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Summary. Most logic–based approaches characterize abduction as a kind of back-
wards deduction plus additional conditions, which means that a number of conditions
is specified that enable one to decide whether or not a particular abductive inference
is sound (one of those conditions may for example be that abductive consequences
have to be compatible with the background theory). Despite the fact that these
approaches succeed in specifying which formulas count as valid consequences of
abductive inference steps, they do not explicate the way people actually reason by
means of abductive inferences. This is most clearly shown by the absence of a decent
proof theory. Instead, search procedures are provided that enable one to determine
the right abductive consequences. However, these do not by far resemble human
reasoning.

In order to explicate abductive reasoning more realistically, an alternative
approach will be provided in this paper, viz. one that is based on the adaptive logics
programme. Proof theoretically, this approach interprets the argumentation schema
affirming the consequent (AC: A ⊃ B, B ` A) as a defeasible rule of inference. This
comes down to the fact that the abductive consequences obtained by means of AC
are accepted only for as long as certain conditions are satisfied — for example, as long
as their negation hasn’t been derived from the background theory. In the end, only
the unproblematic applications of AC are retained, while the problematic ones are
rejected. In this way, the adaptive logics approach to abduction succeeds to provide a
more realistic explication of the way people reason by means of abductive inferences.
Moreover, as multiple abduction processes will be characterized, this paper may be
considered as the first step in the direction of a general formal approach to abduction
based on the adaptive logics programme.

∗ The author is a Postdoctoral Fellow of the Special Research Fund of Ghent Uni-
versity. I’m indebted to Diderik Batens and Joke Meheus for helpful suggestions
that significantly improved the logics presented in this paper. Moreover, I also
wish to thank the anonymous referees for pointing out some unclarities in a pre-
vious version of this paper, as well as Bert Leuridan for his suggestions on how
to state things more clearly. Of course, all remaining unclarities are mine.
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1 Introduction

When searching an explanation for a (puzzling) phenomenon, people often
reason backwards, from the phenomenon to be explained to possible explana-
tions. When they do so, they perform abductive inferences, inferences based
on the argumentation schema known as affirming the consequent :

(AC) A ⊃ B,B ` A

Clearly, AC is not deductively valid. In the context of classical logic (CL),
its acceptance would even lead to triviality. Nevertheless, people make use of
AC. Though, to avoid the derivation of unsound consequences, they do so in a
defeasible way. As a consequence, abductive explanations remain provisional,
and, in the end, some are rejected. The reasons for doing so may be external
or internal to the background theory from which these explanations were
derived. In the external case, new information is obtained that forces the
rejection of some abductive explanations — for example, in case the results
of further research are incompatible with these explanations. In formal terms:
abductive reasoning is non–monotonic. In the internal case, new (deductive)
consequences are derived from the background theory that necessitate the
rejection of some abductive explanations — for example, in case it turns out
the background theory already provides a perfectly good explanation for the
phenomenon at hand. This kind of (internal) defeasibility results from the
fact that people lack logical omniscience (people do not have complete insight
in the theories they reason from). As such, when a better insight is gained
in those theories, some of the earlier drawn consequences might have to be
withdrawn.

Most logic–based approaches characterize abduction as a kind of back-
wards deduction plus additional conditions — see e.g. Aliseda–Llera [1, 2],
Mayer&Pirri [3, 4], McIlraith [5], and Paul [6]. In these approaches, a number
of conditions is specified that enable one to decide whether or not a partic-
ular abductive inference is sound. Moreover, different kinds of abduction are
characterized by different sets of such conditions. For example, in table 1, the
conditions are stated that were given in Aliseda–Llera [1, pp. 48–49] to charac-
terize abductive reasoning that is (in terms of Aliseda–Llera) both consistent
and explanatory.

Given Θ (a set of formulae) and φ (a sentence), α is a consistent
and explanatory abductive explanation of φ iff

(i) Θ ∪ {α} ` φ
(ii) Θ 0 ¬α
(iii) Θ 0 φ
(iv) α 0 φ

Table 1. Consistent and Explanatory Abductive Explanation
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Although the traditional logic–based approaches to abduction succeed in
specifying which formulas may count as valid consequences of abductive in-
ference steps, they do not explicate the way in which people actually reason
by means of abductive inferences — hence, the focus is on abductive conse-
quence, not on abductive reasoning. This is most clearly shown by the absence
of a decent proof theory, i.e. a proof theory that explicates abductive reason-
ing steps as describe above, namely as defeasible applications of the inference
rule AC. Instead, search procedures are provided that enable one to deter-
mine the right abductive consequences — for example, the tableaux methods
presented in Aliseda–Llera [1, 2] and Mayer&Pirri [3, 4]. However, these ex-
plicate AC only at the semantic or the metatheoretic level. As a consequence,
these search procedures do not resemble human reasoning at all.2

In order to explicate abductive reasoning more realistically, an alternative
approach will be provided in this paper, viz. one that is based on the adap-
tive logics programme.3 In the accompanying proof theory, the argumentation
schema AC is really interpreted as a defeasible rule of inference. More specifi-
cally, the consequences obtained by applying AC are accepted only for as long
as certain conditions are satisfied — for example, as long as their negation
hasn’t been derived from the background theory. In short, adaptive logics for
abduction only retain the unproblematic applications of AC, while they re-
ject the problematic ones. Hence, in comparison to the traditional logic–based
approaches, the adaptive logics approach more realistically captures the way
people make abductive inferences. Nonetheless, I will show that all conditions
stated by the traditional logic–based approaches are still satisfied by the adap-
tive logics approach. Finally, as the adaptive logics approach is not restricted
to a particular kind of abduction process (multiple kinds of abduction will be
explicated), this paper should be considered as the first step in the direction
of a general approach towards the explication of abductive reasoning.

2 The Deductive Frame

As spelled out in the previous section, abduction validates some arguments
that are not deductively valid — in casu, applications of AC. Hence, ab-
ductive reasoning goes beyond deductive reasoning. Nevertheless, abduction
is constrained by deductive reasoning, for some abductive consequences of a
premise set might have to be withdrawn in view of its deductive consequences
— for example, in case these abductive consequences are incompatible with
the deductive ones. Hence, abduction and deduction go hand in hand, the
latter serving as the deductive frame of the former.
2 In some cases, one might even doubt whether these search procedures even obtain

the right abductive consequences — see Meheus&Provijn [7].
3 A thorough introduction into adaptive logics can be found in Batens [8, 9], and an

overview of the adaptive logics programme can be found on the Adaptive Logics
Homepage (http://logica.ugent.be/adlog).
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A Modal Frame

In most logic–based approaches to abduction, deductive reasoning is expli-
cated by means of classical logic — see e.g. Aliseda–Llera [1, 2], Meheus&Batens
[10], and Meheus [11]. In this paper though, the deductive frame is captured
by the modal logic RBK.4 The latter will be characterized in full below, both
semantically as well as proof theoretically.

