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Abstract

The standard format of adaptive logics makes use of two so-called
strategies: reliability and minimal abnormality. While these are fairly
well-known and frequently applied, the question of whether and when the
two strategies are equi-epressive has so far remained unaddressed.

In this paper, we show that for a specific, yet significant class of premise
sets, the consequence set of an adaptive logic that uses the minimal abnor-
mality strategy can be expressed by another adaptive logic that uses the
reliability strategy. The basic idea is that we close the set of abnormalities
under conjunction. We show that the consequence sets obtained by both
logics from a premise set Γ is identical if and only if Γ is finite-conditional.
The latter property is specified in terms of a well-known characterization
of minimal abnormality. In addition, we discuss other (stronger) proper-
ties of premise sets that have been considered in the literature, showing
each of them to imply finite-conditionality.

Keywords: adaptive logics, strategies, computational complexity, pref-
erential semantics

1 Aim of this Paper

The standard format of adaptive logics (henceforth ALs) has been proposed as
a unifying framework to model defeasible reasoning forms [6, 7, 29, 8]. ALs
have been developed for various purposes: to capture the dynamics inherent to
belief revision [35], to model reasoning with inconsistent information [2, 4, 3],
to obtain strong yet conflict-tolerant deontic logics [13, 28], as the underlying

∗The author order is alphabetical. Both authors contributed equally to this manuscript.
We are indebted to Peter Verdée for helpful comments on previous versions.
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logic of naive set theory [38], etc.1 The standard format unifies these different
systems in terms of one basic underlying structure, thereby allowing us to study
their generic properties. In addition, the parametric characterization of ALs in
standard format (see the next paragraph) provides modularity, a simple recipe
to develop new logics and variants, to fine-tune logics for specific applications,
and to compare them.

Every AL in standard format is defined from three parameters: (i) a compact
Tarski-logic2 L, (ii) a set of abnormalities Ω, and (iii) a strategy. Throughout
this paper, we shall assume that L is supraclassical. This assumption is very
common in the literature on the standard format3 and is crucial for the aim and
results of this paper.

The AL strengthens L in a non-monotonic way, by assuming abnormalities
to be false “as much as possible”. The latter phrase becomes ambiguous as
soon as the premise set L-entails a disjunction of abnormalities, but none of its
disjuncts. This is where the strategy comes into play. Let us try to give a rough
idea of its role here; exact definitions are given in Section 2.

According to the reliability strategy (henceforth simply reliability), an ab-
normality Ai is “out” whenever it is a disjunct of a minimally L-derivable dis-
junction of abnormalities A1 ∨ . . . ∨ An. That is, reliability leaves open the
option that all the Ai in this disjunction might be true, whence the assumption
of their falsehood becomes rejected altogether. The minimal abnormality strat-
egy (henceforth simply minimal abnormality) takes a slightly more fine-grained
approach. Roughly speaking, in cases like this it allows us to still rely on the
assumption that at least some of the abnormalities Ai are false, though we do
not know which ones.

In most discussions and applications of the standard format, the two strate-
gies are considered separately, as two different ways to strengthen L, or even
as two different “styles of reasoning” [21].4 Reliability is syntactically more
straightforward, has a more cautious consequence relation, and is computation-
ally less arduous, whereas minimal abnormality is more natural from a semantic
viewpoint, yields a stronger consequence relation, and is computationally more
complex. Indeed, it is a well-established fact that the upper bound complexity
of ALs that use the minimal abnormality strategy is in general higher than that
of the corresponding ALs that use reliability (see Section 6.1), and that for a
given AL, its minimal abnormality-variant is always at least as strong as its
reliability-variant (see Section 2.4).

However, the question when (i.e., for what kind of logics and/or premise
sets) the two strategies are equi-expressive has not been investigated. Are the

1This list is by far not exhaustive. For a longer list and numerous references, see e.g. [9, 29].
2A Tarski-logic is one whose consequence relation is reflexive, transitive and monotonic

(see also Section 2).
3See e.g. [6, 7, 29, 9]. One exception is [23], where L is conceived in terms of a multi-

consequence relation, and where no classical connectives are assumed to be available in the
object language.

4In his [27], Straßer links the difference between both strategies to the debate on whether or
not so-called floating conclusions [15] should be validated by non-monotonic logics; he argues
that reliability invalidates them, whereas minimal abnormality allows for them.
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strategies at all that different when it comes to the respective consequence rela-
tions they yield? Or are there (interesting, significant) cases in which one may
obtain the same consequence set using another strategy?

The aim of this paper is to spell out exactly under which conditions a conse-
quence set obtained by minimal abnormality can also be obtained by reliability.
That is, let AL1 be defined by the triple (i) L, (ii) Ω and (iii) minimal ab-
normality. Where Ω∧ denotes the closure of Ω under conjunction, let AL2 be
defined from the triple (i) L, (ii) Ω∧ and (iii) reliability. We show that the set of
AL1-consequences of Γ equals the set of AL2-consequences of Γ if and only if Γ
is finite-conditional. The latter property is derived from a well-known alterna-
tive characterization of the minimal abnormality strategy in a straightforward
way. It is moreover a property which, as we show, holds for an interesting range
of applications of ALs (see especially Section 5.3).

This result has some interesting corollaries. For instance, it yields a sig-
nificant reduction of the upper bound complexity of the AL1-consequence set
for this specific class of premise sets, and it shows that for the premise sets
within the aforementioned class, one may readily use the proof theory of AL2
to illuminate inferences that are validated by AL1.

The outline of this paper is as follows. We present the standard format of ALs
in Section 2, with special attention to the differences between the two strategies.5

Next, we explain how it is possible that AL1 and AL2 often yield the same
consequence set (Section 3). In Section 4, we introduce and discuss the notion
of finite-conditionality, and show that for all finite-conditional premise sets Γ,
CnAL1(Γ) = CnAL2(Γ). Our proofs rely essentially on certain well-known
metatheoretic properties of ALs, some basic observations concerning ALs based
on sets of abnormalities of the type Ω∧ (spelled out in Section 3), and classical
logic properties. In Section 5 we list a number of weaker criteria on premise sets
that imply finite-conditionality and demonstrate that in many applications these
criteria are met. In Section 6 we present some corollaries concerning complexity
and the so-called Distribution property (see Section 2 for its definition). Section
7 concludes the paper and poses some related questions for future research.

2 The Adaptive Logics Framework

In this paper, we will restrict ourselves to the semantics of ALs in order to
provide a concise presentation. This is a typical selection semantics in the vein
of [26, 16, 17]: from the set of L-models of Γ, a subset is selected. In the
case of ALs, the selection depends on the set of abnormalities and the strategy
being used. A proof theory in terms of conditional, defeasible derivations and
a corresponding syntatic consequence relation can be found e.g. in [6].

5Our presentation is in line with that of [6], though we use a slightly different notation and
we do not presuppose any restriction on the set of abnormalities – we return to this point in
Section 2.1.
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2.1 Preliminaries

Where X,Y are sets, we write X ⊆f Y (X ⊂f Y ) to denote that X is a finite
(proper) subset of Y . Let ℘(X) be the power set of X, and ℘f (X) = {Y | Y ⊆f

X}. Where ≺ is a binary relation on the set X, let min≺(X) =df {x ∈ X |
for no y ∈ X, y ≺ x}.

Let W be the set of well-formed formulas of L a given logic L. It is assumed
in this paper that W is closed under the connectives ¬ and ∨; ∧ is defined from
these in the standard way. We use A,B, . . . as metavariables for members of
W; Γ,∆, . . . as metavariables for subsets of W; and A,B, . . . as metavariables
for subsets of ℘(W).

The set of all L-models (henceforth simply models) is denoted by M; mem-
bers of M are denoted by M,M ′, . . .. Let |= ⊆ M×W denote the satisfiability
relation for L. We assume that, for all M ∈ M and all A,B ∈ W, (C1) M |= ¬A
iff M 6|= A and (C2) M |= A ∨ B iff M |= A or M |= B. We moreover assume
that (C3) if every Γ′ ⊆f Γ has models, then also Γ has models.

Let M(Γ) = {M ∈ M | M |= A for all A ∈ Γ}. The semantic consequence
relation 
 ⊆ ℘(W) × W of L is defined from M and |= as follows: Γ 
 A iff
M |= A for all M ∈ M(Γ). Finally, Cn(Γ) =df {A | Γ 
 A}.

In view of the construction of 
, L is is a Tarski-logic. In other words, the
consequence relation Cn of L has the following three basic properties: mono-
tonicity (Cn(Γ) ⊆ Cn(Γ ∪ Γ′)), transitivity (where Γ′ ⊆ Cn(Γ), Cn(Γ ∪ Γ′) ⊆
Cn(Γ)), and reflexivity (Γ ⊆ Cn(Γ)). By (C1) and (C2) above, the connectives
¬ and ∨ behave classically in L. Finally, by (C1) and (C3) we can derive that
L is compact (Γ 
 A iff there is a Γ′ ⊆f Γ such that Γ′ 
 A).

The following notation will also be useful: where M ∈ M and ∆ ⊆ W,
∆(M) = {A ∈ ∆ | M |= A}. We will use this notation i.a. to represent what
is usually called the abnormal part Ab(M) of a model, given a fixed set of
abnormalities Ω. In our notation, we have Ab(M) = Ω(M).

