
HL2, an In
onsisten
y-adaptive andIn
onsisten
y-resolving Logi
 for GeneralStatements that might have Ex
eptions.Guido Vana
kere�Center for Logi
 and Philosophy of S
ien
eUniversity of GhentGuido.Vana
kere�rug.a
.beAbstra
tThe present paper o�ers a new approa
h to non-monotoni
 log-i
s and their re
onstru
tion in terms of in
onsisten
y-adaptive logi
s.By applying a spe
ial te
hnique, universally quanti�ed formulas areassigned instan
es that, given the para
onsistent framework, do not
ause triviality even if they 
on
i
t with knowledge deriving from othersour
es. From the spe
ial instan
es, the usual instan
es may be derived
onditionally, viz. provided they are not 
ontradi
ted by statementsderived with a higher preferen
e ranking.1 Introdu
tionIn this paper I present a new approa
h to non-monotoni
 reasoning. Theunderlying idea is that universally quanti�ed formulas (hen
eforth UQF) areformulated unrestri
tedly, even if they have ex
eptions, but the derivation ofinstan
es is restri
ted, and derived instan
es are not �nally derivable (i.e. donot belong to the 
onsequen
e set), when the instan
e is known to 
on
ernan ex
eption to the UQF.The e�e
t is realized by re
urring to an in
onsisten
y-adaptive logi
HL2that is based on a spe
i�
 para
onsistent logi
 pHL2. A

ording to pHL2,�I am indebted to the two referees; their remarks enabled me to improve the expositionat several points. I thank Kristof De Cler
q; his experien
e with problems 
on
erningdefault-reasoning and 
ir
ums
ription, has been very useful for me (see his [6℄). I amespe
ially obliged to Diderik Batens; his work on adaptive logi
s and his assistan
e in thewriting of this paper were indispensable. 1



a UQF (8�)A(�) un
onditionally entails �:A(�) in whi
h \�" is a para
on-sistent negation and \:" 
lassi
al negation. A

ording to HL2, �:A(�) en-tails A(�), provided :A(�) `behaves 
onsistently' (in a sense spe
i�ed later)on the premises. I shall �rst 
larify the role and the e�e
ts of para
onsistentand in
onsisten
y-adaptive logi
s, and then motivate the transition to thelogi
s presented below.Para
onsistent logi
s avoid that in
onsistent theories are turned intotrivial ones. A straightforward strategy to obtain a para
onsistent logi

onsists in weakening 
lassi
al logi
 (CL) by dropping one half of the mean-ing of negation, redu
ing it to \If A is false, then �A is true". In [4℄ thispara
onsistent logi
 is 
alled CLuN.1 CLuN indeed allows for non-trivialin
onsistent theories. It does so however by eliminating too many inferen
es:we want the intuitivily 
orre
t 
onsequen
es to be derivable when no in
on-sisten
y is involved; e.g. we want to apply Disjun
tive Syllogism (A_B, �A/ B) whenever A does not behave in
onsistently. The in
onsisten
y-adaptivelogi
s ACLuN1 and ACLuN2, based on CLuN, enable us to do so { see[2℄, [3℄ and [4℄.2 In these logi
s some 
onsequen
es whi
h are CL-derivablebut not CLuN-derivable, are ACLuN-derivable, provided 
ertain formulasare reliable | that is: do not behave in
onsistently in view of the premises.Although in
onsisten
y-adaptive logi
s isolate in
onsisten
ies and deliverall 
lassi
al 
onsequen
es whenever the spe
i�
 in
onsisten
ies do not pre-vent this, they are not fully adequate with respe
t to everyday reasoning.Indeed, in many situations we want to eliminate the in
onsisten
ies as theyo

ur. If an in
onsisten
y turns up, for instan
e within our most reliableknowledge, we often wish to reje
t one half of the in
onsisten
y and to retainthe other. The two kinds of in
onsisten
ies 
onsidered in the present paperare 
aused by the fa
t that we have di�erent ways to obtain informationabout the same statement. The information may stem from observation,possibly 
ombined with logi
al dedu
tion. It may also be derived from gen-eral knowledge, for example from UQFs { and remark that a 
ombination1In [2℄ and [3℄ this para
onsistent logi
 was 
alled PIL. It was renamed in view of the
reation of analogous logi
s dealing with other abnormalities. The N stands for Negation,the u stands for gluts. CLaN, for instan
e, is a para
omplete logi
; here the a stands forgaps.CLuN is obtained from CL by dropping the axiom (A � B) � ((A ��B) ��A).Classi
al negation, :, is introdu
ed by :A =df A �?. Remark that neither Repla
ementof Identials nor Repla
ement of Equivalents hold in the s
ope of a \�". Also, CLuNmaximally isolates in
onsisten
ies; from A&�A, no other in
onsisten
y is derivable, noteven about subw�s or superw�s of A.2In [2℄ and [3℄, these logi
s were 
alled APIL1 and APIL2.2



