is the closure of the set of all instances
of the following axiom schemas

(CL) All tautologies of classical propositional logic
(S5�) S5 for �
(EQO) �(ϕ ≡ ψ) ⊃ (Oϕ ≡ Oψ)
(EQP ) �(ϕ ≡ ψ) ⊃ (Pϕ ≡ Pψ)
(FCP) P (ψ ∨ ϕ) ⊃ (Pψ ∧ Pϕ)
(Ought-Perm) Oϕ ⊃ Pϕ
(Ought-Can) Oϕ ⊃ ♦ϕ
(Weakest-Perm) Oϕ ⊃ (Pψ ⊃ �(ψ ⊃ ϕ))
(Taut-Perm) P> ⊃ O>

under the following rules:

(MP)
ϕ,ϕ ⊃ ψ

ψ
(NEC)

` ϕ
` �ϕ

Γ `5HD∗ ϕ iff there are ψ1, . . . , ψn ∈ Γ such that (ψ1 ∧ . . . ∧ ψn) ⊃ ϕ is a
5HD∗-theorem.

This axiomatization is obtained by adding the axiom (Taut-Perm) to the
axiomatization of the logic 5HD from [1, Section 3]. In the remainder of this
section, we establish the following:
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Theorem 1. Γ `5HD∗ ϕ iff Γ 
5HD∗ ϕ.

Before we prove this theorem, let us note one property of `5HD∗ :

Lemma 1. Pϕ,�(ψ ⊃ ϕ) `5HD∗ Pψ.

Proof. Suppose Pϕ,�(ψ ⊃ ϕ). Since � is a normal modal operator and by the
second premise, we can infer �(ϕ ≡ (ψ ∨ ϕ)). Hence by (EQP ) and the first
premise, P (ψ ∨ ϕ). But then by (FCP) and classical logic, Pψ.

Soundness For soundness, we refer to Section 3.3 of [1], where the soundness
of all the axioms except (Taut-Perm) is shown with respect to the set of all
deontic models. So we are left with checking that (Taut-Perm) is valid in view
of the additional condition (Conv). Suppose that M,w |= P>. It follows that
‖>‖M ∈ nP (w). Hence, W ∈ nP (w). Clearly, for all X ∈ nP (w), X ⊆ W , and
hence by condition (Conv), W ∈ nO(w) so that M,w |= O>.

Completeness, part 1 For (strong) completeness, we need a more elabo-
rate proof. The main complication in the proof consists in applying a “copy-
and-merge” technique to the completeness proof from Section 3.3 of [1]. This
technique was originally developed in the 1980s by Passy, Tinchev, and Gargov
for the completeness proof of modal logics for necessity and sufficiency; see e.g.
[3, 4].2 There are very close links between 5HD∗ and the notions of modal
necessity and sufficiency – a discussion of this relationship can be found in [7].

Recall that to prove strong completeness, it suffices to establish that for all
consistent Λ ⊆ W, there is a model M and a state w in this model such that all
the members of Λ are true at this state. So let in the remainder Λ be an arbitrary
consistent subset of W, and let Λ′ be a maximally 5HD∗-consistent extension
of Λ.3 Let W be the set of all maximally 5HD∗-consistent sets ∆ ⊆ W such
that {ϕ | �ϕ ∈ Λ′} ⊆ ∆. Let |ϕ| = {∆ ∈W | ϕ ∈ ∆}.

Let MΛ = 〈W,R�, nO, nP , V 〉, where4

(1) R� = W ×W
(2) for all ∆ ∈W , nO(∆) = {|ψ| | Oψ ∈ ∆}
(3) for all ∆ ∈W , nP (∆) = ↓{|ψ| | Pψ ∈ ∆}
(4) for all ϕ ∈ S, V (ϕ) = |ϕ|

where for any set of sets X , ↓X is the set of all subsets of the members of X
(also called the downset of X).