Language Schema. The logic RBK is a standard bimodal logic extending
(propositional) classical logic with the modal operators �n and �e. As a con-
sequence, the modal language LM of RBK is obtained by adding both these
necessity operators, together with the corresponding possibility operators, to
the standard propositional language L (see table 2 for an overview). The set
of well–formed formulas WM of the language LM is defined in the usual way.

Language Letters Logical Symbols Set of Formulas

L S ¬,∧,∨,⊃,≡ W
LM S ¬,∧,∨,⊃,≡, , �n, ♦n, �e, ♦e WM

Table 2. The Languages L and LM

In the remaining of this paper, only negation, disjunction, and both ne-
cessity operators are taken as primitive. The other logical symbols are defined
in the standard way.

Semantic Characterization. An RBK–model M is a 5–tuple < W ,w0,Rn,Re,
v >. The set W is a (non–empty) set of worlds, with w0 ∈ W the actual
world. Rn and Re are both accessibility relations on W , the former of which
is both reflexive and transitive, while the latter is merely reflexive. Moreover,
the following relation holds between both accessibility relations:

CEI For all w,w′ ∈ W : if Reww′ then also Rnww′.

Finally, v is an assignment function, for which the following condition holds:

C1.1 v: S ×W 7→ {0, 1}.

The valuation function vM , determined by the model M , is now defined
as follows:

C2.0 vM : WM ×W 7→ {0, 1}.
C2.1 Where A ∈ S, vM (A,w) = 1 iff v(A,w) = 1.
C2.3 vM (¬A,w) = 1 iff vM (A,w) = 0.

4 Actually, in Meheus et al. [12], the deductive frame is captured by the logic S52

that is quite similar to the logic RBK.
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C2.4 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1.
C2.5 vM (�nA,w) = 1 iff for all w′ ∈ W : if Rnww′ then vM (A,w′) = 1.
C2.6 vM (�eA,w) = 1 iff for all w′ ∈ W : if Reww′ then vM (A,w′) = 1.

A model M verifies a formula A ∈ WM iff vM (A,w0) = 1. Moreover, a
model M is a model of a premise set Γ iff, for all B ∈ Γ , vM (B,w0) = 1.

Definition 1. �RBK A (A is valid) iff A is verified by all RBK–models.

Definition 2. Γ �RBK A (A is a semantic consequence of Γ ) iff all RBK–
models of Γ verify A.

Some remarks seem to be necessary. First of all, as the accessibility relation
Rn is both reflexive and transitive, the modal operator �n corresponds to the
necessity operator of the (normal) modal logic S4. Secondly, the accessibility
relation Re is reflexive but not transitive, meaning that the modal operator
�e corresponds to the necessity operator of the (normal) modal logic KT.
Finally, because of the specific relation between Rn and Re, as expressed by
the condition CEI, the truth of a formula �nA in a world w yields the truth of
the formula �eA in that world. In the proof theoretic characterization below,
this is expressed by the axiom schema AEI (see table 3).

Proof Theoretic Characterization. The RBK–proof theory is obtained by
adding the axiom schemas, inference rules, and definitions stated in table
3 to the axiom system of (propositional) classical logic.

AM1n �n(A ⊃ B) ⊃ (�nA ⊃ �nB) AM1e �e(A ⊃ B) ⊃ (�eA ⊃ �eB)
AM2n �nA ⊃ A AM2e �eA ⊃ A
AM3n �nA ⊃ �n�nA
AEI �nA ⊃ �eA
NECn From ` A conclude to ` �nA NECe From ` A conclude to ` �eA
Dfn ♦nA =df ¬�n¬A Dfe ♦eA =df ¬�e¬A

Table 3. Additional Axiom Schemas, Rules, and Definitions of RBK

Soundness and Completeness. As both soundness and completeness for RBK
are proven by standard means, the proofs are left to the reader.

Theorem 1. Γ `RBK A iff Γ �RBK A.

Representing Abductive Contexts

Because of the higher expressive power of the RBK–language LM (as com-
pared to the language of classical logic), the logic RBK not only enables one
to capture deductive reasoning as such, but also enables one to capture some
intensional elements of reasoning contexts.
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Background Knowledge. The modal operators �n and �e will be used to
express both the nomological and empirical background knowledge held by a
reasoner in a reasoning context. First, the nomological background knowledge
is represented by elements of the set WN ⊂ WM — see definition 3. More
specifically, a formula �nA ∈ WN states that A is considered a nomological
fact by the reasoner in the reasoning context at hand. Second, the empirical
background knowledge is represented by elements of the set WE ⊂ WM — see
definition 4. A formula �eA ∈ WE states that A is taken to be an empirical
fact by the reasoner in the reasoning context.

Definition 3. WN = {�nA | A ∈ W}.

Definition 4. WE = {�eA | A ∈ S ∪ S¬}.5

Two remarks are needed at this point. Firstly, in view of axiom schema
AEI (see table 3), nomological background knowledge can be combined with
empirical background knowledge in order to derive further empirical informa-
tion — for example, in the process of making predictions. Hence, nomological
information may be said to have empirical impact.

More importantly, one might wonder what the modal operators are taken
to express. In accordance with the epistemological framework presented in
Batens [13, 14], the elements of the background knowledge are classified as
(part of the) contextual certainties and relevant premises of a given context
(which is defined as a problem–solving situation). Without going into the
details, both the contextual certainties and the relevant premises of a context
are considered as true in that context, and helpful in order to solve the problem
at hand (for more details, the reader is referred to the cited literature). Hence,
the necessity operators occurring in the elements of WN and WE capture
the fact that the elements of the background knowledge are considered as
unproblematic in the given context (thus, the necessities have to be interpreted
epistemologically, not ontologically).

