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Abstract. This paper concerns a goal directed proof procedure for the
propositional fragment of the adaptive logic ACLuN1. At the propo-
sitional level, it forms an algorithm for final derivability. If extended to
the predicative level, it provides a criterion for final derivability. This is
essential in view of the absence of a positive test. The procedure may be
generalized to all flat adaptive logics.

1 The Problem

Inference relations for which there is no positive test abound in both everyday
and scientific reasoning processes. Adaptive logics are intended for characterizing
such inference relations.1 The characterization has a specific metalinguistic stan-
dard format. This format provides the logic with a semantics and with a proof
theory, and warrants soundness, completeness, and a set of properties of the
logic.2 The first adaptive logics were inconsistency-adaptive. The articulation
of other adaptive logics provided increasing insight in the underlying mecha-
nisms and required that adaptive logics were systematized in a new way. This
systematization is presented in [8] and will be followed here.

An especially important feature of adaptive logics is their dynamic proof
theory. Indeed, this proof theory is intended for explicating actual reasoning—see
[18] for a historical example—a task that cannot be accomplished by definitions,
semantic systems, and other more abstract characterizations.

The dynamics of the proof theory provides from the absence of a positive test.
For most consequence relations, the dynamics is double. The external dynamics
⋆ Originally published in proc. PCL 2002, a FLoC workshop; eds. Hendrik Decker, Dina

Goldin, Jørgen Villadsen, Toshiharu Waragai (http://floc02.diku.dk/PCL/).
⋆⋆ Research for this paper was supported by subventions from Ghent University and

from the Fund for Scientific Research – Flanders, and indirectly by the Flemish
Minister responsible for Science and Technology (contract BIL01/80). I am indebted
to Dagmar Provijn for comments on a former draft.

1 A positive test is a systematic procedure that, for every set of premises Γ and for
every conclusion A, leads after finitely many steps to a “yes” if A is a consequence
of Γ . Remark that the consequence relation defined by classical logic is undecidable,
but that there is a positive test for it—see [16] for such matters.

2 Only part of these results are written up, viz. in [9].

http://arXiv.org/abs/cs/0207090v1
http://floc02.diku.dk/PCL/
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is well known: as new premises become available, consequences derived from the
earlier premise set may be withdrawn. In other words, the external dynamics
results from the non-monotonic character of the consequence relation—the fact
that, for some Γ , ∆ and A, Γ ⊢ A but Γ ∪ ∆ 6⊢ A. The internal dynamics is
very different from the external one. Even if the premise set is constant, certain
formulas are considered as derived at some stage of the proof, but are considered
as not derived at a later stage. For any consequence relation, insight in the
premises is only gained by deriving consequences from them. In the absence of
a positive test, this results in the internal dynamics.3

Dynamic proofs differ in two main respects from usual proofs. The first differ-
ence concerns annotated versions. Apart from (i) a line number, (ii) a formula,
(iii) the line numbers of the formulas from which the formula is derived, and
(iv) the rule by which the formula is derived (the latter two are the justification
of the line), dynamic proofs also contain (v) a condition. Intuitively, this is a set
of formulas that are supposed to be false, or, to be more precise, formulas the
truth of which is not required by the premises.

The second main difference is that, apart from the deduction rules that allow
one to add lines to the proof, there is a marking definition. The underlying idea is
as follows. As the proof proceeds, more formulas are derived from the premises.
In view of these formulas, some conditions may turn out not to hold. The lines at
which such conditions occur are marked. Formulas derived on marked lines are
taken not to be derived from the premises. In other words, they are considered as
‘out’. One way to understand the procedure is as follows. As the proof proceeds,
one’s insight in the premises improves. More particularly, some of the conditions
that were introduced earlier may turn out not to hold.

For any stage of the proof, the marking definition settles which lines are
marked and which lines are unmarked. This leads to a precise definition of deriv-
ability at a stage. Notwithstanding the precise character of this notion, we also
want a more stable form of derivability, which is called final derivability. The
latter does not depend on the stage of the proof; nor does it depend on the
way in which a specific proof from a set of premises proceeds. It is an abstract
and stable relation between a set of premises and a conclusion. A different way
for putting this is that final derivability refers to a stage of the proof at which
the marks have become stable. Final derivability should be sound and strongly
complete with respect to the semantics. For any adaptive logic AL, A should be
finally derivable from Γ (Γ ⊢AL A) if and only if A is a semantic consequence
of Γ (Γ �AL A).

Consider a dynamic proof from a set of premises. At any point in time, the
proof will be finite. It will reveal what is derivable from the premises at that
stage of the proof. But obviously we are interested in final derivability. Whence

3 The Weak consequence relation from [20] and [21]—see [14] and [15] for an extensive
study of such consequence relations—is monotonic. Nevertheless, its proof theory
necessarily displays an internal dynamics because there is no positive test for it—
see [6] and [10]. Some logics for which there is a positive test, may nevertheless be
characterized in a nice way in terms of a dynamic proof theory—see [7].
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the question: what does a proof at a stage reveal about final derivability? As
there is no positive test for the consequence relation, there is no algorithm for
final derivability. So, one has at best some criteria that decide, for specific A

and Γ , whether A is finally derivable from Γ .

