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1. Introduction 

 

How do we find order in the ever-changing and fleeting appearances with which we are 

continually presented? How can we think change in a coherent way – i.e. without betraying 

the stringency of thinking as an act guided by its own norms? This is one of the most basic 

questions that shaped Western philosophy as a field with its own set of characteristic 

problems to which any philosopher is forced to return. At the same time it is also a question 

that any “researcher” actually engaged in the search for order implicitly has to answer through 

her specific ways of going about in trying to achieve her aim. This is not to claim that she is 

actually aware of the nature of her engagement, nor that this need to be more than a very 

tentative approach; but without some norm-bounded practice the research cannot even get off 

the ground. It is clear that these two perspectives – let’s call them the meta-physical and the 

natural-philosophical – mutually interact and cannot always be neatly separated. In their most 

fruitful moments new kinds of natural-philosophical investigations can act as a kind of 

cognitive experiments in gauging the field of possible meta-physical answers, whereas these 

answers can in their turn further guide or inspire (or even help stabilize the basic framework 

of) the researches in the order of the natural world. Taking this interaction seriously implies 

that we should be careful in separating what we are used to call the history of science from the 

history of philosophy; but even more importantly, that we can only separate our interest in the 

most basic philosophical questions from the history of philosophy and science at our own 

peril. If we want to understand how we can think change in a coherent way, we can do no 

better than start by reflecting on the nature of the research practices in which we have 

engaged throughout history, and especially on how we have come to change their internal 

logic in our attempts to gain a better (or more suitable) grip on the ever-changing and fleeting 
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appearances. It is only in the breaking-points, both big and small, with which the history of 

our thinking is replete that we can see the contours of the dynamics which truly characterizes 

the most fundamental nature of our human reason.1  

It is only fitting then to approach the question of the relation between the basic metaphysical 

concepts of identity and structure along the lines pioneered by Ernst Cassirer’s 

Substanzbegriff und Funktionsbegriff. In this seminal work Cassirer argued that the basic 

orientation of modern mathematical science is expressed by the mathematical concept of a 

function and that this metaphysical perspective is fundamentally at odds with the Aristotelian 

one: rather than starting from the concept of substance as the prime bearer of essential identity 

in the changing world, the mathematical sciences show how to locate this identity in 

structures, with individual entities now having a derivative status as the elements which fill in 

the “nodes” of these structures. But while this is an interesting meta-physical distinction in its 

own right, giving rise to many interesting philosophical puzzles, it is simultaneously – and 

completely in line with the general orientation of Cassirer’s work – also a historical claim 

about the kind of practices through which natural philosophers have tried to search for order 

in the natural world.  

It is this latter suggestion which I will take up in the present paper. I will try to sketch some 

elements of a narrative which should allow us to understand how this new meta-physical view 

was being explored in the work of some natural philosophers. Needless to stress this is also a 

preliminary exploration on my part, but I do believe it already shows us that some of 

Cassirer’s claims can be historically corroborated; and in this way it also promises to teach us 

some things about our contemporary meta-physical views – which are in many ways are still 

hereditary to the inspiration behind these seventeenth century explorations. As I will try to 

show, the new conception of the causal structure of nature was fostered by a close attention to 

the technical challenge that was posed by the perennial dream of constructing perpetual 

motion devices. The new link that was being forged between abstract mathematical 

conceptual schemes and concrete physical phenomena was closely related to the technological 

problem of determining the chances of putting lofty promises into material results: reflections 

on the latter problem allowed natural philosophers like Galileo and Leibniz to come to grips 

with the kind of metaphysics that underlies a potential successful mathematization of natural 

phenomena. 

                                                 
1 In framing the issue in this terms, I am obviously referring to Michael Friedman’s Dynamics of reason 
(Friedman 2001), which in its turn is heavily inspired by the work of Ernst Cassirer. And it is indeed Cassirer 
who pioneered the kind of historical epistemology that I propose in this paper. 
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2. The causal structure of nature 

 

Rather than starting with the innovations introduced in the seventeenth century, it is useful to 

begin with identifying what remains unchanged if we compare the metaphysical norms 

governing an Aristotelian natural-philosophical investigation into nature with these of the new 

sciences.2 While to a certain extent prejudging the matter, this has the advantage that it allows 

us to better formulate the precise nature of these innovations in the short space of this paper. 

There is a basic outlook shared by Aristotelian and modern natural philosophy that can be 

characterized by its essentially intellectual character: the rationalistic impulse to find an 

abstract and coherent framework in which lived experience can be conceptually grasped. Such 

a program implies that we have to find something permanent with respect to which 

experienced changes can be coherently determined – which determination is then the function 

of the concept of causality. What changes in the so-called scientific revolution is the 

identification of what it is that remains permanent, and correlative, how changes are to be 

determined. Given the essential function of causality in this respect, this identification and 

determination will always take place with respect to some regulative ideals about how causes 

operate in nature. It is at this level that I propose that we locate the fundamental difference 

between the Aristotelian program and its seventeenth century alternative (which I will 

designate as “Galilean program” for reasons that will become clear in the remainder of this 

paper when I will substantiate some of the claims which I will now just introduce without 

argument as preliminary characterizations of this program).  

If changes are to be coherently determined, and if changes are characterized through causal 

relations, it follows that we must be able to think some kind of equivalence between a cause 

and its effect (otherwise we would threaten to loose all grasp on what it is that remains 

identical – and thus conceptually graspable – throughout the changes with which we are 

continually presented), but this equivalence takes on a fundamental different nature in both 

programs. Whereas Aristotelian effects are qualitatively equivalent to their causes (only a 

warm thing can cause heat in another thing), Galilean effects are quantitatively equivalent to 

their causes (an effect gives a quantitative measure of the operation of its cause, whatever its 

qualitative mode of appearance). Whereas the relevant mode of operation in a causal 

                                                 
2 I will not constantly reiterate excuses for introducing idealizations such as an ideal-typical program of 
Aristotelian natural philosophy, or the related idea of a scientific revolution. In this paper, I cannot do better than 
just claim that these kind of constructs (when used circumspectedly) do capture some true oppositions which can 
be found in the historical actors’ texts.  
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interaction is generation according to the Aristotelian (like things beget like things), 

conservation becomes the hallmark according to the Galilean (there is an abstract quantity 

which does not change throughout the interaction). Accordingly we have a shift of focus from 

powers and processes towards magnitudes and states (where the latter are primarily 

characterized through abstract quantities); or to put in Cassirer’s terms: from substance to 

function as the primary bearer of identity throughout change. And the primary cognitive 

instrument that we thus have at our disposal in thinking change – i.e. the postulated 

equivalence – now is geometrical logic (supplemented by algebraic logic with the advent of 

the calculus) which displaces syllogistic logic from its epistemologically privileged position. 