Abductive Contexts. The contexts considered in this paper are abductive con-
texts, viz. problem–solving situations in which possible explanations are sought
for puzzling (empirical) phenomena. Given the above elaboration of the mean-
ing of the modal operators, the elements of the background knowledge are

5 Firstly, The elements of the set S¬ are the negations of the elements of the set
S — S¬ =df {¬A | A ∈ S}. Secondly, one of the anonymous referees rightly
remarked that also conjunctions of elements of the set S ∪S¬ may be considered
as empirical facts, so that the empirical background knowledge is better explicated
by the set WE′

= {�e(A1∧ ...∧An) | A1, ..., An ∈ S∪S¬}. However, the elements

of WE′
are all derivable from the elements of WE by means of the logics presented

in this paper. For the purposes of this paper, this implies that replacing WE by
WE′

wouldn’t make a difference. Hence, to keep things as simple as possible, I
will stick to WE .
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considered unproblematic, which in abductive contexts means that they are
not in need of any explanation.

Besides background knowledge, abductive contexts obviously also contain
some elements that are in need of an explanation. The latter will be repre-
sented by elements of the set WO, i.e. the set of observed (empirical) phe-
nomena — see definition 5.

Definition 5. WO = S ∪ S¬.

Surely, not all elements ofWO express (empirical) phenomena in need of an ex-
planation (henceforth, puzzling phenomena). Nonetheless, a formula A ∈ WO

will be taken to express a puzzling phenomenon in an abductive context in
case A is not considered as unproblematic by the reasoner in that abductive
context — in other words, in case �eA is not derivable in that abductive con-
text (for otherwise, A would be considered as unproblematic by the reasoner).

Final Remark. In the remaining of this paper, premise sets will be taken to
express abductive contexts. As such, premise sets will be restricted to for-
mulas that express the background knowledge of a reasoner (i.e. elements of
WN ∪ WE) and formulas that express observed (empirical) phenomena (i.e.
elements of WO). Obviously, in case the latter express puzzling phenomena,
they will trigger abductive inferences in the adaptive logics I will propose later
on (see section 4). However, I first need to discuss the abductive inference steps
themselves.

3 On Defeasible Inference

As stated in section 1, abductive inference steps are formally captured by
the (defeasible) inference rule AC. However, because the deductive frame
is captured in modal terms (as set out in the previous section), abductive
inference has to be captured in modal terms as well. As a consequence, the
inference rule AC will be restricted to the following schema (A and B are
formulas, and ∆ is a set of formulas):

(ACm) �n(A ⊃ B), B, ∆ ` A

Some clarification is called for. First of all, ACm expresses that a formula
A may only be considered as a possible explanation for a phenomenon B, in
case there is a nomological statement �n(A ⊃ B) expressing the dependence
of B upon A. As a consequence, to capture abductive inference by means of
the inference rule ACm in a sense resembles Hempel’s account of explanation
— see Hempel&Oppenheim [15].

Secondly, the explanandum B may not be part of the empirical background
knowledge (i.e. B isn’t allowed to be a modal formula of the form �eC), for
otherwise it cannot be considered to trigger abductive inferences (remember
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that the background knowledge is here taken to be accepted beyond doubt,
and hence, in no need of explanation)!

Finally, dependent on the particular abduction process one intends to cap-
ture, certain additional conditions have to be satisfied before the defeasible
inference rule ACm may be applied. In the representation of ACm above,
these conditions are represented by the elements of ∆. Some important re-
marks have to be made with respect to ∆. Firstly, the elements of ∆ capture
some of the conditions stated by the traditional logic–based approaches to
abduction (see section 1). This is not surprising as both approaches tend to
capture the same reasoning patterns, albeit by distinct means. Secondly, the
elements of ∆ can only be presumed in a defeasible way themselves, viz. for as
long as there is no information that forces us to reject them. As a consequence,
the elements of ∆ are also obtained by means of defeasible inference rules. In
this paper, I will only discuss the inference rules below, the consequences of
which will be used to express respectively that an abductive explanation is
minimal (NNN), and that the explanandum is not derivable from the back-
ground knowledge alone (NEN):

(NNN) ` ¬�n(A ⊃ B)
(NEN) ` ¬�eA

How the consequences of these inference rules are used to capture some of the
conditions put forward by the traditional logic–based approaches to abduc-
tion, will be explicated in full later on (in section 4). Finally, remark that the
defeasible inferences above are actually prior to abductive inferences, for the
consequences of these additional inference steps are necessary to be able to ap-
ply ACm. Hence, abduction processes are characterized as layered processes,
viz. as specific combinations of multiple defeasible inference steps. This means
that the adaptive logics that will be characterized in the following section and
that explicate these abduction processes will be so–called prioritized adaptive
logics, i.e. adaptive logics that are obtained by combining defeasible inference
rules in a certain way — see e.g. Batens [8], and Batens et al. [16].

4 Enter Adaptive Logics

In order to present the adaptive logics approach to abductive reasoning, some
prioritized adaptive logics capturing specific abduction processes will be char-
acterized, viz. the prioritized adaptive logics AbLp and AbLt. The difference
between these logics comes down to the following: in case there are multi-
ple possible explanations for a phenomenon, AbLp will merely enable one
to derive the disjunction of these possible explanations (practical abduction),
while AbLt will enable one to derive all possible explanations (theoretical
abduction).6

6 For an intuitive justification of these abductive processes, see Meheus&Batens
[10, pp. 224–225].



A Formal Explication of the Search for Explanations 9

Previous Attempts. This is not the first attempt to explicate abductive rea-
soning by means of the adaptive logics programme. Despite the fact that some
nice results were obtained, the earlier attempts remained unsatisfactory. In
Meheus et al. [12], a proof theory was provided for the traditional logic–based
approaches to abduction. It is based on the characteristics of the adaptive
logics–proof theory, but also incorporates some extra–logical features. As such,
only a proof theory for abduction was provided, not a formal logic. On the
other hand, in Meheus&Batens [10] and Meheus [11], two (actual) adaptive
logics were provided to explicate abduction, viz. the logics LAr and LAr

s.
Nonetheless, LAr and LAr

s only capture abductive reasoning in a limited
way. First of all, these logics don’t allow abductive inferences at the purely
propositional level. Secondly, only practical abduction could be characterized
by the approach presented in [10] and [11], which is most likely due to the fact
that the deductive frame of LAr and LAr

s is based on classical logic. Thirdly,
the logics LAr and LAr

s lack some properties that seem to be necessary to
capture abductive explanation in a decent way. Most importantly, in case an
explanandum is explained by the background theory alone, LAr and LAr

s go
on to provide possible abductive explanations, despite the fact that none are
needed.7 Neither of these shortcomings also applies to the approach presented
in this paper.

