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“This operation is so simple that it becomes laborious to apply” (Lehmer, 1933)

One of the most famous results of Alan M. Turing is the so-called universal Tur-
ing machine (UTM). Its influence on (theoretical) computer science can hardly
be overestimated. The operations of this machine are of a most elementary na-
ture but nonetheless considered to capture all the (human) processes that can
be carried out in computing a number. This kind of elementary machine fits into
a tradition of ‘logical minimalism’ that looks for simplest sets of operations or
axioms. It is part of the more general research programme into the foundations
of mathematics and logic that was carried out in the beginning of the 20th cen-
tury. In the 1940s and 1950s, however, this tradition was redefined in the context
of ‘computer science’ when computer engineers, logicians and mathematicians
re-considered the problem of small(est) and/or simple(st) machines in the con-
text of actual engineering practices. This paper looks into this early history of
research on small symbolic and physical machines and tie it to this older tradi-
tion of logical minimalism. Focus will be on how the transition and translation
of symbolic machines into real computers integrates minimalist philosophies as
parts of more complex computer design strategies. This contextualizes Turing’s
machines at the turn from logic to machines.

1 Logical minimalism, ACE and Curry’s compositions

1.1 A tradition of logical minimalism?

In the early 20th century, mathematical or symbolic logic flourished as part of
research into the foundations of mathematics. This research followed the ‘agenda’
set out by Hilbert in his celebrated 1900 Mathematical problems lecture and was
rooted in the work by people like Dedekind, Cantor, Peano, Boole etc. The
search for simplicity, whether through the development of simple formal devices
or the study of small and simple axiom sets, was part of this development.
Indeed, a lot of the advances made in mathematical logic during that time can
be characterized by (but surely not reduced to), what we will here call, logical
minimalism. This kind of formal simplicity often served as a guiding methodology
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to tackle foundational problems in mathematics. For some, it was a goal in
itself to find the ultimate and simplest ‘building blocks’ of mathematics and,
ultimately, human reasoning.

There are two obvious lines of research in mathematical logic that were in-
formed by this minimalist philosophy. On the one hand, there were the several
results aimed at finding the smallest set of logical primitives, with Sheffer’s 1913
paper containing the description of the Sheffer stroke as one of the highlights. On
the other hand, there are the attempts to reduce and/or simplify existing axiom
systems, as was e.g. done by Nicod for the propositional calculus. In the 20s
then, people like Post and Schönfinkel pushed this minimalism one step further.

Schönfinkel situates his work on combinators in the tradition of attempts to
reduce and simplify axiom systems as well as to lower the number of undefined
notions. His goal is no less than to eliminate more fundamental and undefined
notions of logic, including the variable. His reason for doing so is not purely
methodological but also philosophical [12, 358]:

We are led to the idea [...] of attempting to eliminate by suitable reduc-
tion the remaining fundamental notions, those of proposition, proposi-
tional function, and variable. [T]o examine this possibility more closely
[...]it would be valuable not only from the methodological point of view
[...] but also from a certain philosophical, or, if you wish, aesthetic point
of view. For a variable in a proposition of logic is, after all, nothing but
a token that characterizes certain argument places and operators as be-
longing together; thus it has the status of a mere auxiliary notion that
is really inappropriate to the constant, “eternal” essence of the propo-
sitions of logic. It seems to me remarkable [that this] can be done by a
reduction to three fundamental signs.

It is exactly this more ‘philosophical’ idea of finding the simplest building blocks
of logic and ultimately human reasoning that drove (part of) the work by Haskell
B. Curry and Alan Turing, two logicians/mathematicians who had the opportu-
nity to access and think about the new electronic computers of the 40s.

1.2 From combinators and Turing machines to computing
techniques

Both Curry and Turing have done work that features logical minimalism. Indeed,
Curry, who took up the work by Schönfinkel and developed it into what is now
known as combinatory logic, explicitly states simplification as one of two major
tendencies (the other is formalization) in investigations on the foundations of
mathematics [4, p. 49]:

On the other hand, [...] there is [the problem of] simplification; one can
seek to find systems based upon processes of greater and greater primi-
tiveness [...] In fact we are concerned with constructing systems of an ex-
tremely rudimentary character, which analyse processes ordinarily taken
for granted.
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Turing then had quite different motivations when he wrote his On computable
numbers [13] in which he develops the Turing machine. His way of arriving
at these devices was to start out from the process of a man in the process of
computing a number and to try and reduce this process to its most elementary
and simple ‘operations’ [13, 250]:

Let us imagine the operations performed by the computer to be split up
into “simple operations” which are so elementary that it is not easy to
imagine them further divided.