We now prove a number of lemmas about MΛ – (variants of) these can be
found in the completeness proof for 5HD from [1]. Since the present model is
defined in terms of 5HD∗, we need to prove them here from scratch.

2The authors of [3] refer to Vakarelov as the inventor of this technique.
3Here and below, we freely rely on Lindenbaum’s lemma: every consistent ∆ ⊆ W has a

maximally 5HD∗-consistent extension ∆′ ⊆ W.
4Our definition of MΛ is essentially the same as in [1, Section 3.3], the only difference being

that here we work with 5HD∗ rather than 5HD.
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Lemma 2 ([1], Lemma 3.12). |ϕ| ⊆ |ψ| iff �(ϕ ⊃ ψ) ∈ ∆ for all ∆ ∈W .

Proof. (⇒) Suppose the antecedent holds. Hence, every maximal consistent
extension of {τ | �τ ∈ Λ′} that contains ϕ, also contains ψ. By a standard
proof (relying on K-properties of �) we can infer that Λ′ `5HD∗ �(ϕ ⊃ ψ).
By the (4)-axiom for �, ��(ϕ ⊃ ψ) ∈ Λ′. And hence by the definition of W ,
�(ϕ ⊃ ψ) ∈ ∆ for all ∆ ∈W .

(⇐) Suppose the consequent holds. By the T-axiom for �, ϕ ⊃ ψ ∈ ∆ for
all ∆ ∈ W . Hence, for all ∆ ∈ W such that ϕ ∈ ∆, also ψ ∈ ∆. It follows that
|ϕ| ⊆ |ψ|.

Lemma 3. For all ϕ ∈ W, |ϕ| = ‖ϕ‖MΛ .

Proof. By a standard induction on the complexity of ϕ. The inductive base is
trivial in view of (4). For the inductive step, the case where ϕ = �τ is standard.
So we are left with two cases:
Case 1 : ϕ = Oτ . (⇒) Suppose that Oτ ∈ ∆. Hence by (2), |τ | ∈ nO(∆) and
hence by (IH) and the semantic clause for O MΛ,∆ |= Oτ . (⇐) Suppose that
MΛ,∆ |= Oτ . Hence by (IH), |τ | ∈ nO(∆). By (2), there is a τ ′ such that
Oτ ′ ∈ ∆ and |τ ′| = |τ |. By Lemma 2, �(τ ≡ τ ′) ∈ ∆. But then by (EQO),
Oτ ∈ ∆.
Case 2: ϕ = Pτ . (⇒) Suppose that Pτ ∈ ∆. Hence by (3), |τ | ∈ nP (∆) and
hence by (IH) and the semantic clause for P , MΛ,∆ |= Pτ . (⇐) Suppose that
MΛ,∆ |= Pτ . By the semantic clause for P and (IH), |τ | ∈ nP (∆). By (3),
there is a τ ′ such that Pτ ′ ∈ ∆ and |τ | ⊆ |τ ′|. By Lemma 2, �(τ ⊃ τ ′) ∈ ∆.
By Lemma 1, Pτ ∈ ∆.

Lemma 4 ([1], Claim 3.15). MΛ is a deontic model.

Proof. We need to check 4 conditions:
(OR) Immediate in view of the construction, item (3).
(WP) Suppose that X ∈ nO(∆) and Y ∈ nP (∆). By items (2) and (3) of the
construction, there are ϕ, ψ such that X = |ϕ| and Oϕ ∈ ∆, and Y ⊆ |ψ| and
Pψ ∈ ∆. By (Weakest-Perm), �(ψ ⊃ ϕ) ∈ ∆. Hence by Lemma 2, |ψ| ⊆ |ϕ|.
It follows that Y ⊆ X.
(OP) Suppose that X ∈ nO(∆). By item (2) of the construction, there is a ϕ
such that Oϕ ∈ ∆ and X = |ϕ|. By (Ought-Perm), Pϕ ∈ ∆. Hence, by item
(3) of the construction, X ∈ nP (∆).
(OC) Suppose that X ∈ nO(∆). By item (2) of the construction, there is a ϕ
such that Oϕ ∈ ∆ and X = |ϕ|. By (Ought-Can), ♦ϕ ∈ ∆. Hence by Lemma
3, M,∆ |= ♦ϕ. So there is a Θ ∈ W such that M,Θ |= ϕ. Again by Lemma 3,
ϕ ∈ Θ and hence X = |ϕ| 6= ∅.