The Standard Format

All adaptive logics (AL) have a uniform characterization. This characteri-
zation is called the standard format of adaptive logics and was presented
most thoroughly in Batens [8, 9]. The main advantage of the standard format
consists in the fact that all AL characterized accordingly have a common se-
mantic and proof theoretic characterization. Moreover, a lot of metatheoretic
properties have been proven for AL in standard format (most importantly,
soundness and completeness).8 Below, I will first give a general characteri-
zation of the standard format. Afterwards, I will present the proof theory of
AL in standard format. The semantics of AL in standard format will not be
spelled out. Nothing fundamental is lost though, for the focus of this paper is
on the proof theory (see section 1). Moreover, the interested reader can find
the semantic characterization of AL in standard format in Batens [8, 9] and
Batens et al. [17].

General Characterization

All flat adaptive logics in standard format are characterized by means of the
following three elements:
7 To be fair, in a lecture at the University of Utrecht (20 Octobre 2009), Joke

Meheus showed how to overcome the second shortcoming of LAr and LAr
s. Nev-

ertheless, the other shortcomings still remain and are not likely to be overcome
anytime.

8 Proofs for these metatheoretic properties are provided in Batens [9].
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- A lower limit logic (LLL): a reflexive, transitive, monotonic, and compact
logic that has a characteristic semantics (with no trivial models) and con-
tains classical logic.

- A set of abnormalities Ω: a set of formulas characterized by a (possibly
restricted) logical form F that is LLL–contingent and contains at least one
logical symbol.

- An adaptive strategy.

Remark that the AL that will be presented later on are not flat AL, but pri-
oritized adaptive logics (PAL). The latter can also be characterized by means
of the standard format, though some slight modifications are necessary.9 More
specifically, the set of abnormalities Ω is replaced by a structurally ordered
sequence Ω> of sets of abnormalities:

Definition 6. Ω> = Ω1 > Ω2 > ...10

The order imposed on the sequence Ω> expresses a priority relation: in case
Ωi > Ωj , the priority of the elements of Ωi is higher than the priority of
the elements of Ωj . For reasons of convenience, I will use Ω to refer to the
union of the sets Ω1, Ω2, ..., while Ω> will be used to refer to the sequence
Ω1 > Ω2 > ....

The Adaptive Consequence Relation. The adaptive consequences of a premise
set are obtained by the interplay between the three constituting elements of
a (prioritized) adaptive logic. This will be explicated by characterizing the
PAL–consequence relation in general. Where the expression Dab(∆) is used
to represent a finite disjunction of abnormalities (elements of Ω), the PAL–
consequence relation is defined as follows:

Definition 7. Γ `PAL A iff there is a finite ∆ ⊂ Ω such that Γ `LLL A ∨
Dab(∆) and FALSEAS(∆).

The above definition tells us that a formula A is PAL–derivable from a premise
set Γ iff A ∨Dab(∆) is LLL–derivable from Γ and ∆ satisfies the additional
condition FALSEAS(∆). Intuitively, the latter means that one is allowed to
derive A from A∨Dab(∆) in case all elements of ∆ can safely be interpreted as
false — metaphorically, one might consider this as a metatheoretic application
of disjunctive syllogism. As a consequence, abnormalities are falsified as much
as possible. In other words, premise sets are interpreted as normally as possible
with respect to some standard of normality.

Definition 7 has some interesting consequences. In case ∆ = ∅, no abnor-
malities have to be falsified in order to derive the formula A from the premise

9 Prioritized adaptive logics are well–studied in the literature, see e.g. Batens [8],
Batens et al. [16], and Verhoeven [18].

10 No upper bound is necessary, as is most clearly explained in [8, pp. 52–54]. How-
ever, all PAL that will be considered in this paper do have an upper bound.



A Formal Explication of the Search for Explanations 11

set Γ . Hence, in case the formula A is a LLL–consequence of Γ , it is an
adaptive consequence of Γ as well. In general, this implies that a (prioritized)
adaptive logic derives more consequences from a premise set than the lower
limit logic it is based on (more specifically, the adaptive consequence set of
a premise set is a superset of the LLL–consequence set of that premise set).
On the other hand, in case ∆ 6= ∅, the formula A is only an adaptive con-
sequence of the premise set, in case all elements of ∆ may be interpreted as
false (if not, the formula A cannot safely be interpreted as true). For as long
as it hasn’t been determined whether or not all elements of ∆ may indeed be
interpreted as false, the formula A is called a conditional consequence of the
premise set Γ . Obviously, this intermediate phase of conditional acceptance
of consequences corresponds to the proof theoretic derivation of consequences
by means of defeasible inference rules.

Whether a conditional consequence of a premise set is a final consequence
as well, depends on the condition FALSEAS(∆). Whether this condition is sat-
isfied for a particular ∆, is determined by the adaptive strategy of an adaptive
logic. For the adaptive logics I will present below, this is either the reliability
strategy or the normal selections strategy.11 Both strategies base the deci-
sion to reject (or to retain) a conditional consequence of a premise set on the
minimal Dab–consequences of that premise set — see definition 8. In advance
though, it is important to notice that the minimal Dab–consequences of a
premise set are defined in a stepwise manner: where the expression Dabi(∆)
is used to represent finite disjunctions of abnormalities of priority i (elements
of Ωi), the minimal Dab–consequences of the form Dab1(∆) are determined
first, then the minimal Dab–consequences of the form Dab2(∆),...

Definition 8. Dabi(∆) is a minimal Dab–consequence of a premise set Γ iff
(1) there is a finite Θ ⊂ Ω1 ∪ ...∪Ωi−1 such that Γ `LLL Dabi(∆)∨Dab(Θ),
(2) there is no Σ ⊂ Ωj such that Ωj > Ωi, Dabj(Σ) is a minimal Dab–
consequence of Γ , and Σ ∩ Θ 6= ∅, and (3) there is no ∆′ ⊂ ∆ such that (1)
and (2) apply to Dabi(∆′) as well.

Not all abnormalities occurring in a minimal Dab-consequence of a premise
set, may be interpreted as false. Hence, some of the conditional consequences
derived by interpreting certain of these abnormalities as false, have to be
rejected. First of all, the reliability strategy will reject all conditional conse-
quences that were derived by interpreting some of the abnormalities occur-
ring in a minimal Dab–consequence as false. As a consequence, the condition
FALSEAS(∆) for the reliability strategy (henceforth, FALSER(∆)) is defined
as follows:

11 For more information on alternative adaptive strategies, see e.g. Batens [9] (for
the minimal abnormality strategy), and Meheus&Primiero [19] (for the counting
strategy).
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Definition 9. For ∆ ⊂ Ω, FALSER(∆) iff, for all Ωi in Ω>, there is no
finite Θ ⊂ Ωi such that Dabi(Θ) is a minimal Dab–consequence of Γ and
Θ ∩∆ 6= ∅.

