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Abstract

The present paper offers a new approach to non-monotonic log-
ics and their reconstruction in terms of inconsistency-adaptive logics.
By applying a special technique, universally quantified formulas are
assigned instances that, given the paraconsistent framework, do not
cause triviality even if they conflict with knowledge deriving from other
sources. From the special instances, the usual instances may be derived
conditionally, viz. provided they are not contradicted by statements
derived with a higher preference ranking.

1 Introduction

In this paper I present a new approach to non-monotonic reasoning. The
underlying idea is that universally quantified formulas (henceforth UQF) are
formulated unrestrictedly, even if they have exceptions, but the derivation of
instances is restricted, and derived instances are not finally derivable (i.e. do
not belong to the consequence set), when the instance is known to concern
an exception to the UQF.

The effect is realized by recurring to an inconsistency-adaptive logic HL2
that is based on a specific paraconsistent logic pHL2. According to pHL?2,

*T am indebted to the two referees; their remarks enabled me to improve the exposition
at several points. I thank Kristof De Clercq; his experience with problems concerning
default-reasoning and circumscription, has been very useful for me (see his [6]). I am
especially obliged to Diderik Batens; his work on adaptive logics and his assistance in the
writing of this paper were indispensable.



a UQF (Ya)A(«a) unconditionally entails ~—A(f) in which “~” is a paracon-
" classical negation. According to HL2, ~—A(f) en-
tails A(f), provided —A(f3) ‘behaves consistently’ (in a sense specified later)
on the premises. I shall first clarify the role and the effects of paraconsistent
and inconsistency-adaptive logics, and then motivate the transition to the
logics presented below.

sistent negation and “—

Paraconsistent logics avoid that inconsistent theories are turned into
trivial ones. A straightforward strategy to obtain a paraconsistent logic
consists in weakening classical logic (CL) by dropping one half of the mean-
ing of negation, reducing it to “If A is false, then ~A is true”. In [4] this
paraconsistent logic is called CLuN.! CLuN indeed allows for non-trivial
inconsistent theories. It does so however by eliminating too many inferences:
we want the intuitivily correct consequences to be derivable when no incon-
sistency is involved; e.g. we want to apply Disjunctive Syllogism (AV B, ~A
/ B) whenever A does not behave inconsistently. The inconsistency-adaptive
logics ACLuN1 and ACLulN2, based on CLuNN, enable us to do so see
2], [3] and [4].2 In these logics some consequences which are CL-derivable
but not CLuN-derivable, are ACLuN-derivable, provided certain formulas
are reliable  that is: do not behave inconsistently in view of the premises.

Although inconsistency-adaptive logics isolate inconsistencies and deliver
all classical consequences whenever the specific inconsistencies do not pre-
vent this, they are not fully adequate with respect to everyday reasoning.
Indeed, in many situations we want to eliminate the inconsistencies as they
occur. If an inconsistency turns up, for instance within our most reliable
knowledge, we often wish to reject one half of the inconsistency and to retain
the other. The two kinds of inconsistencies considered in the present paper
are caused by the fact that we have different ways to obtain information
about the same statement. The information may stem from observation,
possibly combined with logical deduction. It may also be derived from gen-
eral knowledge, for example from UQFs and remark that a combination

'In [2] and [3] this paraconsistent logic was called PIL. It was renamed in view of the
creation of analogous logics dealing with other abnormalities. The N stands for Negation,
the u stands for gluts. CLaNN, for instance, is a paracomplete logic; here the a stands for
gaps.

CLuN is obtained from CL by dropping the axiom (A4 D B) D ((A D~B) D~A).
Classical negation, —, is introduced by —=A =4 A DL1. Remark that neither Replacement
of Identials nor Replacement of Equivalents hold in the scope of a “~”. Also, CLulN
maximally isolates inconsistencies; from A&~ A, no other inconsistency is derivable, not
even about subwifs or superwifs of A.

?In [2] and [3], these logics were called APIL1 and APIL2.



of UQFs may lead to conflicting information. In view of the elegance and
power of our most reliable knowledge, we are interested in general state-
ments without exceptions. If conflicts arise, we want to reject the instance
of the general statement and to retain the more specific information (i.e.
the observational information or the information derived from more specific

UQFs).

In the second part of this paper I introduce Hypothesis Logic HL. This
adaptive logic is based on pHL, which is obtained from CL by modifying its
instantiation rule: from (Va)A(«a), ~—A(S) is derived instead of A(/3). The
curl is the paraconsistent negation as defined in CLuN. As an immediate
result, the inconsistency arising if = A(f3) is provided by information deriving
from a different source, does not cause explosion. According to HL, A(f)
is only derivable from ~—A(f) provided —A(f) is not derivable from the
available premises. The modification has a further and most interesting
effect: if an exception turns out to be derivable after the instance A(f)
was conditionally derived, the conditionally derived instance will not be
considered as finally derivable because the line in which it occurs is marked
in view of a strictly logical marking rule. The advantage of such a marking
rule is clear: when inconsistencies are weeded out within a proof, we obtain
a richer (but not trivial) and (in as far as we eschew inconsistencies) more
interesting consequence set, and we do so by strictly formal means.

In the third part of the paper I introduce HL1, a logic pertaining to
languages that combine the universal quantifier of HL with the one of CL.
Unlike HL, HL1 enables us also to resolve inconsistencies deriving from
UQFs. The idea is that ‘classical’ UQFs can be instantiated unconditionally,
while the others can only be conditionally instantiated. In order to apply
HL1, we need to classify (from the very outset) UQFs in classical and
‘exceptional’ ones — this elimination of inconsistencies is not strictly logical
but relies on non-logical considerations.

In the final part I introduce HL2, which generalizes the idea of sorted
quantifiers. Where HL1 contains one kind of exceptional universal quan-
tifier, HL2 contains a preferentially ordered (indefinitely large) amount of
them. For simplicity’s sake, I shall only consider linear orderings. The
preference of a UQF will be indicated by a number superscripted to the
universal quantifier, lower numbers indicating the higher preferences (for
the sake of generality, classical UQFs will receive the superscript 0). The
relation between a HL2-UQF of preference 7 and a HL2-UQF of preference
i+7j (j >1),is the same as the relation between a classical HL1-UQF and
an exceptional HL1-UQF. Where a contradiction arises between (a formula



derived from) an instance of a UQF of preference i and (a formula derived
from) an instance of a UQF of preference i + j, it will follow from the occur-
rence of the former that the line in which the latter occurs is marked, and
hence the latter will not be finally derivable.