Let ∆∧ denote the closure of ∆ under conjunction, i.e., the smallest set
Θ ⊇ ∆ which has the property: if A,B ∈ ∆∧, then A ∧ B ∈ ∆∧. Let ¬∆ =df

{¬A | A ∈ ∆}. Where ∆ is finite and non-empty, let
∧

∆ (
∨

∆) denote the
conjunction (disjunction) of all the members of ∆. Where ∆ = {A}, let

∧

∆ =
∨

∆ = A.
When giving concrete examples, we shall assume that L is propositional

classical logic with atoms p, q, . . ..
The set of abnormalities Ω is a subset of W. Note that we do not assume

that Ω is defined in terms of a logical form as is usually done in the context of
the standard format for ALs. This restriction is motivated in terms of a specific
conception of what it means for 
r

Ω and 
m

Ω to correspond to formal logics. In
the current paper, we abandon this restriction, as this allows us to present our
results in a more generic form, and to use simple examples. It is important to
note that all the meta-theory that is used in this paper is not dependent on the
former restriction. Also, for all examples given in this paper there are analogous
examples that respect the restriction on Ω.
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2.2 Minimal Abnormality

The basic idea behind the minimal abnormality strategy is to select from M(Γ)
those models that verify a ⊂-minimal set of abnormalities. A formula is a
consequence iff it holds in all the selected models.

Definition 1 Mm

Ω(Γ) = {M ∈ M(Γ) | for no M ′ ∈ M(Γ),Ω(M ′) ⊂ Ω(M)}.

Definition 2 Γ 
m

Ω A iff M |= A for every M ∈ Mm

Ω(Γ).

The semantics of minimal abnormality can be equivalently rephrased as a
preferential semantics in the vein of [26]. That is, where M,M ′ ∈ M, let M ≺Ω

M ′ iff Ω(M) ⊂ Ω(M ′). It can easily be checked that min≺Ω
(M(Γ)) = Mm

Ω(Γ).
The following is proven in [6] for the case where Ω is characterized in terms

of a specific logical form, and generalized to arbitrary sets Ω in [1]:

Theorem 1 ([1], Theorem 4.3) If M ∈ M(Γ), then there is an M ′ ∈ Mm

Ω(Γ)
with Ω(M ′) ⊆ Ω(M).

Equivalently, every relation ≺Ω is smooth w.r.t. every set M(Γ).6 Hence, 
m

Ω

falls within the well-known class P of smooth preferential systems, as defined
and studied in the classical paper [16] (note though that unlike [16] we allow for
infinite premise sets). As a result, this consequence relation satisfies a number of
basic meta-theoretic properties such as cumulativity, consistency preservation,
left and right absorption, etc. – we refer to [18] for definitions and an elaborate
discussion of these.

2.3 Reliability

The second strategy used in the standard format is rather different in style from
the first. We will first introduce its official semantics, after which we consider
its original characterization in terms of reliable conditions.7

Some notation: let SΩ(Γ) =df {∆ ⊆f Ω | Γ 

∨

∆}, S−Ω(Γ) =df min⊂(SΩ(Γ)),
and UΩ(Γ) =df

⋃

S
−
Ω(Γ).

8 The set UΩ(Γ) ⊆ Ω is often called the set of unreliable
abnormalities w.r.t. 〈Γ,Ω〉. WheneverB ∈ Ω−UΩ(Γ), it is a reliable abnormality
w.r.t. 〈Γ,Ω〉.

When we use reliability, we select exactly those models of Γ that verify no
reliable abnormalities w.r.t. 〈Γ,Ω〉:

Definition 3 Mr

Ω(Γ) = {M ∈ M(Γ) | Ω(M) ⊆ UΩ(Γ)}.

Definition 4 Γ 
r

Ω A iff M |= A for every M ∈ Mr

Ω(Γ).

6We say that ≺ ⊆ X ×X is smooth w.r.t. X iff for all x ∈ X, either x is ≺-minimal in X,
or there is a ≺-minimal y in X such that y ≺ x.

7To avoid additional notation, we spell out the second characterization in terms of the
semantic consequence relation 
. However, in its original formulation (see e.g. [6]) it is defined
syntactically, in terms of a consequence relation ⊢ which is sound and complete w.r.t. the L-
semantics.

8In the AL literature, S−
Ω
(Γ) is usually denoted by Σ(Γ).
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A different characterization of Mr

Ω(Γ) can also be given, which builds on
the semantics of minimal abnormality. Although it follows immediately from
certain well-known properties of ALs that were proven in [6], we make it explicit
here for the ease of reference.

Theorem 2 The following holds for all Γ:

1. If M(Γ) 6= ∅, then UΩ(Γ) =
⋃

M∈Mm

Ω
(Γ) Ω(M).

2. Mr

Ω(Γ) = {M ∈ M(Γ) | Ω(M) ⊆
⋃

M ′∈Mm

Ω
(Γ) Ω(M

′)}.

Proof. Ad 1. Follows immediately from Theorem 11.5 and Lemma 4 in [6].
Ad 2. Immediate in view of item 1 and Definition 3.

In the remainder, where x ∈ {r,m}, let Cnx

Ω(Γ) = {A | Γ 
x

Ω A}; we call this
set the set of adaptive consequences of Γ (modulo the strategy x).

As promised, we now explain the alternative characterization of 
r

Ω. The
idea behind that characterization proceeds in terms of conditional derivations.
That is, when we reason non-monotonically from Γ, we derive certain formulas
A from Γ together with a set of assumptions, each of which is “safe” in view
of Γ. In the AL framework, those assumptions are of the form ¬A, where A is
an abnormality. Hence, it remains to specify which abnormalities we can safely
assume to be (classically) false, given a certain premise set. Now, according to
reliability, these are exactly the abnormalities that are reliable w.r.t. 〈Γ,Ω〉. In
other words, the (classical) negations of reliable abnormalities correspond to the
assumptions that are “safe” in view of Γ.

Thus, A follows from Γ, given the set of abnormalities Ω and the reliability
strategy, iff A ∈ Cn(Γ ∪ ¬(Ω − UΩ(Γ))). Equivalently, given compactness and
supraclassicality of L, iff

(†) Γ 
 A ∨
∨

Θ for a Θ ⊆f Ω such that Θ ∩ UΩ(Γ) = ∅

In case (†) holds, we call every such Θ a safe condition for 〈Γ,Ω, A〉. In [6,
Theorem 7] is has been shown that (†) holds iff Γ 
r

Ω A.

2.4 Comparing the Strategies

To appreciate the importance of the two adaptive strategies, let us briefly point
at three differences between them. First, by Definition 1 and Theorem 2.2,
Mm

Ω(Γ) ⊆ Mr

Ω(Γ) for all Γ. Hence we have:

Theorem 3 ([6], Theorem 11.1) 
r

Ω ⊆ 
m

Ω.

It can easily be shown that minimal abnormality is often stronger than
reliability. We give one example here:

Example 1 Let Γ = {p ∨ q, p ∨ r, q ∨ r} and Ω = {p, q}. Then (i) Γ 
m

Ω r,
whereas (ii) Γ 6
r

Ω r. To see why (i) holds, note that there are two types of
models M ∈ Mm

Ω(Γ): those that verify p but falsify q, and those that verify q
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but falsify p. In both of them, r is true. Hence r follows when the strategy is
minimal abnormality.

On the other hand, both p and q are unreliable abnormalities, in view of the
(minimal) disjunction p ∨ q that follows from Γ. Hence, also models M that
verify both p and q yet falsify r are in Mr

Ω(Γ).

Second, there is an important metatheoretic difference between the two
strategies. That is, minimal abnormality validates the following principle [18,
Section 2.2]:

Cnm

Ω(Γ) ∩ Cnm

Ω(Γ
′) ⊆ Cnm

Ω(Cn(Γ) ∩ Cn(Γ′)) (Distribution)

As shown in [18, Section 3.4, Observation 3.4.6], every consequence relation that
is defined in terms of a (supraclassical) preferential semantics satisfies Distribu-
tion. This feature is particularly interesting in that it entails a number of more
familiar properties, including the following (see [18, Section 2.2, Observation
2.2.3]):

(i) If Γ ∪ {A} 
m

Ω B, then Γ 
m

Ω A ⊃ B (Deduction Theorem)
(ii) If Γ∪ {A} 
m

Ω C and Γ∪ {B} 
m

Ω C, then Γ∪ {A∨B} 
m

Ω C (Disjunction
in the Antecedent)

(iii) If Γ∪{A} 
m

Ω B and Γ∪{¬A} 
m

Ω B, then Γ 
m

Ω B (Reasoning By Cases)

Each of these three properties fail for 
r

Ω. The failure of the Deduction
Theorem for 
r

Ω was already noted in [6, Theorem 13.3]. Let us give a simple
example to illustrate this point.

Example 2 Let Γ = {p∨ q}, Ω = {p, q}, and A = p. Clearly, since p∨ q is not
a minimal disjunction of abnormalities that follows from Γ ∪ {p}, q is reliable
w.r.t. 〈Γ ∪ {p},Ω〉. Hence Γ ∪ {p} 
r

Ω ¬q. However, since both p and q are
unreliable w.r.t. 〈Γ,Ω〉, there are models M ∈ Mr

Ω(Γ) which verify both p and
q. Hence p ⊃ ¬q does not follow from Γ, if we use the reliability strategy.

The case for (ii) and (iii) proceeds analogous. For (ii), let Ω = {p, q}, Γ = ∅,
A = p, B = q, and C = ¬p ∨ ¬q. For (iii), let Ω = {¬p ∧ q,¬p ∧ ¬q}, Γ = ∅,
A = q and B = p.

Third and last, reliability has a lower worst case complexity than minimal
abnormality. We will return to this point in Section 6.1 and recall some results
from the literature that are relevant in this context.

3 Conjunctions of Abnormalities

In this section, we show how it is possible to approximate the minimal ab-
normality strategy by means of the reliability strategy, by closing the set of
abnormalities Ω under conjunction. Before we turn to some concrete examples,
we first note:

Theorem 4 Where Ω ⊆ Ω′ ⊆ Ω∧, Mm

Ω(Γ) = Mm

Ω′(Γ) for all Γ.
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Proof. “⊆” Assume that M ∈ Mm

Ω(Γ) −Mm

Ω′(Γ). So there is an M ′ ∈ M(Γ):
Ω′(M ′) ⊂ Ω′(M). Since Ω ⊆ Ω′, it follows immediately that (†) Ω(M ′) ⊆ Ω(M).