What if no criterion enables one to conclude from the proof whether certain
formulas are or are not finally derivable from the premise set? The answer or
rather the answers to this question are presented in [3]. Roughly, they go as fol-
lows. First, there is a characteristic semantics for derivability at a stage. Next,
it can be shown that, as the dynamic proof proceeds, the insight in the premises
provided by the proof never decreases and may increase.4 In other words, deriv-
ability at a stage provides an estimate for final derivability, and, as the proof
proceeds, this estimate may become better, and never becomes worse. In view
of all this, derivability at a stage gives one exactly what one might expect, viz.
a fallible but sensible estimate of final derivability.5 At any stage of the proof,
one has to decide (obviously on the basis of pragmatic considerations) whether
one will continue the proof or rely on present insights. This is fully in line with
the contemporary view on rationality.6

Needless to say, one should apply a criterion for final derivability whenever
one can. This motivated the search for such criteria—see [3], [11] and [12]. Un-
fortunately, most of these criteria are complex and only transparent for people
that are well acquainted with dynamic proofs. Recently, it turned out that a
specific kind of goal directed proofs offer a way out in this respect. The idea
is not to formulate a criterion, but rather to specify a specific proof procedure
that functions as a criterion. The proof procedure is applied to Γ ⊢AL A. When-
ever the proof procedure stops, it is possible to conclude from the resulting proof
whether or not Γ ⊢AL A. Preparatory work on the propositional fragment of CL

(classical logic) is presented in [13] and some first results on the proof procedure
for inconsistency-adaptive logics are presented in this paper.

The present paper is restricted to the propositional level. So, all references
to logical systems concern the propositional fragments only. At this level the
proof procedure forms an algorithm for final derivability: if the proof procedure
is applied to A1, . . . , An ⊢ B, it always stops after finitely many steps. If, at
the last stage of the proof, B is derived on an unmarked line, then B is finally
derivable from A1, . . . , An; if B is not derived on an unmarked line, it is not fi-
nally derivable from A1, . . . , An. However, the proof procedure may be extended
to the predicative level and there provides a criterion for final derivability if it
stops. The main interest of the procedure lies there.

4 More particularly, this insight increases if informative steps are added to the proof,
where “informative step” is clearly definable—see [3].

5 This estimate is defined in terms of the proof theory, and the latter explicates actual
reasoning. So, the estimate should not be confused with approximations that may
be obtained by certain computational procedures.

6 Needless to say, some proofs provide more efficient estimates of final derivability
than others. The goal directed proofs presented in this paper offer means to obtain
efficient proofs, but more research on this problem is desirable.
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In Section 2, I briefly present the inconsistency-adaptive logic ACLuN1 and
its dynamic proof theory. In Section 3, the goal-directed proof is applied to CL.
This will make the matter easily understood by everyone. The proof procedure
for the adaptive logic ACLuN1 is spelled out in Section 4.

2 The Inconsistency-Adaptive Logic ACLuN1

The central difference between paraconsistent logics and inconsistency-adaptive
logics can be easily described in proof theoretic terms. In a (monotonic) paracon-
sistent logic some deduction rules of CL are invalid; in an inconsistency-adaptive
logic, some applications of deduction rules of CL are invalid.

The original application context that led to inconsistency-adaptive logics—
see [2]—is still one of the most clarifying ones. Suppose that a theory T was
intended as consistent and was formulated with CL as its underlying logic.
Suppose next that T turns out to be inconsistent. Of course, one will want
to replace T by some consistent improvement T ′. Typically, one does not just
trow away T , restarting from scratch. One reasons from T in order to locate
the inconsistency or inconsistencies and in order to locate constraints for the
replacement T ′. Needless to say, logic alone is not sufficient to find the justified
replacement T ′.7 However, logic is able to locate the inconsistencies in T . It
can provide one with an interpretation of T that is ‘as consistently as possible’.
Let me phrase this in intuitive terms. At points where T is inconsistent, some
deduction rules of CL cannot apply—if they did, the resulting interpretation
of T would be trivial in that it would make every sentence of the language a
theorem of T . But where T is consistent, all deduction rules of CL should apply.

An extremely simple propositional example will clarify the matter. Consider
the theory T that is characterized by the premise set {p,∼p ∨ r, q,∼q ∨ s,∼p}.
From these premises, r should not be derived by Disjunctive Syllogism. Indeed,
∼p ∨ r is just an obvious weakening of ∼p. If one were to derive r from the
premises, then, by the same reasoning, one should derive ∼r from p and ∼p ∨
∼r, which also is an obvious weakening of ∼p. However, if one interprets the
premises as consistently as possible, one should derive s from them, viz. by
Disjunctive Syllogism from q and ∼q ∨ s. Indeed, while the premises require p

to behave inconsistently (require p ∧ ∼p to be true), they do not require q to
behave inconsistently (they do not require q ∧ ∼q to be true).

As the matter is central, let me phrase it differently. The theory T from
the previous paragraph turns out to be inconsistent. As it was intended to be
consistent, it should be interpreted as consistently as possible. Given that T is
inconsistent, one will move ‘down’ to a paraconsistent logic—a logic that allows
for inconsistencies. If a formula turns out to be inconsistent on the paraconsistent
reading of T , one cannot apply certain rules of CL to it. Thus, even on the
paraconsistent interpretation of T , p ∧ ∼p is true. But consider p ∧ (∼p ∨ r).

7 If T is an empirical theory, at least new factual data (observations and outcomes
of experiments) will be required. If T is a mathematical theory, more conceptual
analysis will be required.
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Given the meaning of conjunction and disjunction, this formula is equivalent to
(p∧∼p)∨r. According to CL, p∧∼p cannot be true, and hence r is true. However,
the premises state that p ∧ ∼p is true. So, if one wants to reason sensibly from
these premises, one cannot rely on the CL-presupposition that p∧∼p is bound to
be false. However, where the paraconsistent reading of T does not require that a
specific formula A behaves inconsistently, one may retain the CL-presupposition
that A is consistent, and hence apply CL-rules where they are validated by this
presupposition. Thus T affirms q ∧ (∼q ∨ s), which is equivalent to (q ∧∼q)∨ s.
As T does not require q ∧ ∼q to be true, it should be taken to be false and one
should conclude to s.