2 HL.

In HL all UQFs may have exceptions. This implies that the CL-instances
are derivable conditionally. Where no exception occurs, the conditions are
not overruled and the HL-instances are the CL-instances.

All negations occurring in natural languages are formalized by means
of “=", the classical negation, but the language scheme of HL contains a
second, paraconsistent negation “~”. The universal instantiation rule of HL
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ur: (Va)A(a) /| ~=A(B)

The instance can be read as: there is no reason to accept (= “~7) that
A(B) is not the case (= “="). An immediate advantage of this instan-
tiantion rule is that no (classical) inconsistency occurs when —A(3) is also
derivable from the premises. In the underlying paraconsistent logic pHL
it is impossible to derive A from ~—A; in HL, the adaptive logic based on
it, A can be derived from ~—A conditionally. All pHL-consequences are
HL-consequences. Some CL-consequences which are not pHL-derivable,
are HL-derivable. An example of a HL-proof:

(1)  (Vz)(Az D (Pz&—-Qx)) - PREM -
(2) Ba>2Qa - PREM -
(3) Aa - PREM -
(4) Ba - PREM -
(5)  ~—=(4a D (Pa&—Qa)) 1 Ul -
(6) Aa D (Pa&—Qa) 5 coNt  =(Aa D (Pa&—Qa))
(7)  Pa&—Qa 3,6 wmpP =(Aa D (Pa&—Qa))
(8) —Qa 7 SIM =(Aa D (Pa&—Qa))
(9) Qa 2,4 wmp -

3In this paper the proof theory is formulated axiomatically. In actual proofs however
it is handier to make use of Fitch-style rules. I skip the proofs of the derivation of the
Fitch-style rules from the axioms. (These proofs are standard.) Where necessary the
applied Fitch-style rules are explained in a footnote.

4eDN stands for conditional double negation. This rule is explained in Section 2.2.1.



The formula in line (6) is derived on condition of the ~-consistent be-
haviour of the formula in the fifth element of line (6). Every formula derived
from a conditionally derived formula takes over the condition(s). If we stop
the proof at line (9), we have derived both Qa and —=Qa, which is not exactly
what we want; as Qa is derived from more specific information than —Qa,
we want only QQa to be finally derivable. If we continue the proof, we find
out that the condition mentioned in lines (6)-(8) is overruled.

(10) ——Qa 9 DN -
(11) =PaV —-—Qa 10 ADD -
(12) —=(Pa&—Qa) 11 ND -
(13) —(Aa D (Pa&—Qa)) 3,12 n~r° -

As both =(Aa D (Pa&—Qa)) (line (13)) and its negation (line (5)) are
derived unconditionally, the condition in lines (6)-(8) is overruled, and there-
fore the formulas in these lines will not be considered as finally derivable, i.e.
Qa belongs to the consequence set of the premises (Cngr ({premises}))®,
while =Qa does not. The inconsistency is resolved. I will introduce a de-
rived marking rule by which line (8) can be marked without extending the
proof with lines (9)-(13). In what follows lines of a proof that contain an
overruled condition in their fifth element, will be marked with 7, e.g. lines
(6)-(8) in the proof above. Marked lines do not belong to the proof anymore.
Formulas in the second element of marked lines are not HL-consequences.

The notation “4A” will be the short for “A&~A”.

2.1 The underlying paraconsistent logic pHL.

2.1.1 Proof Theory of pHL.

The axiom scheme of pHL is composed of a suitable set of axioms for D,
&, V, =, L, -, Jand =7 (as for CL), together with:

NI stands for negation of the implication. In view of the fact that A O B is true iff A
is not true (or —A is true) or B is true, =(A D B) is true iff A is true and B is not true
(or =B is true).

5Where XL is a logic, and I is a set of well formed formulas, CnxL(I') = {4 | T FxL
A}

"Replacement of identials is restricted as follows:

(A=2) a = 8 D (A D B) where B is obtained by replacing in A an occurrence of «
that occurs outside the scope of a ~ by B.



AY:  (Ya)A(a) D~—A(pB)
RY: To derive - A D (Va)B(«) from F A D~-B(f),
provided 8 does not occur in either A or B(«)

A~: AV ~A

Replacement of equivalents and replacement of identials is restricted to
subformulas outside the scope of ~. As A Fygr,~—A, the usual RV rule of
CL is derivable. Remark that (A& ~A) D B is not a pHL-theorem. In
view of the axiom scheme, A is not pHL-derivable from ~—A, and A(f) is
not derivable from (Va)A(«). All CL-theorems concerning D, &, V, =, 1,
and — are valid in pHL.

The ~-paraconsistent logic pHL provides us with the first property every
logic for general statements that might have exceptions should have: the
occurrence of an exception does not cause triviality. In HL, the adaptive
logic based on pHL, A(f3) will be derivable from (Vo) A(ar) whenever —A(f)
is not derivable. The following theorems show that usual CL-consequences
are derivable in pHL in disjunction with a ~-inconsistency.

Theorem 1 If I' Fypyp,~—A, then I' kg, i—AV A.
PrROOF. As mAV A is a pHL-theorem, ~—A Fpur, i—AV A. O,
Theorem 2 If I’ l_pHL ADBandT FPHLN—IA, then T l_pHL f—AV B.

PROOF. The proof follows immediately from Theorem 1 and A D B, CV A
|_pHL CvVv B. 0.

2.1.2 Semantics of pHL.

Let S be the set of sentential letters, P" the set of predicative letters of
rank n, C and V the set of letters for individual constants and variables
respectively, F the set of (open and closed) formulas, W the set of well
formed formulas (wffs), and N' = {~A | A € F}. Let the members of C as
well as the members of V be given in a certain order denoted by “<”. The
following wifs will be called primitive: members of S, formulas of the form
a = f3, and primitive predicative formulas.

A model is a couple M = (D, v) in which D is a set and v is an assignment-
function defined by:

S1.1v: S — {0,1}

S1.2 v: CUVY — D such that D = {v(a) | « € CUV}

S1.3 v: P" — P(D") (the power set of the n-th Cartesian product of D)
S1.4v: N — {0,1}



The valuation-function vy, determined by the model M is defined as
follows:

$2.1 wy: F —s {0,1}

S2.2 where A € S, vm(A4) =v(A4)

S2.3 vm(m"ar...an) = 1iff (v(ay),...v(ay)) € v(7™)
S24 vy(a=p)=1iff v(a) = v(p)

S2.5 VM —|A) =1 iff V|\/|(A) =0

S2.6 vm(~A)=1iff yy(A) =0orv(~A) =1

S2.7 vm(AD B)=1iff yy(4A) =0orvy(B) =1
A&B) =1iff vy(A) =1 and vy(B) =1

S2.9 vw(AVB)=1iff yy(A)=1orvy(B) =1

S2.10 vy(A = B) =1 iff yy(A) = vu(B)

S2.11 vy

(
(
(
(
S2.8 V|\/|(
(
(
(
(

(Va)A(a)) =1 iff vy(~—A(B)) =1forall e CUV
(Ba)A(a)) =1 iff viy(A(S)) = 1 for at least one 5 € CUV

DEFINITION: I' |=ppr, A iff, for any pHL-model M, vy (B) = 0, for some
BeT orvy(A) =1.