It is not surprising that the minimalist philosophy also affects Curry’s and Tur-
ing’s work on real machines. Indeed, a formal apparatus which is simple and
powerful enough to ‘translate’ ones problems to a physical machine is exactly
what was required for the successful development of these machines.

Just after World War II Turing was recruited by Womersley of the NPL
to help design the Automatic Computing Engine (ACE). As has been argued
elsewhere [6,7], Turing definitely was inspired by and relied on the symbolic
Turing machines developed in his On computable numbers for the design of the
ACE. In fact, in a lecture to the London Mathematical Society, Turing explicitly
states that computers such as the ACE ‘are in fact practical versions of the
universal machine” [14]. Even though a good theoretical model, the UTM needed
to be adapted. Thus, for instance, he makes clear that the one-dimensional tape
as the memory of the Turing machine is not desirable in a real machine since it
would take too long to look up information [7, 319].

As is argued in [6,7] the general philosophy behind the design of the ACE is
minimalist in nature. Knowing that but a minimal set of symbols and operations
is needed to have universal computation, Turing designed a machine with a
hardware that is kept very simple and primitive, leaving the ‘hard’ work to the
programmer, preferring to have less machine and more instructions. Indeed, as
Hodges explains [7, 320]:

His priorities were a large, fast memory, and then a hardware system
that would be as simple as possible. His side was always that anything
in the way of refinement or convenience for the user, could be performed
by thought and not by machinery, by instructions and not by hardware.
In his philosophy it was almost an extravagance to supply addition and
multiplication facilities as hardware, since in principle they could be
replaced by instructions applying only the most primitive logical opera-
tions of OR, AND and NOT.

Or, to put it in Turing’s words, “[W]e have often simplified the circuit at the
expense of the code” [14]. Martin Davis identifies this attitude as being in line
with the RISC (reduced instruction set computing) architecture [6, 189].

A similar minimalist philosophy was pursued by H. B. Curry after his expe-
rience with the ENIAC, the first electronic and programmable US computer. In
this context Curry was confronted with the need to develop a theory of program
composition. Contrary to Turing, Curry did not design a computer like the ACE
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but, instead, ‘designed’ a theory of programming inspired by, on the one hand,
his work on combinatorial logic and the minimalist philosophy which guides it,
and, on the other, his concrete experience with the ENIAC.

Curry’s theory of programming was based on his knowledge of the IAS ma-
chine, the computer built on the basis of von Neumann’s EDVAC report. One
key aspect of this theory is the analysis of programs into basic programs and the
development of a theory which allows to compose more complicated programs
from these basic programs in an automatable fashion. This analysis into basic
programs and their composition explicitly displays a minimalist philosophy [5]:

[The] analysis can, in principle at least, be carried clear down until the
ultimate constituents are the simplest possible programs. [...] Of course,
it is a platitude that the practical man would not be interested in com-
position techniques for programs of such simplicity, but it is a common
experience in mathematics that one can deepen ones insight into the most
profound and abstract theories by considering trivially simple examples

Curry went on to give a method which reduces a specific class of 26 basic pro-
grams from his original list to only 4 basic programs. This is a good example
of what kind of results Curry’s minimalism led to. This reduction to 4 basic
programs is proven by providing a (programmable) method which resynthesises
the original 26 basic programs from these 4. This leads Curry to comment that
one might save machine memory when compiling programs. He therefore makes
the following hardware recommendation [5, 38–39]:

Now the possibility of making such [arithmetic] programs without using
auxiliary memory is a great advantage to the programmer. Therefore,
it is recommended that, if it is not practical to design the machine so
as to allow these additional orders [the 26 original basic orders], then a
position in the memory should be permanently set aside for making the
reductions contemplated.

Hence, a theoretical result so in line with logical minimalism, becomes an au-
tomatable method which allows to save computer memory (for more details on
Curry’s theory of programming see [9]).