The intuitive statements from the two preceding paragraphs are given a pre-
cise and coherent formulation by inconsistency-adaptive logics.

An adaptive logic is characterized by the following triple:8

(i) a monotonic lower limit logic,
(ii) a set of abnormalities (characterized by a logical form), and
(iii) an adaptive strategy (specifying the meaning of “interpreting the premises

as normally as possible”).

Extending the lower limit logic with the requirement that no abnormality is
logically possible results in a monotonic logic, which is called the upper limit
logic.

Let me illustrate this by the specific inconsistency-adaptive logic ACLuN1.
In this paper, I shall only consider the propositional level of the logic and I shall
consider no other strategy than Reliability.

The lower limit logic of ACLuN1 is CLuN. This monotonic paraconsistent
logic is just like CL, except in that it allows for gluts with respect to negation—
whence the name CLuN. Axiomatically, CLuN is obtained by extending full
positive propositional logic with the axiom schema A ∨ ∼A—see [4] for a study
of the full logics CLuN and ACLuN1, including the semantics. CLuN iso-
lates inconsistencies. Indeed, Double Negation, de Morgan rules, and all similar
negation reducing rules are not validated by CLuN. As a result, complex con-
tradictions do not reduce to truth functions of simpler contradictions.9 There
are several versions of CLuN. I shall suppose that the language contains ⊥,
characterized by the axiom schema ⊥ ⊃ A, and I shall discuss this convention
below.

8 In this paper I consider only flat adaptive logics. Other adaptive logics are the
prioritized ones, which are defined as specific combinations of flat adaptive logics—
see [8].

9 For example, (p∧q)∧∼(p∧q) 6⊢CLuN (p∧∼p)∨(q∧∼q) and ∼p∧∼∼p 6⊢CLuN p∧∼p.
Of course, one still has (p ∧ ∼p) ∧ ∼(p ∧ ∼p) ⊢CLuN p ∧ ∼p.
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The set of abnormalities, Ω, comprises all formulas10 of the form A ∧∼A.11

Extending CLuN with the axiom schema (A ∧ ∼A) ⊃ B results in the upper
limit logic, which is CL.

Finally, we come to the adaptive strategy. Below I shall often need to refer
to disjunctions of abnormalities, which I shall call Dab-formulas. From now on
an expression of the form Dab(∆) will refer to a disjunction of abnormalities;
in other words, ∆ is a finite subset of Ω and Dab(∆) is the disjunction of the
members of ∆.12 Suppose now that Γ ⊢CLuN Dab(∆), but that no member
of ∆ is CLuN-derivable from Γ . This means that the premises require some
member of ∆ to be true, but do not specify which member is true. In view
of this possibility, one needs to introduce an adaptive strategy. One wants to
interpret the premises “as normally as possible” (which for the present Ω means
“as consistently as possible”), but this phrase is ambiguous. As indicated in (iii),
an adaptive strategy disambiguates the phrase.

The Reliability strategy from [2]13 is the oldest known strategy, and the one
that is simplest from a proof theoretic point of view. I shall not consider any
other strategies in this paper. Let Dab(∆) be a minimal Dab-consequence of Γ

iff Γ ⊢CLuN Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ ⊢CLuN Dab(∆′).
Let U(Γ ) = {A | A ∈ ∆ for some minimal Dab-consequence Dab(∆) of Γ} be
the set of formulas that are unreliable with respect to Γ . Below, I shall define
Γ ⊢ACLuN1 A, which will be read as “A is finally ACLuN1-derivable from Γ”.
The following Theorem is provable. In plain words it says that A is ACLuN1-
derivable from Γ iff there is a ∆ such that A∨Dab(∆) is CLuN-derivable from
Γ and no member of ∆ is unreliable with respect to Γ .

Theorem 1. Γ ⊢ACLuN1 A iff there is a ∆ ⊆ Ω such that Γ ⊢CLuN A∨Dab(∆)
and ∆ ∩ U(Γ ) = ∅.

The dynamic proof theory of any (flat) adaptive logic is characterized by
three (generic) rules, except of course that the rules RU and RC should refer to
the right lower limit logic. Let Γ be the set of premises as before. I now list the
official deduction rules.14 Immediately thereafter I shall mention a shorthand
notation that most people will find more transparent.

PREM If A ∈ Γ , one may add a line comprising the following elements: (i) an
appropriate line number, (ii) A, (iii) −, (iv) PREM, and (v) ∅.

10 For some logics, the abnormalities are couples consisting of an open formula with n

free variables and of an n-tuple of elements of the domain.
11 Some flat adaptive logics are described and studied as formula-preferential systems

in [17]—see also—[1]. Ω is then any set of formulas. It is not clear whether this may
be generalized to all adaptive logics.

12 It can be shown that Γ ⊢CL ⊥ iff there is a finite ∆ ⊂ Ω such that Γ ⊢CLuN Dab(∆).
So, both expressions may be taken to define that Γ is inconsistent.

13 This is the oldest paper on adaptive logics, but it appeared in a book that took ten
years to come out.

14 Only RC introduces non-empty conditions. In other words, as long as RC is not
applied, the condition of every line is ∅.
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RU If A1, . . . , An ⊢CLuN B and each of A1, . . . , An occur in the proof on
lines i1, . . . , in that have conditions ∆1, . . . , ∆n respectively, one may
add a line comprising the following elements: (i) an appropriate line
number, (ii) B, (iii) i1, . . . , in, (iv) RU, and (v) ∆1 ∪ . . . ∪ ∆n.

RC If A1, . . . , An ⊢CLuN B ∨Dab(Θ) and each of A1, . . . , An occur in the
proof on lines i1, . . . , in that have conditions ∆1, . . . , ∆n respectively,
one may add a line comprising the following elements: (i) an appropriate
line number, (ii) B, (iii) i1, . . . , in, (iv) RC, and (v) ∆1 ∪ . . .∪∆n ∪Θ.