Let now A ∈ Ω′(M)−Ω′(M ′). Note that A = B1∧ . . .∧Bn for B1, . . . , Bn ∈
Ω. It follows that M |= Bi for each i ≤ n, whereas M ′ 6|= Bj for a j ≤ n.
Consequently, this Bj is not in Ω(M ′), and hence Ω(M ′) 6= Ω(M). By (†),
Ω(M ′) ⊂ Ω(M) — a contradiction to the fact that M ∈ Mm

Ω(Γ).
“⊇” Assume that M ∈ Mm

Ω′(Γ) − Mm

Ω(Γ). So there is an M ′ ∈ M(Γ):
Ω(M ′) ⊂ Ω(M). Since Ω ⊆ Ω′, it follows immediately that (‡) Ω′(M ′) 6= Ω′(M).

Suppose now that A ∈ Ω′(M ′). Hence A = B1∧ . . .∧Bn for B1, . . . , Bn ∈ Ω.
Since each Bi ∈ Ω(M ′), also each Bi ∈ Ω(M). So M |= Bi for all i ≤ n. Hence,
also M |= A. As a result, Ω′(M ′) ⊆ Ω′(M). By (‡), Ω′(M ′) ⊂ Ω′(M) — a
contradiction to the fact that M ∈ Mm

Ω′(Γ).

This implies that, where each of A,B,A∧B is in the set of abnormalities, it
is safe to ignore A∧B, when trying to determine the set of minimally abnormal
models of Γ. For the adaptive logician, it shows that adding conjunctions of
abnormalities will not make any difference for the consequence relation of the
adaptive logic of his choice, as long as he uses the minimal abnormality strategy.

For the reliability strategy, the picture is different. Let us start with the
positive result:

Theorem 5 Let Ω ⊆ Ω′ ⊆ Ω∧. Then Mr

Ω′(Γ) ⊆ Mr

Ω(Γ) for all Γ. Hence,

r

Ω ⊆ 
r

Ω′ .

Proof. Suppose M ∈ M(Γ) −Mr

Ω(Γ). It follows by Theorem 2.2 that M |= A
for some A ∈ Ω such that, for no M ′ ∈ Mm

Ω(Γ), M
′ |= A. Note that A ∈ Ω′.

By Theorem 4, there is no M ′ ∈ Mm

Ω′(Γ), such that M ′ |= A. But then, by
Theorem 2.2 also M 6∈ Mr

Ω′(Γ).

However, the converse of Theorem 5 fails. We illustrate this by means of
two simple examples.

Example 3 Let Γ = {p∨q, p∨r, q∨r} and Ω = {p, q}. As we saw in Example
1, Γ 
m

Ω r, whereas Γ 6
r

Ω r.
Let now Ω′ = {p, q, p ∧ q}. In that case, Γ 
r

Ω′ r. To see why, note that
p ∧ q does not follow classically from Γ. Nor does any minimal disjunction of
abnormalities which contains p∧ q. Hence, although p and q are both unreliable
abnormalities, p ∧ q is not, and hence it is false in every model M ∈ Mr

Ω′(Γ).
As a consequence, Γ 
r

Ω′ r.

Example 4 Let Γ = {p ∨ q, p ∨ r, q ∨ r} and Ω = {p, q, r}. Note that Γ 6
r

Ω

¬(p ∧ q ∧ r) — since each of the abnormalities p, q, r is unreliable, there is an
M ∈ Mr

Ω(Γ) that verifies all of them.
Let now Ω′ = Ω ∪ {p ∧ q, p ∧ r, q ∧ r} and Ω′′ = Ω′ ∪ {p ∧ q ∧ r}.
Note first that, by Theorem 4, Mm

Ω(Γ) = Mm

Ω′(Γ) = Mm

Ω′′(Γ). Also, every
M ∈ Mm

Ω(Γ) verifies all members of one of the following three sets:

∆1 = {p, q, p ∧ q}, ∆2 = {p, r, p ∧ r}, ∆3 = {q, r, q ∧ r}
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and falsifies all other members of Ω′′. By Theorem 2.1, each of the following
holds:

(i) p, q, r are unreliable abnormalities w.r.t. 〈Γ,Ω〉;
(ii) p, q, r, p ∧ q, p ∧ r, q ∧ r are unreliable abnormalities w.r.t. 〈Γ,Ω′〉;
(iii) p, q, r, p ∧ q, p ∧ r, q ∧ r are unreliable abnormalities w.r.t. 〈Γ,Ω′′〉.

In view of (i) and (ii), we can infer that there are models M ∈ Mr

Ω′(Γ) ⊆
Mr

Ω(Γ) such that M |= p∧q∧r. Hence, Γ 6
r

Ω ¬(p∧q∧r) and Γ 6
r

Ω′ ¬(p∧q∧r).
However, p ∧ q ∧ r is not unreliable w.r.t. 〈Γ,Ω′′〉, since it is false in every

model M ∈ Mm

Ω′′(Γ). Hence, Γ 
r

Ω′′ ¬(p ∧ q ∧ r).

As the examples illustrate, when we add conjunctions of abnormalities, the
resulting logic is stronger than the one we started with. In particular, the
more conjunctions of abnormalities we add, the closer – so it seems – we get
to 
m

Ω. Still, it remains to be specified when exactly the two sets of adaptive
consequences of Γ coincide.

4 The Equivalence Result

In this section, we show that Cnm

Ω(Γ) = Cnr

Ω∧(Γ) whenever Γ is finite-conditional.
This property relates to an alternative characterization of 
m

Ω, which we first
spell out. The characterization is already implicit in the soundness and com-
pleteness proofs of ALs from [6]; here we make it explicit and elaborate on
it.

4.1 Alternative Characterization of Minimal Abnormality

Safe Condition-Sets According to reliability, we may infer A from Γ iff A
follows from Γ together with a (finite) number of assumptions (negations of
abnormalities), which are “safe” in view of Γ (see page 6 and (†)).

We can do something similar for the minimal abnormality strategy. However,
instead of relying on one set Θ ⊆ ¬Ω of safe assumptions, we have to rely on a
set of such Θ. If we can guarantee that at least one of those sets of assumptions
is “safe”, we can infer A.

We now rephrase this in terms of abnormalities and make it exact.

Definition 5 Let D ⊆ ℘f (Ω) be a condition-set for 〈Γ,Ω, A〉 iff Γ 
 A ∨
∨

∆
for all ∆ ∈ D. D is a safe condition-set for 〈Γ,Ω, A〉 iff (i) it is a condition-
set for 〈Γ,Ω, A〉 and (ii) for every M ∈ Mm

Ω(Γ), there is a ∆ ∈ D such that
∆ ∩ Ω(M) = ∅.

Clause (i) of Definition 5 means that, for each set of assumptions on which we
rely, A should follow from Γ together with this set of assumptions. Clause (ii)
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implies that in every minimally abnormal model, there should be at least one
such set of assumptions such that each member of it holds in this model.9

The following theorem is an immediate consequence of Theorem 9 and
Lemma 4 from [6].

Theorem 6 Γ 
m

Ω A iff there is a safe condition-set for 〈Γ,Ω, A〉.

Being Finite-Conditional In some cases, Γ 
m

Ω A, but all safe condition-sets
for 〈Γ,Ω, A〉 are infinite.

Example 5 Let Γ = {pi∨pj | i, j ∈ N, i 6= j}∪{q∨pi | i ∈ N}; Ω = {pi | i ∈ N}.
Then every safe condition-set for 〈Γ,Ω, q〉 is a superset of D = {{pi} | i ∈ N}.
The reason is that for each M ∈ Mm

Ω(Γ) there is an i ∈ N for which Ω(M) =
Ω \ {pi}.

For cases like the one in Example 5, one may ask whether the interpretation
in terms of safe assumptions is still sensible. That is, what does it mean exactly,
that we can rely on at least one of infinitely many sets of assumptions? We will
not answer this question positively or negatively, as doing so would take us far
beyond the scope of the present paper. Suffice to say that in some interesting
cases this problem does not arise.

Definition 6 We call Γ finite-conditional w.r.t. Ω iff for all A ∈ Cnm

Ω(Γ), there
is a finite, safe condition-set for 〈Γ,Ω, A〉.

It can be easily observed that, whenever {Ω(M) | M ∈ Mm

Ω(Γ)} is finite, then
Γ is finite-conditional w.r.t. Ω. As a consequence, all the premise sets presented
in examples 1–4 were finite-conditional w.r.t. to the resp. sets of abnormalities.
This raises the question: given some L and Ω, for what sub-classes of premise
sets do we get finite-conditionality? We return to this in Section 5, where we
provide a number of increasingly stronger restrictions on Γ and Ω, each of which
implies the finite-conditionality of Γ w.r.t. Ω. We will see in Section 5.3 that for
many premise sets that are used in practical applications, such as finite premise
sets, finite conditionality indeed holds.

Nevertheless, in view of Example 5, it is clear that premise sets that are not
finite-conditional can be readily constructed whenever some basic conditions
are fulfilled. We briefly discuss these here, before we focus again on the class of
finite-conditional premise sets.

First, if Ω consists of infinitely many logically independent formulas, and
there is a formula B such that B is itself contingent w.r.t. each abnormality,
then we can construct a premise set which is not finite-conditional. Let us make
this formally precise.

Definition 7 Ω is independent iff for all ∆,Θ ⊆ Ω, ∆ 

∨

Θ implies Θ∩∆ 6=
∅.

