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Abstract

We introduce a reactive variant ofSDL (standard deontic logic):SDLR1 (re-
active standard deontic logic). Given a Kripkean view on the semantics ofSDL in
terms of directed graphs where arrows→ represent the accessibility relation be-
tween worlds, reactive models add two elements: arrows→ are labelled as “active”
or “inactive”, and double arrows։ connect arrows, e.g., (x1 → x2) ։ (x3 → x4).
The idea is that passing throughx1 → x2 activates a switch represented by։
which inverts the label ofx3 → x4 and hence activates resp. deactivates this arrow.
This allows to introduce two modalities:� is the usualKD -modality ofSDL and
operates on the Kripkean graph where all labels and double arrows areignored,
while ⊘ takes them into account.

We demonstrate thatRSDL1 allows for an intuitive interpretation of ‘ought’.
The logic can handle contrary-to-duty cases such as several instantiations of the
Chisholm set in a paradox-free way by means of using double arrows and annota-
tions to block and give access to ideal worlds.

1 Standard Deontic Logic and its Problems

A logic with modality� is KD modality if we have the axioms

K0 All substitution instances of classical tautologies

K1 �(p∧ q) ≡ (�p∧ �q)

K2 ⊢ A⇒ ⊢ �A

D ¬�⊥

It is complete for frames of the form (S,R,a) whereS , ⊘ is a set of possible
worlds,a ∈ S,R⊆ S × S is serial (i.e., for allx there exists ay such thatxRy).

Standard Deontic LogicSDL is a KD modality O. We readu � Op as sayingp
holds in all ideal worlds relative tou, i.e. for all t we have: ifuRt thent � p. So the set
of ideal worlds relative tou is the set

I (u) = {t | uRt}.
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TheD condition says
I (x) , ∅ for x ∈ S.

Following [18], let us quickly review some of the difficulties facingSDL in formal-
izing certain examples. These paradoxes are as follows, see[4, 23, 22, 1].

The Chisholm paradox

Consider the following statements:

1. It ought to be that a certain man go to the assistance of his neighbour.

2. It ought to be that if he does go he tell them he is coming.

3. If he does not go then he ought not to tell them he is coming.

4. He does not go.

It is agreed that intuitively (1)–(4) of Chisholm are consistent and totally independent
of each other. Therefore it is expected that their formal translation into logicSDL
should retain these properties.

Let us semantically write the Chisholm set in semiformal English, with p andq as
follows, p meanshelp andq meanstell.

1. Obligatoryp.

2. p→ Obligatoryq.

3. ¬p→ Obligatory¬q.

4. ¬p.

Consider also the following:

5. p.

6. Obligatoryq.

7. Obligatory¬q.

We intuitively accept that (1)–(4) are consistent and logically independent of each-
other. Also we accept that (3) and (4) imply (7), and that (2) and (5) imply (6). Note
that some authors would also intuitively expect to conclude(6) from (1) and (2).1

Now suppose we offer a logical systemL and a translationτ of (1), (2), (3), (4) of
the Chisholm set intoL .

For exampleL could be Standard Deontic Logic orL could be a modal logic with
a dyadic modality©YX (X is obligatory in the context ofY).

We now list coherence conditions for the translationτ and forL .
We expect the following to hold.

(a) (2) and (3) are translated the same way, i.e., we translate the form:
(23): X→ ObligatoryY
to beψ(X,Y) and the translation does not depend on the fact that we have (4)
¬p as opposed to (5)p.

1The principle that allows for such inferences is calleddeontic detachment(see [19]). See also [24] for a
discussion of its role in the context of the Chisholm set.
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(b) The translations of (1)–(4) remain logically independentin L .

(c) The translated system maintains its properties under reasonable substitution
in L .

The notion of reasonable substitution is a tricky one. Let ussay for the
time being that if we offer a solution for one paradox, sayΠ1(p,q, r, . . .) and
by substitution forp,q, r, . . . we can get another well known paradoxΠ2,
then we would like to have a solution forΠ2. This is a reasonable expecta-
tion from mathematical reasoning. We give a general solution to a general
problem which yields specific solutions to specific problemswhich can be
obtained from the general problem.

(d) The translation is essentially linguistically uniform and can be done item
by item in a uniform way depending on parameters derived fromthe entire
database. To explain what we mean consider in classical logic the set

(1) p

(2) p→ q.

To translate it into disjunctive normal form we need to know the number of
atoms to be used. Item (1) is already in normal form in the language of{p}
but in the language of{p,q} its normal form is (p∧ q) ∨ (p∧ ¬q). If we had
another item

(3) r

then the normal form ofp in the language of{p,q, r} would be
(p∧ q∧ r) ∨ (p∧ q∧ ¬r) ∨ (p∧ ¬q∧ r) ∨ (p∧ ¬q∧ ¬r).

The moral of the story is that although the translation of (1)is uniform al-
gorithmically, we need to know what other items are in the database to set
some parameters for the algorithm.

Jones and P̈orn, for example, examine in [18] possible translations of the Chisholm
(1)–(4) intoSDL. They make the following points:

(1) If we translate according to, what they call, optiona:

(1a) Op

(2a) O(p→ q)

(3a) ¬p→ O¬q

(4a) ¬p

then we do not have consistency, although we do have independence.2

(2) If we translate the Chisholm item (2) according to what they call optionb:

(2b) p→ Oq

then we have consistency but not independence, since (4a) implies logically (2b).

(3) If (3a) is replaced by

2Note that this translation is also not uniform in its treatment of conditional obligations (see (2a) and
(3a)) and hence violates our coherence condition (a).
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(3b) O(¬p→ ¬q)

then we get back consistency but lose independence, since (1a) implies (3b).

(4) Further, if we want (2) and (5) to imply (6), and (3) and (4)to imply (7) then we
cannot use (3b) and (2a).

The translation of the Chisholm set is a “paradox” because known translations into
Standard Deontic Logic (the logic withO only) are either inconsistent or dependent.

The fence paradox

The following example is formulated in [21]. Compare with items (1)–(4) of the
Chisholm paradox.

1. There ought to be no fence.

2. [We are not dealing with this item here.]

3. If there is a fence it should be white.

4. There is a fence.

The fence paradox is a variation of the original gentle murderer paradox of Forrester
[6].

1. It is obligatory that Smith not murder Jones.

2. [ we are not dealing with this item here. ]

3. It is obligatory that, if Smith murders Jones, Smith murders Jones gently.

4. Smith murders Jones.

Of course the fence can be taken down, but the murder cannot beundone. This differ-
ence can be significant when we consider our options in a long chain of violations and
contrary to duties.

The problems withSDL are so serious that nowadays researchers in the field call it
‘silly deontic logic’ instead of ‘standard deontic logic’.

There have been many proposals for better systems to accommodate Contrary to
Duties ranging from slight variations ofSDL (see, for example, [18] and [5]) to con-
siderably different systems (see, for example, [25, 21]), mainly the dyadic preferential
approach and the temporal approach. See also [3, 15]. Our ownreactive approach is
new, see [8, 10, 11], and bridges the gap between the two extremes, as this paper will
show.

The community seems quite happy with a dyadic modal operator©AB, readingB
is obligatory in the context ofA. Thus we have for the fence example

1. ©¬ fence

2. ©fencewhite-fence.

4



fence
x

¬fence
y

s

t

+

+ +

Figure 1: A reactive graph

The dyadic deontic logic satisfies some axioms which can basically turn it into a
preferential system. We need not go into details here. See [20, 25, 21].

Our aim is to show thatSDL is not so silly, by turning itreactiveand by looking at
reactive standard deontic logic,SDLR1, we can save the situation. See [10, 11] for a
more general reactive approach.

Consider the situation in Figure 1. Its graph describes a possible world model, of a
reactive kind, for a special reactive modality⊘.

The nodes{t, s, x, y} are possible worlds. The syntactical word ‘fence’ represents an
atomic proposition and by writing ‘fence’ next tox we inform the reader that in some
given assignmenth (fixed for our discussion) we havex � fence underh. Similarly we
havey � ¬ fence underh. The arrowss→ y, t → sands→ x are annotated with either
‘+’ or ‘−’. The ‘+’ annotation means the connection is active (or connected) and the
‘−’ annotation means the connection is not active or not connected. The double arrow
from t → s to s→ x is a switch. It says that if we pass fromt to s along the arrow
t → s, then the double arrow gets activated and disconnects the arrow from s to x, if its
active, and connects it, if it is not active.

Suppose we want to evaluatet � ⊘ ⊘ ¬ fence.
We havet � ⊘ ⊘ ¬ fence iff (sincet → s is active)s � ⊘¬ fence. Now since we

passed throught → s to get tos, the connections→ x is switched off and we continue
(sinces→ y is active):

s � ⊘¬ fence iff y � ¬ fence

which indeed holds.
Thus, in the model of Figure 1 we indeed have thatt � ⊘ ⊘ ¬ fence.
We can add a connective� which ignores all the double arrows and all annotations.

Thus we have

t � ��¬fence iff s � �¬fence iff (x � ¬fence andy � ¬fence)

Since in Figure 1x � fence we get thatt 2 ��¬fence.
Our logicSDLR1 is the logic with� and⊘. We introduce it formally in the next

section. Then, in sections 3– 5 we shall translate the deontic paradoxes (such as clauses
(1)–(4) of the Chisholm set and (HC1) and (HC2) of Figure 3 below) into it.
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2 Formal properties of SDLR1

This section develops the formal technical machinery for our paper. We give formal
definitions of the reactive models we use. We also investigate an axiomatisation of our
logic relative to the proposed semantics.

2.1 Introducing and discussing the semantics
DS1

Definition 2.1 (ReactiveK model).

1. Let S be a non-empty set. A reactive relation on S has the form

R= R1 ∪ R2

where R1 ⊆ S2 and R2 ⊆ S2 × S2 such that the following holds

If ((x, y), (w, z)) ∈ R2, then(x, y) ∈ R1 and(w, z) ∈ R1.

(This means R2 ⊆ R1 × R1).