Where “A ∆” abbreviates that A occurs in the proof on the condition ∆,
the rules may be phrased more transparently as follows:

PREM If A ∈ Γ : . . . . . .

A ∅

RU If A1, . . . , An ⊢LLL B: A1 ∆1

. . . . . .

An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An ⊢LLL B ∨Dab(Θ): A1 ∆1

. . . . . .

An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

While the deduction rules enable one to add lines to the proof, the marking
definition, which depends on the strategy, determines which lines are “in” and
which lines are “out”. For the Reliability strategy, we first need to define the
set Us(Γ ) of formulas that are unreliable at a stage s of a proof. Let Dab(∆)
be a minimal Dab-formula at stage s of the proof iff, at that stage, Dab(∆) has
been derived on the condition ∅ and there is no ∆′ ⊂ ∆ for which Dab(∆′) has
been derived on the condition ∅.15 Let Us(Γ ) =df {A | A ∈ ∆ for some minimal
Dab-formula Dab(∆) at stage s of the proof }.

Definition 1. Where ∆ is the condition of line i, line i is marked at stage s iff
∆ ∩ Us(Γ ) 6= ∅. (Marking definition for Reliability)

Lines that are unmarked at one stage may be marked at the next, and vice
versa. Finally, I list the definitions that concern final derivability—the definitions
are identical for all adaptive logics.

15 The minimal Dab-formulas that occur in a proof at a stage should not be confused
with minimal Dab-consequences of the set of premises. At a stage s, a new minimal
Dab-formula may be derived, and the effect may be that a Dab-formula that was
minimal at stage s−1 is not minimal at stage s. Whether some formula is a minimal
Dab-consequence of the premises is obviously independent of the stage of a proof
from those premises.
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Definition 2. A is finally derived from Γ on line i of a proof at stage s iff A is
derived on line i, line i is not marked at stage s, and any extension of the proof
in which line i is marked may be further extended in such a way that line i is
unmarked.

Definition 3. Γ ⊢AL A (A is finally AL-derivable from Γ ) iff A is finally
derived on a line of a proof from Γ .

Remark that by “a proof” I mean (here and elsewhere) a sequence of lines
that is obtained by applying certain instructions. In the present context, this
means that each line in the sequence is obtained by applying a deduction rule
and that the marking definition was applied. Here is a very simple dynamic
proof.

1 (p ∧ q) ∧ t − PREM ∅
2 ∼p ∨ r − PREM ∅
3 ∼q ∨ s − PREM ∅
4 ∼p ∨ ∼q − PREM ∅
5 t ⊃ ∼p − PREM ∅

6 r 1, 2 RC {p ∧∼p} 9

7 s 1, 3 RC {q ∧ ∼q}
8 (p ∧ ∼p) ∨ (q ∧ ∼q) 1, 4 RU ∅
9 p ∧∼p 1, 5 RU ∅

Up to stage 7 of the proof, all lines are unmarked. At stage 8, lines 6 and 7
are marked because U8(Γ ) = {p∧∼p, q ∧∼q}. At stage 9, only line 6 is marked
because U9(Γ ) = {p ∧ ∼p}. It is easily seen that, if 1–5 are the only premises,
then the marks will remain unchanged in all extensions of the proof. So, r is not
a final consequence of Γ whereas s is a final consequence of Γ .

The convention on ⊥. As promised, I now discuss the convention that the lan-
guage contains ⊥ and hence that classical negation can be defined within the
language, viz. by ¬A =df A ⊃ ⊥. In a sense then, CLuN is an extension of
CL. It has the full inferential power of CL, ¬ functioning as the CL-negation,
and moreover contains the paraconsistent negation ∼. In the original application
context, mentioned in the second paragraph of this section, the premises belong
to the ⊥-free and ¬-free fragment of the language—of course, there are different
application contexts as well. However, even in the original application context
the presence of ¬ is useful: it greatly simplifies metatheoretic proofs and tech-
nical matters in general, and in no way hampers the limitations imposed by the
application context.16 As will appear in Section 4, the presence of ¬ also greatly
simplifies the goal directed proof procedure that will serve as a criterion for final
derivability.
16 By present lights, it is harmless as well as useful, for all adaptive logics, to extend

the language and the lower limit logic in such a way that all classical connectives
belong to the lower limit logic. This holds even if these connectives do not occur in
the premises or in the conclusions a user is interested in—see [5] for an example.
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3 Goal Directed Proofs for Classical Logic

In this section I merely present an example: a goal directed proof for p ⊃
(q ∧ s),¬(q ∨ r) ⊢CL ¬p.17 As the proof is simple, I skip the rules as well as
the heuristic instructions—these are spelled out in [13]—and merely offer some
comments.

The first step introduces the main goal:

1 ¬p GOAL {¬p}

This step is meant to remind one that one is looking for the formula that occurs
in the condition, viz. ¬p. Remark that the purpose served by a condition in goal
directed proofs is very different from the one in dynamic proofs—it is ‘prospec-
tive’ rather than ‘defeasible’. In view of the condition of line 1, one introduces a
premise from which ¬p may be obtained, and next analyses the premise:

2 p ⊃ (q ∧ s) PREM ∅
3 ¬p 2 ⊃E {¬(q ∧ s)}

Line 3 illustrates a formula analysing rule: in view of 2, one would have ¬p if
one had ¬(q ∧ s). As ¬(q ∧ s) cannot be obtained by analysing a premise, one
applies a condition analysing rule to ¬(q ∧ s):

4 ¬p 3 C¬∧E {¬q}

The following steps require no comment:

5 ¬(q ∨ r) PREM ∅
6 ¬q 5 ¬∨E ∅
7 ¬p 4, 6 Trans ∅

As the main goal is obtained on the empty condition at line 7, the proof is
completed.