9The term “(safe) condition-set” is new, but it is clearly foreshadowed in the soundness
and completeness proofs for ALs. We discuss this more in the context of Remark 1 in Section
5.2.
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Definition 8 B is contingent w.r.t. Ω iff for each ∆ ⊆ Ω, M(∆∪¬(Ω−∆)) 6=
∅ implies M(∆ ∪ ¬(Ω−∆) ∪ {B}) 6= ∅ 6= M(∆ ∪ ¬(Ω−∆) ∪ {¬B}).

Note that according to Definition 7, Ω is independent iff for each ∆ ⊂ Ω there is
a model M such that Ω(M) = ∆. That B is contingent w.r.t. Ω can be equally
expressed by: whenever there is an L-model M with the abnormal part ∆ (i.e.,
Ω(M) = ∆) then there are MB and M¬B with the same abnormal part (i.e.,
Ω(MB) = Ω(M¬B) = ∆) such that MB |= B and M¬B |= ¬B (see also Lemma
2 below).

Theorem 7 If Ω is infinite and independent and there is an Ω-contingent B,
then there is a premise set that is not finite-conditional.

Instead of proving this theorem we show it on a more general level: Ω only
needs to have an independent subset, and B should only be contingent w.r.t all
subsets of this infinite subset.10

Definition 9 Ω′ ⊆ Ω is Ω-independent iff for all ∆ ⊆ Ω′ and for all Θ ⊆ Ω,
∆ 


∨

Θ implies Θ ∩∆ 6= ∅.

The following lemma illustrates this property:

Lemma 1 Where Ω is infinite and Ω′ ⊆ Ω: Ω′ is Ω-independent iff for each
∆ ⊆ Ω′ there is an L-model M for which Ω(M) = ∆.

Proof. (⇒) Suppose there is a ∆ ⊆ Ω′ such that there is no L-model M with
Ω(M) = ∆. Hence, ∆ ∪ ¬(Ω −∆) is L-trivial. By the compactness of L there
are ∆f ⊆f ∆ and Θf ⊆ Ω−∆ such that ∆f ∪

¬Θf is L-trivial. Case 1: ∆ ⊂ Ω.
Hence, by classical properties of ∨ and ¬, ∆f 


∨

Θf . Since ∆f ∩Θf = ∅ this
shows that Ω′ is not Ω-independent. Case 2: ∆ = Ω. Since Ω is infinite there
is a A ∈ Ω−∆f . Since ∆f is trivial, also ∆f 
 A. This again shows that Ω′ is
not Ω-independent.

(⇐) Suppose Ω′ is not Ω-independent. Hence, there are ∆ ⊆ Ω′ and Θ ⊆ Ω
for which ∆ ∩ Θ = ∅ and ∆ 


∨

Θ. Thus, there is no L-model M for which
Ω(M) = ∆.

Definition 10 Where Ω′ ⊆ Ω: B is contingent w.r.t. 〈Ω′,Ω〉 iff for each
∆ ⊆ Ω′, M(∆ ∪ ¬(Ω−∆)) 6= ∅ implies M(∆ ∪ ¬(Ω−∆) ∪ {B}) 6= ∅ 6=
M(∆ ∪ ¬(Ω−∆) ∪ {¬B}).

Lemma 2 Where Ω′ is Ω-independent and Ω is infinite: B is contingent w.r.t.
〈Ω′,Ω〉 iff for all ∆ ⊆ Ω′ and all Θ ⊆ Ω, (∆ 


∨

Θ iff ∆ ∪ {B} 

∨

Θ iff
∆ ∪ {¬B} 


∨

Θ).

10This generalization is motivated by various specific ALs to which Definition 7 does not
apply. For instance, consider the case of inconsistency-ALs which use as their abnormalities
all formulas of the form A ∧ ∼A (where ∼ is a paraconsistent negation). Here we may have
that A ∧ ∼A ⊢ B ∧ ∼B for a B 6= A, e.g. when A = B ∧ ∼B.
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Proof. (⇒) Suppose B is B is contingent w.r.t. 〈Ω′,Ω〉. Case 1: ∆∪{B} 

∨

Θ
where ∆ ⊆ Ω′ and Θ ⊆ Ω. Hence, ∆ ∪ ¬Θ ∪ {B} is L-trivial. By the Ω-
independence of Ω′ and since Ω is infinite we know by Lemma 1 that ∆∪¬(Ω−
∆) is L-non-trivial. Hence, by the supposition also ∆ ∪ ¬(Ω − ∆) ∪ {B} and
∆ ∪ ¬(Ω−∆) ∪ {¬B} are L-non-trivial. By the triviality of ∆ ∪ ¬Θ ∪ {B} this
means that ∆ ∩Θ 6= ∅. Hence ∆ 


∨

Θ and ∆ ∪ {¬B} 

∨

Θ.
Case 2: ∆ ∪ {¬B} 


∨

Θ. In an analogous way we can show that ∆ 

∨

Θ
and ∆ ∪ {B} 


∨

Θ.
Case 3: ∆ 


∨

Θ. Then by the monotonicity of L also ∆ ∪ {B} 

∨

Θ and
∆ ∪ {¬B} 


∨

Θ.
(⇐) Suppose B is not contingent w.r.t. 〈Ω′,Ω〉. Hence, there is a ∆ ⊆ Ω′

for which ∆ ∪ ¬(Ω−∆) is L-non-trivial, but either ∆ ∪ ¬(Ω−∆) ∪ {B} or
∆∪¬(Ω−∆)∪{¬B} is L-trivial. Hence, either ∆∪{¬B} 


∨

Θ or ∆∪{B} 

∨

Θ while ∆ 1
∨

Θ.

Theorem 8 If (a) Ω has an infinite Ω-independent subset Ω′ = {Ai | i ∈ N}
and (b) B is contingent w.r.t. 〈Ω′,Ω〉, then Γ = {Ai∨Aj | 1 ≤ i < j}∪{B∨Ai |
1 ≤ i} is not finite-conditional.

Proof. Note first that for each i ∈ N there is an M ∈ Mm

Ω(Γ) such that
Ω′(M) = Ω′ − {Ai}. Assume this is not so. Then (Ω′ − {Ai}) ∪ {B} 
 Ai.
By (a), (b) and Lemma 2 also Ω′ − {Ai} 
 Ai, in contradiction to (a).

Assume there is a finite safe condition-set D for 〈Γ,Ω, B〉. Let ∆ ∈ D. Hence,
Γ 
 B ∨

∨

∆. By classical properties of ∨ and ¬, Γ ∪ {¬B} 

∨

∆. Obviously,
Γ∪{¬B} and Ω′∪{¬B} are L-equivalent. Hence, Ω′∪{¬B} 


∨

∆. By (a), (b)
and Lemma 2, Ω′ 


∨

∆. By (a), there is an i ∈ N such that Ai ∈ ∆. Hence,
each ∆ ∈ D contains some Ai. Let n be the maximal i with this property. Since
there is a model M with Ω′(M) = Ω′ − {An+1} and thus for all ∆ ∈ D we have
Ω′(M) ∩∆ 6= ∅, this is a contradiction.

4.2 The Equivalence Result

Being finite-conditional turns out to be a necessary and sufficient condition for
whether Cnm

Ω(Γ) = Cnr

Ω∧(Γ). This will be shown in the current section. In
view of Theorem 6 it suffices to show that,

Theorem 9 Γ 
r

Ω∧ A iff there is a finite safe condition-set for 〈Γ,Ω, A〉.

We first show the left-to-right direction (Corollary 1, see below) and then
the right-to-left direction (Theorem 11, see below).

Let ∆∧k = {A1 ∧ . . . ∧Aj | A1, . . . , Aj ∈ ∆ and j ≤ k}. We have:

Theorem 10 If {∆1, . . . ,∆k} is a safe condition-set for 〈Γ,Ω, A〉, then Γ 
r

Ω∧k

A.

Proof. Let D = {∆1, . . . ,∆k} be our safe condition-set for 〈Γ,Ω, A〉 and let E

be such that it contains all sets Θ = {A1, . . . , Ak} where Ai ∈ ∆i for all i ≤ k.
Our proof relies on two insights. First,

12



Fact 1 Γ 
 A ∨
∨

Θ∈E

∧

Θ.

Note first that E is finite since each ∆i is finite. Second, since Γ 
 A ∨
∨

∆i

for each i ≤ k, also Γ 
 A ∨
∧

i≤k

∨

∆i. The fact then follows immediately by
classical properties of ∨ and ∧. Our second fact is,

Fact 2 For each Θ ∈ E and each M ∈ Mm

Ω(Γ), M 6|=
∧

Θ.

This holds since by Definition 5, there is a i ≤ k such that M 6|= B for all
B ∈ ∆i and each Θ ∈ E contains at least one member of ∆i.

The rest of the proof is now straight-forward: Since by Theorem 4, Mm

Ω(Γ) =
Mm

Ω∧k , Fact 2 also applies to all M ∈ Mm

Ω∧k(Γ). By Theorem 2.2, each M ∈
Mr

Ω∧k(Γ) falsifies
∧

Θ for all Θ ∈ E. Hence, by Fact 1, Γ 
r

Ω∧k A.

For a concrete example of how the reduction works, consider again Example
4 from Section 3. We saw there that Γ 
m

Ω ¬(p ∧ q ∧ r). Note that D =
{{p}, {q}, {r}} is a safe condition-set for 〈Γ,Ω,¬(p∧ q∧ r)〉. From D, we obtain
a single safe condition w.r.t. 〈Γ,Ω∧3,¬(p ∧ q ∧ r)〉.

The converse of Theorem 10 fails. That is, one may need at least m condi-
tions ∆ ⊆f Ω in order to obtain a safe condition-set for 〈Γ,Ω, A〉, even though
Γ 
r

Ω∧k A for a k < m. This is illustrated by the following example.