We can represent the elements of R1 as ‘x→ y’ and the elements of R2 as ‘(x→
y)։ (w→ z)’. The elements of R1 are called arrows and those of R2 are called
double arrows.

2. A functionf : R1 → {0,1} is called an activity function. Whenf (x, y) = 1 we say

x→ y is ‘on’ or is ‘active’ and we write x
+
→ y. Whenf (x, y) = 0, we say x→ y

is ‘off ’ or ‘not active’ and we write x
−
→ y.

3. An assignment h is a function giving each atomic q a subset h(q) ⊆ S .

4. A model has the formm = (S,R1,R2, f ,a,h) where a∈ S is the initial world.
DS2

Definition 2.2 (Satisfaction). Our language contains the classical connectives¬,∧,∨,→
,⊤,⊥ and the two modalities� and⊘. We define satisfaction in a model as follows.

1. Let(S,R1,R2, f ) be given. Where(x, y) ∈ R1 and x
+
→ y, we define a new function,

called f [x, y], which is derived usingf and (x, y), and is defined by indicating
what values this function gives to arbitrary pairs(u, v) in R1 as follows:

f [x, y](u, v) =

{

f (u, v) if ((x, y), (u, v)) < R2

1− f (u, v)) if ((x, y), (u, v)) ∈ R2

2. Given a modelm = (S,R1,R2, f ,a,h) we define the notion ofm � A by induction
as follows:

• m � q iff a ∈ h(q), for q atomic

• m � A∧ B iffm � A andm � B

• m � ¬A iffm 2 A

• Similarly for the other classical connectives

• m � �A iff for all y such that(a, y) ∈ R1 we have thatn � A, for n =
(S,R1,R2, f , y,h)
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Figure 2: A model forKR

• m � ⊘A iff for all y such that(a, y) ∈ R1 andf (a, y) = 1 we have thatn′ � A
for n′ = (S,R1,R2, f [a, y], y,h).

3. The logicKR (reactiveK ) is defined as the set of all wffs A such that for all
modelsm we havem � A.

4. The logicSDLR1 is defined analogously just that R1 is required to be serial.

5. Note that we have frames of the form(S,R1,R2, f ). The logic is normal, as a and
h can be chosen arbitrarily.

JuneR1
Remark 2.3. Note that the functionf introduced in the previous Definition 2.1 actually
defines another relationR0 which is a subset ofR1: namely the active arrows inR1.
Whenf changes tof [x, y], as in item 1 of Definition 2.2, then equivalentlyR0 changes
to R0[x, y]. We use the notation with the functionf to stress the fact that all reactivity
changes arise from arrow connections fromR1.

We now address the task of axiomatising the logicKR . The axiomatisation of
SDLR1 strengthensKR by D. To be able to do that effectively, let us familiarise our-
selves better withKR and its unique features.

Consider Figure 2.
Let our starting point bea. As we traverse the arca→ b, there are two possibilities.

1. We ignore all double arrows and what they do.

2. We take account of what the double arrows say and what they do.

Let possibility 1 be formalised by♦ and let possibility 2 be formalised byP. So
we can write:a � ♦q to mean traverse froma to the accessible worldb and ignore all
double arrows anda � Pq to mean traverse froma to the accessible worldb and take
account of the double arrows.

Consider now
a � P♦♦⊤

Here we move froma to b and activate the double arrow which disconnects the arc
d→ e. We check:

b � ♦♦⊤
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and then
d � ♦⊤

Now the arcd → e is disconnected by a double arrow but as we are evaluating♦ at
noded and♦ ignores all double arrows and their effects, as far as♦ is concernedd→ e
is connected and henced � ♦⊤ holds and thereforea � P♦♦⊤ also holds.

The situation is different with

a � P♦P⊤

Evaluating here takes us tod � P⊤, butP is affected and takes account of double arrows
and sod � P⊤ does not hold and hence

a � P♦P⊤

does not hold.
Consider now

a � PPP⊤.

We can go froma to e taking account of double arrows. Moving froma to b switches
the connectiond→ e off but continuing fromb to d switches it on again and therefore
d � P⊤ holds.

Note that we cannot evaluate anyx � Pq without knowing how we got tox and
which double arrows we activated along the path.

So asking doesd �?P⊤ hold cannot guarantee an answer. We need to ask something
like

a
♦

−→ b
P

−→ d �?P⊤

or
a
P

−→ b
♦

−→ d �?P⊤

or in general

(x0
M1
−→ x1

M2
−→ x2→ . . .

Mn
−→ xn) �?A

whereMi ∈ {♦,P}.
Note that we need a notion oflegitimate sequences. The sequence

a
P

−→ b
♦

−→ d
P

−→ e

is not legitimate because by the time we get tod, d→ e is disconnected. So to get toe
from d we need to use♦.

We thus get a bimodal logic with two modalities♦ andP with evaluation of formu-
las depending on paths (x0, . . . , xn) but not ordinary paths. We also need to know how
we traverse them. So our paths have the formt = (x0,M1x1,M2x2, . . . ,Mnxn), wheret
is a legitimate sequence.

Our task in this section is to find axioms and prove completeness for KR . We
might have thought that it would be useful to considerKR as a bimodal logic with two
accessibility relationsRP andR♦, and see what properties they have. The problem is
that the accessible worlds are the same for both relations, the difference being the way
we traverse them. So really our most reasonable option is to consider a transformed
Kripke model where the points/worlds are legitimate paths of the form

t = (a,M1x1, . . . ,Mnxn)
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such thataR1x1R1x2, . . . , xn−1R1xn holds.
Thus we start with

m = (S,R1,R2,a,h)

for example (S,R1,R2,a) is as in Figure 2, and then transform it to a model

m∗ = (S∗,R♦,RP, (a),h)

whereS∗ is the set of all legitimate sequences of the formt = (a,M1x1, . . . ,Mnxn)
whereaR1x1 ∧ x1R1x2∧, . . . ,∧xn−1R1xn.

We defineR♦ andRP by

tR♦t ∗ (♦y), whenxnR1y,

tRPt ∗ (Py), whenxnR1y

∗ is concatenation of sequences.
Let t � q iff xn � q, for q atomic.
Note thatR1 andR2 are replaced byR♦ andRP. R1 is used directly in the definition

of the sequencest which go intoS∗ andR2 is used in the notion of legitimate sequences.
Som is replaced bym∗.
If we do that we can get an axiomatisation and a completeness theorem after some

hard work (see [12]).

3 Contrary to duty in SDLR1

This section presents our reactive model. We do it in stages,presenting several inter-
mediate models and modifying them.

We use a story (Example 3.1) to motivate our model. We offer the model of Figure
4 below as a first approximation, and then we move to the bettermodel of Figure 7
and then, for technical reasons, we adopt the slightly better pre-final model of Figure
9. This is not the final model, but we stick with it for a while.

We then express the fence example in this model, and discuss it at length.
The final model, which is a slight modification of the pre-finalmodel, is given

formally in Section 5.
We want to alert the reader to some disadvantages of our model, and urge her or

him to nevertheless continue to read.
The translation turns out to be syntactically complicated,even though the idea is

semantically very simple. This can be a disappointment for the syntactially/Hilbert
system minded reader, but there are two reasons for it:

1. The subtle complexity of the CTD paradox itself. The obligation not to have a
fence is in one context while the CTD kicks in in another context. This subtle
complexity is unavoidable.

2. The second reason for the complexity is the fact that semantically we are relying
on the reactivity of the double arrows to solve the paradoxeswhile the syntax
does not give us connectives which talk directly about the double arrows. This
makes the model more complex, both in translating the CTD expressions and, as
already mentioned, in axiomatising the logic.
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The perceptive reader is sure to detect another problem. Thetranslation of the Deontic
modality “Obligatory” is not a pure connective but is done asa combination of the two
modalities� and⊘ of the system. This is necessitated by the lack of direct connec-
tive in the logic representing the double arrows, despite the fact that semantically the
obligation is expressed by the double arrows!

We are thus forced to go in a roundabout way to express the obligations and thus
make a mixed use of the modalities of the system. The weaknessof the translation is
compounded by the need to make it dependent on the structure of the model.

So why consider our system at all?
The answer is that it is semantically very intuitive and has the advantages of offering

a systematic solution to the so called paradoxes and can do multiple CTD sentences all
at once. I put forward to the reader that the call for axiomatisation (more specifically,
a Hilbert style axiom system) is partly a cultural remnant from the time when modal
logic had no satisfactory semantics and when most logics were presented Hilbert style.
See however paper [14], where a long chain of Chisholm type sets is considered and
modelled in a Hilbert axiom system with a reactive semantical interpretation.

Furthermore, the above difficulties would disappear once we allow a direct syntactic
counterpart to our double arrows in the axiomatic system. Wecan in fact give a really
simple axiomatisation as a Labelled Deductive System, see [11] and [7].

We shall address these problems in the concluding section.
We now motivate, through examples, how we treat CTDs inSDLR1.

Example 3.1 (UK gas boiler). Many homes in the UK have heating with gas boil-
ers. The technology of such boilers keeps on improving both in efficiency and safety.
British Gas inspects each boiler once a year and makes recommendations. In many
cases a slightly older model boiler no longer complies with the new safety regulations,
but of course one cannot ask for the boiler to be replaced, just on the strength of that,
so some additional safety measures are recommended. However, if one wants to install
a new boiler then only the new models can be installed.

Consider now a family who has a very old boiler. This boiler breaks down. It is
dead and finished. They want to get a new boiler. The law says only the new models are
allowed to be installed. However, the slightly older modelsare still good, they cost a
lot less and still have some good years of service in them. They are perfectly safe with
the new additional safety measures added to them. The only problem is that the law
does not allow certified engineers to install them. They can only modify older existing
boilers but not install them!

Our familya wants to buy a boiler. They go to an agente, who offers them options.
They can get an old model or a¬old model (= new model). The old model cannot be
installed by a certified engineer but unofficially it can be installed and then the family
can pretend that this is an existing old model and ask a certified engineer to add the
safety modifications.