In the following I will try to show to introduce some of the elements that should allow us to 

understand how this kind of fundamental reversal could come about, and thus what also lies 

beyond its continuing appeal. My focus will be on “conservation” as a regulative ideal which 

makes it possible to interpret (proto-)functional relations causally; and which conversely also 

makes a mathematical science of nature possible. 

 

3. Perpetual motion principles 

 

In itself it is not immediately clear how an ideal of quantitative conservation, postulating the 

equivalence between different states with respect to some abstract quantity, can serve as the 

logical foundation for causal explanation. We only have to bring to mind Bertrand Russell’s 

claim that the functional nature of modern science implies exactly the disappearance of causal 

relations from nature to see the potential tension here. Nevertheless, it will become clear in § 

4 that at least some of the most important historical actors understood their natural-

philosophical explanations exactly in this sense. It will also turn out that the clue to this 

understanding, both historically and philosophically, lies in what we can call the Perpetuum 

Mobile Principle (PMP), which of course states that such a thing is impossible in nature. 

 

3.1 The different forms of perpetual motion 

 

To correctly gauge the role that PMP played in the development of the new mathematical 

sciences, it is important to make a few analytical distinctions. Let me start by the following 

categorization proposed by Alan Gabbey to summarize the kind of distinctions made by 

seventeenth century natural philosophers (Gabbey 1985, pp. 42-44): 

• PM1. “A system or device that maintains indefinitely the motion it already has.” 
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• PM2. “A device that moves perpetually with the same motion or the same repeated 

sequence of movements, overcoming dissipative influences alone, or in addition doing 

useful work of some kind. The device receives no power from sources other than the 

inertia (impetus, in pre-Newtonian terminology), or the weight and inertia, of its 

constituent bodies.” 

• PM3. “As for PM2, except that the power sources, which are still internal to the device, 

are principally what tat the time were described as physical or natural agencies 

(usually magnetism, but also the actions of chemical mixtures, fiery spirits, etc.), 

rather than inertia or weight, although the latter normally contribute in some way to 

the performance.” 

• PM4. “A device that performs the same kinds of motions or tasks as PM2 or PM3, but 

avails itself of an endless supply of power from natural or physical sources external to 

itself, such as the sun, moon, or other celestial bodies, winds, rivers and natural 

fountains, seasonal or daily atmospheric changes.” 

In the following I will focus on PM1 and PM2, although it is important to remind you of 

Gabbey’s conclusion that none of the seventeenth natural philosophers “rejected outright the 

possibility of some version of PM3 or PM4” (ibid., p. 46); but given the limited scope of the 

present paper I will ignore the many issues surrounding these distinctions and proceed as if a 

body’s inertia and weight are the only dynamically significant factors (although I will come 

back to PM4 in the concluding section). This implies that what I called the PMP will turn out 

to be identified with the denial of the possibility of PM2, which “were held to be impossible, 

both in theory and in practice, by those who were alive to certain implications of Peripatetic 

natural philosophy, and by those who were au fait with the principles of mechanics” (ibid., p. 

45); and again I will simplify the discussion by leaving the Peripatetic natural philosophers 

out of the picture, as I am primarily interested in the status the principle can have for those 

philosophers who started from considerations related to the science of mechanics – which we 

must primarily understand as the science of the simple machines (lever, pulley, etc.). 

One of the crucial issues for my story is the relation, or absence thereof, between PM1 and 

PM2, although in the course of my argument I will also slightly alter the scope of PM1. The 

present formulation also invites discussions concerning the running down of the universe 

through repeated collisions in which bodies can be brought to a stop, discussions traced by 

Gabbey in his article (and of which the Leibniz-Clarke debate contains the most famous 

episode). I will focus on an issue that is in some sense preliminary to this one, by abstracting 

from the cosmological context in which these discussions took place, and focussing purely on 
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the understanding of the principles behind the operation of mechanical machines. (One way to 

phrase the difference is that I will set to the side the question to what extent the world can be 

understood as a machine, and only treat the question what it is to be a machine.) 

To get a feel for what is at issue, let me start by introducing a famous (but often badly 

misunderstood) example which will then set the agenda for the next section. In 1586 Simon 

Stevin published his Beghinselen der Weeghconst (“Elements of the art of weighing”), which 

contained his famous “clootcrans”-proof of the law of the inclined plane. In the following I 

will try to clear up the nature of Stevin’s appeal to PMP in the course of the proof (§ 3.3); and 

draw attention to an often neglected consequence that Stevin draws from his inclined plane 

law (§ 3.4).  