It is easily seen that, in a proof for Γ ⊢CL A, a formula B is derivable on the
condition ∆ just in case Γ ∪ ∆ ⊢CL B.

Some lines are marked in goal-directed proofs for CL. Unlike what was the
case in the previous section, these marks indicate that one should not try to
derive the members of the condition of marked lines. More details are presented
in the next section, where these marks will be called D-marks because they relate
to derivability—A-marks will relate to the adaptive character of the logic.

4 Goal Directed Proofs for ACLuN1

Goal directed proofs for ACLuN1 have lines that contain two conditions:

i A . . . . . . ∆ Θ

17 In order to avoid useless complications, I write classical negation as ¬ even in the
context of CL.
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The first, ∆, is called the D-condition. This is the condition that also occurs in
goal directed proofs for CL; it contains the formulas that one needs to derive in
order to obtain A. The second condition, Θ, is called the A-condition; it contains
the abnormalities that should not belong to U(Γ ) in order for A to be derivable
from the premises. The occurrence of the above line i in a proof from Γ warrants
that Γ ∪∆ ⊢CLuN A ∨Dab(Θ). In order to show that Γ ⊢ACLuN1 G one needs
a line like the displayed one at which A = G, ∆ = ∅, and Θ ∩ U(Γ ) = ∅.

To facilitate the exposition, I shall write A∆,Θ to denote that A has been
derived on the D-condition ∆ and on the A-condition Θ.

Let us first consider the plot. A goal directed ACLuN1-proof for A1, . . . ,

An ⊢ G will consist of three phases. In the first phase, one tries to obtain G∅,Θ

for some Θ—this phase starts by an application of the Goal rule. If this succeeds,
one moves on to phase 2 and tries to obtain Dab(Θ)∅,Λ for some Λ—this phase
starts by an application of the A-Goal rule. If this succeeds, one moves on to
phase 3 and tries to obtain Dab(Λ)∅,∅—this phase starts by an application of
the X-Goal rule. If, in phase 3, the X-Goal is reached or the procedure stops,
one returns to phase 2; if the procedure stops in phase 2, one returns to phase
1. In phase 1, there are two subphases: 1A and 1B; subphase 1B is introduced
by the first application of EFQ. Details are given below.

Four kinds of rules govern a proof for Γ ⊢ACLuN1 G. The following rules
introduce premises or start new phases or subphases of the proof. A-Goal and
X-Goal are identical but are used in different contexts.

Prem If A ∈ Γ , introduce A∅,∅.

Goal Introduce G{G},∅.

A-Goal If ∆ ⊆ Ω, introduce Dab(∆){Dab(∆)},∅.

X-Goal If ∆ ⊆ Ω, introduce Dab(∆){Dab(∆)},∅.

EFQ If A ∈ Γ , introduce G{¬A},∅.

Formula analysing rules (two formulas below the line indicate variants):

⊃E
(A ⊃ B)∆,Θ

B∆∪{A},Θ ¬A∆∪{¬B},Θ

¬⊃E
¬(A ⊃ B)∆,Θ

A∆,Θ ¬B∆,Θ

∨E
(A ∨ B)∆,Θ

A∆∪{¬B},Θ B∆∪{¬A},Θ
¬∨E

¬(A ∨ B)∆,Θ

¬A∆,Θ ¬B∆,Θ

∧E
(A ∧ B)∆,Θ

A∆,Θ B∆,Θ
¬∧E

¬(A ∧ B)∆,Θ

(¬A ∨ ¬B)∆,Θ

≡E
(A ≡ B)∆,Θ

(A ⊃ B)∆,Θ (B ⊃ A)∆,Θ
¬≡E

¬(A ≡ B)∆,Θ

(A ∨ B)∆,Θ (¬A ∨ ¬B)∆,Θ

∼E
∼A∆,Θ

¬A∆,Θ∪{A∧∼A}
¬∼E

¬∼A∆,Θ

A∆,Θ

¬¬E
¬¬A∆,Θ

A∆,Θ
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Condition analysing rules:

C⊃E
A∆∪{B⊃C},Θ

A∆∪{¬B},Θ A∆∪{C},Θ

C¬⊃E
A∆∪{¬(B⊃C)},Θ

A∆∪{B,¬C},Θ

C∨E
A∆∪{B∨C},Θ

A∆∪{B},Θ A∆∪{C},Θ

C¬∨E
A∆∪{¬(B∨C)},Θ

A∆∪{¬B,¬C},Θ

C∧E
A∆∪{B∧C},Θ

A∆∪{B,C},Θ
C¬∧E

A∆∪{¬(B∧C)},Θ

A∆∪{¬B},Θ A∆∪{¬C},Θ

C≡E
A∆∪{B≡C},Θ

A∆∪{B,C},Θ A∆∪{¬B,¬C},Θ

C¬≡E
A∆∪{¬(B≡C)},Θ

A∆∪{¬B,C},Θ A∆∪{B,¬C},Θ

C∼E
A∆∪{∼B},Θ

A∆∪{¬B},Θ
C¬∼E

A∆∪{¬∼B},Θ

A∆∪{B},Θ∪{B∧∼B}

C¬¬E
A∆∪{¬¬B},Θ

A∆∪{B},Θ

We need two more rules to obtain a complete system. The derivable rule
EM0 and the permissible rule IC greatly simplify the proof procedure.