The clever agente solves the problem of how to work around the regulations as
follows: the sale of new models he assigns to a special departmente2 and the sale of
old models he assigns to a separate departmente1. If e1 is investigated and is caught
trying to go around the rules, then that is a local problem. Soin practice the agent will
sell both boilers himself through different departments. The new boilers department
and the old boilers department. Figure 3 shows the analogy between the fence example
and the boiler example.

The only difference between the two examples is the incentive to the agente to
work through specialised departmentse1 ande2. There is no such incentive in fences.
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Fence Boiler
HC1. There should be no fence There should be no old

boiler (installed)
HC2. If there is a fence it should

be white
If there is an existing old
boiler it should be modified
with additional safety mea-
sures.

Figure 3: Fence and boiler problems compared

old boiler
x1

new boiler
y1

old boiler
x2

new boiler
y2

e1 e2

a

+ +

− + − +

Figure 4: Agents showing only new boilers

So let us go back to our family who wants to buy a boiler.
They approach agentse1, . . . ,em and each one of these agents offers a list of pos-

sible boilers for sale. Letxi
1, . . . , x

i
m(i), y

i
1, . . . , y

i
n(i) be the list of boilers offered byei .

Assume thatxi
j are old boilers , andyi

j are not old boilers.
The family may observe the rule (HC1). Therefore they may consider only the new

boilers. In fact, the agent will probably show them only the new boilers. This means
that the story is represented as in Figure 4. This figure showsonly two agentse1,e2,
each showing one old boiler and one new boiler. They may be showing the same boilers
in which case we have Figure 6a. The nodea represents the family. The arrow froma
to e1 symbolises the familya going toe1. (Note that according to Figure 4, the family
goes directly to agentse1,e2. This scenario shall be modified in Figure 7, in which
the family goes to agente and agente refers them to departmentsei .) The nodesxi , yi

denote boilers for sale (xi old boilers andyi new boilers).
The ‘−’ label on e1 → x1 switches the link frome1 to x1 off. This blockage of

access to the old boiler is in accordance with (HC1). Similarly, the arrowe2 → x2 is
labeled by ‘−’ and hence switched off. Both dealers only present new boilers. Although
they have the old boilers (x1, x2), they do not show them. Now if our family wants to
be presented old boilers they need to explicitly ask the dealer for old boilers. This is
realized by means of double arrows and illustrated in Figure5.

Hence, if our family has the wish to see the old boilers despite (HC1) they can force
their way tox1 andx2 by changing the ‘−’ label of the arcs via double arrows. They
pass viaP froma to the dealerei . This activates the double arrows (a→ ei)։ (ei → xi)
and (a→ ei) ։ (ei → yi). The double arrows invert the labels or the arcsei → xi and
ei → yi resulting in the ‘+’-labeling ofei → xi and the ‘−’-labeling ofei → yi . Hence,
when our family arrives atei they see Figure 6b.
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old boiler
x1

new boiler
y1

old boiler
x2

new boiler
y2

e1 e2

a

+ +

− + − +

Figure 5: The family asks the dealers to show only old boilers.

old boiler
x2

new boiler
y2

e1 e2

a

+ +

− +− +

(a) Two agents showing new boilers only

old boiler
xi

new boiler=
no old boiler

yi

ei

+ −

(b) The view that new boiler= ¬ old boiler

Figure 6

We now consider Figure 5 as a reactive Kripke model.
By evaluatinga � �⊘¬ old boiler in Figure 5 we are saying that at all agentsei ,⊘¬

old boiler holds. Hence, (HC1) holds and the agents do not offer any old boiler. This
concerns the case when the double arrows do not fire since we move froma to ei via^.
We take the wish of our family to see only the old boilers into account when we move
from a to ei via P. In this case the double arrows fire and the dealers show only the old
models. This is expressed bya � ⊘⊘ old boiler.

Thus we may translate

(HC1): There should be no old boiler

as

(HC1)*: � ⊘ ¬ old boiler.

The fact ‘old boiler’, which we interpret as what the family wants to buy, may be
expressed by⊘⊘ old boiler.

To make the translation clear, let us evaluatea � ⊘⊘ old boiler.
We havea � ⊘⊘ old boiler iff for all ei that we access viaP, ei � ⊘ old boiler.
Since we are arriving atei along the arrowa→ ei via P the double arrows fire (in

Figure 5) and hence what we see atei is Figure 6b.
We now evaluateei � ⊘ old boiler, and evaluating⊘ does take account of the

annotations and so we get:

ei � ⊘ old boiler iff for all xi , xi � old boiler,
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old boiler with
added safety

x′

old boiler
no safety

x

new
boiler

y

e1 e2

e

a
+

− +

+ − +

Figure 7: You ought to have a new boiler but if not then you should have a safe old
boiler

which holds.

How do we translate (HC2)? It is not convenient to use Figure 5to model (HC2).
The scenario of Figure 7 is better. The difference is that we use only one agent nodee.

In Figure 4 we have two agents, each agent is selling both types of boilers. In
Figure 7, there is one agent, agente, who has two departments, one selling old boilers
and one selling new boilers, these two departments are now denoted bye1 ande2.

The path frome to the department that sells the old boilerse1 is labeled ‘−’ and the
path to the department that sells the new boilerse2 is labeled ‘+’. This is in accordance
with (HC1). That means, by default our family is referred to the department that sells
only new boilers. (HC1) may be translated according to Figure 7 as� ⊘ ⊘¬ old boiler.
However, we will fine-tune this further below.

As before, were our family to wish to see old boilers instead,they would have to
request so. This is represented by means of double arrows that emanate froma → e
and target bothe → e1 ande → e2 (see Figure 8a). As the family passes through
a → e, a signal is sent to invert the labels ofe → e1 ande → e2. Note that if the
family moves througha → e via P then the switching takes place. However, if they
move througha → e via ♦ then no switching takes place. The latter represents the
situation in which we disregard the wishes of the family: then the labels that represent
the obligations determine the available paths. The translation of the fact “old boiler”
which we interpret as what the family wants to buy is according to Figure 8a⊘⊘⊘ old
boiler.

Now suppose our family is at departmente1 that sells the old boilers. (HC2) is
realized by means of the labeling of the arcse1 → x′ ande1 → x. The former leads
to the node with the boilers that have added safetyx′ and hence it is labeled ‘+’ in
accordance with (HC2). The latter arc leading to the boilerswithout added safetyx are
labeled by ‘−’. Hence this path is blocked. So the translation of (HC2) will involve
� ⊘ ⊘ old boiler with safety.

Example 3.1 motivated a sub-tree of the reactive tree that can be used for any con-
trary to duty situation. We will enrich it stepwise by addingto the complexity of the
considered sets of conditional obligations.

We needed an explanation for our choice of pointse,e1,e2. If we were to say di-
rectly without explanation that we want semantics where every accessibility configura-
tion of the form aRxi and aRyi is replaced by aRe,eRe1,eRe2,
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old boiler with
added safety

x′

old boiler
no safety

x

new
boiler

y

e1 e2

e

a
+

− +

+ − +

(a) The family wants to see old boilers with
added safety.

old boiler with
added safety

x′

old boiler
no safety

x

new
boiler

y

e1 e2

e

a
+

− +

+ − +

(b) The family wants to see old boilers without
added safety.

Figure 8

e1Rxi ,e2Ryj , the reader would have wondered where and why these auxiliary e,e1,e2

pop up from! We have our explanation now.
We now summarise our graph model and analyse it. Once we do that we present

the logical system formally and study its properties. We shall see that for technical
reasons the pre-final model we want to use is Figure 9. This figure is the same as
Figure 8a, except that we made the top nodes of the tree reflexive. The reasons for that
are technical, having to do with substitution, as we shall discuss below.

R1
Remark 3.2 (Summary of the proposed model). We have the CTD obligations of the
form below (think ofA=fence,B = white fence), whereA and B are classical logic
formulas:

(A1) Obligatory that¬A

(A2) If it is the case thatA then we should haveA∧ B (in the context ofA)

(A3) It is the case thatA

Figure 9 is the graph corresponding to (A1)–(A3) which, whenviewed as a reactive
Kripke model, is supposed to encode the logical informationexpressed by the set (A1)–
(A3) and thus model it. We first explain Figure 9 and then describe how it is done.

The story behind Figure 9 is that we have a family standing at nodea intending
to buy a boiler. We have also an agente selling boilers, having two departments,
departmente1 selling old boilersA, which can be safeB, or not safe¬B, and department
e2 selling new boilers¬A.

The arcs represent paths which the family can take moving from their initial posi-
tion to the boiler they want to get.

We want to use this setup to represent the contrary to duty set(A1), (A2) and
(A3). The representation must be intuitive and make (A1),(A2) and (A3) all completely
independent of one another.

(A1) is what is obligatory. We represent it by labeling the arcs leading to the depart-
mentse1 ande2: e→ e1 is labeled ‘−’ ande→ e2 is labeled ‘+’. This intuitively directs
the family from nodea to the nodee2 from which¬A –the new boiler– is accessible.
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x′i : A∧B xj : A∧¬B yk:¬A

e1 e2

e

a
+

− +

+ − +

+ + +

Figure 9: A model for Remark 3.2

Similarly, the contrary to duty obligation (A2) is represented by labeling the arcs.
(A2) concerns what boilers are presented by the departmente1. In accordance with
(A2) the arce1→ x′i is labeled ‘+’ while the arce1→ x j is labeled ‘−’.

(A3) are the facts, which we interpret as what the family wants to buy, which means
the path they want to follow. We give the family control of thedouble arrows so that
they can force their way through the tree even when it means breaking obligations. In
that case they need to invert the ‘−’-label of some arc by means of a double arrow. See
Figures 8a and 8b. In both cases their wish is in conflict with (HC1). Hence, they use
the double arrows to block the way to the dealere2 with the new boilers and instead
free their way to the dealere1 who sells the old boilers. In Figure 8a their wish is to see
old boilers with added safety and hence in coherence with (HC2). Thus, no additional
double arrows are needed. The situation is different in Figure 8b where they want to
see old boilers without added safety. Here they have to use the double arrows to invert
the labels ofe1→ x ande1→ x′.

x′i , i = 1,2,3, . . . are all points whereA∧ B holds.

x j , j = 1,2,3, . . . are all points whereA∧ ¬B holds.

yk, k = 1,2,3, . . . are all points where¬A holds.