However, MΛ will not (in general) be a strict deontic frame – in other words,
(Conv) may not hold for MΛ. To get this condition, we transform MΛ into a
more complex model M+

Λ . Informally speaking, M+
Λ is obtained by first making

two disjoint copies of MΛ, and then merging the two resulting models. The
merging is done in such a way that the truth lemma is preserved, and yet
condition (Conv) is obeyed. We return to this point after giving the exact
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definition. For the sake of readibility, we will denote the copies of the members
∆ ∈W by ∆1,∆2 rather than 〈∆, 1〉, 〈∆, 2〉.

Let M+
Λ =df 〈W+, R+

�, n
+
O, n

+
P , v

+〉, where

(i) W+ = {∆1,∆2 | ∆ ∈W}
(ii) R+

� = W+ ×W+

(iii) for all ∆i ∈W+:

(iii.1) if there is a ϕ s.t. Oϕ ∈ ∆, then n+
O(∆i) = {{Θ1,Θ2 | Θ ∈ X} |

X ∈ nO(∆)}
(iii.2) otherwise,

(iii.2a) if there is no X ∈ nP (∆) such that Y ⊆ X for all
Y ∈ nP (∆), let n+

O(∆i) = ∅
(iii.2b) otherwise, let Xw ∈ nP (∆) be such that Y ⊆ Xw for all

Y ∈ nP (∆). Define n+
O(∆i) = {{Θi | Θ ∈ Xw} ∪ {Λj ∈

W+ | j 6= i}}
(iv) for all ∆i ∈W+:

(iv.1) if n+
O(∆i) = ∅, let n+

P (∆i) = ↓{{Θ1,Θ2 | Θ ∈ X} | X ∈ nP (∆)}
(iv.2) otherwise, let n+

P (∆i) = ↓n+
O(∆i)

Let in the remainder |ϕ|+ = {∆1,∆2 | ϕ ∈ ∆} = {∆1,∆2 | ∆ ∈ |ϕ|}. As

usual, ‖ϕ‖M
+
Λ = {∆i ∈W+ |M+

Λ |= ϕ}.

Intermezzo Cases (iii.2b) and (iv.2) are the interesting ones. We need these
to ensure that the additional condition (Conv) is satisfied but that neverthe-
less, the truth lemma is preserved. That is, consider the following (5HD∗-
consistent!) set of formulas:

Γex = {Pϕ ⊃ �(ϕ ⊃ p1) | ϕ ∈ W} ∪ {Pp1} ∪ {¬Op1}

This set is satisfiable in a strict deontic model. The reason is that “the
weakest permission” can mean two different things: it can refer to an object-
level formula, but it can also refer to a semantic entity, viz. a set of states in
our model. It may well be that in our model, the “weakest permission” X ⊆W
is such that it cannot be expressed at the object-level.

Now if (iii.2b) applies, then this means that under the object-level inter-
pretation, our weakest permission can be expressed by some formula ψ, even
though Oψ is not a member of the set ∆. To make sure that Oψ is false in
the model at ∆i, we add (at least) one weaker permission to nP (∆i), which is
not expressible at the object level. That it is not expressible at the object level
(and more generally, that no additional formulas of the form Pτ become valid),
follows from the Truth Lemma and Lemma 7 below. The main point is that
in this symmetric construction, only sets of the type {|ϕ|1, |ϕ|2 | ϕ ∈ W} are
expressible in the object language.
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Completeness, part 2 We now prove the main lemmas that allow us to
obtain the strong soundness and completeness for 5HD∗.