Trans
A∆∪{B},Θ

B∆′,Θ′

A∆∪∆′,Θ∪Θ′

EM
A∆∪{B},Θ

A∆′∪{¬B},Θ′

A∆∪∆′,Θ∪Θ′

EM0
A∆∪{¬A},Θ

A∆,Θ
IC

Dab(Λ ∪ Λ′)∆,Θ∪Λ′

Dab(Λ ∪ Λ′)∆,Θ

Each phase of the proof starts by applying a goal rule. All further steps
proceed in view of D-conditions of unmarked lines, or in view of A-conditions of
unmarked lines—see the procedure below. Premises are introduced and formulas
analysed iff an element of a D-condition is a positive part of the added formula.

That A is a positive part of B is defined as follows:

(i) A is a positive part of each of the following: A, A ∧ B, B ∧ A, A ∨ B,
B ∨ A, B ⊃ A, A ≡ B, and B ≡ A;

(ii) A is a negative part of ¬A, ∼A, A ⊃ B, A ≡ B, and B ≡ A;
(iii) if A is a negative part of B, then ¬A and ∼A are positive parts of B.
(iv) if A is a positive part of B and B is a positive part of C, then A is a

positive part of C;
(v) if A is a positive part of B and B is a negative part of C, then A is a

negative part of C;
(vi) if A is a negative part of B and B is a positive part of C, then A is a

negative part of C;
(vii) if A is a negative part of B and B is a negative part of C, then A is a

positive part of C.
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The efficiency of phase 3 and phase 1A is increased by defining, for those
phases, A as a positive part of ¬∼A and by dropping “∼A” from clauses (ii)
and (iii).

A-marking (marking in view of the A-conditions, providing from the adaptive
character of the logic) is taken over by the procedure below. D-marking (marking
in view of D-conditions) is governed by the following definition.

Definition 4. Where A∆,Θ occurs in the proof at line i, line i is D-marked iff
one of the following conditions is fulfilled:

1. line i is not an application of a goal rule and A ∈ ∆,
2. line i is not an application of a goal rule and, for some ∆′ ⊂ ∆ and Θ′ ⊆ Θ,

A∆′,Θ′ occurs in the proof,
3. no application of EFQ occurs in the proof and B,¬B ∈ ∆ for some B,
4. no application of EFQ occurs in the proof and, for some B ∈ ∆, ¬B∅,∅ occurs

in the proof at an unmarked line.

If 1 is the case, the condition is circular; if 2 is the case, some (set the-
oretically) weaker condition is sufficient to obtain A. In the other two cases,
line i indicates a search path that can only be successful if the premises are
¬-inconsistent. Although it is not necessary to mark such search paths, it turns
out more efficient to postpone them to phase 1B.

I shall first present a rough outline of the procedure and next shall offer some
comments on fine tuning.

The procedure. The proof procedure for Γ ⊢ACLuN1 G consists of three phases—
I shall disregard infinite Γ . The procedure starts in phase 1, may move to phases
2 and 3, and returns to phase 1. During phases 2 and 3, a line may be A-marked
(marked in view of its A-condition). A phase stops if no lines can be added in
view of conditions introduced during that phase.

Phase 1. Aim: to derive G∅,Θ for some Θ. There are three cases:
(1.1) G∅,∅ is derived. Then Γ ⊢ACLuN1 G.
(1.2) G∅,Θ is derived, say at line i. The procedure moves to phase 2 and later

returns to phase 1. There are two cases:
(1.2.1) line i is not A-marked: Γ ⊢ACLuN1 G.
(1.2.2) line i is A-marked: go on (aim: derive G∅,Θ′ for some Θ′ + Θ).

(1.3) The procedure stops and G∅,Θ is not derived on an unmarked line for any
Θ. Then Γ 6⊢ACLuN1 G.

Phase 2. G∅,Θ was derived in phase 1 for some Θ, say at line i. Phase 2 starts
by applying A-Goal in order to add Dab(Θ){Dab(Θ)},∅. Aim: to derive Dab(Θ)∅,Λ

for some Λ (⊆ Ω). There are three cases:
(2.1) Dab(Θ)∅,∅ is derived: line i is A-marked; the procedure returns to phase

1.
(2.2) Dab(Θ)∅,Λ is derived for some Λ, say at line j. The procedure moves to

phase 3 and later returns to phase 2. There are two cases:
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(2.2.1) line j is A-marked: go on (aim: derive Dab(Θ)∅,Λ′ for some Λ′ +
Λ).

(2.2.2) line j is not A-marked: line i is A-marked; the procedure returns
to phase 1.

(2.3) Dab(Θ)∅,Λ is not derived for any Λ when phase 2 stops. Line i is not
A-marked and the procedure returns to phase 1.

Phase 3. G∅,Θ was derived in phase 1 for some Θ, say at line i, and Dab(Θ)∅,Λ

was derived in phase 2 for some Λ, say at line j. Phase 3 starts by applying
X-Goal in order to add Dab(Λ){Dab(Λ)},∅. Aim: to derive Dab(Λ)∅,∅—all lines
added in phase 3 should have the A-condition ∅. There are two cases:
(3.1) Dab(Λ)∅,∅ is derived: line j is A-marked; the procedure returns to phase

2.
(3.2) Phase 3 stops without Dab(Λ)∅,∅ being derived: line j is not A-marked;

the procedure returns to phase 2.

Some fine tuning. I shall start with some comments that concern the procedure
itself, and next offer some comments that pertain to the efficiency of the proofs.

The order in which one tries to apply rules is spelled out in [13]. The idea
is: first apply rules in order to obtain the goal of the current phase in a strictly
goal directed way, viz. by a sequence of applications of formula analysing rules,
condition analysing rules, Trans, EM0, and IC. Next, one tries to obtain the goal
by combining the former rules with applications of EM and Trans.

EFQ is never applied in phase 2 or 3. EFQ is only useful if the premises are
inconsistent. This is justified by the following consideration. EFQ can only be
successfully applied in a proof for Γ ⊢ G if Γ is ¬-inconsistent. In that case,
G∅,∅ is derivable from the premises and will be derived in phase 1B. Deriving
any Dab-formula from Γ by applying EFQ (possibly combined with other rules)
is a useless detour.