 

3.3 The ambiguous status of PMP in Stevin 

 

The law of the inclined plane states that the apparent weight (“staltwicht”) of a body on an 

inclined plane is to its absolute weight as the height of the plane is to its length; or that two 

bodies lying at the two upper sides of a triangular prism hold each other in equilibrium when 

their respective weights are inversely proportional to the lengths of the sides on which they 

are placed. The kernel of Stevin’s proof consists in the claim that we must have equilibrium 

when the conditions of the law hold, because otherwise we could construct a closed system 

consisting of a wreath of spheres lying over the prism which would perform a perpetual 

motion “out of itself”, which according to him is “false” (Stevin 1955, p. 178). In his notes to 

the modern edition of Stevin’s work E.J. Dijksterhuis notes that “the conviction that a 

perpetual motion is impossible in physical reality is not a sufficient ground for qualifying it as 

absurd in the ideal sphere of rational mechanics, where friction and resistance of the air are 

absent” (Stevin 1955, p. 179, n. 1). Thus, according to Dijksterhuis Stevin would make the 

mistake of denying the possibility of PM1, by basing his proof on a merely empirical 

generalization which cannot hold the weight of the proof. Alan Gabbey has offered a different 

criticism by claiming that “curiously, it has not often been noted that Stevin’s demonstration 

is invalid, and that its invalidity derives from the fact that within the terms he himself would 

have accepted, which were those of pre-Newtonian mechanics, such a perpetual motion 

would not be absurd at all… The consequent of Stevin’s counterfactual supposition is an 

example of constant motion of an idealized closed cycle of bodies under a constant force, 

which was a straightforward situation in pre-Newtonian physics.” (Gabbey 1985, p. 74, n. 26.) 

What is presumably missing, and which can only be added from within a Newtonian 
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perspective, is a reference to the energy gain that would actually arise in this situation, and 

which would thus turn Stevin’s reference into a genuine appeal to PM2.3  

It is clear that notwithstanding their quite different analysis of the weaknesses of the proof, 

both Dijksterhuis and Gabbey put a lot of weight on the fact that Stevin only speaks about a 

perpetual motion, without qualifying the precise nature of this motion, whereas they believe 

that it should be stated to be accelerated to function validly in the reductio argument. 

According to Dijksterhuis this perpetual uniform motion would be denied on empirical 

grounds, while Gabbey thinks it could actually not even be denied consistently by Stevin, as it 

accords with a basic principle of pre-Newtonian dynamics.  

Firstly, let me notice that Dijksterhuis seems to miss the import of Stevin’s emphatic stress on 

the fact that the clootcrans’s hypothetical motion is not only perpetual, but also will not need 

to be started by an external force (“the spheres will out of themselves make a perpetual 

motion”4). Thus, even if his denial would be based on nothing more than an empirical belief 

(or what Mach called “purely instinctive cognition”)5, it is still consistent with the possibility 

of PM1 – on which Stevin thus need not take a stance. Secondly, it is not obvious that 

Stevin’s hypothetical situation was really so “straightforward” within a pre-Newtonian 

context as is claimed by Gabbey. The only more or less straightforward cases of perpetual 

motion caused by a constant force were these of motion around the centre of the world 

(preferably by heavenly bodies, but this restriction is dropped from time to time, and would in 

all probably also not have been upheld by Stevin, who was a professed Copernican), which is 

not the case for Stevin’s clootcrans – and neither is gravity the moving force in any of these 

cases. Again, it seems that it is primarily the self-caused character of this gravity-driven 

perpetual motion that is deemed impossible by Stevin. But it is true that it is not clear whether 

this would constitute a strict denial of PM2 as defined above. This depends on the fact 

whether “dissipative influences” would be overcome or “additional work” could be done – 

neither of which is explicitly mentioned by Stevin. And whether this is the case in turn 

depends on your views concerning the causes of motion: if constant motion requires a 

constant force, then Stevin’s “eeuwich roersel” might well not be a proper case of a PM2 

(which is of course what lies behind Gabbey’s critique). Now it is not clear whether this 
                                                 
3 According to Gabbey it is only in a Newtonian framework that the proof can be “restored to apodictic health”, 
because we then can see the clootcrans as a system with a “steadily increasing amount of kinetic energy over a 
limitless period of time” (which is a consequence of the fact that the motion of the wreath is continually 
accelerated by an internal unchecked force). In this way, his criticism is precisely the opposite of Dijksterhuis’s, 
who had invoked Newtonian principles to criticize Stevin’s proof. 
4 “ende de clooten sullen uyt haar selven een eeuwich roersel maken” (Stevin 1955, 42; my emphases, altered 
translation). 
5 Mach 1960, p. 34. 
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would invalidate the proof “on its own terms” as one might always try to construct a properly 

Aristotelian (or other kind of pre-Newtonian) argument for the impossibility of this kind of 

self-caused perpetual motion (or just be content with its empirical falsity). But we might also 

wonder on what grounds we are justified to conclude that Stevin “would have accepted” the 

view that a constant force causes a constant motion: Gabbey certainly does not provide any 

textual evidence for this claim, and neither could I locate one unambiguous statement to that 

extent in Stevin’s works. Maybe the strongest evidence would be exactly the fact that he 

seems to think of the clootcrans’s motion as non-accelerated; but as he nowhere shows 

interest in analysing the characteristics of motion caused by forces, we might also interpret 

this as mere silence on these characteristics rather than as a positive stance concerning them. 

Moreover, given his stress on the inevitability of friction in all motion (which is actually the 

reason why he believes it is not possible to give an exact science of motion, cf. § 3.4), we 

might even interpret the possibly uniform character of the clootcrans’s motion as due to the 

fact that the uniform force must continually overcome friction (notice that Stevin nowhere 

states that the plane is supposed to be frictionless – contrary to what is done in most modern 

presentations of the argument), in which case he would actually be denying the possibility of 

PM2. 

The least that we can say is that Stevin’s own formulation is so open-ended that any 

straightforward interpretation of its physical import involves quite a bit post-hoc interpretation. 

At the same time, this might well constitute an important part of its continuing appeal, as it 

nonetheless is perceived as utterly convincing – whatever the precise dynamical interpretation. 

For all we know, his proof is consistent both with the denial and acceptance of PM1; it can be 

read as appealing to the impossibility of PM2 as a genuine mechanical principle; or as based 

on an empirical belief (maybe because of the known failures to invent purely mechanical 

perpetual motion machines in the preceding centuries);6 or as based on implicit Aristotelian 

cosmological considerations; or even on the “instinctive” insight (Mach) that the kind of 

situation that is proposed cannot be true. In this sense Stevin’s proof exemplary shows the 

flexibility surrounding PMP, which allowed it to offer apparently common ground to a 

number of natural philosophers who would actually disagree on its actual status (and also its 

possible metaphysical consequences or foundations). 