Note that we added reflexive arrows to the top points,x′i , x j andyk. The reason is
that Standard Deontic Logic has the condition that every point has a world accessible
to it. So we made the top points reflexive.

Let us now examine how we can express the ideas presented graphically by means
of formulas. LetQ be a finite the set of atoms, andn = |Q|. In the following we
presuppose a semantic frame in form a tree analogous to the model in Figures 9 which
has a maximal depth ofn+1 from the root nodea to the top node. The top nodes
are reflexive, as remarked above. In Section 5 we will show howthis frame can be
characterised axiomatically.

We define:

♦X =df ¬�¬X

PX =df ¬ ⊘ ¬X

The position of a node in the graph indicates what is to be considered as being settled
when our family reaches the node. For instance, the positionof e1 indicates that the
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family settled for buying an old boiler, or, in the fence example, it indicates that there
is a fence. We can express this as follows: where

context(A) =df �
nA,

we have e.g.,e1 � context(A), e2 � context(¬A), x′i � context(B), andx j � context(¬B).
Note that the context of a node is established independent ofthe labels of the arcs. Note
that due to the reflexivity of the top nodes the evaluation ofw � context(A) always
checks whetherA is valid at all accessible top models fromw. There is no need to keep
track at which level of the tree the evaluation takes place.

Another important property of nodes is that they provide us with specific choices.
For instance, at nodee our family has the choice between settling for buying old (e1)
resp. new boilers (e2). Similarly, ate1 they have the choice between going for a boiler
with or without added safety. This is expressed as follows: where

switch(A) =df ^context(¬A) ∧ ^¬context(¬A),

we have e.g.,e � switch(A), e1 � switch(B), ande1 � switch(¬A∨ B).
A conditional obligation©AB expresses that whenever our family stands at a node

whereA is considered to be settled and they have the choice between anode in a context
that is consistent withB and a node wherecontext(¬B) holds, they should opt for the
former node.

Translated in our language this can be expressed by in the following way:

πi =df � . . .� (i times) whereπ ∈ {�,^,⊘,P}

opt(A) =df P¬context(¬A) ∧ ¬Pcontext(¬A),

obligedAB =df

[

∧n
i=1�

i(context(A) ∧ switch(B)→ opt(B))
]

∧
[

∨n
i=1 ♦

i(context(A) ∧ switch(B))
]

, and

obligedB =df obliged⊤B

The conditional obligation is expressed bya � obligedAB. Note that in Figure 9 we
have, for instance,

(*A1) a |= obliged⊤¬A, and

(*A2) a � obligedAA∧ B.

The first conjunct ofobligedAB, namely
∧n

i=1�
i(context(A) ∧ switch(B) → opt(B))

expresses that, whenever our family is at a node whereA is settled and where they have
the choice between a path that is consistent withB and a path that leads to¬B, they are
supposed to opt for the former.

Note that a given conditional obligation©AB imposes the following succession:
if A is considered as settled,B is obliged. This is mirrored in the tree: first it splits
betweenA (nodee1) and¬A (nodee2), then it splits betweenB (nodex′i ) and¬B (node
x j). The second conjunction ofobligedAB, namely

∨n
i=1^

i(context(A) ∧ switch(B)),
enforces the correct splitting in the tree. Were we to skip the second conjunct we would
get pragmatic oddities. For instance, the model in Figure 9 would also verifyobligedBA
andobligedB¬A.

We have already mentioned that facts represent the wishes ofour family. That
means, whenever our family has the choice betweenA and¬A they “use” the double
arrow to block the way to¬A and opt forA if they wish for A. For instance, when
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our family approaches the boiler shope, they activate the double arrows (a → e) ։
(e→ e1) and (a → e) ։ (e→ e2) which inverts the labels on the arcse→ e1 and
e→ e2. After all, their wish is to buy an old boiler (despite (HC1)). This is expressed
as follows:

(*A3) ⊘n+1A

For instance we havea � ⊘3A anda � ⊘3B in Figure 9. In Section 5 it is demonstrated
how we can axiomatically ensure that in each model our familytakes a unique path to
exactly one of the models on top of the tree.

Remark 3.3. 1. It is very important to notice that if we substitute (A3*) for A
inside (A1)* we get (A1)* back. This is because in Figure 9 thepoints x′i and
x j andyk are all reflexive, i.e. they areR accessible to themselves and hence all
modalities collapse.

Therefore, for example,��⊘ (⊘�⊘ A) ≡ ��⊘ A, and similarly⊘⊘⊘(⊘�⊘ A∧
⊘�⊘B) is equivalent to⊘⊘⊘(A∧B). Therefore we can say that first we translate
A andB and then substitute the translation in (A2) and (A1) and get (A2)* and
(A1)*.

2. Also note that the translations ofA→ ©B is taken essentially as the translation
of ©AB. Therefore we represent the linguistic CTD ‘IfA then obligatoryB’ in
our logic as saying©AB. To see this consider Figure 9. The labels implementing
A → ©B are blocking the arce1 → x j to the point where¬B holds by ‘−’ and
give access to the point whereB holds by means of the ‘+’-label on e1 → x′i .
Compare this with the original obligation©¬A. The labels that implement this
obligation are the ‘−’-label on e → e1 blocking access toe1 and hence to the
points whereA holds, and the ‘+’-label one→ e2 giving access toe2 where¬A
holds.

3. Note that the assumption is thatA and B are classical wffs and are considered
complete units for the purpose of translation. Thus for example if X is a wff of
classical logic and is translated into say⊘� ⊘ X for whatever reason, then when
¬X needs to be translated for the same reason, then¬X is translated as a unit into
⊘� ⊘ ¬X and not into¬ ⊘ � ⊘ X.

4. Note that the translation of the simple fact

(A3) It is the case thatA

is rather complex. This happens because the node in the modelwhere (A3) is
“committed” and thus a violation of (A1) becomes inevitable, is the nodee2. The
node where the obligation (A1) is put forward is the nodea. One dimensional
Kripke semantics allows us to evaluate at one point only. So we are forced to
describe the entire set up from the context of a single point.It may be natural
to take this point ase2, where the violation is, but then we have no backward
connective to take us back to pointa, where the obligation is. Thus we describe
all aspects of the model from pointa, because our modalities allow us to go
forward. So from pointa we must isolate and talk about pointe2 where the
violation occurs and make sure it is not “confused” with point e1.

Expressing all of this becomes complicated.

Note that if we do not make these distinctions we get the paradoxes.

So the naive reader should NOT ask:
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X ∧ Y
x1

X ∧¬ Y
x2

¬ X∧ Y
y1

¬X∧¬Y
y1

e1 e2

e

a

+

−

+ −

+

+ +

+ + + +

Figure 10: Modelling the dog example

• “why is the translation of (A3) complex, after all (A3) says is just a simple
fact?!”

My answer would be:

“yes, it is because you keep it simple that you get paradoxes”

Note that in our paper [5] we keep it slightly more simple by using two di-
mensional modal logic, and so we can keep track of both points, the point of
obligation and the point of violation.

Remark 3.4(Dog example, see [21]). The CTD with the dog is slightly different from
that of the fence. It is

(D1) There should be no dog

(D2) If there is a dog, there should be a sign

(D3) There is a dog.

Both examples have the form

(X1) ©¬X

(X2) X→ ©Y

(X3) X

In the fence case we have⊢ Y→ X, which we do not have in the dog case.
We havenot used the special feature⊢ Y→ X in our solution in Remark 3.2. The

translation is the same. Figure 9 becomes Figure 10.

4 Checking for Paradoxes

Remark 4.1(Rationality conditions). When we offer a translationτ into some deontic
logic L and hope to show that we have no paradoxes, we must satisfy some rationality
conditions forL andτ.
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(R1) The semantics forL must be compatible in its spirit with our intuitive grasp
of obligations and contrary to duties.

(R2) The translation of∆ into L must be consistent inL with no pragmatic oddities
(i.e. the translations of ObligatoryA and Obligatory¬A are consistent inL ).
Furthermore, the translation must be modular and incremental. For example,
if ∆1 is a set of obligations (which might be a paradox) and∆2 is another set,
then

(a) τ(∆1 ∪ ∆2) = τ(∆1) ∪ τ(∆2)

(b) If ∆θ is obtained from∆ by substitutionθ of classical formulas to the
atoms in∆ thenτ(∆θ) = τ(∆)θ.3

Example 4.2(Chisholm paradox and rationality of translation). We illustrate our ra-
tionality conditions by applying them to the Chisholm set.

1. It ought to be that a certain man goes to the assistance of his neighbour. Written
as©H.

2. It ought to be that if he does go he tells him he is coming, written asH → ©T.

3. If he does not go then he ought not to tell him he is coming, written¬H → ©¬T.

4. He does not go, written¬H.

Note that if we take in this Chisholm set the subset comprisedof (1), (3) and (4) and
substitute for

¬H = F
¬T = F ∧W

i.e. we letθ be the substituteH = ¬F andT = ¬(F ∧W), we get the fence example:

1. θ : ©¬F

2. θ : F → ©(F ∧W)

3. θ : F

Therefore any solution to the Chisholm paradox (1)–(4) via alogic L and a translation
τ must also give a solution to the fence paradox by looking atτ(1)θ, τ(3)θ andτ(4)θ.

We shall see that the Jones-Pörn solution in [4] does not satisfy the rationality
condition.

Example 4.3(Translation of the Chisholm paradox). We now give the reader an in-
tuitive idea for a rational solution to the Chisholm paradox. A proper solution will be
given in Section 5, once we have a precise mathematical basisfor our modelling.