DEFINITION: A pHL-model is N-normal iff v(~A) =0 for all A € F.
DEFINITION: Two models (even from different types of semantics) are equiv-
alent iff they verify and falsify the same formulas.

The CL-models are these pHL-models that fulfil:
(1) vm(~A) =1 iff viy(A) = 0.
(2) vm((Va)A(ar)) = 1 iff viy(A(B)) =1 for all B e CUV.
In view of (1), vm(~A) = vm(—A) in all CL-models M.

Theorem 3 Any pHL-model that is equivalent to a A/-normal model, is
equivalent to a CL-model, and any CL-model is equivalent to a A/-normal
model.

PROOF. If M is N-normal, then v(~A) = 0, and hence, in view of S2.6,
(1) is fulfilled. Hence ~ is exactly the same as —, and can be replaced by
it. Therefore, in view of S2.11 and vy (——A4) = vm(A), (2) is fulfilled too.
All other CL-clauses are the same as the corresponding pHL-clauses. This
shows that any A -normal model is equivalent to a CL-model. Conversely,
any CL-model is transformed into an equivalent A'-normal model by adding
clause S1.4 and stipulating that v(~A) = 0 for all A € F, and by adding
clause S2.6. O



2.1.3 Metatheory of pHL.

In view of Theorem 3, CL is modelled by the set of pHL-models that
are equivalent to A/-normal -models, in other words, by ~-consistent pHL-
models (those in which vy (~A) = vy(—A) for any A € F).

Theorem 4 If I l_pHL A, then T’ |:pHL A.
(Proof left to reader.)
Theorem 5 If I' =pur1, A, then I' Fpuy, A.

PROOF. Let I' |=pu1 A and suppose I' I/pur, A. We define a maximally
non-trivial, deductively closed superset A (C W) of I such that A ¢ A, and
show that A defines a pHL-model of I'. Let By, By, ... be an enumeration
of the members of W in which every wif of the form (Ja)C(«) is followed
immediately by C(8;), where f3; does not occur in I'; A, or in any previous
wif of the enumeration. The way to obtain such enumeration is standard.
We define

AO == C’I’IPHL(F)

Ait1 = CnpaL(A1 U {Bj11}) if A€ Cnpun(A1 U{Bi11})
A1 = A; otherwise

A=AjUA U

It is easily seen that I' C A, that A ¢ A, and that A is deductively closed.
A is maximally non-trivial. To see this, remark first that A D C' € A for all
C. Indeed, if A D C ¢ A, there is a A; such that AU{A4 D C} FpuL 4;
hence A; Fpur (A D C) D A by the deduction theorem; hence in view of
the axiom ((A D B) D A) D A, A; Fpur A, which is impossible. If £ ¢ A,
then there is a A; such that A; U{E} Fpuar, A;as A D C € A for all C,
A U{E} is trivial.

We define a pHL-model M = (D, v) as follows:
(1) D= {a | a € C (and there is no 8 € C such that § < a and a = § € A},
(2) forall C € S, v(C) =1iff C € A,
(3) for all « € C, if @« € D, v(a) = v, if @« € C — D, v(«) is the 8 € D such
that a = 8 € A (there is a unique such 8 by the definition of D),
(4) for all m € P", v(n) = {{a1,...,an) | Tay...cp, € A},
(5) for all ~C € N, v(~C) =1 iff C,~C € A,
(6) each a € V is arbitrarily associated with a constant [ to the effect that
v(a) = v(B) and, for any A, v(~A(a)) = v(~A(p)).



Obviously (1)-(5) agree with the clauses S1.1-4 that define v in the pHL-
semantics.
In order to prove that M verifies I and falsifies A, we show that, for all

cew:
(*) ifC e A, then vy(C) = 1.

This proceeds by induction on the complexity of C. For the basis, we show
that (*) holds for all primitive wffs. This is obvious for members of S in
view of (2) and S2.2.

Consider the primitive predicative wif 7ay...ap,. If maq...a; € A, then
vm(mag...a,) = 1 in view of (3), (4) and S2.3. Hence (*) holds for primitive
predicative expressions.

Consider, finally, wifs of the form o« = 5. If « = 8 € A, then by the
definition of D, there is a v € D such that @ = 7,8 = v € A; hence
v(a) =v(8) =~ and vy(a = g) = 1.

We now proceed to the induction step. All steps are standard except
for negation and the universal quantifier. If ~C € A, then either C' € A or
C¢A. IfC € Athenv(~C) =1 (by (5)); if C & A, then vy(C) = 0 by the
induction hypothesis. In view of S2.6, either case implies that vy (~C) = 1.
If (Va)C(a) € A, then ~=C(f) € A for all 5 € C and hence vy (~—C(f)) =
1 for all g € C; in view of (6), vu(B8) = 1 for all B € V. Hence, by S2.11,
vm((Ve)Cla)) = 1.

As A is maximally non-trivial and vy (C) = 1 for all C € A, it follows

immediately that A = {C | vm(C) = 1} and hence that vym(A) = 0. but
vm(B) =1 for all B € I'. Hence I' rpur, A. 0.

2.2 HL.

HL has two purposes. (i) Whenever ~—A is pHL-derivable and —A is not
pHL-derivable from I', then A is HL-derivable. (ii) If both ~—A and - A
are pHL-derivable, then —A is HL-derivable but A is not.?

2.2.1 Proof Theory of HL.

Where fA is a formula in which the variables aq, ..., ap, (m > 0) occur free,
let 34A be (3ay)...(Ja,)fA. Let DEK{A,,...,; A, } refer to A, V...V IHA,,
a disjunction of (where necessary) existentially quantified contradictions.

Ay, ..., A, are the factors of DEK{A,,...; A, }.

8There are different strategies to construct an adaptive logic. The strategy followed
here is the same as the strategy on which ACLuN1 is based, namely reliability. See [4].



Remark that DEK(X U {Pz}) is pHL-equivalent to DEK(X U {Py}) and
pHL-derivable from DEK(X U {Pa}).
Obviously, for any M-normal model M, vy (34A4) = 0.