Moreover, EFQ is only applied in phase 1 at points where no other rule can
be applied and, from that point on—that is in subphase 1B—one adds only lines
with an empty A-condition to the proof, and hence never moves on to phase 2.
The reason for this is obvious: if the main goal can only be obtained by EFQ,
then it is derivable by the lower limit logic, viz. CLuN, and hence there is no
point in deriving it on some A-condition.

I now describe an apparently rather efficient way of proceeding; it is nearly
identical for the three phases. Let me start with some general instructions. First,
one never applies a formula analysing rule on a formula that does not have a
premise in its path. Such steps are provably complications only. Moreover, no
line is added to the proof if it would at once be marked.

At each point after line 1 has been written, one first tries to apply EM0, EM
and Trans provided this leads to a line being marked.

If this fails, one proceeds in a strictly goal directed way. More particularly,
one acts in view of the first formula in the last unmarked condition (of the current
phase). If this formula cannot be obtained from the premises, then obtaining the
other members of the same condition is useless anyway. If no step is possible in
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view of the first formula in the last unmarked condition of the current phase—
this means that this formula is a dead end—one acts in view of the first formula
in the next-to-last unmarked condition of the current phase, and so on.

If it is possible to act in view of the first formula of an unmarked condition of
the current phase, one applies the rules in the following order—remember what
was said about positive parts. First one tries to apply a formula analysing rule
on a formula that occurs on an unmarked line. Next, one tries to introduce a
premise. Finally one applies a condition analysing rule (to the formula in view
of which one proceeds).

If the goal of the current phase cannot be obtained by strictly goal directed
moves, one also applies Trans in order to obtain the goal on all possible (un-
marked) conditions, and next one applies EM to unmarked lines that have the
current goal as their second element.18 One returns to strictly goal directed
moves as soon as possible.

Only if all this fails, one applies EFQ in phase 1 and, as said before, from
there on only adds lines with an empty A-condition.

Some comments on the metatheory. The procedure is provably an algorithm for
Γ ⊢ACLuN1 A. In [13] this is proved for CL. That proof can easily be trans-
formed to show that the rules from the present section are sound and complete
with respect to CLuN in the following sense (for finite Γ ):

(1) If Γ ⊢CLuN G, then G∅,∅ is derived in the dynamic proof for Γ ⊢CLuN G.
If Γ 6⊢CLuN G, then the dynamic proof for Γ ⊢CLuN G stops.

(2) A∅,Θ is derivable in the dynamic proof for Γ ⊢CLuN G iff Γ ⊢CLuN A ∨
Dab(Θ) .

Given this, it is easily seen that the procedure is sound and complete with
respect to ACLuN1.

An essential point concerns phase 2. Suppose that G∅,Θ is derived at line i

for some Θ, and that Dab(Θ)∅,Λ is derived for some Λ at line j. It follows that
Γ ⊢ACLuN1 Dab(Θ ∪ Λ). If Dab(Λ)∅,∅ is derived in phase 3, then Γ ⊢ACLuN1

Dab(Λ), and hence Dab(Θ ∪ Λ) is not a minimal Dab-consequence of Γ . So,
Θ ∩ U(Γ ) = ∅ iff the following holds for all Λ: if Γ ⊢ACLuN1 Dab(Θ ∪ Λ), then
Γ ⊢ACLuN1 Dab(Λ). This condition comes to: if Dab(Θ)∅,Λ is derivable, then
Dab(Λ)∅,∅ is derivable.

Precisely this is checked in phase 2: the procedure returns to phase 1 with
line i not A-marked iff it holds for all Λ that Dab(Λ)∅,∅ is derivable whenever
Dab(Θ)∅,Λ is derivable. So, if the procedure returns to phase 1 with line i not
A-marked, then Θ ∩ U(Γ ) = ∅ and hence G is finally derived at line i.

It is equally easy to see that line i is marked just in case Θ ∩ U(Γ ) 6= ∅.
If, for some Λ, Dab(Θ)∅,Λ is derivable whereas Dab(Λ)∅,∅ is not derivable, then

18 Apparently this application of EM is useless, but our proof in [13] that the procedure
is complete relies on it.
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Γ ⊢ACLuN1 Dab(Θ∪Λ) whereas Γ 6⊢ACLuN1 Dab(Λ). It follows that Θ∩U(Γ ) 6=
∅.19

Some examples. Let us start with two simple examples. Consider first a goal
directed proof for ∼p ∨ r, p ∧ ∼q, q ⊢ACLuN1 r :

1 r Goal {r} ∅
2 ∼p ∨ r Prem ∅ ∅
3 r 2 ∨E {¬∼p} ∅
4 r 3 C¬∼E {p} {p ∧ ∼p}
5 p ∧∼q Prem ∅ ∅
6 p 5 ∧E ∅ ∅
7 r 4, 6 Trans ∅ {p ∧ ∼p}
8 p ∧∼p A-Goal {p ∧ ∼p} ∅
9 p ∧∼p 8 C∧E {p ∧ ∼p} ∅
10 p ∧∼p 6, 9 Trans {∼p} ∅
11 ∼p 2 ∨E {¬r} ∅
12 p ∧∼p 10 C∼E {¬p} ∅
13 ¬p 11 ∼E {¬r} {p ∧ ∼p}
14 p ∧∼p 12, 13 Trans {¬r} {p ∧ ∼p}
15 p ∧∼p 14 IC {¬r} ∅

The proof is successful: at line 7 r is derived on the empty D-condition and on
the A-condition {p ∧ ∼p}, and in phase 2 p ∧ ∼p turns out not to be derivable
on any A-condition. The situation is similar whenever G∅,Θ is derivable and
Dab(Θ)∅,Λ is not derivable for any Λ. Remark that this always obtains if the
premise set is ∼-consistent.