On the other hand, the normal selections strategy will only reject those
conditional consequences that were derived by interpreting as false all abnor-
malities of a minimal Dab–consequence of the premise set. In other words,
the condition FALSEAS(∆) for the normal selections strategy (henceforth,
FALSENS(∆)) is defined as follows:

Definition 10. For ∆ ⊂ Ω, FALSENS(∆) iff, for all Ωi in Ω>, there is no
finite Θ ⊂ Ωi such that Dabi(Θ) is a minimal Dab–consequence of Γ and
Θ ⊂ ∆.

Dynamic Behavior. Because of the conditional status of some of the PAL–
consequences, PAL display an external as well as an internal dynamics.
Firstly, the external dynamics comes down to non–monotonicity: if the premise
set is extended, some conditionally derived PAL–consequences of the premise
set may not be derivable anymore. Secondly, the internal dynamics is a strictly
proof theoretic feature: growing insights in the premises, obtained by deriving
new consequences from the premises (in casu Dab–consequences), may lead
to the withdrawal of earlier reached conclusions, or to the rehabilitation of
earlier withdrawn conclusions.

The dynamic behavior of PAL resembles the dynamics present in abduc-
tive reasoning (see section 1). Consequently, PAL seem particularly well–
suited to explicate abductive reasoning.

Proof Theory

As PAL are standard adaptive logics, the PAL–proof theory has some char-
acteristic features shared by all adaptive logics. First of all, a PAL–proof is a
succession of stages, each consisting of a sequence of lines. Adding a line to a
proof means to move on to the next stage of the proof. Secondly, the lines of a
PAL–proof consist of four elements (instead of the usual three): a line num-
ber, a formula, a justification, and an adaptive condition. The latter is a finite
subset of Ω (the union of the sets of abnormalities of a prioritized adaptive
logic). Finally, the PAL–proof theory consists of both deduction rules and a
marking criterion. Both of these will be discussed below.

Deduction Rules. The deduction rules determine how new lines may be added
to a proof. Below, the deduction rules are listed in shorthand notation, with

A ∆

expressing that the formula A occurs in the proof on a line with condition ∆.
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PREM If A ∈ Γ : . . . . . .

A ∅

RU If A1, ..., An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n

RC If A1, ..., An `LLL B ∨Dab(Θ) A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

The adaptive condition of a line i expresses that as long as all its elements
can be considered as false, the formula on that line may be considered as
derivable from the premise set. Secondly, in order to indicate that not all
elements of the adaptive condition of a line i can be considered as false, line
i is marked — formally, this is done by placing the symbol X next to the
adaptive condition. Obviously, when a line is marked, the formula on that
line may not be considered as derivable anymore. Finally, the marking in a
PAL–proof is dynamic: at some stage of the proof, a line might be marked
(resp. unmarked), while at a later stage, it might become unmarked (resp.
marked) again.

Marking Criterion. At every stage of a PAL–proof, the marking criterion
determines which lines have to be marked. To determine whether a line has to
be marked at a stage s of a PAL–proof, both the reliability strategy as well as
the normal selections strategy first determine the minimal Dab–consequences
of the premise set at stage s.

Definition 11. Dabi(∆) is a minimal Dab–consequence of a premise set Γ
at stage s of a proof, iff (1) Dabi(∆) occurs on an unmarked line k at stage
s, (2) all members of the adaptive condition of line k belong to some Ωj in
the sequence Ω> such that Ωj > Ωi, and (3) there is no ∆′ ⊂ ∆ such that (1)
and (2) apply to Dab(∆′) as well.

It is important to notice that the minimal Dab–consequences of a premise set
at a stage s are determined in a stepwise manner: first for priority level 1,
then for priority level 2,...

Well now, the marking definitions for PAL based on the reliability strategy
and the normal selections strategy are the following:

Definition 12 (Reliability). Line i with adaptive condition ∆ is marked
at stage s iff Dabi(Θ) is a minimal Dab–consequence of Γ at stage s, and
Θ ∩∆ 6= ∅.
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Definition 13 (Normal Selections). Line i with adaptive condition ∆ is
marked at stage s iff Dabi(Θ) is a minimal Dab–consequence of Γ at stage s,
and Θ ⊂ ∆.

Defining Derivability. A formula is considered as derivable from a premise set
Γ , in case it occurs as the second element of an unmarked line in a proof from
Γ .

Definition 14 (Derivability). The formula A is derived from Γ at stage s
of a PAL–proof iff A is the second element of an unmarked line at stage s.

Because of the dynamic nature of adaptive proofs, markings may change at
every stage. Hence, at every stage of a proof, it has to be reconsidered whether
or not a formula is derivable. In other words, derivability is stage–dependent.
Although this may seem problematic at first, it nevertheless reflects the way
people treat abductive consequences. For, given that abductive consequences
are provisional consequences, conclusions drawn by relying on abductive in-
ference steps are hardly ever conclusive. Hence, at any moment, two options
are available to people, viz. to keep on reasoning until conclusiveness has been
reached or to base one’s actions on the provisional conclusions. As the first
option may take more time than available, the latter option will be the only
viable one in a lot of cases.12

Besides a stage–dependent notion of derivability, a stable notion of deriv-
ability can be defined as well. It is called final derivability, which refers to the
fact that, for some formulas, derivability is only decided at the final stage of
a proof.

Definition 15 (Final Derivability). The formula A is finally derived from
Γ on line i of a PAL–proof at stage s iff (i) A is the second element of line
i, (ii) line i is not marked at stage s, and (iii) every extension of the proof
in which line i is marked may be further extended in such a way that line i is
unmarked again.

Because of its stability, the notion of final derivability is used to define PAL–
derivability.

Definition 16. Γ `PAL A (A is PAL–derivable from Γ ) iff A is finally de-
rived on a line of a PAL–proof from Γ .

The Prioritized Adaptive Logics AbLp and AbLt

In this final section, I will characterize the prioritized adaptive logics AbLp

and AbLt. First, I will show how these logics fit the standard format. Sec-
ondly, I will show that both logics characterize abductive reasoning as a com-
bination of multiple defeasible inference rules. Thirdly, I will argue that the
12 For a more extensive justification of this claim, see Batens et al. [20].
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abductive consequences of both logics still satisfy the conditions put forward
by the traditional logic–based approaches to abduction. To conclude, I will
also point out the main difference between both logics.