 

                                                 
6 Cf. Ord-Hume 1980 and Lorhmann 2006. 
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3.4 Theory and practice 

 

There is one passage, however, where Stevin does come very close to drawing a conclusion 

from his law of the inclined plane which could have led him to disambiguate some of these 

issues. In corollary VI to the law of the inclined plane, while discussing some properties of 

the weights needed to haul up another weight which lies on an inclined plane, Stevin asks 

what happens when we consider an inclined plane with zero inclination. In this case, there 

will be no ratio between height and length, and accordingly (following the law of the inclined 

plane) neither between the apparent weight of the body on the horizontal and that of the 

weight of the body needed to move it. Stevin interprets this consequence as follows: 

… by which it is to be understood that a heaviness taking the place of P [the weight 

“pulling up” the body on the plane], however small it may be, cannot be of equal 

apparent weight to D [the body on the horizontal plane], but will pull it along 

(mathematically speaking), however heavy it may be. From this it follows that all 

heavinesses pulled along parallel to the horizon, such as ships in the water, wagons 

along the level land, et., to be moved need not require the force of a fly beyond that 

which is caused by the surrounding obstacles, viz. water, air, contact of the axles with 

the bearings, contact of the wheels with the road and the like. (Stevin 1959, pp. 186-187; 

slightly altered translation, my emphasis). 

It is not farfetched to see a possible starting-point for a line of thought that could result in 

some kind of inertial principle – and this is indeed exactly how Isaac Beeckman will interpret 

this passage (cf. § 4.2). But Stevin’s own statement is (again) uncommittal: it is not clear 

whether the smallest weight would have to keep on pulling to keep the body, “mathematically 

speaking”, in motion; or whether it is enough to give it its motion which it would continue in 

absence of all obstacles (although Stevin’s use of “verroersel” rather than “roersel” to 

describe the effect of the minimal net force, i.e. to put into motion rather than motion per se, 

must be noted). When the obstacles are present it is clear that the “fly” will have to keep on 

pulling; and it is the latter situation which apparently interests Stevin. 

The distinction between what is true “mathematically”, and what is true “physically” is an 

important one in Stevin’s work. He introduces his Weeghdaet (“The practice of weighing”), 

the practical pendant of his Weeghconst, with an important warning. Theoretical principles 

can only teach the proportions characterizing equilibrium, i.e. equality of apparent weight, but: 

Note … that this knowledge of apparent weight is sufficient for the purpose, for if the 

same weight lies in either pan of the balance, as we then know (though the balance also 
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has its impediment to motion) that little force is required to move the pans, thus it is 

also in all other cases. 

This has been said about the impediment to motion in order that someone, finding in 

practice the moving force to be perhaps slightly greater than the force moved, may not 

think this to be a defect of the art, but may understand this to be necessary, since, as has 

been said above, the moving body, over and above the equality of apparent weight, has 

to be so much heavier or more powerful than the body to be moved that it overcomes 

the impediment to motion. Moreover, in order that no one, relying on this appearance of 

proportionality, shall be deceived, which may very easily happen to those who hold the 

false to be true. (Stevin 1955, p. 299; slightly altered translation, my emphases.) 

It is clear why Stevin is not particularly interested in considering what happens when all 

impediments are removed in the case of the bodies on the horizontal plane: this is a purely 

mathematical situation, without counterpart in practice. It is only for equilibrium situations 

that we can bridge the mathematical and the physical, for cases involving motion we have to 

add practical knowledge about the force needed to overcome impediments that are always 

present, being careful not to mistake the merely mathematical for the truth. 

I believe this throws further light on the ambiguity surrounding Stevin’s use of PMP that we 

diagnosed in § 3.3. Stevin is uncommitted on the possibility of a PM1, just as he is silent 

about the continuation of the motion on the horizontal in the absence of all impediments. But 

it is exactly this silence that also excludes a clear position on the question whether every 

continuous motion needs a continuous force, and which thus left us in doubt about whether 

Stevin’s use of PMP could be seen as a denial of the possibility of PM2. This ambiguity is 

thus at least partly an outcome of Stevin’s careful avoidance of the counterfactual – purely 

“mathematical” – consideration of the nature of frictionless motion.  

 

4. Towards a new metaphysical foundation 

 

Our analysis of Stevin’s use of PMP has shown that its status is closely related to the question  

of how you think the relation between on the one hand “mathematical”, purely ideal, and on 

the other hand “physical”, concrete, situations. In this section we will see how a reorientation 

of this relation was precisely related to the role that PMP could play as a fundamental 

physical principle (in its PMP2 guise). It is the clear-cut denial of PM2 that allowed natural 

philosophers to rethink the relation between the physical and the mathematical as a continuum 

rather than a separation – and thus enabled a full-scale mathematization of natural phenomena. 
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But this only highlights the question of what lies behind this use of PMP; i.e., how can this 

natural-philosophical practice be understood metaphysically? We will see that this was 

understood to be intimately related to the nature of causality in our natural world (and our 

means of having a grip on this nature).  

 

4.1 Guidobaldo and Galileo 

 

In 1577 Guidobaldo del Monte published his highly influential Mechanicourm Liber, which 

received an Italian translation (supervised by himself) in 1581, and which remained a classic 

text throughout the seventeenth century. Both the similarities and dissimilarities with Stevin’s 

mechanical text from 1586 are striking, and deserve a study in their own right. Here, I will 

only focus on an attitude that both men share in their conception of the relation between a 

mathematical science and physical phenomena. Exactly as Stevin, Guidobaldo before him 

also stressed that the proportions characterizing the simple machines are only valid for 

equilibrium situations. When these machines are put into motion to actually achieve useful 

work, the inevitable presence of friction makes it impossible to propose valid mathematical 

proportions characterizing the effects (Del Monte 1581, p. 64r). Guidobaldo’s analyses of the 

multiplication of force that can be achieved with the simple machines are all based on a 

reduction of their structure to a combination of levers, the operation of which can in turn be 

explained by considering the relative position of the centre of gravity of the system with 

respect to a fixed fulcrum.7 At a few points in his text he also gives as a corollary to the 

mathematical proportions established thus the following statement: “the space of the power 

has the same ratio to the space of the weight as that of the weight to the power which sustains 

the same weight.” A statement which he then interprets as follows: “But the power that 

sustains is less the power that moves; … Therefore the ratio of the space of the power that 

moves to the space of the weight will be greater than that of the weight to the power.” (ibid., 

pp. 39r-v; translation from Drake & Drabkin 1969, p. 300). 