of UQFs may lead to 
on
i
ting information. In view of the elegan
e andpower of our most reliable knowledge, we are interested in general state-ments without ex
eptions. If 
on
i
ts arise, we want to reje
t the instan
eof the general statement and to retain the more spe
i�
 information (i.e.the observational information or the information derived from more spe
i�
UQFs).In the se
ond part of this paper I introdu
e Hypothesis Logi
 HL. Thisadaptive logi
 is based on pHL, whi
h is obtained from CL by modifying itsinstantiation rule: from (8�)A(�), �:A(�) is derived instead of A(�). The
url is the para
onsistent negation as de�ned in CLuN. As an immediateresult, the in
onsisten
y arising if :A(�) is provided by information derivingfrom a di�erent sour
e, does not 
ause explosion. A

ording to HL, A(�)is only derivable from �:A(�) provided :A(�) is not derivable from theavailable premises. The modi�
ation has a further and most interestinge�e
t: if an ex
eption turns out to be derivable after the instan
e A(�)was 
onditionally derived, the 
onditionally derived instan
e will not be
onsidered as �nally derivable be
ause the line in whi
h it o

urs is markedin view of a stri
tly logi
al marking rule. The advantage of su
h a markingrule is 
lear: when in
onsisten
ies are weeded out within a proof, we obtaina ri
her (but not trivial) and (in as far as we es
hew in
onsisten
ies) moreinteresting 
onsequen
e set, and we do so by stri
tly formal means.In the third part of the paper I introdu
e HL1, a logi
 pertaining tolanguages that 
ombine the universal quanti�er of HL with the one of CL.Unlike HL, HL1 enables us also to resolve in
onsisten
ies deriving fromUQFs. The idea is that `
lassi
al' UQFs 
an be instantiated un
onditionally,while the others 
an only be 
onditionally instantiated. In order to applyHL1, we need to 
lassify (from the very outset) UQFs in 
lassi
al and`ex
eptional' ones | this elimination of in
onsisten
ies is not stri
tly logi
albut relies on non-logi
al 
onsiderations.In the �nal part I introdu
e HL2, whi
h generalizes the idea of sortedquanti�ers. Where HL1 
ontains one kind of ex
eptional universal quan-ti�er, HL2 
ontains a preferentially ordered (inde�nitely large) amount ofthem. For simpli
ity's sake, I shall only 
onsider linear orderings. Thepreferen
e of a UQF will be indi
ated by a number supers
ripted to theuniversal quanti�er, lower numbers indi
ating the higher preferen
es (forthe sake of generality, 
lassi
al UQFs will re
eive the supers
ript 0). Therelation between a HL2-UQF of preferen
e i and a HL2-UQF of preferen
ei+ j (j � 1), is the same as the relation between a 
lassi
al HL1-UQF andan ex
eptional HL1-UQF. Where a 
ontradi
tion arises between (a formula3



derived from) an instan
e of a UQF of preferen
e i and (a formula derivedfrom) an instan
e of a UQF of preferen
e i+ j, it will follow from the o

ur-ren
e of the former that the line in whi
h the latter o

urs is marked, andhen
e the latter will not be �nally derivable.2 HL.In HL all UQFs may have ex
eptions. This implies that the CL-instan
esare derivable 
onditionally. Where no ex
eption o

urs, the 
onditions arenot overruled and the HL-instan
es are the CL-instan
es.All negations o

urring in natural languages are formalized by meansof \:", the 
lassi
al negation, but the language s
heme of HL 
ontains ase
ond, para
onsistent negation \�". The universal instantiation rule ofHLis:3 ui: (8�)A(�) / �:A(�)The instan
e 
an be read as: there is no reason to a