Theorem 6 If there are C},...,C, € F (0 < n) such that I =pu1,
DEK{C:, ...,Cy} V A, then T' =cr, A.

PROOF. It follows from the antecedent that any pHL-model M verifies I4C,
or ... or 3C, or A. Any CL-model is equivalent to a A'-normal model. But
these models all falsify any d4C;. Hence any CL-model verifies A. O

Define the set bsf(A) of (open and closed) basic subformulas of A as

follows:

i) if A is a primitive (open or closed) formula, then bsf(A) = {A},
ii) bsf(=B) = bsf(B),

(

(

(iii) bsf(~B) = {~B} Ubsf(B),

(iv) bsf(BV C) = bsf(B D C) = bsf(B&C) = bsf(B = C) = bsf(B) U bsf(C),
EV)) bst Va)A(a)) = bsf(~—A(a)),

vi) bsf

(
(30) A(a)) = bsf(A(a).
bsf(A) is finite for any A.

Lemma 1 For any pHL-model M, if there is no B such that ~B € bsf(A)
and vy (3B) = 1, then there is a N-normal model M’ such that vy(A) =
VMI(A).

PROOF. Suppose the antecedent is true for some M. Let M’ be obtained
from M by putting v(~B) = 0 for all B (m). We proceed by an induction
on the complexity of A (the number of quantifiers and connectives that
occur in A). If the complexity of A is 0, then vy (A) = vpy(A). Supposing
that vy (A) = vy (A) for all A with complexity less than n, I show that
vmr (A) = vy(A) for all A with complexity n. Of the eight cases to be
considered, five are obvious, viz. the ones where A is either =B or B D C
or B&C or BVC or B=C.

Case 6: Ais ~B. If vw(B) = vm(B) =0, then vy (~B) = vu(~B) =1
by S2.6. Suppose that vy (B) = vyu(B) = 1. Then vy (~B) =0 (as M’ is
a M-normal model). But also vy(~B) = 0, for otherwise, in view of S2.6,
v(~B) = vy (iB) = vm(34B) = 1, which contradicts the main supposition.

Case 7: Ais (Ja)B(«). Suppose first that vpp(A) = 1. Then viy(B(f5)) =
1 for at least one 5 € CUV. Hence, by the induction hypothesis, v/ (B(f5)) =
1 for at least one § € CUV. But then vy ((Fa) B(a)) = 1. Suppose next that

10



vm(A) = 0. Then viy(B(5)) = 0 for all 5 € CUV. Hence, by the induction
hypothesis, v (B(f)) = 0 for all 5 € CUV. But then vy ((J) B(a)) = 0.

Case 8: Ais (Va)B(«). Suppose first that viy(A)= 1. Then vy (~—B(f))
=1forall 5 € CUV (k). As bsf(~=B(a)) = bsf(A) (by (v)), ~=B(a) €
bsf(A). But then vy (3f—B(a)) = 0 and hence vu(=B(5)) = 0 for all g €
CUYV (in view of (k)). But then, by the induction hypothesis, vy (=B(S)) =
0 for all B € O, and hence vy (~—=B(f)) = 1 for all 5 € CUYV. But
then vy ((Va)B(a)) = 1. Suppose next that vyy(A) = 0. Then there is a
B € CUV such that vy(~—B(5)) = 0. Then viy(—B(S)) = 1 for at least one
B € C UV, and hence, by the induction hypothesis, v\ (=B()) = 1 for the
same € CUV. But then in view of (m) and S2.6, v/ (~—B(8)) = 0 for at
least one € C UV, and hence vy ((Va)B(«)) = 0. O.

Theorem 7 If =cr, A, then for some Ci,..,C, € F (0 < n), EpHL
DEK{C),...,C} V A.

PRrROOF. Let Ecp A. Hence vy(A) = 1 for all N-normal models M of T.
As bsf(A) is finite, DEK{B |~B € bsf(A)} V A is a wff, which is easily
shown to be pHL-valid. Consider indeed a pHL-model M. If, for some
~B € bsf(A)vy(34B) = 1, then vyy(DEK{B |~B € bsf(A4)}) = 1. If, for no
~B € bsf(A), vu(34B) = 1, then vu(A) = 1 by Lemma 1. 0.

Some formulas in the second column HL-proofs are derived conditionally,
and the lines in which they occur, have to be marked when a condition is
overruled. Formulas in the second element of marked lines do not belong to
the consequence set. Conditions are all of one kind: some CY, ..., C}, have to
behave ~-consistently.

The idea of the proof theory of HL is that we apply all rules derivable
in pHL unconditionally, whereas other rules derivable in CL are applied on
condition that certain formulas are reliable with respect to their consistent
behaviour. To keep the matter algorithmic, the consistent behaviour of
a formula will be determined by the stage of the proof instead of by the
abstract notion of derivability. As a result, formulas derived at some stage
of proof, will not be finally derivable, because the line in which they occur
will be marked at a later stage. Of course each set of premises must (and
will) have a unique set of final HL-consequences.

As shown in the example above, HL-proofs are written in a special
format according to which each line of a proof consist of five elements:

(i)  a line number,
(ii) a premise, a theorem or a derived formula,
(iii) the line numbers of the wffs from which (ii) is derived,

11



(iv) the rule of inference that justifies the derivation, and

(v)  the formulas on the consistent behaviour of which we rely in order
for (ii) to be derivable by (iv) from the formulas of the lines enumerated
in (iii).

DEFINITION. A occurs unconditionally at some line of a proof iff the fifth
element of that line is empty.

DEFINITION. A behaves consistently at a stage of a proof iff §A does not
occur unconditionally in the proof at that stage.

DEFINITION. The consistent behaviour of Ay s connected to the consistent
behaviour of As, ..., A, at a stage of a proof iff DEK{Ay,...,A,} occurs
unconditionally in the proof at that stage whereas DEK{A,, ..., 4,,} does
not occur unconditionally in it.

DEFINITION. A is reliable at a stage of a proof iff A behaves consistently
at that stage and its consistent behaviour is not connected to the consistent
behaviour of other formulas.

Given these definitions, proofs in HL are governed by an unconditional
rule, a conditional rule and a marking rule. The application of a rule to a
proof at a stage produces the next stage.

RU  Iftpnr (A1&...&A4,) D B, and A4, ..., A, occur in the proof,
then add B to it. The fifth element of the new line is the
union of the fifth elements of the lines mentioned in its third
element.