Next, consider the goal directed proof for ∼p, p ∨ q, p ⊢ACLuN1 q :

1 q Goal {q} ∅
2 p ∨ q Prem ∅ ∅
3 q 2 ∨E {¬p} ∅
4 ∼p Prem ∅ ∅
5 ¬p 4 ∼E ∅ {p ∧ ∼p}
6 q 3, 5 Trans ∅ {p ∧ ∼p}
7 p ∧∼p A-Goal {p ∧ ∼p} ∅
8 p ∧∼p 7 C∧E {p,∼p} ∅
9 p ∧∼p 4, 8 Trans {p} ∅
10 p 2 ∨E {¬q} ∅
11 p Prem ∅ ∅
12 p ∧∼p 9, 11 Trans ∅ ∅
13 q EFQ {¬(p ∨ q)} ∅
14 q EFQ {¬∼p} ∅

19 Indeed, if Γ ⊢ACLuN1 Dab(Θ ∪ Λ) and Γ 6⊢ACLuN1 Dab(Λ), there is a non-empty
Θ′ ⊆ Θ and a (possibly empty) Λ′ ⊆ Λ such that Dab(Θ′ ∪ Λ′) is a minimal Dab-
consequence of Γ .
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After q{p∧∼p},∅ is derived at line 6, p∧∼p∅,∅ turns out to be derivable (line 12).
The procedure then sets out to derive q in a different way, which fails. Neither
variant of C∨E is applied to the condition of line 13 because the resulting line
would at once be marked. C¬∼E is not applied to the condition of line 14 because
doing so would introduce a non-empty A-condition.

Finally, let us consider the goal directed proof for p,∼p ∨ s, r ⊃ t,∼p ∨
q,∼q ⊢ACLuN1 s :

1 s Goal {s} ∅
2 ∼p ∨ s Prem ∅ ∅
3 s 2 ∨E {¬∼p} ∅
4 s 3 C¬∼E {p} {p ∧ ∼p}
5 p Prem ∅ ∅
6 s 4, 5 Trans ∅ {p ∧ ∼p}
7 p ∧∼p A-Goal {p ∧ ∼p} ∅
8 p ∧∼p 7 C∧E {p,∼p} ∅
9 p ∧∼p 8, 5 Trans {∼p} ∅
10 ∼p 2 ∨E {¬s} ∅
11 ∼p ∨ q Prem ∅ ∅
12 ∼p 11 ∨E {¬q} ∅
13 ∼q Prem ∅ ∅
14 ¬q 13 ∼E ∅ {q ∧ ∼q}
15 ∼p 12, 14 Trans ∅ {q ∧ ∼q}
16 p ∧∼p 9, 15 Trans ∅ {q ∧ ∼q}
17 q ∧ ∼q X-Goal {q ∧ ∼q} ∅
18 q ∧ ∼q 17 C∧E {q,∼q} ∅
19 q ∧ ∼q 13, 18 Trans {q} ∅
20 q 11 ∨E {¬∼p} ∅

Here phase 3 stops, ¬∼p not being CLuN-derivable from the premises. Line 16
is not A-marked and the procedure returns to phase 2; there line 6 is A-marked
and the procedure returns to phase 1. The procedure there aims at deriving s∅,Θ

in phase 1 for some Θ + {p ∧∼p}, which fails.
It is instructive to study the procedure and consider the different states in

which it may stop in phase 1.
A computer programme that implements the procedure is available—the

above proofs are produced by it. The programme will be used for presenting
further examples during the lecture and will be on the internet before this pa-
per appears—http://logica.rug.ac.be/dirk/. The data file that goes with the
programme contains a set of instructive example exercises.

5 In Conclusion

The ‘defeasible’ conditions that occur in dynamic proofs of adaptive logics sug-
gested a kind of dynamic proofs with ‘prospective’ conditions. This led to a
specific form of goal directed proofs. Later, these goal directed proofs turned

http://logica.rug.ac.be/dirk/
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out to provide a proof procedure that forms an algorithm for final derivability
at the propositional level. As remarked in Section 1, the central interest of the
procedure is that it provides a criterion at the predicative level if it stops.

The dynamic proofs explicate actual reasoning. The goal directed proofs do
not, but there is an algorithm for turning them into dynamic proofs (by reorder-
ing and replacing lines). So, after finding out that some formula is derivable at
a stage from the premises, one may switch to the goal directed format in order
to find out whether the formula is finally derivable. If a decision is reached, one
may transform the result to a regular dynamic proof, if desired. After this, the
proof may proceed and, if a further interesting formula is derived at a stage, one
may again switch to the goal directed format to settle its final derivability.

This seems the right place to insert a comment on the original application
context mentioned in Section 2. It was proved in [4] that Dab(∆ ∪ {A}) is not
a minimal Dab-consequence of Γ unless ∼A is a subformula of some member
of Γ .20 In view of this, the goal directed proofs provide a means to locate all
minimal Dab-consequences of finite premise sets.

Given the present standard characterization (from [8]) of flat adaptive logics,
some minimal changes to the aforementioned rules will result in a goal directed
procedure for any other adaptive logic. Basically, one replaces the rules that
pertain to the abnormalities—in the case of ACLuN1, the rules containing the
paraconsistent negation ∼.

While these replacements are straightforward, further research is required
for the predicative level. Devising sensible rules is unproblematic—the relevant
research was finished. However, more work is needed to improve the efficiency of
the procedure and to avoid infinite loops whenever possible. It is easily seen that
known techniques from tableau methods and resolution methods may easily be
transposed to the goal directed proofs.21
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