2 Less is more in the Fifties

2.1 ‘Automata studies’

Through Curry’s and Turing’s more practical work, logical minimalism had a
direct and immediate influence on the development of the early digital and pro-
grammable machines. However, this is not where this influence stops. In the
50s, several researchers coming from different backgrounds, but with the same
keen interest in the theory and practice of the new computing machines, be-
come familiarized with the results of the computability related work by Church,
Curry, Kleene, Post, Turing etc. They regarded the Turing machine and related
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concepts as useful theoretical tools and models to think about actual, physical
machines. In this context, a tradition of logical minimalism is ‘transmuted’ to the
context of machines when people like Minsky, Moore, Shannon, Wang, Watanabe
etc start developing and studying small and/or simple theoretical devices with
an eye on real computers. Much of this research was done under the heading
‘automata theory’, a domain that prefigured in some way the establishment of
(theoretical) computer science proper.

Hao Wang, who was trained as a logician and worked for some time at Bell
labs and the Burroughs company, developed a variant of the Turing machine
model which is simpler and smaller and laid the basis for the register machine
model. He explicitly places his approach in the tradition of logical work on
reducing the number of logical operators, mentioning for instance the Sheffer
stroke, but with a different motivation, viz. to bridge the gap between research
in logic and digital computers [17, 63]:

The principal purpose of this paper is to offer a theory which is closely
related to Turing’s but is more economical in the basic operations. [...]
Turing’s theory of computable functions antedated but has not much
influenced the extensive actual construction of digital computers. These
two aspects of theory and practice have been developed almost entirely
independently of each other. [...] One is often inclined whether a rap-
prochement might not produce some good effect. This paper will [...] be
of use to those who wish to compare and connect the two approaches.

Not only logicians like Wang saw the possible practical relevance of research
on small and/or simple models of computability. In the 50s a ‘rapprochement’
from the side of the engineers also took place. The influential volume Automata
Studies (1956), edited by McCarthy and Shannon, is a perfect example of this
‘rapprochement’, featuring contributions from logicians, engineers and mathe-
maticians. The volume contains the paper by Shannon which proves that two-
state Turing machines and two-symbol Turing machines are capable of universal
computation and that there is no one-state UTM. This has become one of the
classic references for research on smallest (universal) devices.

Another contributor to Automata Studies was E. F. Moore. He had embarked
on the systematic study of minimal circuits for given functions at Bell Labs in the
1950s. Most probably during this research, Moore came up with a new, simplified
construction of a UTM described in [10]. In this paper he gives the details of a
rather small 3-tape UTM with two symbols and 15 states as a simplification of
the original one-tape UTM [10, 51]: “the method of storing all of this information
on one tape is rather complicated, the internal structure of the universal Turing
machine [...] is also rather complicated”.

Moore starts out from Davis’s quadruple notation for Turing machines, where
the quadruple qiSjIql means: When in state qi the symbol Sj is scanned then
do operation I (left, right or print Sk then go to state ql. Since Moore is using
three tapes instead of one, he transforms this notation to a sextuple notation
qiS1S2S3Inql where S1, S2, S3 are the symbols scanned on tapes 1 to 3 respec-
tively and In is operation I to be performed on tape n. On tape 1 the description
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of the Turing machine to be simulated is stored (as a circular loop), tape 2 is
an infinite blank tape that will contain the active determinant of the machine
to be imitated, and finally tape 3 will be a copy of the infinite tape that would
be on the machine being imitated. To put it in more ordinary computer speak:
Tape 1 is the program, tape 2 is the active register and tape 3 the output.

Moore devotes a complete section to the physical realizability of his model
and explains how magnetic tape memory is more suited in this context than
punched tape [10, 54]:3

since holes in punched tape cannot be erased once they are punched, in
order to make a machine using punched tape capable of imitating the
behavior of an ordinary Turing machine which has this erasing property
the coding of the description of the machine would have to be in a more
complicated fashion [...] It should be mentioned [...] that the properties of
the tapes assumed in Turing machines are very much like the properties
attained by magnetic tapes, which have erasability, reversibility, and the
ability to use the same reading head for either reading or writing. If a
tape mechanism were available which had the properties assumed and
which could be connected directly to relay circuits, it would be possible to
build a working model of this machine using perhaps twenty or twenty-
five relays. These figures are mentioned since the number of relays is
frequently used as a measure of the complexity of a logical machine

For Moore the significance of his result lies in the fact that it suggests “that very
complicated logical processes can be done using a fairly small number of mechan-
ical or electrical components, provided large amounts of memory are available. ”
[10, p. 54] One of the biggest obstacles for the physical realization of the model is
an economical and technological one, viz. the cost of memory and speed. Moore
concludes that at that time it was not “economically feasible to use a machine to
perform complicated operations because of the extreme slowness and fairly large
amount of memory required.” [10, p. 54] but nonetheless sees the value of his
result in the fact that it “suggests that it may be possible to reduce the num-
ber of components required for logical control purposes, particularly if any cheap
memory devices are developed.”