RC If Fpur DEK{Cy,...,Cn} V ((A1&...&A,) D B), and Ay, ...,
A,, occur in the proof, then add B to it, provided that each
factor of DEK{CY, ..., Cy, } is reliable at that stage. The fifth
element of the new line is the union of {C1, ...,C),} and of
the fifth elements of the lines mentioned in its third element.

RM If C is not (any more) reliable, then mark all lines the fifth
element of which contains C, by writing “t” before the line
number. A marked line does not belong to the proof at that
stage.g

At any stage of the proof, it is obligatory to apply RM and permitted
to apply RU and RC. If the fifth element of a line is empty, the formula
in its second element is pHL-derivable from the premises and cannot be
marked later. If the fifth element is not empty, its formula is provisionally
derived. Unless it can also be derived at a line the fifth element of which

9At every stage of a proof, previously introduced marks are omitted, and marks are
introduced according to the reliability at the new stage.
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is empty, it is not a pHL-consequence. The unconditional occurrence of
DEK-formulas in the proof determines whether some formulas are reliable,
and hence which applications of RC are permitted in view of pHL-formulas
of the form DEK{C},...,Cn} V ((A1&...&A,) D B). As usual proofs may
be sped up by derived rules. Of course all positive rules of CL are valid
unconditionally. RAA, Reductio ad absurdum in the case of “=”, (A D B,
A D =B / —A) cannot be applied if the fifth element of the premise lines is
not empty.'® Obviously RV (to derive - A O (Va)B(a) from - A D~—B(f),
provided /8 does not occur in either A or B(a)) cannot be applied if ~ =B(f3)
is the second element of a line the fifth element of which contains a formula
in which B occurs. I list some specific HL-rules. The mentioned sets refer
to the fifth element of the line.

- Negation Rules:
NR: —A, ¥/ ~A %
CNR: ~A, ¥/ A, Y U{A}
ul:  Instance of a Universal Quantification:
(Va)A(a), B/ ~=A(B),
DN: Double Negation:
A Y ~=A S
-~A Y A S
CDN: Conditional Double Negation:
~—A, Y/A DU {-A}
~~A YA B U{~A}
A, Y/-~A, X U{A}

HL has a dynamic proof procedure: a wiff may be derived at some stage
of a proof, while the line in which it occurs may be marked at a later stage
of the proof; and a formula that is not reliable at some stage (which results
in the marking of all lines with this formula in their fifth element), may
become reliable at a later stage. Therefore we need to distinguish between
provisional and final consequences.

DEFINITION. A is finally derived at some line in an HL-proof iff (i) it is
the second element of that line and (ii) where {C},...,Cp} (n > 0) is the
fifth element of the line, any extension of the proof can be further extended
in such way that it contains a line that has A as its second element and
{C4,...,Cy} as its fifth element.

0The reason is obvious. Suppose A D B is derived in a line of which the fifth element
is C. This means that {C V (A D B) (and not A D B) is pHL-derived (see Lemma 2,

below); it is clear that the simultanous occurrence of fC'V (A D B) and A D =B does not
mean that the occurrence of A leads to triviality.
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Sometimes a C; is unreliable in an extension of the proof (in that its con-
sistent behaviour becomes connected to that of other formulas). However, if
any extension can be further extended in such way that all C; are reliable,
then A is derived from I" on the condition {CY,...,C,} in an absolute sense
(which is studied further below).

DEFINITION. I' Fgp, A (A is finally HL-derivable from T'), iff A is finally
derived at some line in a HL-proof from I'.
DEFINITION. (The HL-consequence set of I') Cnyur(I') = {A | T Far, A}

pHL is not decidable. We lack a positive test for HL-derivability. Of
course, some fragments of HL are decidable.

Yet, it is possible to prove that Cngr(I') may be characterized without
referring to the dynamics of the proofs. The characterization refers to pHL
only. The central point is that it depends only on pHL-derivability (which is
monotonic) whether a wff is reliable in an intelligent extension of the proof.

Lemma 2 If in an HL-proof from I', A occurs as the second element and
{C1,...,Cn} (0 < m) occurs as the fifth element of a line, then I' FpuL
AV DEK{Cy,...,Cp, }.1!

In view of this lemma, we can introduce the following derivation rule.
DEk: A, ¥ / AV DEK(X)

DEFINITION. A DEK-consequence of I' is a DEK-formula which is pHL-
derivable from I'.

DEFINITION. DEK(A) is a minimal DEK-consequence of T iff it is a DEK-
consequence of I', and for no ® C A, DEK(®) is a DEK-consequence of
I.

Theorem 8 T" gy, A, iff there are C1,...,C,, € F (0 < m) such that
I' Fpur AVDEK{CY, ...,Cp,}, and none of C1, ..., Cp, is a factor of a minimal
DEK-consequence of I".12

It follows from Theorem 8 that whenever A occurs as the second element of
a line of a HL-proof in which C1, ..., Cy, is the fifth element, a new line can
be added with AV DEK{C},...,Cy,} as second element and an empty fifth
element, and vice versa.

The following Theorem expresses an important feature of HL:

""The proof of Lemma 2 is completely analogous to the proof of Lemma 1 in [1] and
Lemma 4.2 in [4].
12The proof of Theorem 8 is completely analogous to the proof of Theorem 4.3 in [4].
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Theorem 9 If I' gy, A, then it is possible to extend any proof from I' into
a proof in which A is finally derived from I'.'3

I now give a derivable marking rule in HL.

MR1: If A (resp. —A) is conditionally derived at line i of a HL-
proof from I'; while =A (resp. A) is derived unconditionally
at any line of the proof, then mark line 4.

Theorem 10 The marking rule MR1 is derivable in HL.

PROOF. By assumption, A occurs in a HL-proof from I' as the second
element of a line (i) the fifth element of which is Cy,...,C),, (1 < n). By
Lemma 2, DEK{C1,...,C,} V A is a pHL-consequence of ', and hence can
be derived unconditionally in the HL-proof. Suppose —A occurs at line (j)
with an empty fifth element. In view of the PHL-theorem A V —A, also
DEK{C4,...,Cy} is unconditionally derivable. But then at least one of its
factors is unreliable and hence all lines with each of the formulas C, ... or
Cp in their fifth element have to be marked, in view of RM. The proof is
completely analogous if we replace A by —A and vice versa. 0.

2.2.2 Semantics of HL

The HL-semantics is obtained from the pHL-semantics by defining, for each
I', a subset of the pHL-models of I'. The idea is that any I'" defines a set of
(semantically) unreliable formulas, and that the HL-models of I" are those
pHL-models of I' in which only unreliable formulas behave inconsistently.

DEFINITION. A is HL-unreliable with respect to I iff A is a factor of a
minimal DEK-consequence of I'. U(T') is the set of all wifs that are HL-
unreliable with respect to I'.