Preliminary Remark. I will limit myself to the propositional fragment of both
AbLp and AbLt. However, extending these logics to their full predicate ver-
sions is completely straightforward, and hence, can safely be left to the reader.

Characterizing AbLp and AbLt

As both AbLp and AbLt are prioritized adaptive logics in standard format,
they are characterized by means of a lower limit logic, an ordered sequence of
sets of abnormalities, and an adaptive strategy. First, consider those charac-
terizing the logic AbLp:

- The LLL of AbLp is the modal logic RBK (see section 2).
- The abnormalities of AbLp are characterized by the ordered sequence Ω>

= Ωbk > Ωp, with

Ωbk = { �xA | x ∈ {n, e} and A ∈ W }.
Ωp = { �n(A ⊃ B) ∧ B ∧ ¬�eB ∧ ¬A | B ∈ S ∪ S¬, A in Conjunctive

Normal Form, and B is not a subformula of A }.

- The adaptive strategy of AbLp is the reliability strategy.

Next, consider the elements characterizing the logic AbLt. These differ
from those of AbLp with respect to the sequence Ω> as well as with respect
to the adaptive strategy.

- The LLL of AbLt is the modal logic RBK (again, see section 2).
- The abnormalities of AbLt are characterized by the ordered sequence Ω>

= Ωbk > Ωt, with

Ωbk = { �xA | x ∈ {n, e} and A ∈ W }.
Ωt = { �n(A ⊃ B) ∧ ¬�nB ∧ B ∧ ¬�eB ∧ ¬A | A,B ∈ S ∪ S¬, and

B is not a subformula of A } ∪ { �n((A1 ∧ ... ∧ An) ⊃ B) ∧
¬�n((A2 ∧ ... ∧ An) ⊃ B) ∧ ¬�n((A1 ∧ A3 ∧ ... ∧ An) ⊃ B) ∧ ...
∧ ¬�n((A1 ∧ ... ∧ An−1) ⊃ B) ∧ B ∧ ¬�eB ∧ ¬(A1 ∧ ... ∧ An) |
A1, ..., An, B ∈ S ∪S¬, and B is not a subformula of A1 ∧ ...∧An

}.

- The adaptive strategy of AbLt is the normal selections strategy.

In view of the standard format of (prioritized) adaptive logics outlined
above, a semantic or proof theoretic characterization for these logics need not
be provided anymore.



16 Hans Lycke

A Formal Explication of Abductive Explanation

Earlier on, I stated that adaptive logics characterize abduction processes proof
theoretically as layered processes — more specifically, as specific combinations
of multiple defeasible inference rules. For the kinds of abductive explanation
explicated by the logics AbLp and AbLt, these defeasible inference rules are
NEN, NNN, and ACm (see section 3).

Preliminary Remarks. Because of space limitations, all proofs presented be-
low are AbLp– as well as AbLt–proofs. In order to make a clear distinction
between both kinds of proofs, lines in a proof are given two adaptive con-
ditions, one for each logic. Markings related to the logics AbLp and AbLt

are placed next to the corresponding adaptive condition. Some abbreviations
are introduced as well. First of all, �n(A ⊃ B) ∧ ... ∈ Ωp is abbreviated as
〈A,B〉p. Analogously, �n(A ⊃ B) ∧ ... ∈ Ωt is abbreviated as 〈A,B〉t. When
the ambiguous 〈A,B〉p/t is used, 〈A,B〉p is meant in the AbLp–proof, while
〈A,B〉t is meant in the AbLt–proof. Finally, Ωi1,...,in

is used to refer to the
union of the adaptive conditions of lines i1, ..., in.

Combining Defeasible Inference Rules. In order to show how AbLp and AbLt

combine multiple defeasible inference rules to explicate abductive explana-
tion, consider the adaptive proof below. It is based on the premise set Γ =
{�n(p ⊃ q), q}.

1 �n(p ⊃ q) –;PREM ∅ ∅
2 q –;PREM ∅ ∅

At this stage of the proof, the premises have been introduced. These clearly
show that p is a possible explanation for q. In order to derive p as an abductive
consequence of Γ , the formulas ¬�eq and ¬�nq have to be derived first. This
is done as follows:

3 �eq ∨ ¬�eq –;RU ∅ ∅
4 �nq ∨ ¬�nq –;RU ∅ ∅
5 ¬�eq 3;RC {�eq} {�eq}
6 ¬�nq 4;RC {�nq} {�nq}

Both ¬�eq and ¬�nq are conditional consequences of the premise set Γ . As is
shown below, their derivation is necessary in order to derive p as an abductive
consequence of the premise set Γ .13

7 p ∨ ¬p –;RU ∅ ∅
8 p ∨ 〈p, q〉p/t 1,2,5,(6,)7;RU Ω5 Ω5,6

9 p 8;RC Ω5 ∪ {〈p, q〉p} Ω5,6 ∪ {〈p, q〉t}

13 In the justification of line 8, the reference to line 6 is placed between brackets in
order to express that it is only necessary in the AbLt–version of the proof.
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At this stage of the proof, the formula p has been conditionally derived on line
9. Hence, as long as all elements of the adaptive condition of line 9 may be in-
terpreted as false, p may be considered a (conditional) abductive consequence
of the premise set Γ .

The first two applications of RC in the proof above, viz. those resulting in
the conditional derivation of the formulas ¬�eq and ¬�nq, clearly correspond
to applications of the defeasible inference rules NEN and NNN. On the other
hand, the third application of RC in the proof, viz. the one resulting in the
conditional derivation of the formula p, corresponds to an application of the
defeasible inference rule ACm. Remark that the formulas obtained by the
first two applications of RC are required for the third application of RC.
In other words, the formulas obtained by applying the inference rules NEN
and NNN correspond to some of the conditions that have to be satisfied
before the inference rule ACm may be applied (see section 3). However, notice
that AbLp and AbLt require slightly different conditions to be satisfied. For
AbLp only formulas of the form ¬�eA are required. For AbLt on the other
hand, also formulas of the form ¬�nA are required. In the proof above, this is
clear from the fact that in the AbLt–version the formula on line 6 is necessary
for the derivation of p on line 9, while it is not in the AbLp–version.