Take the set

1. ©H

2. H → ©T

3. ¬H → ©¬T

4. ¬H
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H ∧ T
x1

H ∧¬ T
x2

¬ H∧ T
y1

¬ H ∧ ¬ T
y1

e1 e2

e

a

+

+

+ −

−

− +

+ + + +

(a) Chisholm paradox

Figure 11a Figure 9
H ¬A
T ¬B
x1 yk

y1 x j

y2 x′i
x2 does not exist

(b)

Figure 11

We use Figure 11a for the translation. Note that it satisfies the rationality conditions.
Let us now reduce Figure 11a to Figure 9 (the fence example) bylooking at clauses

(1), (3), (4) of the Chisholm set and by using the substitution θ, whereθ(H) = ¬F =
¬fence, (A in Figure 9) andθ(T) = ¬(F ∧W), (¬(A ∧ B) in Figure 9). Note that this
substitution complies withR2b of the Rationality Condition.

We get
x1 = ¬F ∧ ¬(F ∧W) = ¬F
x2 = ¬F ∧ F ∧W = ⊥
y1 = F ∧ ¬(F ∧W) = F ∧ ¬W
y2 = F ∧ (F ∧W) = F ∧W

We therefore get that after substitution Figure 11a becomesFigure 9 with the cor-
respondence table as given in Figure 11b. Note that we use in Figure 11a not only the
substitutionθ, but we also drop out clause (2).

We have seen that our translation model makes the fence paradox and the Chisholm
paradox disappear.

5 General theory of CTD’s in SDLR1

This section describes a final general model for a general characterization of single
CTD sets of arbitrary size (such as all previously considered examples, see the defini-
tion below). In the next section we give the most generic characterization that is able
to deal with any sets of conditional obligations and facts.

Definition 5.1 (Generalised single CTD set). Let Q = {p1, . . . , pn} be a finite set of
atoms and xi ∈ {pi ,¬pi} for each i≤ n.

A general single CTD set∆ of depth n contains

• ∆0 = {©x1}

3Carmo and Jones [3, p. 275] give the same rationality conditions except that they do not ask for condition
R2b. Indeed their systemDL of [18] is not closed under substitution. See Example 4.2 below, and the
discussion in Section 6 below, and see [3]. Our system does satisfy R2(b) as shown in Remark 3.3.
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• a non-empty subset∆i
CT D of {xi → ©xi+1, coxi → ©coxi+1}, wherecoxi = ¬pi

if xi = pi andcoxi = pi else

• a set of facts∆F ⊆ {τxi | τ ∈ {ε, co}, i ≤ n} whereε is the empty string

Hence,∆ is a triple 〈∆0,∆CT D,∆F〉 where∆CT D =
⋃n−1

i=1 ∆
i
CT D.

Example 5.2. The the dog example and the Chisholm set fall under Definition5.1.

Remark 5.3. For some CTD sets there are constraints. For instance in the fence ex-
ample we have thatw implies f (a white fence is a fence). We will first disregard such
constraints but will later come back to them (see Remark 5.9).

When constructing a model for a CTD set∆ we have two degrees of freedom. On
the one hand∆F may be incomplete in the sense that for somep ∈ Q neitherp nor
¬p is in ∆F . We want our models factually complete (so, for eachp ∈ ∆F either p is
modeled or¬p). Recall that the facts are taken to be the wishes of our family: they
reflect which of the top models they want to reach. Hence, in each modelM our family
will reach a unique top model which determines the facts thatare modeled byM. That
means that for instance for the Chisholm set with factg there are two corresponding
models: one with factt (where our family reaches the top model that verifiesg andt),
and one with¬t (where our family reaches the top model that verifiesg and¬t).

The second degree of freedom concerns cases in which for somei < n e.g.xi →

©xi+1 < ∆CT D. There are different options to deal with this situation in a model of∆:
e.g., we could ‘+’-mark both arcs, the one leading from anxi-node to anxi+1-node and
the one leading from anxi-node to acoxi+1-node. Or we could validateobligedxi

coxi+1

in the model (in which case the former arc is labeled ‘−’ and the latter is labeled ‘+’).
For the sake of simplicity we will in the following presuppose that∆ is complete in

the sense that for eachi < n, xi → ©xi+1, coxi → ©coxi+1 ∈ ∆CT D.

Definition 5.4 (CTD model template for∆). Let Q be a finite set of atoms, let∆ be a
generalised single CTD set based on Q. Let∆∗F ⊇ ∆F such that for each pi , {pi ,¬pi} ∩

∆∗F = ∅. We define a CTD reactive model template for∆ and∆∗F as follows:

1. The frame has the form(S,R1,R2, f ,a)

2. LetQ∆ =
{

〈τ1x1, . . . , τkxk〉 | k ≤ n, τi ∈ {ε, co}
}

. For each s∈ Q∆, s is the set of
all members of s.

3. S= {a,e,es | s ∈ Q∆}

4. R1 contains the following pairs:

• (a,e)

• (e,ex1) and(e,ecox1)

• (es,es◦xi ) where s, s◦ xi ∈ Q∆ and◦ is the concatenation function

• (es,es◦coxi ) where s, s◦ coxi ∈ Q∆

• (es,es) where s has length n

5. the graph has the following labels (where s∈ Q∆):

• f (e→ ecox1) = 0

• f (es◦xi → es◦xi◦coxi+1) = 0
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ex1,x2,x3 ex1,x2,¬x3 ex1,¬x2,x3 ex1,¬x2,¬x3 e¬x1,x2,x3 e¬x1,x2,¬x3 e¬x1,¬x2,x3 e¬x1,¬x2,¬x3

ex1,x2 ex1,¬x2 e¬x1,x2 e¬x1,¬x2

ex1 e¬x1

e

a

Figure 12: The tree template withn = 3

• f (es◦coxi → es◦coxi◦xi+1) = 0

• all other labels are 1

6. R2 contains the double arrows as follows:

• (a→ e)։ (e→ ex1) and(e→ e)։ (e→ ecox1) iff cox1 ∈ ∆
∗
F

• (es,es′ )։ (es′ → es′◦y) iff s′ ⊆ ∆∗F and (i) f (es′ → es′◦y) = 1 andcoy ∈ ∆∗F ,
or (ii) f (es′ → es′◦y) = 0 and y∈ ∆∗F .

7. for the assignment function v: S → 2Q we have the following requirement for
the models es on top of our tree v(es) = s∩ Q

Remark 5.5. Item 4 in Definition 5.4 defines a modal frame in form of a tree. Figure
12 illustrates this forn = 3. Figure 13 applies the labeling as in item 5 and the double
arrows as in item 6 for the CTD set

∆0 = {©x1},

∆CT D = {x1→ ©x2, cox1 → ©cox2, x2→ ©x3, cox2→ ©cox3},

∆F = {¬x1,¬x2, x3}

Example 5.6(Chisholm set). Compare with Example 4.3. We haveQ = {g, t}.

∆0 = {©g}
∆CT D = {g→ ©t,¬g→ ©¬t}
∆F = {¬g}.

Our models are illustrated in Figures 14a and 14b (the formerfor ∆∗F = {¬g,¬t} and
the latter for∆∗F = {¬g, t}).

Some authors useO(g→ t) in the Chisholm set. This is no problem for us, we can
translate it, as we explained in item 5 of Remark 3.3.

Example 5.7(Chisholm withn = 3). We now enhance our Chisholm set.g stands for
“going”, t stands for “telling”,o stands for “dressing your overall”. We enhance the
usual Chisholm set{©g,g→ ©t,¬g© ¬t} by {t → ©o,¬t → ©¬o}: if you tell you
should dress your overall, if you don’t tell you should not dress your overall.

Obviously this set is in accordance with Definition 5.1. In Figure 15 we have a
model for∆∗F = {¬g, t,¬o} constructed as in Definition 5.4.
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ex1,x2,x3 ex1,x2,¬x3 ex1,¬x2,x3 ex1,¬x2,¬x3 e¬x1,x2,x3 e¬x1,x2,¬x3 e¬x1,¬x2,x3 e¬x1,¬x2,¬x3

ex1,x2 ex1,¬x2 e¬x1,x2 e¬x1,¬x2

ex1 e¬x1

e

a

+

+ −

+ − − +

+ − − + + − − +

+ + + + + + + +

Figure 13: The model template withn = 3 (incl. labels and double arrows)

eg,t eg,¬t e¬g,t e¬g,¬t

eg e¬g

e

a

+

+ −

− ++ −

+ + + +

(a) Chisholm set with facts¬g,¬t

eg,t eg,¬t e¬g,t e¬g,¬t

eg e¬g

e

a

+

+ −

− ++ −

+ + + +

(b) Chisholm set with facts¬g, t

Figure 14

eg,t,o eg,t,¬o eg,¬t,o eg,¬t,¬o e¬g,t,o e¬g,t,¬o e¬g,¬t,o e¬g,¬t,¬o

eg,t eg,¬t e¬g,t e¬g,¬t

eg e¬g

e

a

+

+ −

+ − − +

+ − − + + − − +

+ + + + + + + +

Figure 15: Chisholm withn = 3
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Example 5.8(Expressive power of� and⊘). We try to characterise the graph axiomat-
ically (as a Kripke frame) using� by writing modal axioms holding ata. The logic is
non-normal, so the axioms hold ata only. If we want an axiom to hold at level two
points such aseg ande¬g in Figure 15 we need to put a� in front. The wffs X in the
axioms do not contain⊘ .

The following are the axiom schemas:

(*1) ♦X→ �X

(*2) �X→ ♦X

(*1) and (*2) say thata has exactly one accessible possible worlde

(*3)
∧n

j=1�
j(
∧3

i=1 ♦Xi →
∨

i, j≤3 ♦(Xi ∧ X j))

(*3) says that eaches has at most 2 accessible worlds.

(*4) �
n+1(X↔ �X)

(*4) expresses the reflexivity of our top nodes.

We now turn to our translation of∆. While discussing the various parts of∆,
namely∆CT D and∆F , we will still add some more axioms in order to characterise our
frame.

Now we make sure that the labels representing our obligations are placed correctly
and the splitting of the branches of the tree is in correspondence to the violation order
imposed by∆. Eachx→ ©y ∈ ∆CT D is translated by:














n
∧

i=1

�
i(context(x) ∧ switch(y)→ opt(y))















∧















n
∨

i=1

^
i(context(x) ∧ switch(y))















(δCT D)

(δCT D) expresses that whenever at some pointes at whichcontext(x) holds there is an
arc towards a node wherecontext(¬y) holds and another one towards a node where
¬context(¬y) holds, then the path towardscontext(¬y) is blocked and the path towards
¬context(¬y) is accessible. This realizes the obligation toy in the contextx. The
second conjunct of (δCT D) makes sure that the splitting of the branches of the tree are
as expected (i.e., in accordance with the violation order).