Lemma 5. For all ∆i ∈W+: if n+
O(∆i) 6= ∅, then n+

O(∆i) is a singleton set.

Proof. If (iii.2b) applies, then this is immediate in view of the construction.
If (iii.1) applies, then it suffices to check that nO(∆) is a singleton. This fol-
lows from the fact that (Oϕ ∧ Oψ) ⊃ �(ϕ ≡ ψ) is a theorem in 5HD∗ (see
Observation 3.5 from [1]), and Lemma 2.

Lemma 6. M+
Λ is a strict deontic model.

Proof. It suffices to check that all conditions of Definition 1 are satisfied:
Ad (OR). Trivial in view of the construction, item (iv.1) and (iv.2).
Ad (OP). Trivial in view of item (iv) of the construction.
Ad (OC). Let X+ ∈ n+

O(∆i). If (iii.1) applies, then X+ = {Θ1,Θ2 | Θ ∈ X}
where X ∈ nO(∆). By Lemma 4, X 6= ∅ and hence also X+ 6= ∅.

If (iii.2b) applies, then by the construction, every set Θj ∈ W+ with j 6= i
is a member of X+, and hence X+ 6= ∅.
Ad (WP). Trivial in view of Lemma 5 and item (iv) of the construction.
Ad (Conv). Suppose that X ∈ n+

P (∆i) and for all Y ∈ n+
P (∆i), Y ⊆ X. Case 1:

n+
O(∆i) 6= ∅. Then in view of the construction, X is the only member of n+

O(∆i)
and we are done.

Case 2: n+
O(∆i) = ∅. Note that by the construction, and since X is a

maximal member of n+
P (∆i), X = {Θ1,Θ2 | Θ ∈ X ′}, with X ′ ∈ nP (∆). Let

Y ′ ∈ nP (∆) be arbitrary and let Y = {Ψ1,Ψ2 | Ψ ∈ Y ′}. By item (iv.1) of
the construction, Y ∈ n+

P (∆i). By the supposition, Y ⊆ X. Hence, Y ′ ⊆ X ′.
So we have shown that for all Y ′ ∈ nP (∆), Y ′ ⊆ X ′. But this means that the
condition of (iii.2a) is false, and hence n+

O(∆i) 6= ∅ — a contradiction. So we
have shown that case 2 cannot apply given our supposition.

Lemma 7. Let X,Y ⊆ W and X 6= Y . Let Z = {Θ1,Ψ2 | Θ ∈ X,Ψ ∈ Y }.
Then there is no ϕ such that Z = |ϕ|+.

Proof. Immediate in view of the construction and the definition of |ϕ|+.

Lemma 8. Where ψ ∈ W and i ∈ {1, 2}: M+
Λ ,∆

i |= ψ iff ψ ∈ ∆.

Proof. By a standard induction on the complexity of ψ, henceforth denoted by
c(ψ). Note that our inductive hypothesis is equivalent to

(IH) for all ψ ∈ W with c(ψ) ≤ n, ‖ψ‖M
+
Λ = |ψ|+.

That is, the truth set of ψ in M+
Λ is simply the set of all points Θ1,Θ2 where

ψ ∈ Θ.
The base case (c(ψ) = 0, hence ψ ∈ S) is trivial. Proving the inductive step

for the connectives is a routine task, we safely leave this to the reader. So we
are left with three cases:
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Case 1: ψ = �ϕ with c(ϕ) ≤ n. We have: M+,∆i |= �ϕ iff for all Θj ∈ W+,
M+,Θj |= ϕ iff [by the construction of W+ and (IH)] for all Θ ∈ W , ϕ ∈ Θ iff
[by the construction of W ] �ϕ ∈ ∆.