DEFINITION: Where M is a pHL-model, ab(M) = {4 | vm(§4) = 1}.
DEFINITION: M is a HL-model of T iff it is a pHL-model of I and ab(M) C
Uurw).

DEFINITION: T' |=gr, A iff A is true in all HL-models of T'.

2.2.3 Metatheory of HL.
Theorem 11 If I" by, A, then I' =gt A.

PROOF. Let I" Fyy, A. By Theorem 8, there are C1, ..., Cp, (m > 0) such that
I FpaL AV DEK{CY, ...,Cn}, and Ci,...,Cr € U(T). I T =puL A, then

13The proof of Theorem 9 is completely analogous to the proof of Theorem 4.4 in [4].
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I' Eur A (all HL-models are pHL-models). If there are C, ..., Cp, (m > 1)
such that I' Fppr, AV DEK{C},...,Cp}, and Cy, ..., Cy,, € U(T), then, for all
HL-models M of T, vy (AVDEK{C1, ..., O }) = 1, and v (DEK{C , ..., G })
=0, and hence vy(A) = 1. O.

Theorem 12 If I =qur, A, then I' by, A.
PROOF. Suppose that I' =pr, A and T /g A. Let the sequence By, By, ...
be defined as in the proof of Theorem 5. We define

Ag = CnpaL(TU{DEK{B} D A|BeW ~UT)})."

Ajy1 = CnpaL(A1 U{B;jy1}) if A ¢ Cnpurn(A1 U{Bi1}), and
A1 = A; otherwise

A=AgUA T U...
Each of the following is provable:
(i) TCA

(il) A ¢ A. By the definition of A, if A € A, then A € Ay. The
latter however is impossible. Indeed, if A € Ag, then there are Cy,...,Cp, €
F —U(T) (m > 1) such that I' U{DEK{C1, ...,Cp,} D A} Fpar A.'5 Hence,
by the deduction theorem, I' Fyur, (DEK{Ci,...,C;} D A) D A; hence
I' bpan DEK{Cy,...,Cp} vV A. But as Cy,...,Cy, € F —U(T), it follows by
Theorem8 that I' Fgy, A, which contradicts (the main supposition.

(iii) If C ¢ U(T), then IC ¢ A. Indeed, if C ¢ U(T), then C D A €
Ag; so if fC € A, then A € A, which contradicts (ii).

(iv) A is deductively closed (by the definition of A).

(v) A is maximally non-trivial (as in the proof of Theorem 5.

As in the proof of Theorem 5, a pHL-model M is a HL-model is defined
from A. In view of (i) and (ii), all members of ' are true in M and A is false
in M. In view of (iii), M is a HL-model of I'. Hence I' l/gr, A. O.

3 HL1.

The proof theory and the semantics of HL1 are obtained by adding the
CL-clauses concerning the universal quantifier to the proof theory and the

Y1t is in view of the fact that Z/(I") is definied by means of the semantical notion minimal
DEK-consequences, that the construction of A captures the dynamic proof procedure.
Remember that in Theorem 8 T' Fur A is defined without referring to the dynamics of
HL-proofs.

'5In view of the fact that any pHL-proof is finite, and of {4 > B,C O B} FpuL
(AvC)DB.
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semantics of HL. We write the CL-quantifier as “¥°”, and the HL-quantifier
as “V”. The metatheory of pHL1 and HL1 is completely analogous to those
of pHL and HL. An example of a HL1-proof will show the usefulness of
HL1.'6

(1) (Vz)(Bx D Fz) - PREM-
(2) (Vz)(Pz D> Bz) - PREM-
(3) (Yz)(Pz D> —Fzx) - PREM-
(4) Pa - PREM-
(5) Bb - PREM-
(6) ~—(Ba D Fa) 1 ur -
(7) Ba D Fa 6 CDN —(Ba D Fa)
(8) Pa D Ba 2 v’ -
(9) Ba 4,8 MP -
T(10) F 7,9 MP —(BaD Fa)
(11) Pa D —Fa 3 v’ -
(12) =F 4,11 MP -
(13) ~= (Bb D Fb) 1 UL -
(14) Bb D Fb 13 ¢pN —(Bb D Fb)
(15) F 5, 14 Mmp —(Bb D Fb)

In view of MR1 line (10) has to be marked, and hence —Fa is finally
derived while Fa is not.!” As the condition in line (15) is not overruled (it
is not possible to derive §—(Bb D Fb)), Fb is finally derived.

If we construct now a proof from the premises (Vz)(Pz D —Fx),
(V2)(Mz D Pz), (Vz)(Mx D Fz), Mc and Pa, we can derive Fc and
—Fa (in a completely analogous way as in the former proof).

Suppose now we want to make one proof from these two proofs. Then
we meet a problem in that we have both (Vz)(Pz D —=Fz) and (Vz)(Pz D
—Fz). A UQF cannot be classical and exceptional at once. If we make it
a classical UQF, then we can derive an inconsistency that causes triviality
from the premises: both F'¢ and —Fc are derivable unconditionally. Hence,
it has to be considered as a UQF that might have exceptions; but if we make
it an exceptional UQF, = Fa is only derivable on unreliable conditions, and
hence neither —=Fa nor Fa are finally derivable.

'8Tn the proofs given as example in Sections 3 and 4, you can read “B” as “is a bird”,
“P” as “is a penguin”, “M” as “is a motorized penguin”, and “F” as “can fly”.

"1t is easily seen that §—(Ba D Fa) can be derived unconditionally. Once this is done,
line (7) has to be marked, in view of RM.
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This example shows that the HL1-formalization of rules allows us to
derive finally more wanted consequences than the HL-formalization. But
some wanted consequences are not finally derivable, especially if the con-
text of application extends in such a way that general statements without
exceptions become general statements that might have exceptions. In HL2
however only the unwanted consequences will not be finally derivable.

4 HL2.

HL2 is obtained by introducing a preference ordering on the exceptional
UQFs of HL1. Instead of one set of exceptional UQFs, there is a set of
UQFs of preference 1 (the highest preference), ..., and a set UQFs of pref-
erence n (the lowest preference). With UQFs of preference n correspond
instances of preference n (notation: ~"=A4).'8 If i < j, the relation between
a HL2-UQF of preference 1 and a HL2-UQF of preference j, is the same as
the relation between the corresponding classical HL1-UQF and the corre-
sponding exceptional HL1-UQF. An immediate result is that, in case of a
contradiction between (a formula derived from) an instance of preference i
and (a formula derived from) an instance of preference j, it will follow from
the occurrence of the former that the latter is not finally derivable.