We can of course recognize a precursor to our modern work-principle in Guidobaldo’s 

mathematical consequence. But his stress on its purely mathematical character relegated it to 

a derivative status, however, as it can not be used to characterize the actual operation of the 

machines (clearly signalled by his correction to an imprecise proportion in its “moving” form). 

This changes drastically in Galileo’s mechanical treatise, Le mecaniche, written somewhere in 

                                                 
7 For a more detailed consideration of the conceptual structure of Guidobaldo’s mechanics, see Van Dyck 2006. 



 12 

the 1590’s, which in all other respects depends heavily on Guidobaldo’s treatise.8 In the 

longest version of this treatise, Galileo introduces this proportionality between distance (or 

speed)9 and weight as the fundamental principle characterizing all simple machines. This also 

implies that he disregards the clear-cut division that both Guidobaldo and Stevin had drawn 

between machines in equilibrium and in motion, which in turn implies that he considers the 

frictionless situation as some kind of limit situation of the actually observable cases of 

machines in motion. The “work-principle” principle, as an exact mathematical proportion, is 

no longer relegated to the realm of the purely mathematical, but is apparently considered to 

have some direct physical validity in itself. 

This of course raises the question what lies behind this change of perspective. I believe that a 

crucial indication is provided by Galileo’s introduction to his treatise. In it he rails against 

mechanicians who make promises to achieve effects that can actually never be attained 

because they are “impossible by their nature” (Galileo 1960, p. 147). And as his frequent 

allusions to the “order of nature” in his proofs of the operation of the simple machines makes 

clear, we have to identify this order with the objective limit imposed by the work-principle. 

Although Galileo does not specify the kind of false promises which he attacks, it is clear that 

he is actually targeting presumed constructions of PM2s, quite popular in the machine 

theatres of his days, and also explicitly criticized by his contemporary the engineer Buonaitu 

Lorini in his immensely popular Fortificatione (which in its theoretical aspects is explicitly 

based on Guidobaldo, including references to the work-principle).10 In his introduction, he 

vividly explains why the work-principle is equivalent to a denial of PM2.  

… since it may sometimes happen that, having but a small force, we need to move a 

great weight all at once without dividing it into pieces, on such an occasion it will be 

necessary to have recourse to the machine, by means of which the given weight will be 

transferred through the assigned space by the given force; yet this does not remove the 

necessity for that same force to travel and measure the same (or an equal) space as many 

times as it is exceeded by the said weight. So that at the end of the action we will find 

that the only profit we have gained from the machine is to have transported the given 

weight in one piece with the given force tot the given end; which weight, divided into 

                                                 
8 A more complete treatment should take some of the complexities involving the precise aims of Galileo’s 
treatise in consideration, but I will enter into these issues here. 
9 In machines the moving force and moved weight always move in the same times, which makes distances and 
speeds interchangeable. 
10 See Lorini 1609, pp. 205, 238 for the work principle; and p. 237 for the criticism of perpetual motion 
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pieces, would have been transported without any machine by the same force in the same 

time through the same distance. (Galileo 1960, pp. 148-149; my emphasis) 

We find similar contemporary passages in Lorini (1609, pp. 238-239) and Stevin (1955, pp. 

364-365), but none of these is as explicit as Galileo in linking this with the limits imposed on 

us by nature.11 What I want to suggest is the following: we can see that the attention of 

authors like Galileo, Lorini and Stevin is drawn to the work-principle because of a focus on 

the status of certain technological promises – what can we actually expect to achieve with 

mechanical instruments? And the intuitive interpretation of the principle in this context (as e.g. 

given in the above quote from Galileo) brings with it the possibility of highlighting its 

essentially physical significance. All actually operating machines may be confronted with 

friction, and their actual operation thus cannot be exactly characterized mathematically – but 

what we do can characterize mathematically about this physical operation are the limits of 

what can be achieved (in a closely related text, Galileo calls this the effect that all machines 

can attain “formally”; Opere VIII, p. 572). 

I believe it this insight that lies crucially behind what I called the Galilean program in § 2. I 

wouldn’t want to claim that Galileo was the first or the only one to make this kind of move 

(we will see in § 4.2 that Beeckman did something very similar), but Galileo certainly was the 

most explicit and influential one to do so (as we will also back up with further historical 

evidence in § 4.3). Neither do I want to claim that Galileo’s own explicit understanding of his 

natural philosophical undertakings would have been completely along the lines sketched in § 

2 (I think the first one to be completely self-conscious along these lines is Leibniz, cf. again § 

4.3), but I do claim that it is at this point that some of the essential elements fall into place.  

Let me quickly indicate three consequences we can see in Galileo’s own work, and which 

should justify this claim. Firstly, there is the introduction of the abstract concept of 

“momento” which exactly expresses the objective limits imposed on us by the nature of 

things. All this obviously need much more careful argumentation, but it is striking that 

together with the perspective on mechanical phenomena announced in the introduction to his 

mechanical treatise (and described above), Galileo also offers a new conceptual framework to 

understand these phenomena by describing them all in terms of the “equalization” of an 

abstract quantity, momento, on the side of the mover and the moved. Depending on the 

situation, momento is compounded from weight and distance, or weight and speed – hence the 