Case 2: ψ = Oϕ with c(ϕ) ≤ n. (⇒) Suppose that M+
Λ ,∆

i |= Oϕ. Hence, there

is an X+ ∈ n+
O(∆i) such that X+ = ‖ϕ‖M

+
Λ . By (IH), X+ = |ϕ|+. We now

distinguish two cases:
(iii.1) applies. Hence, X+ = {Θ1,Θ2 | Θ ∈ X}, where X is the only member
of nO(∆). By the construction of MΛ, X = |ψ| for some ψ such that Oψ ∈ ∆.
Hence, |ψ| = |ϕ|. By Lemmas 3 and 2, �(ϕ ≡ ψ) ∈ ∆. Hence by (EQO),
Oϕ ∈ ∆.
(iii.2) and (iii.2b) apply. Assume, first, that Xw = W = ‖>‖MΛ . It follows
that P> ∈ ∆. Hence, by (Taut-Perm), O> ∈ ∆, which contradicts condition
(iii.2). So Xw ⊂ W . But then, where Z is the only member of n+

O(∆i), we
can infer by Lemma 7 that there is no τ such that Z = |τ |+. Hence, by

(IH), there is no τ such that Z = ‖τ‖M
+
Λ . But then there is no τ such that

M+
Λ ,∆

i |= Oτ , contradicting our original supposition. So we have shown that
given the supposition, (iii.2b) cannot apply.

(⇐) Suppose that Oϕ ∈ ∆. Hence condition (iii.1) applies, and hence the
only member of n+

O(∆i) is X+ = {Θ1,Θ2 | Θ ∈ X}, where X = |ϕ|. By (IH),

X+ = |ϕ|+ = ‖ϕ‖M
+
Λ and hence M+

Λ ,∆
i |= Oϕ.

Case 3: ψ = Pϕ with c(ϕ) ≤ n. (⇒) Suppose that M+
Λ ,∆

i |= Pϕ. Hence, there

is an X+ ∈ n+
P (∆i) such that X+ = ‖ϕ‖M

+
Λ . By (IH), X+ = |ϕ|+ = {Θ1,Θ2 |

ϕ ∈ Θ}. We will prove that there is a τ such that Pτ ∈ ∆ and �(ϕ ⊃ τ) ∈ ∆;
applying Lemma 1 we obtain that Pϕ ∈ ∆. To get there, we distinguish three
cases:
(iii.1) applies. Hence, X+ ⊆ Y + = {Θ1,Θ2 | Θ ∈ Y }, where Y is the only
member of nO(∆). Hence, Y = |τ | and Oτ ∈ ∆. By (Ought-Perm), Pτ ∈ ∆.
Since X+ ⊆ Y +, also X ⊆ Y and hence |ϕ| ⊆ |τ |. By Lemma 2, �(ϕ ⊃ τ) ∈ ∆.
(iii.2a) applies. Hence, by item (iv.2) of the construction, X+ ⊆ Y + = {Θ1,Θ2 |
Θ ∈ Y }, where Y ∈ nP (∆). By the construction of MΛ, there is a τ such that
Pτ ∈ ∆ and Y ⊆ |τ |. Hence, |ϕ| ⊆ |τ |. By Lemma 2, �(ϕ ⊃ τ) ∈ ∆.
(iii.2b) applies. By item (iv.1) of the construction, X+ does not contain any
set Θi with Θ 6∈ Xw. Since X+ = |ϕ|+ and by Lemma 7, it follows that
X+ ⊆ {Θ1,Θ2 | Θ ∈ Xw}. Note that there is a τ such that |τ | = Xw and
Pτ ∈ ∆. So we can again apply the same reasoning to show that �(ϕ ⊃ τ) ∈ ∆.