Meaning of the Additional Conditions. Let’s have a closer look at the addi-
tional conditions captured by the consequences of the inference rules NEN
and NNN. Firstly, consider the formulas of the form ¬�eA obtained by means
of the defeasible inference rule NEN. Both AbLp and AbLt only allow ap-
plications of ACm in case ¬�eA is derivable for the explanandum A. The
reason for this is quite simple: the formula ¬�eA guarantees that the ex-
planandum A cannot be explained by means of the background theory alone.
Hence, A is in need of an explanation and is allowed to trigger abductive in-
ferences. It is easily verified that in case the explanandum A is derivable from
the background theory alone, �eA will be derivable from the premises. As
a consequence, ¬�eA will be withdrawn, as will all abductive consequences
triggered by A. To illustrate this, consider again the proof above, but suppose
that the formula �ep is added to the premise set Γ . As a consequence, the
proof can be extended in the following way:

... ... ... ... ...
5 ¬�eq 3;RC {�eq} X {�eq} X
... ... ... ... ...

8 p ∨ 〈p, q〉p/t 1,2,5,(6,)7;RU Ω5 X Ω5,6 X
9 p 8;RC Ω5 ∪ {〈p, q〉p} X Ω5,6 ∪ {〈p, q〉t} X
10 �ep –;PREM ∅ ∅
11 �eq 1,10;RU ∅ ∅

At this stage of the proof, the formula �eq has been derived on line 11. As this
is a minimal Dab–consequence of Γ at stage 11, lines 5, 8, and 9 are marked.
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Consequently, the formula ¬�eq cannot be considered as derivable anymore,
and neither can the formula p.

Secondly, consider the formulas of the form ¬�nA obtained by means of
the defeasible inference rule NNN. These are used in the logic AbLt to guar-
antee that the inference step known as strengthening the antecedent doesn’t
enable one to derive abductive explanations containing irrelevant parts. For,
the logic AbLt only validates an abductive inference based on a nomological
formula �n((A1∧ ...∧An) ⊃ q) in case the formulas ¬�n((A2∧ ...∧An) ⊃ q),
¬�n((A1 ∧ A3 ∧ ... ∧ An) ⊃ q),...,¬�n((A1 ∧ ... ∧ An−1) ⊃ q) are deriv-
able. It is easily verified that this will never be the case when the formula
�n((A1 ∧ ... ∧ An) ⊃ q) has been obtained by means of strengthening the
antecedent. To illustrate this, suppose the proof above (the original proof, i.e.
lines 1–9) is extended in the following way:

10 �n((p ∧ r) ⊃ q) 1;RU ∅ ∅
11 ¬�n(p ⊃ q) –;RC {�n(p ⊃ q)} X {�n(p ⊃ q)} X
12 ¬�n(r ⊃ q) –;RC {�n(r ⊃ q)} {�n(r ⊃ q)}
13 p ∧ r 2,5,10(,11,12);RC Ω5 ∪ {〈p ∧ r, q〉p} Ω5,11,12 ∪ {〈p ∧ r, q〉t} X

Clearly, the antecedent of �n((p ∧ r) ⊃ q) contains an irrelevant part, viz. r.
The latter has been added to the antecedent of the nomological formula on line
1 by an application of strengthening the antecedent. However, as �n(p ⊃ q) is
a minimal Dab–consequence of the premise set Γ , lines 11 and 13 are marked.
Hence, neither ¬�n(p ⊃ q), nor p ∧ r are considered as derivable from Γ at
stage 13 of the proof (and at all later stages of the proof). A small digression is
necessary at this point. Line 13 is only marked for the logic AbLt. Hence, the
formula p∧r seems to be derivable from Γ by the logic AbLp. This is not the
case though, for AbLp also blocks abductive inferences based on nomological
statements obtained by strengthening the antecedent. Only, AbLp doesn’t
need formulas of the form ¬�nA to do so, as the following extension of the
proof above shows.

13 p ∧ r 2,5,10(,11,12);RC Ω5 ∪ {〈p ∧ r, q〉p} X Ω5,11,12 ∪ {〈p ∧ r, q〉t} X
14 〈p ∧ r, q〉p ∨ 1,5;RC Ω3 Ω3

〈p ∧ ¬r, q〉p

Comparison with the ‘Backwards Deduction’–Approaches

In order to show that both AbLp and AbLt capture abductive explanation
in an adequate way, I will show that both logics satisfy the conditions for
abductive explanation put forward by the traditional ‘backwards deduction’–
approaches to abduction (see section 1, table 1).

Condition (i) states that the background knowledge extended by an ab-
ductive explanation has to yield the explanandum. Given the dependency of
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the defeasible inference rule ACm on nomological statements derivable from
the background knowledge, this condition is satisfied a priori.

Condition (ii) states that an abductive explanation has to be compatible
with the background knowledge. It is easily verified that this will be the case
for both AbLp and AbLt. For, in case an abductive consequence derived
on a line i in a proof is incompatible with the background knowledge, line i
will irrevocably be marked at some stage of the proof. For example, consider
the premise set Γ = {�n(p ⊃ q), q,�e¬p}. As in the proof above (lines 1–9),
the formula p is conditionally derivable from the premise set Γ . However, the
proof can be extended in such a way that line 9 is marked.

... ... ... ... ...
9 p 8;RC Ω5 ∪ {〈p, q〉p} X Ω5,6 ∪ {〈p, q〉t} X
10 �e¬p –;PREM ∅ ∅
11 〈p, q〉p/t 1,2,5,(6,)10;RU Ω5 Ω5,6

At stage 11 of the proof, the formula 〈p, q〉p/t is a minimal Dab–consequence
of the premise set Γ . As a consequence, line 9 is marked.

Condition (iii) states that the explanandum may not be derivable from
the background knowledge alone. As I have shown above, this condition is
satisfied for both AbLp and AbLt.

Condition (iv) states that an abductive explanation may not yield the
explanandum by itself. Actually, this is satisfied by the fact that applications
of ACm are only validated conditionally in AbLp and AbLt in case the
nomological statements involved are of a specific syntactic form. This is a
consequence of the way Ωp and Ωt were defined. For example, the elements of
Ωt are of the form �n((A1 ∧ ... ∧An) ⊃ B) ∧ ... ∧ ¬(A1 ∧ ... ∧An). However,
B is not allowed to occur in A1 ∧ ... ∧ An (check the definition of Ωt above)!
As a consequence, it is impossible for A1 ∧ ... ∧ An to yield B by itself. The
same reasoning also applies to the elements of Ωp.

Finally, as I have shown above, the abductive explanations obtained by
AbLp and AbLt never contain irrelevant parts (which is a weak kind of
minimality criterium). Although Aliseda–Llera didn’t state this as a necessary
condition for consistent and explanatory abduction in [1], it is easily verified
that it should be a necessary condition (and in a lot of traditional logic–based
approaches, it also is).