                                                 
11 Stevin in an appendix to the second edition of his Weeghconst in the Wisconstighe Ghedachtenissen of 1608, 
adds a short treatise on pulleys in which he also introduces the work-principle as “a common rule” of the art of 
weighing. (Stevin 1955, pp. 556-557) 
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equivalence between the work-principle and the positing of a conservation of momento. Due 

to mathematical limitations of his mathematical proportional framework, Galileo never 

explicitly defines momento, neither does he often speak explicitly about “conservation” but a 

close analysis of his proofs unequivocally shows that he sees all machines as characterized by 

the fact that there is a quantitative equivalence between mover and moved, an equivalence 

which can be expressed by the equality of moment on both sides. Secondly, it is clear that this 

equivalence expresses something about the causal structure of the world for Galileo. As much 

is unambiguously stated in the controversy on the causes of the floatation of bodies on a 

liquid; a controversy in which he engaged with a number of Aristotelian philosopher in the 

years 1612-1615 – and in which he explicitly identified the proper causes in terms of the 

momento of bodies to achieve certain effects. Thirdly, it is in the same mechanical treatise in 

which he discusses conservation of momento – and in doing so gives physical significance to 

the frictionless situations – that he for the first time uses some kind of precursor of our inertial 

principle in the explanation of mechanical phenomena. In an earlier work (never published 

during his lifetime), commonly referred to as De motu and written not long before his 

Mecaniche, Galileo already gave a proof of the law of the inclined plane; and just as Stevin 

did, Galileo also went on to draw the consequence that on a horizontal plane a body could be 

moved by “the smallest of all possible forces” in the absence of friction (Galileo 1960, p. 66); 

but in his Mecaniche, after the introduction of momento, Galileo does go significantly further 

with it than Stevin did by actually drawing physical consequences from it. In short: as motion 

along the horizontal does not need force, we should measure the momento of a weight moving 

on an inclined plane by considering only the vertical distance covered. As far as I know, this 

is the first unambiguous use of the composition of an “inertia-like” motion with a forced 

component; a composition which Galileo of course would put to good use in deriving the 

parabolic form of projectile trajectories. 12  And again, the physical significance of this 

mathematical composition is secured by the crucial role played by the conservation of 

momento (as it is only as a result of the possibility of this decomposition that we can see the 

operation of the inclined plane as a mechanical instrument that is characterized by an equality 

of momento – as should be possible).  

 

                                                 
12 Here, and in what follows, I will speak about “inertia-like” and its cognates without apologizing for the 
potential anachronistic overtones of this expression; see Roux 2007 for a very interesting recent mise au point of 
the often derided search for “precursors” of inertia. 
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4.2 Stevin and Beeckman 

 

Just as there are a lot of interesting similarities between Guidobaldo and Stevin, we can see a 

very similar relationship between what Galileo and Isaac Beeckman did with their respective 

heritages. Beeckman profited greatly from his careful reading of Stevin’s work, but in a 

fragment in his journal dated 1628, after stating that Francis Bacon was not adept in adding 

mathematics to physical considerations, he adds that Stevin was a bit too much addicted to 

mathematics, and not enough of a physician (Journal, III, p.51). We can imagine that part of 

his concern must have laid in the strict separation that the latter had proclaimed between 

theory and practice; and it is indeed the case that Beeckman oversteps this boundary precisely 

in interpreting some of Stevin’s own claims. In one passage from 1618, e.g., he interprets 

Stevin’s corollary VI, discussed in § 3.4, as follows: 

Stevin says in his Weeghkonst that on a even plane the least weight, [i.e.] the least 

power, can start the heaviest, such that … a body … moves on its own, as follows from 

what Stevin prescribes, after it has been moved on an even plane (Ibid., I, p. 212, my 

translation, my emphasis). 

As he appeals to this “principle” in a discussion concerned with a very humdrum practical 

query (why is it easier to climb stairs while running), it is clear that he would not have 

considered this to be a purely mathematical consequence;13 and neither did he hesitate to 

extrapolate the continuance of the motion once started by the least force. It is often noted that 

Beeckman was one of the first to explicitly introduce some kind of inertial principle in natural 

philosophy, as Descartes himself acknowledged his debt in this respect (before their fall-out 

later in life), but I think it is generally overlooked that Beeckman himself ascribed at least part 

of this innovation actually to Stevin.14 

The similarity in the way the inclined plane brings both Galileo and Beeckman to a proto-

inertial principle is already striking, but there is more to the story. At different places in his 

Journal Beeckman appeals to the work-principle, but at one place he adds the following 

specification: 

                                                 
13 There is even a passage where Beeckman uses the principle to explain why some people’s clothes become 
dirtier than other’s in walking on muddy roads (the dirt that is on one’s boots will try to continue its motion, thus 
the more irregular the movement of the feet the more dirt will be catapulted from the boots onto the clothes). 
Ibid., II, p. 277. 
14 For Descartes’ acknowledgement in his Cogitationes Privatae around 1619, cf. AT X, p. 219. I obviously 
don’t want to deny that Beeckman sees a much wider scope for his principle of the conservation of motion, as he 
also detaches it from the horizontal plane to which Stevin’s claim was limited, and places it in a cosmological 
context. 
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This would go in vacuo, but now it will differ as much as the air hinders the form of the 

bodies, about which I have earlier written at great length and often. But since we live in 

the air, and all our axes have a width, etc., in somma that there are impediments all over, 

so one must moreover investigate through experience how much the impediments 

hinder. In a fine gold-scale one shall apparently pull up 100 “aeskens” with 101; … The 

one now who wants to pull up with half the power as much, he must be content that he 

takes double the time; the one who wants to make it run at double speed, he must do 

double violence. The one who does everything as well as with a fine gold-scale, what 

does he want more? There is after all on 100 only 1 [left] to win, unless that someone 

thinks to have found the perpetuum mobile.  … Let us thus be content with our 

instruments already in use, which loose only one in hundred… (Ibid., III, pp. 15-16; my 

translation) 

It is clear that Beeckman understands the physical significance of the principle exactly along 

the lines sketched above: the frictionless situation is the limit situation which teaches us the 

boundaries of what is physically possible – as it is an exact expression of the physical 

impossibility of a perpetuum mobile.15 Beeckman obviously agrees with Stevin that we must 

have recourse to experience to determine the effect of friction, but he seems to be much more 

comfortable with appealing to the limit case as a physically sensible situation – as testified by 

his free use of the proto-inertial principle. Throughout his Journal Beeckman is keenly 

interested in the practical problem of determining the limits of advantage of a number of 

different mechanical instruments. And just as Galileo had already used his own proto-inertial 

principle in ascertaining this in the case of the inclined plane (the horizontal component of 

motion takes no force), so does Beeckman appeal freely to it in discussing e.g. the use of 

flywheels.16  

 