2.2 Simple digital computers: Zebra, Minima and TX-0

At around the same time Moore was thinking on small UTM’s and their prac-
tical feasibility, several engineers started to effectively implement similar ideas
by building “small” computers, viz. computers with a small instruction set. Al-
though Turing’s universal machine is often mentioned in passing, its details seem
to have had little direct influence on actual research. Wilkes’s idea of micropro-
gramming and the ACE design seem to have played a more important role. Some
groups of engineers involved in the development of small computers were well
3 Perhaps Wang’s non-erasing model described in [17], was inspired by the need for a

simple model for a punched-tape computer.



A short history of small machines 7

versed in modern mathematical logic and its possible applications to computer
design. However, it turns out that minimalist philosophies have to be redefined
as parts integrating more complex computer design strategies.

In Europe the Dutch engineer W.L. van der Poel pioneered investigations into
the structure of simple digital computers. In 1952 he built the ZERO with only
7 instructions. The machine was “not meant as a practical computer, but only
serves the purpose of gaining experience” [15, 368] The zero was the precursor for
the Zebra computer (1957), the ‘Zeer eenvoudige binaire rekenautomaat’ (‘very
simple binary computer’). Both the Zero and the Zebra can be called practical
versions of minimalist philosophies. As van der Poel remarked [16, 361]:

The main idea of the [Zebra] machine is to economise as far as possi-
ble on the number of components by simplifying the logical structure.
For example, multiplication and division are not built in but must be
programmed.

Van der Poel clearly knows that he needs the (possibility of a) conditional jump
to have universal computation. The reference to Turing’s [13] in the description
of the ZERO shows that the concept of a UTM belongs to van der Poel’s general
knowledge.

Van der Poel’s motivation for designing a simple machine seems mainly the-
oretical: he considers the logical simplicity of the machine as an advantage in
itself [15, 376]. Of course, there are several trade-offs of which van der Poel is
very aware. First, there is a certain loss in speed, and this applies in particular
for the Zero [15, 367]:

In this article will be described the logical principles of an electronic
digital computer which has been simplified to the utmost practical limit
at the sacrifice of speed.

Secondly, more (and, if possible, faster) memory is required [15, 376]:

Complexity of the circuits has been exchanged for capacity of memory.
[...] Although there would have been room for two instruction in one
register, no simple arrangement can be made for that purpose without
upsetting the logical structure of the machine.

The memory is needed for flexible programming that becomes capital in using
the machine [15, 375-376]:

[the ZERO] has a flexible system of programming that can easily be
learned. Straight-forward programming is simple, because there are only
seven instructions. [...] the user can make the programs just as he wants
them, use of the machine is very flexible.

Because usability would suffer, van der Poel does not push the minimalist phi-
losophy to its limits: “Of the seven instructions that are possible only three are
strictly necessary [...] Of course, many more instructions, even for quite simple
programs, are then required.”
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Van der Poel’s work found resonance in Germany and the U.K. where ac-
tual simple computers were constructed. The Standard Telephones and Cables
Limited contracted van der Poel to construct the Zebra (1957). In Germany, H.
Poesch and Th. Fromme, inspired by van der Poel’s work, proposed a simple
machine, the MINIMA, as a pedagogic tool [11, 307, our translation]:

For the study of programming and for education in questions of program-
ming we have thought of a model of a machine that has a very simple
instruction code so that one can learn it fast, but also can do anything
that occurs as complex operations in a modern computer

As a practical machine, however, Poesch and Fromme recognize that “This ma-
chine could execute all instructions (also conditionals), but if one would realize
it, the operation time would be too long.” Konrad Zuse’s commercialized Z22
(1955) was then an “outgrowth” of the Minima, which was designed after “dis-
cussions on the problem of the smallest meaningful program-controlled computer”
during which also the UTM was discussed but considered “useless” “practically
speaking” [18, 135].