Example 6 Γ = {p ∨ q, r ∨ s}, Ω = {p, q, r, s}. Then Γ 
r

Ω∧2 (¬p ∨ ¬q) ∧
(¬r ∨ ¬s); the corresponding safe condition is {p ∧ q, r ∧ s}. However, ev-
ery safe condition-set for 〈Γ,Ω, (¬p ∨ ¬q) ∧ (¬r ∨ ¬s)〉 is a superset of D =
{{p, r}, {q, r}, {p, s}, {q, s}}.

Let us now turn to the set of all consequences of a given Γ. First, recall that

r

Ω∧k ⊆ 
r

Ω∧ (see Theorem 5). Hence by Theorem 10,

Corollary 1 If there is a finite, safe condition-set for 〈Γ,Ω, A〉, then Γ 
r

Ω∧ A.

We can also prove the converse of Corollary 1.

Theorem 11 If Γ 
r

Ω∧ A, then there is a finite, safe condition-set for 〈Γ,Ω, A〉.

Proof. While in the previous proof we started with a safe-condition set D and
constructed from it the set E that gave us a reliable condition, we now proceed
inversely. Since Γ 
r

Ω∧ A, we know that there is a finite set E of finite subsets
of Ω such that Γ 
 A∨

∨

Θ∈E

∧

Θ such that for each Θ ∈ E,
∧

Θ /∈ UΩ∧(Γ). Let
D be the finite set of all sets ∆ =

⋃

Θ∈E
{AΘ} where AΘ ∈ Θ,

Fact 3 For all ∆ ∈ D, Γ 
 A ∨
∨

∆.

This follows by simple classical properties of ∨ and ∧. Note also that,

Fact 4 For each M ∈ Mm

Ω∧(Γ), there is a ∆ ∈ D such that M 6|=
∨

∆.
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The reason is that by Theorem 2.2, M 6|=
∧

Θ for all Θ ∈ E. Hence, for each
Θ ∈ E, there is a AΘ ∈ Θ such that M 6|= AΘ. Since

⋃

Θ∈E
{AΘ} ∈ D, the fact

is proven.
In order to complete the main proof we only have to recall that by Theorem

4, Mm

Ω(Γ) = Mm

Ω∧(Γ). Hence, by Fact 3 and Fact 4, D is a finite safe condition-
set for 〈Γ,Ω, A〉.

Putting Theorems 10 and 11 together, we obtain:

Corollary 2 If Γ 
r

Ω∧ A, then there is a k ∈ N such that Γ 
r

Ω∧k A.

Note that the k can get arbitrarily high, as the following example shows:

Example 7 Let k ∈ N, Ω = {p1, . . . , pk} and Γ = {q ∨ pi | 1 ≤ i ≤ k} ∪
{
∨

1≤i≤k

∧

1≤j≤k,j 6=i pj
}

. Note that Γ 
r

Ω∧k q while Γ 1
r

Ω∧k−1 q. The reason is
that for each M ∈ Mr

Ω∧k(Γ) we have Ω(M) = Ω−{pi} for some i ≤ k. For each
such model M |= q since M |= q ∨ pi and M 6|= pi. The situation is different for
Mr

Ω∧k−1(Γ) since there is a model M for which Ω(M) = Ω and M 6|= q as the
reader can easily verify.

Finally, Theorem 6 and Theorem 9 allow us to characterize the class of all
premise sets Γ for which Cnm

Ω(Γ) = Cnr

Ω∧(Γ):

Corollary 3 Γ is finite-conditional w.r.t. Ω iff Cnm

Ω(Γ) = Cnr

Ω∧(Γ).

In order to see this suppose Γ is finite-conditional w.r.t. Ω and A ∈ Cnm

Ω(Γ).
Hence, there is a finite safe condition-set for 〈Γ,Ω, A〉. Hence, by Theorem 9,
A ∈ Cnr

Ω∧(Γ). Similarly, if A ∈ Cnr

Ω∧(Γ) then there is a finite safe condition-set
for 〈Γ,Ω, A〉 and hence by Theorem 6, A ∈ Cnm

Ω(Γ). Now suppose Γ is not finite-
conditional w.r.t. Ω. Then there is an A ∈ Cnm

Ω(Γ) such that there is a safe-
condition for 〈Γ,Ω, A〉 but there is no finite one. By Theorem 9, A /∈ Cnr

Ω∧(Γ).
Note that Corollary 3 expresses an equivalence. Thus, we gain a neces-

sary and sufficient condition that a premise set Γ has to fulfill —namely finite-
conditionality w.r.t. Ω— so that the consequence sets Cnm

Ω(Γ) and Cnr

Ω∧(Γ)
coincide.

In view of the fact that for many 〈L,Ω〉, finite conditionality holds only if we
restrict the consequence relations to a sub-class of premise sets (see Theorem 8),
it is important to notice that Corollary 3 does not establish a ‘global’ alternative
characterization of 
m

Ω in the sense that 
m

Ω = 
r

Ω∧ . This equality holds only
restricted to finite-conditional premise sets.

5 Sufficient Conditions for Finite-Conditionality

In this section, we discuss some alternative criteria known from the literature
that warrant the finite-conditionality of premise sets. An overview of the results
in this section is provided in Figure 1. Unlike finite-conditionality, which is both
sufficient and necessary for Cnm

Ω(Γ) = Cnr

Ω∧(Γ) (see Corollary 3), the criteria
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Γ is finite-
conditional w.r.t. Ω

Cnr

Ω∧(Γ) = Cnm

Ω(Γ)

Mm

Ω(Γ)
is definable

Mm

Ω(Γ) =
M(Cnm

Ω(Γ))

for each choice set
∆ of P⋆

Ω(Γ)
there is a finite
choice set Θ ⊆ ∆

of P⋆
Ω(Γ)

{Ω(M) | M ∈ Mm

Ω(Γ)}
is finite

PΩ(Γ)
is finite

UΩ(Γ)
is finite

S
−
Ω(Γ)

is finite
each Θ ∈ PΩ(Γ)

is finite

Ω is finite

Figure 1: Overview of the restrictions

discussed in this section are (in general) merely sufficient. What makes them
independently interesting is the fact that often they may be easier to verify (such
as the fact that Ω is finite). Additionally, it is interesting to notice that the
domain of finite-conditional premise sets is a proper super-class of the domain
of premise sets that satisfy these properties.

5.1 Definability

There is a sufficient condition for our reduction, which relates to a well-known
topic in the study of non-monotonic consequence relations. We call M′ ⊆ M
definable iff there is a Θ such thatM′ = M(Θ). Definability can be alternatively
expressed as follows:

Theorem 12 Mm

Ω(Γ) is definable iff Mm

Ω(Γ) = M(Cnm

Ω(Γ)).

Proof.(⇒) Suppose Θ is such that (1) M(Θ) = Mm

Ω(Γ). This implies that
Θ ⊆ Cnm

Ω(Γ). Hence, (2) M(Cnm

Ω(Γ)) ⊆ M(Θ). By Definition 1, (3) Mm

Ω(Γ) ⊆
M(Cnm

Ω(Γ)). By (1), (2) and (3), Mm

Ω(Γ) = M(Cnm

Ω(Γ)). (⇐) Trivial.

Definability is a sufficient criterion for the adequacy of our reduction, as the
following theorem shows:

Theorem 13 If Mm

Ω(Γ) = M(Cnm

Ω(Γ)), then Γ is finite-conditional w.r.t. Ω.
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Proof. Suppose the antecedent is true and assume Γ 
m

Ω A such that all safe
condition-sets for 〈Γ,Ω, A〉 are infinite. Let D be such an infinite safe condition-
set (which exists by Theorem 6). Hence, for each model M ∈ Mm

Ω(Γ) there
is a ∆M ∈ D such that Ω(M) ∩ ∆M = ∅ and D

′ = {∆M | M ∈ Mm

Ω(Γ)} is
an infinite safe condition-set. By our antecedent this immediately means that
Cnm

Ω(Γ) ∪ {
∨

∆ | ∆ ∈ D
′} has no L-models. By the compactness of L, there

is a finite subset E of D′ such that Cnm

Ω(Γ) 
 ¬
∧

∆∈E

∨

∆ and hence by our
assumption, Γ 
m

Ω ¬
∧

∆∈E

∨

∆. Hence, each model M ∈ Mm

Ω(Γ) falsifies some
∨

∆ for some ∆ ∈ E. But that shows that E is a finite safe condition-set for
〈Γ,Ω, A〉,—a contradiction.

Corollary 4 If Mm

Ω(Γ) is definable, then Γ is finite-conditional w.r.t. Ω.

The converse of Theorem 13 fails, in view of the following example:

Example 8 Let Ω = {pi | i ∈ N} and Γ = {pi ∨ pj | i, j ∈ N, i 6= j}. It is easily
seen that Cn(Γ) = Cnm

Ω(Γ) which by Theorems 3 and 4 immediately implies
that Cnr

Ω∧(Γ) = Cnm

Ω(Γ). Thus, by Corollary 3, Γ is finite-conditional. Note
also that there is a model M ∈ M(Γ) = M(Cn(Γ)) such that M |= pi for each
i ∈ N. In contrast, every minimally abnormal model of Γ falsifies exactly one
abnormality pi (i ∈ N). Hence, M /∈ Mm

Ω(Γ).

In [25, Chapter 5], Schlechta studies so-called definability-preserving struc-
tures. When translated to the current context, the triple 〈L,Ω, x〉 is a definability-
preserving structure iff for all Γ,Mx

Ω(Γ) is definable. In other words, a definability-
preserving structure based on L is one that ensures that the set of selected mod-
els can always be characterized by means of a (possibly infinite) set of formulas,
i.e., there is a set of formulas ∆ such that Mx

Ω(Γ) = M(Γ ∪∆).
Since by Definition 3, Mr

ΩΓ = M(Γ∪¬(Ω−UΩ(Γ))), every structure 〈L,Ω, r〉
is definability-preserving. For the minimal abnormality strategy, this does not
hold — see again 8.