The facts are modeled by means of the following formulas. Where x is a fact we
add:

⊘n+1x (δF)

Furthermore we add:

(*5) ¬Pn+1⊥

(*6)
∧n+1

i=1
(

P
iX ∧ PiX′ → Pi(X ∧ X′)

)

These make sure that our family takes one unique path to a top node in each model.

(*7)
∧n−2

i=0 �
i¬ ⊘
∨n−1−i

j=1 ♦
j(♦X ∧ ¬PX)

This formula makes sure that all double arrows are of the type(es→ es′ )։ (es′ → es′′ )
(i.e., double arrows always target arcs in the next level in the graph).

Hence, where (*1)–(*7) axiomatize our frame, (δCT D) and (δF) provide the transla-
tion of our CTD set∆.
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Remark 5.9(Constraints). Suppose we have a set of constraints∆C = {¬
∧

E | E ⊂ Ql}

such as¬(w ∧ ¬ f ) in the fence example (a white fence is a fence). In this case we
have to change the construction of our model template slightly. For instance we adjust
Q∆ = {〈τ1x1, . . . , τkxk〉 | k ≤ n, τi ∈ {ε, co}, there is noE ⊆ {τi xi | i ≤ k} such that
¬
∧

E ∈ ∆C}.
Constraints can be translated into formulas by¬^n+1∧E.

Remark 5.10 (Independence). Both (a) the translations of the members of CTD-sets
and (b) the instructions for attaching the labels to the arcsand for drawing the arrows
are fully independent in our treatment. There are no logicaldependencies between the
translations of the obligations and facts of a given CTD set.4

Remark 5.11(Solution to Chisholm). Consider the Chisholm set of Examples 4.3 and
5.6. We are seeking a logicL and a translationτ of the Chisholm sentences intoL such
that

1. All translations are logically independent inL .

2. The translation is consistent inL .

3. The translation satisfies the rationality conditions of Remark 4.1.

Let the logicL be characterised as in Example 5.8, then (δCT D) and (δF) give the
translation of the Chisholm set.

6 Towards more generality: Permissions, separable con-
junctive obligations, specificity cases and CTD cycles

While in the last section we gave a detailed account of how we model a generalized
single CTD set inSDLR1, in this section we allow for less restrictive configurations.
Namely, we will also allow for cycles in CTD sequences and specifically for specificity
cases. Moreover, we show how different concepts of obligations as well as permissions
can be expressed within our logic.

Example 6.1(Extended Chisholm set with cycle). We now add©tg and©¬tg to our
Chisholm configuration. Hence, we have a cycle:©g,©gt,©tg. The new conditional
obligations©tg and©¬tg introduce a new progression: namely the one where we first

4Note that the placement of the double arrows as presented in Definition 5.4 item 6 is a function of the
labeling of the tree. This should not be taken as an indicatorfor dependence. The reason is that the instruction
is generic and independent of the concretely given (obligations that are represented by) labels.

Our perspective is that the facts reflect the wishes of our family. The double arrows enable them to force
their way to achieve what they want even if it violates obligations. If what they want violates an obligation
the path will be labeled ‘−’. In this case a double arrow will free the way for them. This can be phrased
in a generic way that is independent of the concrete obligations that are in place. E.g., if they wantA such
a generic instruction which is independent of whether we have©¬A or not is: if A is illegal and hence the
path is barred by ‘−’ then use a double arrow to force your way. For more complex facts that instruction is
the generic case distinction offered in item 6 of our Definition.

Another more subtle worry is the following. By means of the double arrows we allow our family to react
to the given obligations and force their way to reach what they want. One may argue that the norm giver may
use a similar strategy: depending an what the individuals that are subjected to the norms do he may change
the norms. E.g., if there is a certain loophole in the tax system and too many individuals use it in order to
avoid taxation the norm giver may adjust the law accordingly in order to fill the loophole. Our reply is that in
this paper we consider the norms as statically given and we do not studyRSDL1 as a system to model norm
change.
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eg,t eg,¬t e¬g,t e¬g,¬t et,g et,¬g e¬t,g e¬t,¬g

eg e¬g et e¬t

e
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+ − + −

+ − − + + − + −

+ + + + + + + +

Figure 16: Extended Chisholm with facts¬t,¬g and obligations©¬tg,©tg

consider whethert resp.¬t is settled and then are concerned with the question whether
we should dog. This is modeled semantically by introducing this sequencein the tree.
See Figure 16. While the left hand side of the tree is as before,we add the progressions
on the right hand side (i.e., the sub-trees〈a,e,et, . . .〉 and〈a,e,e¬t, . . .〉).5

Example 6.2(Cycle withn = 3). We consider the following configuration

{©p1,©p1 p2,©¬p1¬p2,©p2 p3,©¬p2¬p3,©p3 p1,©¬p3 p1}

See Figure 17 for the modeling which is in analogy to the previous example.

Example 6.3 (Makinson’s Moebius example). Makinson gave the following cyclic
example:

{©p1 p2,©p2 p3,©p3¬p1}

See Figure 18 for a model of this set.

Remark 6.4 (Parallel CTD sets, the problem with specificity). Another question is:
how to deal with parallel CTD sets such as

{

x j
i → ©x j

i+1, cox j
i → ©cox j

i+1 | i ≤ n( j) − 1, j ≤ m
}

where for eachj ≤ m the set{x j
i → ©x j

i+1, cox j
i → ©cox j

i+1 | i ≤ n( j) − 1} is a CTD
set as in Definition 5.1.

If some of the CTD sets share a member, it may give rise to specificity cases. A
case of specificity occurs whenever we have a conditional obligation©AB and a more
specific contextA∧ A′ (whereA∧ A′ ⊢ A andA 0 A∧ A′) such that¬©A∧A′ B, andA′

is consistent withB (0 ¬(A′ ∧ B)). It is hence a specific failure of monotonicity in the
condition of the obligation.

For instance, we can give another twist to the Chisholm set byintroducing a case of
specificity. While in Example 6.1 we had©¬tg, we could instead add©¬t¬g (after all,
as a rule of politeness, you are supposed never to visit unannounced). Note that this set
cannot be modeled by means of the translation we offered for conditional obligations
in Sections 4 and 5. The reason is that: (a)obliged¬t¬g enforces that at some nodees

in the tree we havees � context(¬t) ∧ switch(¬g), and (b) thates � opt(¬g). However,
by obligedg we also havees � opt(g) (in contradiction to (b)) since triviallyes �

context(⊤) ∧ switch(¬g).

5Hence, if we want our logic to model these more general cases we have to drop (*3) from our axiomati-
sation in Example 5.8.
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− −
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Figure 17: A model with a cycle forn = 3 and with factsp3, p1,¬p2
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Figure 18: A model for Makinson’s Moebius example with factsp3, p1, p2
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Specificity can easily arise when we combine two CTD sets thatshare members.
Take as a simple example the two CTD sets∆1 = {©a,a → ©b,¬a → ©¬b} and
∆2 = {©c, c → ©b,¬c → ©¬b}. Now supposea ∧ ¬c: due toa → ©b we expect
(a∧ ¬c) → ©b, however, due to¬c→ ©¬b we expect (a∧ ¬c) → ©¬b. Hence, we
either get a violation of the monotonicity ofa→ ©b or a violation of the monotonicity
of ¬c → ©¬b. Since so far we have not introduced means to deal with specificity
cases, we cannot represent such combinations of CTD sets.

However, if the various CTD sets do not share any literals (i.e., {x j
i , cox j

i | i ≤
n( j)} ∩ {xk

i , coxk
i | i ≤ n(k)} = ∅ for all j , k where j, k ≤ m) we can easily construct

models such as the one in Figure 19 for the combination of the two CTD sets∆1 =

{©a,a→ ©b,¬a→ ©¬b} and∆2 = {©c, c→ ©d,¬c→ ©¬d}.

Example 6.5 (Ross’ Paradox). The Ross paradox concerns the inference from©l
(“You ought to post the letter.”) to©(l ∨ b) (“You ought to post the letter or burn it.”).
By many authors this is considered as being not in coherence with our every-day usage
of disjunctive obligations. In our semantics we can embed the Ross set paradox-free.

Figure 20 features a model for{©l,¬© (l ∨ b),©¬b,¬l,¬b}.

Remark 6.6(Deliberative and Non-deliberative obligations). Note that our translation
of obligations has a deliberative flavor. Take for instance the fence example. Here we
have the constraint¬(w ∧ ¬ f ) (a white fence is a fence, see Remark 5.9). Hence, in
Figure 9 (whereA is substituted byf andB is substituted byw), all the worlds abovee2

verify ¬w∧ ¬ f . Nevertheless, we do not haveobliged¬ f¬w. The reason is as follows.
We havee2 � context(¬ f ). However, we do not havee2 � switch(¬w) since we do not
havee2 � ^w. Thus, frome2 on¬w is necessary.

We can also express non-deliberative obligations in our framework:

obliged∗AB =df

[(

∧n
i=1�

i(context(A) ∧ switch(B)→ opt(B))
)

∧
(

∨n
i=1 ♦

i(context(A) ∧ switch(B))
)]

∨
[

∧n
i=1�

i(context(A)→ context(B)) ∧
∨n

i=1^
icontext(A)

]

What is new in comparison to the definition ofobligedAB is the third line. It gives the
non-deliberative flavor to obligations and expresses thatobliged∗AB holds also if any
path leading toA leads also toB.

Note that the model in Figure 9 verifiesobliged∗¬ f¬w.

Remark 6.7. Note thatobligedC(A→ B) is not equivalent toobligedC∧AB in our logic.
This is demonstrated in Figure 21.