I am not dealing here with the question which UQFs have to be related
to a higher or lower preference.'® In specific contexts however, preferences
can often be ascribed without problems. In the example of Section 3, for
instance, the premises will contain the following UQFs: (Vz)(Pz O Bx)
and (Vz)(Mz D Px), (V'z)(Mz D Fz), (V?z)(Pz D —Fx) and (V3z)(Bz D
Fx). In this section it will become clear that F¢, —Fa and Fb are finally
derivable from these premises.

4.1 The Underlying Paraconsistent Logic pHL?2.
4.1.1 Proof Theory of pHL2.

The underlying paraconsistent logic of HL2, is pHL2, which is obtained
from pHL1 by introducing preferences in the language scheme: there are n
exceptional universal quantifiers: V!, ..., V", and n paraconsistent negations:
~!,...,~". The axiom scheme is obtained by replacing in pHL1 AV, RY
and A~ by: (for all n > 1)

ISNTL
A.

9For an extended study on preferences, I refer to, e.g., [7].

—A can be read as “we give preference n to the fact that there is no reason to reject
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AVY": (V'a)A(a) D~" —A(B)
RV™: To derive - A D (V") B(«) from A D~" =B(f3),
provided 8 does not occur in either A or B(«)
A~T: AVAT A
The Fitch-style rule Universal Instantiation from a UQF with preference
n (> 1) is indicated as “Ur”.

Obviously, the pHL2-consequences are the pHL1-consequences to which
the preferences are added where necessary.

4.1.2 Semantics of pHL2.

The semantics of pHL2 is obtained from the pHL1-semantics by replacing
N by n sets N* = {~™ A | A € F}. In the definition of the assignment
function S1.4 is replaced by:

S1.4. v:N™— {0,1}, for each n > 1.

The valuation function is defined by replacing in the pHL1-clauses S2.6
and S2.11 ~ and V by ~™ and V" for each n > 1.

4.1.3 Metatheory of pHL2.

If we take in account the above mentioned differences between pHL1 and
pHL2, the metatheory of pHL2 is completely analogous to the metatheory
of pHL1.

4.2 HL2.

HL2 has three purposes. (i) Whenever ~" —A is pHL2-derivable and —A
is not pHL2-derivable from I', then A is HL2-derivable from I'. (ii) If both
~" =A and —A are pHL2-derivable, then —=A is HL2-derivable, but A is
not. (iii) If both DEK(X) V A and DEK(II) V —=A are pHL2-derivable, then
the conditional preferences of the factors of DEK(X) and DEK(II) decide
whether A or —A is finally derivable.

4.2.1 Proof Theory of HL2.
Let 34" A stand for 3(A& ~" A). Let DEK{A}, ..., A} } refer to 3f°A4; V ... V

3 A, (i, > 1), a disjunction of (where necessary) existentially quantified
contradictions (confer Section 2.2.1). The format of HL2-proofs is the same
as for HL and HL1.
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DEFINITION: The ~-consistent behaviour of a formula B is a condition of
preference i iff ~* B is an instance of a exceptional UQF of preference i. The
number i is the conditional preference of B. (Notice that a higher number
corresponds to a lower conditional preference.)?

DEFINITION: A is not reliable at a stage of a proof iff it does not behave
consistently at that stage of the proof or its consistent behaviour is con-
nected to the consistent behaviour of other formulas none of which has a

lower conditional preference than A.

Given these HL2-definitions, the unconditional rule RU, the conditional
rule RC, and the marking rule RM are completely analogous as for HL and
HL1. The following example illustrates the difference between the rule RM
in HL1 and HL2. Suppose lines (i)-(k) occur in a proof:?!

G) -4 y Y Cpy
(k) #BVHC =z 7 -

If we drop the preferences, both B and C would be unreliable, and hence
neither A nor —=A would be finally derivable from these lines (this is the
situation in HL1). But in view of the fact that the conditional preference
of C' (2) is higher than the conditional preference of B (3), C' is reliable in
HL2 and hence = A is HL2-derivable from these lines.

Lemma 3 If in an HL2-proof from I', A occurs as the second element
and {C1,...,Cp} (0 < m) as the fifth element of a line, then I' Fypur,2
AV DEK{Cy,...,Cp }.?2

The definition of “intelligent extension”, “A is finally derived”, “final deriv-
ability”, “consequence set” and “minimal DEK-consequence” remain the
same as for HL1 and HL. Also the derivation rule DEK is valid in HL2.

Theorem 13 T' Fyp2 A iff there are C1, ..., Cy, (0 < m) such that I’ Fppr,e
AV DEK{Cy,...,Cy}, and none of C4, ..., Cy, is a factor of a minimal DEK-
consequence of I unless some other factor of the minimal DEK-consequence
has a lower conditional preference than the considered Cj;.

PROOF. For the first direction, let I' Fgr2 A. Hence A is finally derived at
some line (j) of a proof from I". Let the fifth element of this line be C, ..., Cy,.

200ne and the same UQF never gets two different preferences. Therefore we can accept
that every formula has (at maximum) one conditional preference.

21t is handy to indicate the conditional preference of the formulas in the fifth column
of a proof.

*?The proof of Lemma 3 is completely analogous to the proofs of Lemma 1 in [1] and
Lemma 4.2 in [4].
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Hence I' Fpar2 AVDEK{C),...,Cp}. T Fpunz AV DEK{C),...,Cp} (0 <
m). Suppose now that C; is a factor of a minimal DEK-consequence D of T’
and there is no other factor of D with a lower conditional preference than C;
then there is an extension of the proof in which D occurs unconditionally;
but then line (j) is marked by RM, which contradicts the fact that A is
finally derived at line (j).

For the other direction, suppose that there are Cy, ..., Cp, (0 < m) such
that I' Fppr2 A V DEK{C,...,Cy,}, and none of Ci,...,C,, is a factor of a
minimal DEK-consequence of I unless some other factor has a lower condi-
tional preference. Then there is a an HL2-proof from I' in which A occurs
as the second element of a line the fifth element of which is {C1,...,Cp}.
Moreover, every extension of the proof in which line (j) would be marked
(because some C; is not reliable, can be further extended in such way that
C; becomes reliable again (in view of the supposition). It follows that A is
finally derived at that line. Whence I' Fygr2 A. O.

In HL and HL1 no factor of a minimal DEK-consequence is reliable. In
HL2 however, those factors of a minimal DEK-consequence are reliable the
conditional preference of which is higher than the conditional preference of
some other factor of that minimal DEK-consequence.