Practical vs. Theoretical Abductive Explanation

The logics AbLp and AbLt explicate different kinds of abductive explanation,
viz. practical abductive explanation and theoretical abductive explanation re-
spectively. As stated at the beginning of this section, in case a puzzling phe-
nomenon has multiple possible explanations, practical abduction only yields
the disjunction of these explanations, while theoretical abduction yields all ex-
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planations separately.14 As a consequence, the former is more cautious than
the latter, for practical abduction won’t enable one to act on a single possi-
ble explanation in case there are multiple. This is appropriate for contexts in
which it is important that no possible explanations are overlooked, for example
when trying to diagnose the disease causing a patient’s symptoms — in case
there is more than one possibility, acting on a single one would be foolish, for
this could leave the patient uncured. On the other hand, in some contexts one
might want to derive all possible explanations, for example in case one wishes
to compare the predictions yielded by various scientific explanations. On the
basis of this comparison, one may then decide which explanation should be
favored.

Example. To illustrate the different kinds of abductive explanation explicated
by the logics AbLp and AbLt respectively, consider the example below, based
on the premise set Γ = {�n(p ⊃ q),�n(r ⊃ q),�n¬(p∧r), q}. For the premise
set Γ , the logic AbLp should enable one to derive the disjunction p∨ r, while
the logic AbLt should enable one to derive both p and r separately. As a
matter of fact, this is exactly what happens.

1 �n(p ⊃ q) –;PREM ∅ ∅
2 �n(r ⊃ q) –;PREM ∅ ∅
3 q –;PREM ∅ ∅
4 p 1,3;RC {�eq, 〈p, q〉p} {�eq, �nq, 〈p, q〉t}
5 r 2,3;RC {�eq, 〈r, q〉p} {�eq, �nq, 〈r, q〉t}

At stage 5 of the proof, p and r have been derived on an unmarked line in
both the AbLp– and the AbLt–proof. Both proofs now proceed differently.
Hence, I will consider them separately, starting with the AbLp–proof.

... ... ... ... –
4 p 1,3;RC {�eq, 〈p, q〉p} X –
5 r 2,3;RC {�eq, 〈r, q〉p} X –
6 〈p, q〉p ∨ 〈r ∧ ¬p, q〉p 1–3;RC {�eq} –
7 〈r, q〉p ∨ 〈p ∧ ¬r, q〉p 1–3;RC {�eq} –
8 p ∨ r 1–3;RC {�eq, 〈p ∨ r, q〉p} –

At stage 10 of the AbLp–proof, two minimal Dab–consequences of the premise
set Γ have been derived, viz. 〈p, q〉p ∨ 〈r ∧ ¬p, q〉p on line 8 and 〈r, q〉p ∨
〈p ∧ ¬r, q〉p on line 9. As a consequence, lines 6 and 7 are marked, which
implies that neither p nor r is considered as derivable anymore. However,
the disjunction of p and r is considered as derivable, for the formula p ∨ r
occurs on an unmarked line of the proof (line 10 to be precise). Moreover, it

14 The distinction between both kinds of abduction was introduced by
Meheus&Batens [10, p. 224].
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is easily verified that line 10 will remain unmarked in any extension of the
proof. Hence, the formula p ∨ r is a final abductive AbLp–consequence of Γ .

Now, consider the AbLt–proof below. At first, this proof seems to proceed
as the AbLp–proof above. However, because the logic AbLt is based on the
normal selections strategy instead of the reliability strategy, neither line 6 nor
line 7 is marked (nor will these lines be marked in any extension of the proof).
As a consequence, both p and r are final abductive AbLt–consequences of Γ .

... ... ... – ...
6 p 1,3;RC – {�eq, �nq, 〈p, q〉t}
7 r 2,3;RC – {�eq, �nq, 〈r, q〉t}
8 〈p, q〉t ∨ 〈r ∧ ¬p, q〉t 1–3;RC – {�eq, �nq, �n(r ⊃ q), �n(¬p ⊃ q)} X
9 〈r, q〉t ∨ 〈p ∧ ¬r, q〉t 1–3;RC – {�eq, �nq, �n(p ⊃ q), �n(¬r ⊃ q)} X
10 p ∧ r 6,7;RU – {�eq, �nq, 〈p, q〉t, 〈r, q〉t}

To conclude, consider the formula on line 10 of the AbLt–proof above. This
is the formula p ∧ r, viz. the conjunction of both possible explanations for
q. As line 10 is unmarked at this stage of the proof, the formula p ∧ r is a
conditional consequence of the premise set Γ . As distinct possible explanations
are usually considered as mutually exclusive, this clearly is absurd. However,
different possible explanations for the same phenomenon do not have to be
mutually exclusive, for one of these may yield the other(s) — in the example
above, this would be the case if �n(r ⊃ p) would have been an element of
the premise set Γ . In this case, the derivation of the conjunction of multiple
possible explanations makes perfect sense. Nonetheless, in case the possible
explanations are mutually exclusive, their conjunction should not be derivable.
As is shown below, this is exactly what happens in AbLt–proofs. Given that
�n¬(p ∧ r) ∈ Γ , p and r are mutually exclusive. Hence, the line on which
their conjunction occurs will get marked eventually. For example, in case the
proof is extended as follows.

... ... ... – ...
10 p ∧ r 6,7;RU – {�eq, �nq, 〈p, q〉t, 〈r, q〉t} X
11 �n¬(p ∧ r) –;PREM – ∅
12 〈p, q〉t ∨ 〈r, q〉t 1–3,11;RC – {�eq, �nq}

5 Conclusion

The (prioritized) adaptive logics AbLp and AbLt provide a formal explication
of practical and theoretical abductive explanation respectively. In contradis-
tinction to the traditional logic–based approaches to abduction, these logics
not only capture abductive explanation metatheoretically and/or semanti-
cally, but also proof theoretically, viz. as a combination of multiple defeasible
inference rules. In general, this shows that logics for abduction based on the
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adaptive logics programme provide a more realistic explication of abductive
explanation than most traditional logic–based approaches.

Further Research. In this paper, I only provided a formal explication of prac-
tical and theoretical abductive explanation. These are not the only kinds of
abductive reasoning though, for a lot of other abduction processes have been
characterized in the literature — for example, preferential abductive explana-
tion, abductive explanation triggered by an anomaly (a formula contradicting
the background theory),... — for an overview, see e.g. Aliseda–Llera [2]. The
formal explication of these abduction processes is left as further research. As
a consequence, the logics presented in this paper should be considered as the
first step in the direction of a general formal approach to abductive reasoning
based on the adaptive logics programme.
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