Relying on Theorem 12, Theorem 13, and Corollary 3, we have:

Corollary 5 If 〈L,Ω,m〉 is definability-preserving, then 
m

Ω = 
r

Ω∧ .

In view of Example 8 it is clear that whenever Ω has an infinite subset with
logically independent formulas (see Theorem 8) then 〈L,Ω,m〉 is not definability-
preserving. On the other hand, we have definability-preserving structures when-
ever, for instance, we deal with finite sets of abnormalities Ω.

5.2 Syntactic Criteria in View of Γ

Recall the second clause from the definition of a safe condition-set D for 〈Γ,Ω, A〉:
(ii) for each M ∈ Mm

Ω(Γ), there is a ∆ ∈ D such that ∆ ∩ Ω(M) = ∅.
Now interestingly, it is possible to avoid talk of minimally abnormal models,

yet still fully characterize (ii), by looking at disjunctions of abnormalities that
follow from Γ (see e.g., [5]). Let us briefly explain how this works.
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Recall that, according to the reliability strategy, the sets in S
−
Ω(Γ) contain

the abnormalities that we cannot safely assume to be false in view of Γ (see
Definition 3.) However, we may also interpret S−Ω(Γ) in a more fine-grained way
and, as we now show, this is what happens according to the minimal abnormal-
ity strategy. That is, as long as we ensure that at least one disjunct of each
disjunction of abnormalities is taken to be true, we can assume all others to be
false. In other words, instead of looking at the set

⋃

S
−
Ω(Γ), we may look at the

set of all choice sets11 of S−Ω(Γ). Moreover, where Θ,Θ′ are two such choice sets
and Θ ⊂ Θ′, we may ignore Θ′, as it represents an interpretation of S−Ω(Γ) that
is more abnormal than the one given by Θ.

Let PΩ(Γ) be the set of all ⊂-minimal choice sets of S−Ω(Γ).
12 We have:

Theorem 14 (Lemma 4, [6]) If Γ has models, then PΩ(Γ) = {Ω(M) | M ∈
Mm

Ω(Γ)}.

Remark 1 Consequently, if Γ has models, then D is a safe condition-set for
〈Γ,Ω, A〉 iff (i) for all ∆ ∈ D, Γ 
 A∨

∨

∆ and (ii’) for every Θ ∈ PΩ(Γ) there
is a ∆ ∈ D such that Θ ∩∆ = ∅.

This observation shows that the notion safe condition-set was clearly foreshad-
owed in the literature on adaptive logics since it is well-known that A is an
adaptive consequence of Γ according to the minimal abnormality strategy iff (i)
and (ii) above are fulfilled (see e.g., [5, Theorem 8]). Hence, the characteriza-
tion of adaptive consequences in terms of safe condition-sets is well-known, just
there was no name for these sets.13

This insight helps us in the remainder to specify conditions that are merely
a function of PΩ(Γ). These conditions were already studied in the context of
combined and prioritized adaptive logics [34]. It turns out that the weakest of
these conditions is still stronger than the property of being finite-conditional.

We first recall some basic observations from [34]:

Theorem 15 Each of the following holds:

0. Ω is finite implies S
−
Ω(Γ) is finite;

1. S
−
Ω(Γ) is finite iff each Θ ∈ PΩ(Γ) is finite iff UΩ(Γ) is finite;

2. If each Θ ∈ PΩ(Γ) is finite, then PΩ(Γ) is finite.

Note that the converse of item 2 fails. Take for instance Γ = {pi | i ∈ N} where
Ω = Γ. Obviously PΩ(Γ) = {Ω} and Ω is infinite.

11∆ is a choice set of A iff ∆ ∩Θ 6= ∅ for all Θ ∈ A.
12In the AL literature, PΩ(Γ) is usually denoted by Φ(Γ).
13When adaptive logicians speak about conditions, what they usually have in mind is the

dynamic proof theory that comes with adaptive logics. Formulas in dynamic proofs are derived
on conditions, i.e., finite sets of abnormalities that are considered false. Each strategy is
associated with a specific retraction mechanism in view of which lines are marked whose
condition is to be considered unsafe. A formula A is derivable on a condition ∆ iff A ∨

∨
∆

is L-derivable from Γ. In view of Remark 1 this motivates our terminological choice “safe
condition-set”.
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There is a stronger criterion in terms of choice sets than the ones in Theorem
15 that is equivalent to the definability of Mm

Ω(Γ). This provides us a bridge to
the results of Section 5.1. Where P

⋆
Ω(Γ) = {Ω−∆ | ∆ ∈ PΩ(Γ)} we define:

(⋆) for each choice set ∆ of P⋆
Ω(Γ), there is a finite choice set Θ of P⋆

Ω(Γ) such
that Θ ⊆ ∆

Remark that if Θ is a finite choice set of P⋆
Ω(Γ), then by Theorem 14, for every

M ∈ Mm

Ω(Γ), there exists an A ∈ Θ such that A /∈ Ω(M), and hence Γ 
m

Ω

∨

¬Θ.
Also, by Theorem 14, if Γ 
m

Ω

∨

¬Θ then Θ is a finite choice set of P⋆
Ω(Γ).

The following simple observation relates (⋆) to the conditions in Theorem
15:

Theorem 16 If PΩ(Γ) is finite, then (⋆).

Proof. Note first:

Fact 5 If A is a finite set of sets and ∆ is a choice set of A then there is a
finite ∆′ ⊆ ∆ that is a choice set of A.

Let ∆ be such a choice set. Then for every Θ ∈ A there is at least one AΘ ∈ ∆.
Let ∆′ =

⋃

Θ∈A
{AΘ}. Since A is finite, so is ∆′.

Our theorem follows immediately by this fact and since the finiteness of
PΩ(Γ) implies the finiteness of P⋆

Ω(Γ).

The converse of Theorem 16 fails as demonstrated in the following example.

Example 9 Take Ω = {pi | i ∈ N} and Γ = {p0 ∨ p1, p2 ∨ p3, . . .}. Then PΩ(Γ)
consists of all sets {p2n+ǫn | n ∈ N} where each ǫn is either 0 or 1. Hence,
PΩ(Γ) is infinite. It is easy to see that for each choice set ∆ of P⋆

Ω(Γ) there is
a choice set Θ ⊆ ∆ of P⋆

Ω(Γ) that has the form {p2n, p2n+1} where n ≥ 0.

Finally, we relate (⋆) to definability as defined in Section 5.1:

Theorem 17 Mm

Ω(Γ) = M(Cnm

Ω(Γ)) iff (⋆).

Proof. (⇒) Suppose there is an infinite choice set ∆ of P⋆
Ω(Γ) such that there

is no finite choice set Θ of P
⋆
Ω(Γ) for which Θ ⊂ ∆. Hence there is no fi-

nite Θ ⊂ ∆ for which Γ 
m

Ω

∨

¬Θ. Note that by Theorem 14, we have
(‡) for each M ∈ Mm

Ω(Γ), there is a A ∈ ∆ such that M |= ¬A. Assume
there is no M ∈ M(Cnm

Ω(Γ)) such that M |= B for all B ∈ ∆. Hence,
Cnm

Ω(Γ) ∪ ∆ is L-trivial which means by the compactness of L that there is
a finite Θ ⊂ ∆ such that Cnm

Ω(Γ) 

∨

¬Θ. By Theorem 14 and since we al-
ways have Mm

Ω(Γ) ⊆ M(Cnm

Ω(Γ)), Θ is a choice set of P⋆
Ω(Γ),—a contradiction.

Hence, our assumption is wrong which together with (‡) shows that the left
hand side of our theorem fails.

(⇐) Suppose the left hand side of our theorem is false and hence there is a
M ∈ M(Cnm

Ω(Γ)) − Mm

Ω(Γ) (since Mm

Ω(Γ) ⊆ M(Cnm

Ω(Γ))). This means that
for each M ′ ∈ Mm

Ω(Γ) there is a A′ ∈ Ω(M) − Ω(M ′). Assume now that the
right hand side of our theorem is true. Note that ∆ = {A′ | M ′ ∈ Mm

Ω(Γ)} is a
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choice set of P⋆
Ω(Γ). Hence, there is a finite Θ ⊆ ∆ such that Θ is a choice set

of P⋆
Ω(Γ). Hence, Γ 
m

Ω

∨

¬Θ and thus M /∈ M(Cnm

Ω(Γ)),—a contradiction.

With Theorem 13 and Corollary 3 this immediately shows that (⋆) is a
sufficient condition for the adequacy of our reduction. By Theorems 15 and 16
this also holds for all the other conditions presented in this section. Hence, this
completes our meta-theoretic substantiation of Figure 1.

5.3 The Conditions in Practice

We now mention some adaptive logics from the literature and show in which
cases their premise sets satisfy the conditions mentioned above. This under-
writes our claim that these conditions apply to an interesting class of applica-
tions of the AL framework. For the sake of space, our characterizations of the
logics will be rather loose; exact definitions and illustrations can be found in
the literature cited.

Finite Set of Abnormalities As noted above, there are few ALs in the
literature which are defined in terms of a finite set of abnormalities. The reason
is that ALs are usually based on (i) an L which ranges over an infinite language
(be it propositional or predicative), and (ii) an Ω that is defined in terms of a
logical form F (see also Section 2.1). Given that one may plug in infinitely many
variables into F, this results in an infinite number of abnormalities. Moreover,
since the variables are logically independent in L, we may construct examples
of infinite premise sets for which 
m

Ω is stronger than 
r

Ω∧ — see also Theorem
8 in Section 4.1.