(⇐) Suppose that Pϕ ∈ ∆. By (IH), it suffices that we prove that |ϕ|+ ∈
n+
P (∆i). We distinguish again three cases:

(iii.1) applies. Let Oτ ∈ ∆. Hence by (Weakest-Perm), �(ϕ ⊃ τ) ∈ ∆. By
Lemmas 3 and 2 it follows that |ϕ| ⊆ |τ |. Hence, since |τ |+ ∈ n+

O(∆i), and by
item (iv.2) of the construction, also |ϕ|+ ∈ n+

P (∆i).
(iii.2a) applies. By the construction of MΛ, |ϕ| ∈ nP (∆). By item (iv.1) of our
construction, |ϕ|+ ∈ n+

P (∆i).
(iii.2b) applies. Hence, |ϕ| ⊆ Xw. By items (iii.2b) and (iv.2) of the construc-
tion, X+

w = {Θ1,Θ2 | Θ ∈ Xw} is a member of n+
P (∆i). Hence by the same
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construction, also |ϕ|+ ∈ n+
P (∆i).

4 The proof system from [1]

As mentioned in the introduction, Anglberger et al. present a non-standard,
infinitary proof system for 5HD∗, which they show to be sound and weakly
complete w.r.t. the semantics. This proof system is obtained by adding to the
rules and axioms of 5HD the following infinitary rule (here, {p1, p2, . . .} is a
complete enumeration of the members of S):

(R-Conv)
` Pp1 ⊃ �(p1 ⊃ ϕ), ` Pp2 ⊃ �(p2 ⊃ ϕ), . . .

` Pϕ ⊃ Oϕ

The logic obtained by adding (R-Conv) to 5HD is called 5HD+ in [1]. We
will now show that it is equivalent to 5HD∗, and hence also strongly complete
w.r.t. the 5HD∗-semantics.

To prove that 5HD+ is at least as strong as 5HD∗, it suffices to show that
adding (R-Conv) to 5HD yields (Taut-Perm). This is fairly straightforward:
putting ϕ = >, the premise of (R-Conv) holds trivially, and its conclusion is
simply (Taut-Perm).5

To prove that 5HD∗ is as strong as 5HD+, we first show that (R-Conv) is
sound with respect to the 5HD∗-semantics.6 We prove this by contraposition.
Suppose that for a given ϕ, the conclusion of (R-Conv) is not valid. Hence,
there is a 5HD∗-model M = 〈W,R�, nO, nP , v〉 and a point w ∈ W such
that M,w |= Pϕ, M,w 6|= Oϕ. Let pi ∈ S be such that it does not occur
in ϕ. Define v′ : S → ℘(W ) such that v′(τ) = v(τ) for all τ ∈ S \ {pi} and
v′(pi) = nO(w). Let M ′ = 〈W,R�, nO, nP , v

′〉. It follows that M ′, w |= Opi and
hence also M ′, w |= Ppi. Since ‖ϕ‖M ′ = ‖ϕ‖M , M ′, w 6|= Oϕ and M ′, w |= Pϕ.
But then by (WP) and the semantic clause for O, ‖ϕ‖M ′ ⊂ ‖pi‖M

′
and hence

M ′, w 6|= �(pi ⊃ ϕ). So we have shown that 6
5HD∗ Ppi ⊃ �(pi ⊃ ϕ).
Relying on our completeness result from the preceding section (Theorem 1),

this means that (R-Conv) is also sound with respect to our axiomatization of
5HD∗. This finishes our proof of the identity of `5HD∗ and `5HD+ .

5 Generalizations and an open issue

Generalizations of the result Our completeness result can be easily gen-
eralized to weaker logics that are obtained by skipping some of the frame con-
ditions such as (OR) and (OC), and leaving out the associated axioms. If we

5Interestingly, there are also true instances of the premise of (R-Conv) in which ϕ is not
equivalent to >. For instance, 
5HD∗ P (�Op ⊃ p) ⊃ O(�Op ⊃ p), alhough 6
5HD∗ �Op ⊃ p.
We are indebted to one of the referees for pointing this out, and thereby correcting an earlier
mistake in the paper.

6A similar proof is given in [1, p. 15]; we include ours for the sake of self-containedness. In
principle, there should also be a direct syntactic proof of the derivability of (R-Conv) within
5HD∗, but we were not able to find one.
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leave out (OC), no changes need to be made to the construction of MΛ or M+
Λ .