The marking rule MR1 of HL and HL1 is valid in HL2. I now give the
typical HL2-rule concerning marking of instances.

DEFINITION: If A occurs as the second element of a line of a proof, the line
preference of A is the lowest conditional preference (i.e. the highest number)
of the formulas in the fifth element of that line. If the fifth element is empty,
the line preference of A is 0.

MR2: If the line preference of A (resp. —A) is lower than the line
preference of =A (resp. A) at any line of the proof, then
mark line (i).

Theorem 14 MR2 is a derivable rule of HL2.

PROOF. Suppose ¥ = {By,...,B,} (n > 1), and Il = {C4,...,Cp,} (m > 1),
and there is a B € X such that the conditional preference of B is lower
than the conditional preference of any C' € II. Suppose A occurs as the
second element of a line the fifth element of which is ¥, and —A occurs as
the second element of a line the fifth element of which is II. In view of
Lemma 3, both AV DEK(X) and —=A vV DEK(II) are pHL2-derivable from
the premises. Hence also DEK(X U II) is derivable from the premises. In
view of the supposition and the definition B is not reliable at that stage of
the proof. Hence the line in which A was derived has to be marked in view
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of RM. The proof is completely analogous if A is replaced by —A and vice
versa. [.

Here is an example of a HL2-proof that illustrates the mechanism:

(1) (V3z)(Bz D Fz) - PREM -
(2) (V?z)(Pr D> —Fx) - PREM -
(3) (V'z)(Mz > Fz) - PREM -
(4) (Vz)(Mz > Px) - PREM -
(5) (Vz)(Pz D> Bx) - PREM -
(6) Bb - PREM -
(7) Pa - PREM -
(8) ~*=(Ba>D Fa) 1 urr -
(9) BaD Fa 8 CDN  =(Ba D Fa)
(10) ~* =(BbD> Fb) 1 u -
(11) BbD Fb 10 CDN  =(BbD Fb)3
(12) ~2? =(Pa > —=Fa) 2 ur? -
(13) Pa D —Fa 12 CDN  =(Pa D =Fa)jy
(14) Pa D Ba 5 v -
(15) Fb 6,11 MP —(Bb> Fb)y
(16) Ba 7,14 wmP -
"'(17) Fa 16, 9 MP —|(B(L D F(])[g}
(18) -Fa 7,13 MP —|(P(l D _|F(J,)[2}

Fb at line (15) is finally derived. Line (17) is marked in view of MR2
and line (18). —Fa at line (18) is finally derived. If we continue the proof,
we can derive f*—~(Ba D Fa) with —=(Pa D —Fa)py as fifth element; hence
in view of RM line (9) has to be marked. The reader can verify that from
these premises (V0z)({'=(Mxz D Fz) vV {2(Px D —Fx) V =Mz) is derivable,
and hence also —Ma and —Mb, whereas F'c is derivable when we add the
premise Mec.

4.3 Semantics of HL2.

The HL2-semantics is obtained from the pHL2-semantics by defining, for
each I', a subset of the pHL2-models of I'. Any I' defines a set of seman-
tically unreliable formulas. The HL2-models of I" are those pHL2-models
of I in which only unreliable formulas behave inconsistently. The set of un-
reliable formulas with respect to I' is a subset of the factors of the minimal
DEK-consequences of I'.

DEFINITION: If I |=pur1,2~" B (whereas I' frpuar2~™ B (1 < m < n)), then
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CPr(B) =n. If ¥ ={By,...., By} (n > 1), then CPp(X) is the maximum of
CPy(By)...,CPp(By).

DEFINITION: If B € 3, 3] is a minimal DEK-consequence of ', and CPr(B) =
CPr(X), then B is HL2-unreliable with respect to I'. U(I") is the set of all
wifs that are HL2-unreliable with respect to I'.

DEFINITION: Where M is a pHL2-model, ab(M) = {4 | vy (fA) = 1}.
DEFINITION: M is a HL2-model of I' iff it is a pHL2-model of I' and
ab(M) CU(T).

DEFINITION: T' |=gp2 A iff A is true in all HL2-models of T'.

4.4 Metatheory of HL2.

The Soundness and Strong Completeness Theorems of HL2 are analogous
to those of HL1.

4.5 Concluding Remarks.

(i) HL2 is a logic in which most wanted consequences are finally deriv-
able from a set of premises some of which are UQFs with (predictable or
unpredictable) exceptions, whereas most unwanted are not.?* Of the two
halves of an inconsistency, the one derived from the least preferred infor-
mation is not finally derivable. The power of HL2 lies in its strategy. In
comparison to Consistency-Based Logics, such as Default Logic, that try to
resolve these kinds of inconsistencies by anticipating the exceptions (in a
default),?* HL2 allows for ~"-inconsistencies and conditionally derived —-
inconsistencies within the process (i.e. within the HL2-proofs), and resolves
the —-inconsistencies when they occur. In my opnion, the most interesting
property of HL2 is that exceptions need not te be known beforehand. Its
dynamic proof procedure allows for the introduction of new premises at any

% From the premises { Tweety is a penguin, birds fly, penguins do not fly, and penguins
are birds}, HL2 derives that Tweety flies, and all other individuals in the domain do not
fly. This is a result that is worth being compared with the results of Circumscription
(Parallel Predicate Circumscription, Abnormality Theories, Prioritized Circumscription
(confer the proof in Section 4.2.1); see, e.g., [5] pp. 12-21. HL2 however, is not able to
conclude from “All sailors are male and have a beard” and “Sailor Popeye has no beard”,
that “Popeye is a man”. In such cases, the easiest solution is to write two UQF's instead of
one UQF containing a conjunction. (For instance: “All sailors are male” and “All sailors
have a beard”.)

*See, e.g., [5] pp. 39-64. Note that HL2 derives that Paul likes wine, from {Paul is
Italian or French, Italians like wine, French like wine}. Also HL2 does not derive that
one has a usable left and a usable right arm when one has a broken left or broken right
arm.
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stage of the proof, whereas the introduction of new premises possibily leads
to a different consequence set.

(ii) It is easily seen that (a) is a pHL2-theorem:
() ()4 = (Va)(Ir~A v A)

It is indeed possible to write every exceptional UQF as a classical UQF. In
view of this theorem, it can easily be proven that pHL2 (and hence also
HL2) has an interesting transitivity rule:

(V) (A(a) D B(e))
(V"a)(B(a) 5 C(w))

“pHL2
(V) (" ~(A(a) D B(a) V " ~(B(a) > C(a)) V (A(a) > C(a)))

This property of pHL2 can be very useful in the reconstruction of other

non-monotonic systems.??
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