An example of an AL for which Ω is not characterized by a logical form can
be found in [31]. There the idea is that the members of Ω represent negative
assumptions that correspond to (defeasible) conceptual knowledge. Incidentally,
the specific set of abnormalities construed by Urbaniak is finite.

The AL characterizations of Dung’s framework for abstract argumentation
presented in [30] are based on a language which uses only finitely many atoms.
As a result, their set of abnormalities is also finite.

In [36], ALs are defined which use a finite number of predicates, constants
and variables, and therefore only have finitely many abnormalities. The aim
of these logics is to model reasoning with vague predicates, and more partic-
ularly, to handle cases such as the Sorites paradox. Note that such reasoning
usually involves only a finite number of predicates, whence the restriction of the
language is fairly harmless in this context.

Finite S
−
Ω(Γ) and Finite Γ Let us now move to a slightly more general level,

and consider the condition that S−Ω(Γ) is finite for a specific Γ. It turns out that
for many concrete logics, this condition is satisfied at the propositional level as
soon as Γ itself is finite.

For the propositional fragments of the inconsistency-adaptive logic CLuNm

this fact is well-known – see [22, Proposition 3.1] for a direct proof. In view
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of the proofs, it can be easily generalized to the logic CLuNsm (see e.g. [7,
Chapter 7]) and its modal extension in [11]. The main point is that in these
logics, the members ∆ of S−Ω(Γ) are such that they contain only propositional
variables that occur in Γ. Hence, if Γ is finite, so is S−Ω(Γ).

The same fact holds for the modal adaptive logics ARm
1 and ARm

2 from [35]
– see Appendix F, and in particular Proposition 5.1 in that paper.These logics
model the defeasible inference from �A (it is believed that A) to A.

In [21], a number of ALs are defined which characterize the Rescher-Manor
consequence relations from [24] and generalize them to the predicate level.
This is done by extending first order predicate logic with a dummy opera-
tor •, and translating premises by prefixing them with this operator. For
instance, where the premise set is Γ = {Pa,Qa, ∀x¬(Px ∧ Qx)}, we obtain
Γ• = {•Pa, •Qa, •∀x(¬Px ∧ Qx)}. The abnormalities are all formulas of the
form •A∧¬A; thus the AL allows for the (defeasible) inference of e.g. Pa from
•Pa, ∀x¬(Px ∧Qx) from •∀x¬(Px ∧Qx), etc.

It can easily be verified that in these systems (even at the predicative level),
the set S

−
Ω•(Γ•) is finite whenever Γ is finite. This follows immediately from

Corollary A.11(ii) in [21]. In our notation, this corollary reads as follows:

(♣) PΩ(Γ
•) = {{•A∧¬A | A ∈ Γ−Λ} | Λ is a maximal consistent subset of Γ}

If Γ• (and hence Γ) is finite, then by (♣) also each Θ ∈ PΩ(Γ
•) is finite. So

we can apply Theorem 14 to derive that also S
−
Ω(Γ) is finite. In other words,

if we restrict ourselves to the intended application of these logics (i.e. premise
sets of the type Γ•), then all finite premise sets are finite-conditional.

As a final example, consider the propositional version of the logics for rea-
soning with “plausible information” [32, 33].14 These are defined on the basis of
a normal modal logic (most often K or T), and have as their set of abnormalities
Ω♦ = {♦A ∧ ¬A | A is an atom or its negation}.

Here again, we can easily show that only abnormalities which use atoms that
occur in Γ can be unreliable w.r.t. 〈Γ,Ω♦〉. We will give a rough sketch of the
argument here, assuming that the underlying modal logic L is characterized by
a Kripke-semantics.15

Let M be a model of Γ and suppose that M |= ♦A ∧ ¬A, where the atom
that occurs in A does not occur in Γ. Consider a K-model M ′ which is exactly
as M , except that in all possible worlds (including the actual world) it verifies A
and falsifies ¬A. Note that, since M ′ agrees with M on all atoms that occur in
Γ (in all possible worlds), M ′ is also a model of Γ. It can easily be verified that
Ω♦(M

′) = Ω♦(M) \ {♦A ∧ ¬A}. Hence M is not a minimally abnormal model
of Γ. It follows that no minimally abnormal model of Γ verifies any abnormality

14In the papers cited, these logics are used as a stepping stone towards prioritized ALs. Here
various degrees of plausibility are distinguished, and the translation to the modal language is
generalized accordingly.

15To be more precise: every model M is defined in terms of a set of possible worlds W , a
valuation function v : W × W → {0, 1}, an accessibility relation R ⊆ W × W and an actual
world @. We define M |= A iff A is true in the actual world of M , according to v.
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♦A ∧ ¬A which contains an atom that does not occur in Γ.16

Finite PΩ(Γ) Some readers may think that the above observation can be
generalized to all (propositional) adaptive logics. However, this is not true. In
fact, sometimes every A ∈ Ω is such that, for infinitely many B ∈ Ω, {A} 
 B.
Hence whenever a premise set Γ L-entails some disjunction of abnormalities,
infinitely many other disjunctions of abnormalities follow from Γ.

Examples of this type are the logics AR3
m and AR4

m for belief revision from
[35], and the deontic logics P2.1r from [20] and P2.2m from [10]. As their
respective sets of abnormalities (and, in the case of the deontic logics, also their
monotonic core) are of a rather specific type, we shall not define them here.

Nevertheless, it can easily be shown that each of these logics satisfy the
weaker condition that, whenever Γ is finite, then PΩ(Γ) is finite. For ARm

3 and
ARm

4 , this follows immediately from Proposition 5.1 in Appendix F of [35]. For
the deontic systems, one can apply basically the same reasoning as in [35] —
again, we leave the exact proof for another occasion as this would take us far
beyond the scope of the present paper.

6 Some Corollaries

In this section we give some immediate corollaries of the basic reduction results
from the preceding section. First, we point out how it allows us to reduce the
computational complexity of Cnm

Ω(Γ) whenever Γ is finite-conditional. Second,
we show how it gives us a weak variant of the Distribution Property for 
r

Ω∧ .

6.1 Computational Complexity of Minimal Abnormality

As was shown in [23, Section 3], whenever Γ is a Σm+1-set (where m ≥ 0), Ω is
computable, and L is computably enumerable, Cnr

Ω(Γ) has the complexity upper
bound Σ0

m+3 in the arithmetic hierarchy.17 For instance, if Γ is computably
enumerable, we get the complexity upper bound Σ0

3 for Cnr

Ω(Γ). All these
estimations turn out to be exact for specific logics such as the inconsistency-
adaptive logics CLuNr and CLuNm, as was proved in [14, 23].

In view of the results from the preceding section, we have:

Corollary 6 Where m ≥ 0, Γ is a Σ0
m+1-set, L is computably enumerable, and

Ω is computable: if Γ is finite-conditional w.r.t. Ω, then then the upper bound
complexity of Cnm

Ω(Γ) is Σ0
m+3.

This estimation can be shown to be exact for specific lower limit logics and
specific premise sets. We will now give an example.

16A similar argument applies to the logicADr from [19], where L = S5 and Ω = {♦A∧♦¬A |
A is an atom}

17It would go way beyond the scope of this paper to introduce the reader into the rather
involving world of arithmetical complexity. The interested reader is referred to [12] for details.
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As before we work with L being classical propositional logic, a classical
propositional language L based on an infinite set of atoms: S = {sni,k,l |
i, k, l, n ∈ N} ∪ {qni,k | i, k, n ∈ N} ∪ {rni | i, n ∈ N} ∪ {pn | n ∈ N}, and
the set of abnormalities Ω∗ = {qni,k | i, k, n ∈ N} ∪ {rni | i, n ∈ N}. Let Ω∧

∗ be
the closure of Ω∗ under conjunction.

Theorem 18 ([14, 22])18 For each m ≥ 0, there exists a Π0
m(Σ0

m+1)-set Γ ⊆
W such that Cnr

Ω∧

∗

(Γ) is Σ0
m+3-complete.

Sketch of the proof. We denote the standard model of arithmetics by N. Let
m ≥ 0. We start by fixing an arithmetical Σm+3-formula A(v) such that the set
of numbers n satisfying A(n), i.e. {n ∈ N | N |= A(n)}, is Σ0

m+3-complete. We
can represent A(v) by ∃x∀y∃zB(x, y, z, v) where B(x, y, z, v) is a Πm-formula.

We fix the set Γ∗ = Γs ∪ Γq ∪ Γp ∪ Γs,q of formulas in L where

Γs = {sni,k,l | i, k, l, n ∈ N}, Γq = {qni,k ∨ rni | i, k, n ∈ N},

Γp = {pn ∨ rni | i, n ∈ N}, Γs,q = {¬sni,k,l ∨ qni,k | N |= B(i, k, l, n)}.

Given some coding function # of formulas in L, the set {#A | A ∈ Γ∗} is
Π0

m and hence also Σ0
m+1 in view of the definition of Γs,q. To complete our proof

we now show that
Γ∗ 
r

Ω∧

∗

pn iff N |= A(n)

Suppose N |= A(n). Hence, in view of Γs,q, there is an i such that for all k,
Γ∗ 
 qni,k. By the definition of Γ∗, r

n
i /∈ UΩ∧

∗
(Γ∗). Hence, {r

n
i } is a safe condition

for pn. By Corollary 1, Γ∗ 
r

Ω∧

∗

pn.

Suppose now that N 6|= A(n). Thus, for all i, k ∈ N, Γ∗ 
 qni,k ∨ rni but
Γ∗ 1 qni,k and Γ∗ 1 rni . From this we immediately get (‡)

∧

i∈I r
n
i ∈ U r

Ω∧

∗

(Γ∗) for

all I ⊂f N. In view of Γp, the set of all conditions for 〈Γ∗,Ω∗, pn〉 is ℘
({

∧

i∈I r
n
i |

I ⊂f N
})

\ ∅. By (‡), neither of these condition is safe for 〈Γ∗,Ω∗, pn〉. Hence,
by Theorem 11, Γ∗ 1

r

Ω∧

∗

pn.