4.3 Wallis and Leibniz 

 

I now take a step of a few decades, and skip the essential contributions of Torricelli and 

Huygens to the line of development that I am sketching here. Both did a lot to sharpen the 

PMP by the use of what is commonly called “Torricelli’s principle” – which states that the 

centre of gravity of a combined system cannot rise out of itself – which especially Huygens 

                                                 
15 At several place in his Journal Beeckman discusses the impossibility of PM2 by appealing to the work-
principle; cf. e.g. II, pp. 351-2, 358-9, II, pp. 19-22, 306-7. 
16 Cf. Büttner 2008 for an interesting analysis which places these appeals in a wider context. 



 17 

put to good use in analysing the phenomenon of collision. But I think we can already come to 

some tentative conclusions on the basis of what we saw about Galileo and Beeckman.  

During his stay in Paris in the 1670’s Leibniz read a good deal of works which introduced him 

into the state of art of both mathematics and mechanics. One of the textbooks on mechanics 

which he studied with great care was John Wallis’s Mechanica (of which the first part 

appeared in 1670). He especially took note of the following proposition that Wallis introduced 

at the beginning of his treatise, before entering into the by now traditional exposition of the 

operation of the simple machines.17 

PROP VII. Effects are proportional to their adequate causes.  

… 

SCHOLIUM. I have considered that we have to make a premise of this universal 

proposition, since it opens the road by which we can go from purely mathematical 

speculation to physics; or better that it connects the one to the other. (Wallis 1670, pp. 

15-16; my translation.)18 

A decade later we find Leibniz, who has matured in an utterly original thinker in his own right 

expounding his methodology in natural philosophy in a letter to Pierre Bayle. He starts from a  

Loy de la nature que je tiens la plus universelle et la plus inviolable, scavoir qu’il y 

tousjours une parfaite Equation entre la cause pleine et l’effect entire. Elle ne dit pas 

seulement que les Effects sont proportionnels aux causes, mais de plus, que chaque 

effect entier est equivalent à sa cause. Et quoyque cet Axiome soit tout à fait 

Metaphysique, il ne laisse pas d’estre des plus utiles qu’on puisse employer en Physique, 

et il donne moyen de reduire les forces à un calcul de Geometrie. (Leibniz 1887, pp. 45-

46)  

According to Leibniz we can thus coherently and mathematically determine changes in 

physical nature because we can start from the metaphysical principle that in any change there 

is something that remains equal – there is always a perfect “equation” between cause and 

effect.  

It is of course impossible to do full justice to the complexities surrounding Leibniz’ use of this 

axiom, and its position in his wider metaphysical program. I here want to draw attention to its 

ground in the mechanical tradition stretching from Galileo to Wallis (whom had a manuscript 

of the preface of Galileo’s Mecaniche, in which the latter expounds his ideas on the physical 
                                                 
17 On Leibniz’s notes on this passage, see Fichant 1978, p. 229. 
18 “PROP. VII. Effectus sunt, causis suis adaequatis, proportionales. … SCHOLIUM. Universalem hanc 
Propositionem praemittendam etiam duxi; quoniam viam aperit, que, ex pure Mathematicà speculatione, ad 
Physicam transeatur; seu potius hanc & illam connectit.” 
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interpretation of the work-principle, in his personal library). 19  To correctly gauge this 

foundations, let me return one more time to the PMP. We have seen that in the use both 

Galileo and Beeckman make of this principle, they not only deny the possibility of a PM2, but 

they also posit the mathematical work-principle as a physically meaningful limit. At one place 

Galileo offers a very illuminating clarification on this two-sided aspect when he explains that 

his statement that nature cannot be defrauded by art not only implies that a lesser force cannot 

strictly speaking overcome a greater resistance, but that moreover a greater force cannot be 

completely applied in overcoming a lesser resistance! 20  It is of course only under this 

condition that in the absence of friction an applied force will be completely used in moving 

the resistance (in such a way that the moving force will move over a path that is to the path of 

the moved weight as the weight is to the force); i.e. it is only by appealing to both sides of the 

PMP that a coherent mathematization of mechanical phenomena becomes possible. And it is 

this aspect that Leibniz highlights in stressing that an effect must not merely be proportional 

but also equivalent to its cause. As we already noted with respect to Galileo’s concept of 

momento, this equivalence can not be explicitly expressed in a proportional framework (thus 

also Wallis’s apparent restriction of the principle), but Leibniz’s predilection for algebra 

allows him to give it also a mathematical expression – in another short treatise on this issue, 

Leibniz’s even states that mechanics is a part of algebra because of the aequationem between 

cause and effect.21 

As we saw, the attention to this double aspect of the PMP was fostered by the practical 

problem of determining the limits of what can be attained with mechanical instruments; but 

we now see that Leibniz very explicitly and self-consciously turns it into the metaphysical 

foundation for mathematical natural philosophy. When we want to find out the nature of the 

absolute reality underlying the changing appearances, we have to look for what remains 

invariant throughout. This nature can be abstracted from empirical phenomena by seeing 

which conceptual characterization allows you to bring the equivalences between causes and 

effects to light – exactly in the way that Galileo’s concept of momento already was introduced 

as an abstract characterization of the invariant structure underlying the operation of all 

mechanical instruments. This is of course brought out most famously in Leibniz’s criticism of 

the Cartesian measure for the force of motion, where he shows that this cannot be the true 

measure for the absolute force of a body, since in that case it would be possible to construct a 

                                                 
19 On Wallis’ owning the preface, cf. the letter to John Collins dated on August 7th 1666, in Wallis 2005, pp. 
279-280. 
20 Opere VIII, p. 572. 
21 Leibniz 1690, p. 236. 
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PM2 (on the assumption of the validity of Galileo’s empirical law for free fall) – which on 

Leibniz’s new metaphysical foundations implies that there would be no absolute equivalence 

between cause and effect. At the same time, this combined analysis of the phenomena of 

collision and free fall allows Leibniz to offer a more adequate measure for the force of motion, 

by simply inferring that it is that which is conserved throughout interactions (“vires motrices, 

id est eas quae conservandae sunt”; Leibniz 1690, his emphasis) – i.e. that which 

conceptually expresses the absolute invariancies underlying empirical phenomena. 