Remark 6.8 (Permissions). A permissionPAB can be expressed by means of

permitted∗AB =df

[(

∧n
i=1�

i(context(A) ∧ switch(B)→ P¬context(¬B))
)

∧
(

∨n
i=1 ♦

i(context(A) ∧ switch(B))
)]

∨
[

∧n
i=1�

i(context(A)→ context(B)) ∧
∨n

i=1^
icontext(A)

]

The first line expresses that whenever our family has the choice between¬B and a path
that is compatible withB, they are free to go for the second since the corresponding arc
is labeled by ‘+’.

The second line enforces the correct succession in the tree (see also the discussion
of the definition ofobliged in Section 3). Were we to skip this requirement we would
face pragmatic oddities: e.g., the model in Figure 14a wouldverify permittedt¬g.
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Figure 19: Modeling multiple CTDs with factsa,¬b, c,¬d
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el,b el,¬b e¬l,b e¬l,¬b

el e¬l

e
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+

+ −

− +− +

+ + + +

Figure 20: Ross’ Paradox with facts¬l,¬b

ea,b ea,¬b e¬a,b e¬a,¬b eb,a eb,¬a e¬b,a e¬b,¬a

ea e¬a eb e¬b

e

a

+

+ + + +

+ − + + + + + +

+ + + + + + + +

Figure 21: A model that verifies¬obliged(a→ b) andobligedab for the facts¬a,¬b

The third line expresses that in case every path leading toA is also leading toB, our
family is allowed to bring aboutB in the contextA (after all, in this context they have
no other choice).

Note that weak permissionsPA =df ¬ © ¬A are problematic for logics that block
the Ross-inference from©l to©(l ∨ b) (such asSDLR1). The reason is that in such
logics©l,¬©(l∨b) is consistent. Now given that©(l∨b) is equivalent to©¬(¬l∧¬b),
we getP(¬l ∧ ¬b), which is obviously counter-intuitive. Hence, our permission is not
weak.

Note that the model in Figure 20 verifies:permission⊤(l ∧ ¬b), permission¬l¬b,
¬permission⊤(¬l ∧ b), ¬permission⊤(¬l ∧ ¬b), and¬permission⊤¬l.

Remark 6.9 (Separable and inseparable conjunctive obligations). Note that in our
translation of conditional obligations we do not get

obligedA(B∧C) ≡ obligedAB∧ obligedAC. (Sep)

Conjunctive norms of that kind are often referred to as “inseparable conjunctive norms”.
Consider the following example:

Figure 22 is a model of

{

obliged(a∧ b), obliged¬a¬b, obligeda,¬obligedb, obliged¬ba,¬obliged¬b¬a
}

Suppose we are supposed to buy ingredients for a strawberry cake which is to be baked
tonight for the visit of a good friend.a stands for “buying flour” andb stands for
“buying strawberry”. Suppose the shop is out of flour and we have no time left to go to
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Figure 22: Inseparable conjunctive norms: a model ofobliged⊤(a∧b), ¬obligedsep
⊤ (a∧

b), obliged⊤a,¬obliged⊤b, and factsa,¬b.

another shop. In this case we have to cancel our plan to bake the cake and are supposed
not to buy strawberries since we have no use for them: hence©¬a¬b. Now suppose
the shop ran out of strawberries but still has flour. Since theflour can still be used for
baking fresh bread, we are still supposed to buy it:©¬ba. This situation is modeled by
the model in Figure 22. Note that this cannot be modeled if we have (Sep).

Now the question arises whether our logic is expressible enough also to represent
separable conjunctive norms for which (Sep) holds. This canbe achieved as follows:
whereE ⊆ Ql , we defineobligedsep

A

∨

E just asobligedA
∨

E by















n
∧

i=1

�
i(context(A) ∧ switch(B)→ opt(B))















∧















n
∨

i=1

♦
i(context(A) ∧ switch(B))















Moreover, we define:

obligedsep
A (B∧C) =df obligedsep

A B∧ obligedsep
A C

obligedsep
A ¬¬B =df obligedsep

A B

obligedsep
A ¬(B∨C) =df obligedsep

A (¬B∧ ¬C)

obligedsep
A ¬(B∧C) =df obligedsep

A (¬B∨ ¬C)

Figure 23 is a model ofobligedsep
⊤ (a∧ b).

Remark 6.10(Temporal distinctions). The sequences encoded in the tree structure of
our models offer means to express temporal successions. There are variousinterpre-
tations. For instance we could interpret the fact that our family stands at a node with
contextA by A being the case. Another, less strict reading is that at this point our family
considers the fact that they are going to realizeA as being settled (without it necessarily
already being realized). So in the Chisholm example they maystand at nodeeg which
means that they decided to go (for instance they all agreed that they will go). In this
case they may have next to consider whether they tell or whether they do not tell that
they are going.

The second reading is more apt for Forrester’s gentle murderer example.

• ©¬k “Smith ought not to kill Jones.”

• k→ ©g “If Smith kills Jones he ought to do it gently.”
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Figure 23: Separable conjunctive norms: a model ofobliged⊤(a∧b), obligedsep
⊤ (a∧b),

and factsa,¬b.

See Figure 24. Of course, if the killing already took place itis also already a matter of
fact whether the killing was gentle or not. However, if we go with the second reading
we only consider it as being settled whether Smith decided tokill Jones. So if Smith
reaches nodeek it makes still sense to make a decision betweenek,g andek,¬g and hence
to consider the CTD obligation to kill gently.

Altogether, this gives us additional expressivity which can be exploited. For in-
stance, we can express conditional obligations that are sensitive to the exact sequence
of decisions taken by the agent in question:

obliged(A1,...,Am)B =df

















n+1−m
∧

i1=1

�
i1

















context(A1) ∧
∧

1< j≤m

¬context(A j)→

















n+1−m−(i1−1)
∧

i2=1

�
i2

















context(A2) ∧
∧

2< j≤m

¬context(A j)→

















. . .

















n+1−m−(i1−1)−...−(im−1−1)
∧
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�
im(context(Am) ∧ switch(B)→ opt(B)
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^
i1

















context(A1) ∧
∧

1< j≤m

¬context(A j)→

















n+1−m−(i1−1)
∧

i2=1

















^
i2context(A2) ∧

∧

2< j≤m

¬context(A j)→
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n+1−m−(i1−1)−...−(im−1−1)
∧

im=1

^
im(context(Am) ∧ switch(B)

)

















. . .

















































































The first “[. . .]”-conjunct expresses that whenever our family traverses the sequence
A1, . . . ,Am and faces the choice between an arc leading to¬B and an arc that leading
to a node that is compatible withB, the former is labeled ‘−’ while the latter is labeled
‘+’. The second “[. . .]”-conjunct makes sure that the each model offers a path with the
sequenceA1, . . . ,Am and a choice between¬B and a path that is consistent withB.

Of course, we can also give a temporal account of the facts. For instance our family
may settle firstA1, thenA2, . . . , thenAn. This can be expressed by

⊘2A1 ∧ . . . ∧ ⊘
n+1An
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Figure 24: The Forrester set with factsk,¬g
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Figure 25: Extended Chisholm with facts¬t,¬g in the sequence (¬g,¬t)

Compare for instance Figures 16 and 25. Both models verify¬t and¬g. However, in
the former we have the sequence (¬t,¬g) and hence⊘2¬t∧⊘3¬g while in the latter we
have the sequence (¬g,¬t) and hence⊘2¬g∧ ⊘3¬t.

Example 6.11(Extended Chisholm with specificity). We have already discussed why
our translation cannot model specificity cases (see Remark 6.4).

Hence, in order to model specificity cases we need to alter ourtranslation of condi-
tional obligations. As the examples in Remark 6.4 indicate,the translation need to be
more sensitive concerning the specificity of the given context. This can be achieved as
follows. WhereE ⊆ Ql and

scontext(
∧

E) =df context(
∧

E) ∧
∧

p∈Ql\{q,co(q)|q∈E}

¬context(
∧

E ∧ p)

we translate©∧EA by

obligedspe
∧

E
A =df

n
∧

i=1

�
i(scontext(

∧

E) ∧ switch(A)→ opt(A))

and define

obligedspe
A∨BC =df obligedspe

A C ∧ obligedspe
B C

obligedspe
¬¬AB =df obligedspe

A C

obligedspe
¬(A∧B)C =df obligedspe

¬A∨¬BC
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Figure 26: Extended Chisholm with facts¬t,¬g and©¬t¬g
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Figure 27: Extended Chisholm with facts¬t,¬g and¬©¬t ¬g, ¬©¬t g

obligedspe
¬(A∨B)C =df obligedspe

¬A∧¬BC

Given this translation, the model in Figure 26 is for the set
{

obligedspe
⊤ g, obligedspe

⊤ t, obligedspe
¬g ¬t, obligedspe

g t, obligedspe
t g, obligedspe

¬t ¬g,¬t,¬g
}

Note that this model does not verifyobliged⊤g. The reason is that the arcet → et,g

is ‘+’-labeled and the arcet → et,¬g is ‘−’-labeled. Since we haveet � context⊤, if
obliged⊤g were to hold we would haveet � opt(g). However, due to the labels of the
two arcs that emanate fromet we haveet 2 opt(g). Note also that despite the labels of
these arcs we haveobligedspe

⊤ g. The reason is thatet 2 scontext⊤. Indeed, the only
node wherescontext⊤ holds ise. Since we havee � opt(g), we also haveobligedspe

⊤ g.
Another possibility is to alter the Chisholm set by adding¬ ©¬t ¬g and¬ ©¬t g.