If we leave out (OR), the construction of nP and n+
P just needs to be simplified,

so that they are no longer closed under subsets.
Likewise, the results can be generalized to the logic obtained by adding the

following frame condition from [5]:

(UC) If X ∈ nP (w) and Y ∈ nP (w), then X ∪ Y ∈ nP (w)

and the associated axiom schema

(Union-Closure) (Pϕ ∧ Pψ) ⊃ P (ϕ ∨ ψ)

Soundness for this extension is routine. For completeness of the logic with both
(OR) and (UC), the only difficult case is the one where n+

O(w) = ∅. If this
is so, note that if X ∈ n+

P (∆i) and Y ∈ n+
P (∆i), then in view of item (iv.1)

of the construction, there are propositions ϕ and ψ such that Pϕ, Pψ ∈ ∆
and X ⊆ |ϕ|, Y ⊆ |ψ|. It follows that X ∪ Y ⊆ |ϕ| ∪ |ψ|. By (Union Closure),
P (ϕ∨ψ) ∈ ∆ and hence |ϕ|∪|ψ| ∈ nP (∆). Since nP (∆) is closed under subsets,
X ∪ Y ∈ nP (∆).

Additional frame conditions can be thought of. For instance, one may add
the condition that every impossible action is permitted:

(IP) ∅ ∈ nP (w)

This condition is axiomatized by the axiom P⊥. Interestingly, if we add both
(UC) and (IP) to the semantics of 5HD∗, it can be rephrased in a much simpler
fashion: all we need to do is pin down a set of “permitted” states R(w). Pϕ is
then true at w in M iff ‖ϕ‖M ⊆ R(w), and Oϕ is true at w iff ‖ϕ‖M = R(w).
See also [7] where this link is studied in more detail.

Likewise, the results generalize to the case where � is a weaker modality.
Of course, this requires a re-formulation of some of the semantic clauses. Their
general form becomes this:

(WP’) If X ∈ nO(w) and Y ∈ nP (w), then Y ∩R�(w) ⊆ X ∩R�(w)
(OP’) If X ∈ nO(w) then X ∈ nP (w)
(OC’) If X ∈ nO(w), then X ∩R�(w) 6= ∅
(Conv’) If X ∈ nP (w) and for all Y ∈ nP (w), Y ∩R�(w) ⊆ X ∩R�(w), then

X ∈ nO(w)

Is 5HD∗ what we are after? In view of the completeness result, one may
ask whether the semantic consequence relation for 5HD∗ was the intended
logic of “obligation as weakest permission”, or whether the authors of [1] want
a stronger consequence relation instead. This can be explained again in terms
of the example Γex (see page 6): perhaps they want this premise set to be trivial
after all, even if none of its finite subsets is trivial.

Theorem 1 implies that such a stronger consequence relation can only be
obtained if we impose additional conditions on our models. Let us suggest two
such conditions, leaving their full study for a later occasion. Where w is an
arbitrary point in an 5HD∗-model M , let ‖w‖M = {ϕ ∈ W | M,w |= ϕ}. The
conditions are:
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(C1) Where X ∈ nO(w): if ‖v‖M = ‖v′‖M , then v ∈ X iff v′ ∈ X
(C2) Where X ∈ nO(w): if ‖v‖M ∩ S = ‖v′‖M ∩ S, then v ∈ X iff v′ ∈ X

(C2) is clearly a (strictly) stronger condition than (C1). Arguably, neither
of these can be characterized by a finitary rule, since the semantic consequence
relation they yield is not compact. We conjecture that the following infinitary
rules suffice to obtain a sound and (strongly) complete axiomatization:

(R1) {Pϕ ⊃ �(ψ ⊃ ϕ) | ϕ ∈ W} ` Pψ ⊃ Oψ
(R2) {Pϕ ⊃ �(ψ ⊃ ϕ) | ϕ ∈ S} ` Pψ ⊃ Oψ
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