In the United States as well, at the Lincoln Laboratory, a small computer
was developed, called the TX-0 (1956-1958). The TX-0 would be the first of an
impressive line of computers that pioneered the use of transistors and the idea
of personal computing, leading up to the PDP minicomputers. As Wesley A.
Clark, the main engineer on the project, states [1]:

“Well, all right, let’s build the smallest thing we can think of,” and de-
signed the TX-0, which was very primitively structured and quite small,
quite simple - small for the day. Not physically small - it took lots of
space; it still took a room.

The TX-0 was designed as an experimental machine, testing both transistors
and elaborate input/output facilities, that would eventually lead up to the mon-
umental TX-2. Interestingly, the design of the TX-0 was done by a group of
engineers who had been immersed in mathematical logic and computers. From
October 1955 to January 1956 the engineers at Lincoln Laboratory had followed
an intensive course on “the logical structure of digital computers”, organized by
Wes Clark. The course was part of discussions “about the various possible min-
imal machines” that could be designed [3, 144]. Clark’s course contained two
parts: a part on Turing machines and a part on Boolean algebra and its use in
circuit design. While the part on Boolean algebra features a session on how to
use the Sheffer stroke as the sole building block for circuits, the part on Turing
machines details the construction of Moore’s 1952 small universal machine. As
Clark remarks, this universal machine constitutes a “critical complexity beyond
which no further increase in generality can be guaranteed!” [2, p. 13] Clark fol-
lows Moore’s encoding and construction, but mashes the three tapes back into
one tape using a specific encoding scheme. This scheme later returns as the
read-in procedure for the lines on the program tape on the TX-0.

How much of the logical minimalism taught in Clark’s course found its way
into the TX-0’s design is hard to evaluate, but it certainly had an impact. In



A short history of small machines 9

the description of the TX-0 circuitry, Shannon’s work is explicitly referenced,
but also the logical organisation of the machine seems to have inherited from
the course. A small instruction set (only four) was used in combination with
an elaborate vocabulary of ‘class commands’ (special bit-encoded instructions
triggered by the fourth opr command) and with a versatile symbolic assembler
language. Again, as was the case with the Zero, the Zebra and the Minima
the logical simplicity of the computer itself entails a necessary, richly developed
programming.

3 Discussion

Nowadays the result that, for instance, four elementary instructions suffice to
compute anything computable (provided one accepts the CTT) has become near
trivial in computer science. One would almost forget that a complex history
underlies such results.

The Turing machine has often been interpreted as a most practical outcome
of the foundational debates of the early 20th century, the positive face of the
negative Entscheidungs-result. It fits in a tradition of logical minimalism: the
search for a minimum of operations, of axioms, of length of propositions etc.
This research proved to be most useful in the early days of computing where the
results from mathematical logic were transmuted into ideas on computer design
and programming, a transformation pioneered by people like Curry and Turing.

The 1950s pursued the development of ideas from logical minimalism to a
more practical, engineering context. Moore’s and Wang’s work develop theoreti-
cal models that fit more closely a real computer. Actual small machines, such as
the Zero, the Minima or the TX-0, were all conceived as experimental machines
to test ideas and design philosophies. Direct translations of logical minimalism
such as a small UTM cannot be traced down in these experimental small com-
puters, but the UTM certainly functions for their engineers as a warrant that
small computers are possible and that they can execute whatever program.

The minimalist philosophy in computer architecture necessarily has to adapt
itself to the realities of the time, money and hardware available. Instead of in-
finite tape, lots of time etc. that abound in theoretical research, the computer
engineers have to find a compromise between different tradeoffs. A simple logi-
cal structure of the computer asks for extensive programming possibilities and
hence more (and faster) memory. Since in general more instructions were needed
for a program, a loss in speed could be expected, though, as witnessed by van
der Poel’s coding for the Zebra or the TX-0’s class commands, devices were de-
veloped to remedy this situation. In general, the experimental small machines
led to the development of new programming techniques. Just as Turing’s work
on the ACE preempts aspects of RISC architecture, the small experimental ma-
chines gave rise to elaborate schemes of microprogramming and, in the case of
the TX-0, to a symbolic on-line assembly language.

In the last 20 years, research on small universal computational devices has
known a renaissance (see [8] for an overview). Again, this research has an eye
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an practical realizations, for instance in the form of DNA-computing. Also here,
theoretical research on small universal devices is expected to help in the design
and study of these new kinds of ‘machines’ and to help explore the boundaries
of what can and cannot be done with such machines.
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