This expresses that in case you don’t tell, you are neither obliged to come nor are you
obliged not to come. Neither option is preferable to the other. The model in Figure 27
is for the set:

{

obligedspe
⊤ g, obligedspe

⊤ t, obligedspe
¬g ¬t, obligedspe

g t, obligedspe
t g,

¬obligedspe
¬t ¬g,¬obligedspe

¬t g,¬t,¬g
}

Example 6.12(Horty’s Asparagus, Specificity). Another well-known case of speci-
ficity is Horty’s example©¬ f and©a f where f is “eating with fingers” anda is
“eating asparagus”. The model in Figure 28 is for the set

{

obligedspe¬ f , obligedspe
a f ,¬ f ,a

}
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ef ,a ef ,¬a e¬ f ,a e¬ f ,¬a ea, f ea,¬ f e¬a, f e¬a,¬ f

ef e¬ f ea e¬a

e

a

+

− + + +

+ + − + + − − +

+ + + + + + + +

Figure 28: The asparagus example with facts¬ f ,a.

ea,b ea,¬b e¬a,b e¬a,¬b ec,b ec,¬b e¬c,b e¬c,¬b

ea e¬a ec e¬c

e

a

+

+ − + −

+ − − + + − − +

+ + + + + + + +

Figure 29: Parallel CTDs with factsc,¬b.

Example 6.13(Parallel CTD sets). By means ofobliged we can only model com-
binations of CTD sets that do not include any cases of specificity (see Remark 6.4).
However, sinceobligedspe is able to tolerate specificity cases, we are now in the posi-
tion to model combinations of any number of CTD sets. E.g., given

∆ =































∧

k≤i

x j
k

















→ ©x j
i+1,

















∧

k≤i

cox j
k

















→ ©cox j
i+1 | i ≤ n( j) − 1, j ≤ m















we only need to merge the semantic trees for each
{(∧

k≤i x j
k

)

→ ©x j
i+1,
(∧

k≤i cox j
k

)

→

©cox j
i+1 | i ≤ n( j)

}

so that they share the nodesa ande in order to get a model of∆.
Figure 29 is a model of the two CTD sets∆1 = {©a,a → ©b,¬a → ©¬b} and

∆2 = {©c, c → ©b,¬c → ©¬b}. As noted in Remark 6.4 this example cannot be
modeled by means ofobliged since it includes a specificity case. The model in Figure
29 verifies

{

obligedspea, obligedspe
a b, obligedspe

¬a ¬b
}

∪
{

obligedspec, obligedspe
c b, obligedspe

¬c ¬b
}
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7 Comparison with the Jones–P̈orn system DL6

It is illuminating to compare our system with the systemDL presented in the classic
paper [18] of Jones and Pörn in 1985.

They focus in their paper on the Chisholm paradox and offer on page 278 semantics
of the form (S,R0,R0′ ,h), whereR0,R0′ ⊆ S2 are serial and

C1 : R0 ∩ R0′ = ∅

C2 : {(x, x)|x ∈ S} ⊆ R0 ∪ R0′

The two relations correspond to modalitiesO andO′.
Let �A =df ©A∧ ©′A. After some serious and illuminating discussion Jones and

Pörn translate the Chisholm set into their system as follows (see page 284):
Let Oughtp =df ©p∧ ¬©′ p. Then the Chisholm set becomes (note that Oughtp

is also equivalent to©p∧ ¬�p, and thus the translation below does not use©′).

1. Oughtp

2. �(p→ Oughtq)

3. �(¬p→ Ought¬q)

4. ¬p

Their proposal was criticised by Hanson [16] and replied to immediately in [17].
We will continue the criticism in the spirit of Hanson and show that the solution

proposed by Jones and Pörn to the Chisholm paradox is not closed under substitution.

Remark 7.1 (Substitution in the Jones-Pörn system). We show that the solution of the
Chisholm paradox proposed in the Jones-Pörn systemDL in [18], is not closed under
substitution.

We observed that if we take the Chisholm set (see example 4.3)and substitute
H = ¬F andT = ¬(F ∧W), we get the fence paradox if we ignore the CTD linguistic
formula¬H → O(¬T). Thus if the Jones-P̈orn solution is consistent and independent
it must solve the fence paradox under the above substitution. However, it does not. We
get an inconsistent set under the above substitution.

The Jones-P̈orn translation is into the modal logic withR� andR0 as we have shown
in the beginning of this section. By substituting the fence variables we get

1. Ought¬fence

2. �(¬fence→ Ought(¬(fence∧ white)))

3. �(fence→ Ought(fence∧ white))

4. fence

Recall that OughtX ≡ OX∧ ¬�X.
Let F = fence,W = white we get

6The perceptive reader might ask why are we comparing with the Jones and P̈orn system, when there are
many other systems to discuss, especially those which use preferential ordering, a device which can also be
simulated by reactivity. The answer is simply pragmatic: Proper systematic comparison with other systems
requires technical development and can be the subject of a subsequent paper. The comparison with Jones
and P̈orn is simple and quick and we already studied this system in [5].
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a

R0
R0

y1 : ¬F . . . ym : ¬F

z1 : ¬F w1 : F ∧W zm : ¬F . . . wm : F ∧W

x1 : F

R� − R0

Figure 30

1. O¬F ∧ ♦F

2. �(¬F → O(¬(F ∧W)) ∧ ♦(F ∧W))

3. �(F → O(F ∧W) ∧ ♦¬(F ∧W))

4. F

Let us check whether the above is consistent.
Let (S,R�,R0,a,h) be a model of (1)–(4) above, withR0 ⊆ R� andR� reflexive and

R0 aKD modality.
So underh assume (1)–(4) hold ata. We claim (1), (3) and (4) (the fence example)

is already inconsistent.
Use Figure 30 for help.
From (1) we get thata � ♦F ∧O¬F, hence for somex1 such thataR�x1 ∧ ¬aR0x1

we havex1 � F. We say¬aR0x1 becausea � O¬F. Let y1, . . . , ym in the figure be all
R0 accessible points toa. m≥ 1 becauseO is aD modality we haveyi � ¬F.

From (4) we geta � F. From (3) and reflexivity we get thatO(F ∧W) must hold at
a but this is not possible sincem≥ 1 and¬F holds aty1. Note that (2) can hold in the
model if we add pointszi ,wi as indicated!

Note that Remark 7.1 could have been written in 1985. It has nothing to do with
reactivity. It is a straightforward calculation in the samespirit as Hansson 1989, see
[16]. For a serious analysis of the Jones and Pörn 1985 system using two-dimensional
modal logic and other pre-1985 methods, see [5].

8 Conclusion and comparison

We would like to compare this paper with several other paperswe wrote which make
use of the reactive idea. We use the Chisholm paradox as a casestudy for comparison.

In Section 6 (see Remark 6.4) we have offered the following generic characterisa-
tion of combinations of various Chisholm sets of arbitrary depth:

{

x j
i → ©x j

i+1, cox j
i → ©cox j

i+1 | i ≤ n( j) − 1, j ≤ m
}

The following are problems to be solved:

GP Give a logic and reactive semantics for the general problem,for mandn arbitrary.
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We have two options for the logic we use:

1. a traditional Hilbert System with Reactive Kripke Semantics for it, or

2. a most general Labelled Deductive System for General Reactive Kripke Seman-
tics

We can break the general problemGP into several particular onesPP, which we
may solve for the time being, using simpler models.

PP1 SolveGP for the casem= 1, andn arbitrary, i.e., a single arbitrary long chain of
Chisholm like contrary to duties, only paying attention to the violation ordering
while neglecting temporal considerations.

PP2 SolveGP for the casen andmarbitrary, i.e. for several Chisholm like sets, taking
into account both the violation order (indicated by the sequence 1, . . . ,n( j) for
eachj ≤ m) and temporal considerations.

PP3 SolveGP by giving a general Labelled Deductive system semantically, without
giving any proof theory for it.

PP4 Add a labelled proof system toPP3.

PP5 Offer a solution with a new type of modelling, like argumentation or automata
theory.

We now make our comments:

1. In the present paper we first offered a solution toPP1 (see Section 5) by using
a semantic approach. We offered a reactive model where the annotations to arcs
mirror the obligations and where there are double arrows which can change the
annotations. The latter represent the given facts. Using such semantics we can
translate the traditional Chisholm set into a language withthe two modalities�
and⊘.

In Section 6 we demonstrated how the present approach can be used to tackle
PP2. We discussed combinations of CTD sets. We pointed out how interactions
between various CTD sets can lead to complications such as specificity cases
and how to deal with them in our semantics. We also demonstrated howRSDL1
can be used to model temporal considerations.

2. We now compare with other papers using the reactive idea.

(a) Paper [9] is a general paper, introducing for the first time the idea of reac-
tivity.

(b) Papers [10, 11] use a similar semantic approach to deal with the single
Chisholm paradox with two letters (go, tell) where the temporal aspect is
also taken into account. Part A ([10]) deals with the semantics, i.e. it solves
PP3. Part B ([11]) deals with the proof theory, i.e. papers [10, 11] address
PP4by means of the Labelled Deductive System approach. In fact,we can
deal with several letters. Once we have semantics, we can deal with a fam-
ily of general Chisholm sets, because we can evaluate them individually.
The problem is that they may interact and so we need to processthem first
and this requires proof theory.
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(c) Paper [14] uses an axiomatic Hilbert type approach, axiomatising the reac-
tive semantics and is capable of translating any single Chisholm set with
arbitrary number of letters (n > 2), including an arbitrary temporal order
(different from the obligation/violation order).

We believe the axiomatic approach can handle several Chisholm sets (m,n
arbitrary), but a complete temporal order for all sets should be given. So
for example the case ofm = 1,n = 2 would require a complete temporal
order, sayx1 < x1 < z1 < z2, and the resulting translation and modelling
will be different from what we proposed in (1) above.

(d) Paper [5] is based on Jones and Pörn [18] and addresses the problem dis-
cussed in Remark 7.1 of the present paper, the solution of which requires
a modified model. We use axiomatic two-dimensional temporallogic to
model the Chisholm case (m = 1,n = 2). Strangely enough we do not
model the temporal order. We do not think it is possible to do so in this
approach. We use the obligation/violation progression (go< tell) as our
“virtual time”, and it is not clear how to account for real time as well.

We believe that combining the approach of the present paper with that of
[14] will allow us to model the most general family of Chisholm sets (i.e.
m,n aribtrary with arbitrary temporal order) without using thetheory of
Labelled Deductive Systems . This is probably possible by using multi-
modal logic. However, this way we may not achieve an intuitive model but
rather a purely technical one.

3. Completely new ideas tacklingPP5can be found in papers [13, 2]. The direction
in which they go is clear from their titles.
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