 

5. Causal structure, effective action – the technological basis of the new metaphysics of 

mathematizable nature 

 

What can we conclude from this very preliminary story which is meant to help filling in some 

of the historical background relevant for assessing the change from a metaphysics based on 

the Aristotelian concept of substance towards one based on the mathematical concept of 

function? As I tried to indicate in § 2, causal concepts play a crucial role within both 

perspectives, but the way they do so undergoes a major change. I think we can now be more 

precise on how this change could have come about, and what some of its implications have 

been. What is striking about PMP and its central role is the fact that it thinks causality ex 

negativo, as it were. Rather than starting from a consideration of what we can achieve it starts 

from a an analysis of what we cannot achieve. As I showed, natural philosophers like Galileo 

and Beeckman were exploring some kind of meta-perspective from which it was possible to 

judge whether certain actions could achieve their promised effects by appealing to the limits 

of what is achievable. It is this focus on the maximum efficiency of a machine that allows 

them to understand the causal structure of nature as apt for mathematization. This need not 

imply that the productive aspect of causality (which is absolutely central from an Aristotelian 

perspective) is put aside, but it is black-boxed to a certain extent. And as a direct consequence 

of this black-boxing, an interesting dynamical space for conceptual development is opened: 

we can now start construing the relevant (causal) concepts as these which allow us to bring 

the absolute limits expressed in PMP to light (cf. Galileo’s momento and Leibniz’s vires 

motrices), rather than by starting from the requirement that we must have some kind of more 

or less direct experience of the causal efficacy which is expressed by a putative causal concept. 

It is moreover this technological perspective – starting from the limitations on what we can 

achieve – that simultaneously creates the conceptual and epistemological space in which 
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idealization can take on a new sense as an approach towards these limits which can be 

expressed mathematically.  

 

 



 21 

BIBLIOGRAPHY 

 

Beeckman, Isaac (1939-1959). Journal tenu par Isaac Beeckman de 1604 à 1634. C. de 

Waard (ed.), Den Haag: Martinus Nijhoff. 

Büttner, Jochen (2008). “Big wheel keep on turning”, Galilaeana to appear. 

Cassirer, Ernst (1910). Substanzbegriff und Funktionbegriff. Untersuchungen über die 

Grundfragen der Erkenntniskritik. Berlin: Bruno Cassirer. 

Descartes, René (1982-1991). Oeuvres de Descartes. C. Adam & P. Tannery (eds.), Paris: 

Vrin. 

Drake, Stillman , and Drabkin, I.E. (1969). Mechanics in Sixteenth-Century Italy. Selections 

from Tartaglia, Benedetti, Guido Ubaldo, & Galileo. Madison, Milwaukee, & lOndon: 

The University of Wisconsin Press. 

Fichant, Michel (1978). “Les concepts fondamentaux de la mécanique solon Leibniz, en 

1676”, Studia Leibnitiana, Supplementa 17, pp. 219-232. 

Friedman, Michael (2001). Dynamics of Reason. Stanford: CSLI Publications. 

Gabbey, Alan (1985). “The mechanical philosophy and its problems: Mechanical 

explanations, impenetrability, and perpetual motion” in J.C. Pitt (ed.), Change and 

Progress in Modern Science, pp. 9-84, Dordrecht: Reidel. 

Galileo, Galilei (1968). Opere. A. Favaro (ed.), Firenze: Barbèra. 

Leibniz, G.W. (1686). “Brevis demonstration erroris memorabilis Cartesii etc.” Acta 

Eruditorum, pp. 161-163. 

Leibniz, G.W. (1690). “De causa gravitatis etc.”, Acta Eruditorum, pp. 228-239. 

Leibniz, G.W. (1887 [1978]). Die philosophischen Schriften 3. C.J. Gerhardt (ed.), 

Hildesheim, New York: Georg Olms Verlag.  

Leibniz, G.W. (1994). La réforme de la dynamique. De corporum concursu (1678) et autres 

textes inédits. M. Fichant (édition, présentation, traductions et commentaires), Paris: 

Vrin. 

Lorini, Buonaito (1609). Le fortificatione. (2nd edition.) Venetia : Francesco Rampazetto. 

Lohrmann, Dietrich (2006). “The idea and the reality of the perpetuum mobile in the middle 

ages” Technikgeschichte 73, pp. 227-252. 

Mach, Ernst ([1893] 1960). The science of mechanics: A critical and historical account of its 

development. LaSalle (Ill.): Open Court. 

del Monte, Guidobaldo (1581). Le mecaniche. Venetia: Appresso Francesco di Francesci 

Sanese. 



 22 

Ord-Hume, Arthur W.J.G. (1980). Perpetual motion. The history of an obsession. New York: 

St. Martin’s Press. 

Roux, Sophie (2007). “Découvrir le principe d’inertie” in S. Carvallo et S. Roux (eds.), Du 

nouveau dans les sciences. Paris: Vrin. 

Stevin, Simon (1955). The Principal Works of Simon Stevin. Volume 1. Amsterdam: C.V. 

Swets & Zeitlinger. 

Van Dyck, Maarten (2006). “Gravitating towards stability. The multiple roles of centre of 

gravity in Guidobaldo’s mechanics” History of science 44, pp. 373-407. 

Wallis, John (1670). Mechanica: sive, De Motu, Tractatus Geometricus. Pars Prima. London: 

Gulielmi Godbid 

Wallis, John (2005). Correspondence of John Wallis. Vol. II. P. Beeley and C.J. Scriba (eds.), 

Oxford: Oxford University Press. 