We have shown that Cnr

Ω∧

∗

(Γ) is Σ0
m+3-hard. In view of the fact that the

upper bound complexity Σ0
m+3 of Cnr

Ω(Γ) trivially applies also to Cnr

Ω∧(Γ) we
also get that Cnr

Ω∧

∗

(Γ) is Σ0
m+3-complete.

Theorem 19 For each m ≥ 0, there is a Π0
m(Σ0

m+1)-set Γ ⊆ W for which
Mm

Ω∗
(Γ) is definable such that Cnm

Ω∗
(Γ) is Σ0

m+3-complete.

Proof. Let Γ∗ be defined as in the proof of Theorem 18. We only need to
show that Mm

Ω∗
(Γ∗) is definable. By Corollary 4 this implies that Γ∗ is finite-

conditional w.r.t. Ω∗ and thus, by Corollary 3, Cnr

Ω∧

∗

(Γ∗) = Cnm

Ω∗
(Γ∗). Hence,

the Σ0
m+3-completeness of Cnm

Ω∗
(Γ) follows immediately by Theorem 18.

Note first that the minimal disjunctions of abnormalities derivable via CL
from Γ∗ are,

18This proof is a simple variant of [22, Prop. 3.13]. The main difference concerns the last
two paragraphs of the proof. Also, instead of using CLuN as the lower limit logic, we stick
to CL.
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(1)
⋃

i,k,n∈N
{qni,k | N |= ∃zB(i, k, z, n)} ∪ {qni,k ∨ rni | N 6|= ∃zB(i, k, z, n)}

In view of this it is easy to see that (2)M ∈ Mm

Ω(Γ∗) iff Ω(M) =
⋃

n∈N

⋃

i∈N
∆n

i ,

where ∆n
i = {qni,k | k ∈ N} if N |= ∀y∃zB(i, y, z, n) and else ∆n

i ∈
{

{qni,k | k ∈

N}, {rni }
}

. Let

Θ =
⋃

i,k,n∈N

{¬qni,k∨¬rni | N 6|= ∀y∃zB(i, y, z, n)}∪{¬rni | N |= ∀y∃zB(i, y, z, n)}

We now show that M(Γ∗ ∪Θ) = Mm

Ω∗
(Γ∗). Let M ∈ M(Γ∗ ∪Θ). Let i, k ∈ N.

By the definition of Θ and Γp, (3) M |= qni,k if N |= ∀y∃zB(i, y, z, n). Moreover,
by the definition of Θ and Γp, (4) whenever N 6|= ∀y∃zB(i, y, z, n) then either
M |= qni,k ∧ ¬rni or M |= ¬qni,k ∧ rni . By (3) and (4), Ω∗(M) is of the form
⋃

n∈N

⋃

i∈N
∆n

i where ∆n
i is characterized as in (2). Hence, by (2) and since

M ∈ M(Γ∗), M ∈ Mm

Ω∗
(Γ∗).

Let now M ∈ Mm

Ω∗
(Γ∗). Hence, M ∈ M(Γ∗) and by (2) Ω∗(M) is of

the form
⋃

n∈N

⋃

i∈N
∆n

i . From this follows immediately that M |= Θ. Hence,
M ∈ M(Γ∗ ∪Θ).

By Corollary 4, this also shows that for each m ≥ 0, there is a Π0
m(Σ0

m+1)-set
Γ ⊆ W that is finite-conditional w.r.t. Ω∗ such that Cnm

Ω∗
(Γ) is Σ0

m+3-complete.

Remark 2 In view of Theorem 18 and Theorem 19 it has been demonstrated
that the complexity upper bound of Σ0

3 is reached for a specific 〈L,Ω∧, r〉 and
〈L,Ω,m〉. The premise set Γ∗ can easily be adjusted for other systems such as
the well-known inconsistency adaptive logics where L = CLuN and Ω = {∼A |
A ∈ W} (where ∼ is the paraconsistent negation of CLuN) or the adaptive
systems that employ dummy operators (see Section 5.3).

The complexity of minimal abnormality is significantly higher than that of
reliability: it is not even situated in the arithmetic hierarchy. That is, if Ω is
computable and L is computably enumerable, then for any arithmetical (e.g.,
computable) set Γ of premises, Cnm

Ω(Γ) has the complexity upper bound Π1
1 in

the analytical hierarchy — as was proved in [23, Section 3]. This estimation
is exact for concrete adaptive logics such as the inconsistency-adaptive logics
based on CLuN and appropriate computable sets of premises (see [23, 37]).
Our result shows that for the sub-class of finite-conditional premise sets we
are dealing with the same arithmetical complexity class as for the reliability
strategy, which is significantly lower in the hierarchy.

6.2 Restricted Distribution for 
r

Ω∧

Given its similarity to 
m

Ω, one may ask whether 
r

Ω∧ satisfies Distribution in
general. The answer is negative, as the following example shows.

Example 10 Let Γ = {p ∨ qi | i ∈ N} ∪ {qi ∨ qj | i, j ∈ N, i 6= j} ∪ {¬r ∨ qi |
i ∈ N} ∪ {s ∨ p}. Let Ω = {p} ∪ {qi | i ∈ N}. Note first that Γ ∪ {r} 
r

Ω∧ s: all

23



models of Γ ∪ {r} verify each qi, and hence all minimally abnormal models of
Γ ∪ {r} falsify p; by disjunctive syllogism, all those models verify s.

However, Γ 6
r

Ω∧ r ⊃ s. That is, every safe condition-set for 〈Γ,Ω, r ⊃ s〉
is a superset of D = {{p}} ∪ {{qi} | i ∈ N}. The rest is immediate in view of
Theorem 11.

Nevertheless, on the basis of our current results, we do have a restricted
version of the property:

Theorem 20 If Cn(Γ)∩Cn(Γ′) is finite-conditional w.r.t. Ω, then Cnr

Ω∧(Γ)∩
Cnr

Ω∧(Γ′) ⊆ Cnr

Ω∧(Cn(Γ) ∩ Cn(Γ′)).

Proof. Suppose Cn(Γ)∩Cn(Γ′) is finite-conditional w.r.t. Ω. Note first that, by
Theorems 3 and 4, Cnr

Ω∧(∆) ⊆ Cnm

Ω∧(∆) = Cnm

Ω(∆) for all ∆. It follows that

Cnr

Ω∧(Γ) ∩ Cnr

Ω∧(Γ′) ⊆ Cnm

Ω(Γ) ∩ Cnm

Ω(Γ
′)

By the distribution property for 
m

Ω,

Cnm

Ω(Γ) ∩ Cnm

Ω(Γ
′) ⊆ Cnm

Ω(Cn(Γ) ∩ Cn(Γ′))

Finally, by the supposition and Corollary 3,

Cnm

Ω(Cn(Γ) ∩ Cn(Γ′)) = Cnr

Ω∧(Cn(Γ) ∩ Cn(Γ′)).

Theorem 21 Each of the following holds:

(i) If Γ is finite-conditional w.r.t. Ω and Γ∪{A} 
r

Ω∧ B, then Γ 
r

Ω∧ A ⊃ B.
(ii) If Γ ∪ {A ∨ B} is finite-conditional w.r.t. Ω, Γ ∪ {A} 
r

Ω∧ C, and Γ ∪
{B} 
r

Ω∧ C, then Γ ∪ {A ∨B} 
r

Ω∧ B.
(iii) If Γ is finite-conditional w.r.t. Ω, Γ ∪ {A} 
r

Ω∧ B, and Γ ∪ {¬A} 
r

Ω∧ B,
then Γ 
r

Ω∧ B.

Proof. Ad (i): Suppose Γ is finite-conditional w.r.t. Ω and Γ ∪ {A} 
r

Ω∧ B.
By Theorem 3, Γ ∪ {A} 
m

Ω∧ B. By Theorem 4, Γ ∪ {A} 
m

Ω B. Since the
distribution property holds for 
m

Ω also the deduction theorem holds. Thus,
Γ 
m

Ω A ⊃ B. By Corollary 3, Γ 
r

Ω∧ A ⊃ B.
(ii) and (iii) are proven analogously. This is left to the reader.

7 Conclusion and Outlook

The results from this paper are significant for various reasons. First, the two
adaptive strategies reliability and minimal abnormality are usually presented as
two alternative paths of strengthening L. However, the question when they are
equi-expressive has not been investigated. It was so far not clear (a) in which
cases (i.e., for what kind of premise sets) the two strategies are equi-expressive,
and (b) what kind of transformation is necessary to achieve this. Concerning (b)
we have shown that this can be done in a rather straight-forward way by closing
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Ω under (classical) conjunction and concerning (a) we have given a sufficient
and necessary criterion: finite-conditionality.

Second, the two strategies come with different meta-theoretic properties.
By identifying a class of premise sets for which they are equi-expressive we at
the same time identify domains for which their meta-theoretic properties are
transferable. We exemplified this insight by means of complexity results and
the distribution property.

The research in this paper motivates various questions:

• What effects on the expressive power of the strategies do other manip-
ulations of the set of abnormalities have? For instance, are there other
manipulations beside the closure under conjunction that have the same
effect? Are there manipulations that allow to express Reliability with
Minimal Abnormality?

• Are there variants of the dynamic proof theory for 〈L,Ω,m〉 that charac-
terize the consequence relation obtained by 〈L,Ω∧, r〉 (without reference
to Ω∧)? Is there a variant of the selection semantics for Cnm

Ω based on
minimal abnormal models that offers a straightforward characterization
of Cnr

Ω∧ (without direct reference to Ω∧)?

We have preliminary results for many of these questions which will be pre-
sented in future work.
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