ept (= \�") thatA(�) is not the 
ase (= \:"). An immediate advantage of this instan-tiantion rule is that no (
lassi
al) in
onsisten
y o

urs when :A(�) is alsoderivable from the premises. In the underlying para
onsistent logi
 pHLit is impossible to derive A from �:A; in HL, the adaptive logi
 based onit, A 
an be derived from �:A 
onditionally. All pHL-
onsequen
es areHL-
onsequen
es. Some CL-
onsequen
es whi
h are not pHL-derivable,are HL-derivable. An example of a HL-proof:(1) (8x)(Ax � (Px&:Qx)) - prem -(2) Ba � Qa - prem -(3) Aa - prem -(4) Ba - prem -(5) �:(Aa � (Pa&:Qa)) 1 ui -(6) Aa � (Pa&:Qa) 5 
dn4 :(Aa � (Pa&:Qa))(7) Pa&:Qa 3, 6 mp :(Aa � (Pa&:Qa))(8) :Qa 7 sim :(Aa � (Pa&:Qa))(9) Qa 2, 4 mp -3In this paper the proof theory is formulated axiomati
ally. In a
tual proofs howeverit is handier to make use of Fit
h-style rules. I skip the proofs of the derivation of theFit
h-style rules from the axioms. (These proofs are standard.) Where ne
essary theapplied Fit
h-style rules are explained in a footnote.4
dn stands for 
onditional double negation. This rule is explained in Se
tion 2.2.1.4



The formula in line (6) is derived on 
ondition of the �-
onsistent be-haviour of the formula in the �fth element of line (6). Every formula derivedfrom a 
onditionally derived formula takes over the 
ondition(s). If we stopthe proof at line (9), we have derived both Qa and :Qa, whi
h is not exa
tlywhat we want; as Qa is derived from more spe
i�
 information than :Qa,we want only Qa to be �nally derivable. If we 
ontinue the proof, we �ndout that the 
ondition mentioned in lines (6)-(8) is overruled.(10) ::Qa 9 dn -(11) :Pa _ ::Qa 10 add -(12) :(Pa&:Qa) 11 nd -(13) :(Aa � (Pa&:Qa)) 3, 12 ni5 -As both :(Aa � (Pa&:Qa)) (line (13)) and its negation (line (5)) arederived un
onditionally, the 
ondition in lines (6)-(8) is overruled, and there-fore the formulas in these lines will not be 
onsidered as �nally derivable, i.e.Qa belongs to the 
onsequen
e set of the premises (CnHL(fpremisesg))6,while :Qa does not. The in
onsisten
y is resolved. I will introdu
e a de-rived marking rule by whi
h line (8) 
an be marked without extending theproof with lines (9)-(13). In what follows lines of a proof that 
ontain anoverruled 
ondition in their �fth element, will be marked with y, e.g. lines(6)-(8) in the proof above. Marked lines do not belong to the proof anymore.Formulas in the se
ond element of marked lines are not HL-
onsequen
es.The notation \℄A" will be the short for \A&�A".2.1 The underlying para
onsistent logi
 pHL.2.1.1 Proof Theory of pHL.The axiom s
heme of pHL is 
omposed of a suitable set of axioms for �,&, _, �, ?, :, 9 and =7 (as for CL), together with:5ni stands for negation of the impli
ation. In view of the fa
t that A � B is true i� Ais not true (or :A is true) or B is true, :(A � B) is true i� A is true and B is not true(or :B is true).6Where XL is a logi
, and � is a set of well formed formulas, CnXL(�) = fA j � `XLAg.7Repla
ement of identials is restri
ted as follows:(A=2) � = � � (A � B) where B is obtained by repla
ing in A an o

urren
e of �that o

urs outside the s
ope of a � by �.
5



A8: (8�)A(�) ��:A(�)R8: To derive ` A � (8�)B(�) from ` A ��:B(�),provided � does not o

ur in either A or B(�)A�: A_ �ARepla
ement of equivalents and repla
ement of identials is restri
ted tosubformulas outside the s
ope of �. As A `pHL�:A, the usual R8 rule ofCL is derivable. Remark that (A& �A) � B is not a pHL-theorem. Inview of the axiom s
heme, A is not pHL-derivable from �:A, and A(�) isnot derivable from (8�)A(�). All CL-theorems 
on
erning �, &, _, �, ?,and : are valid in pHL.The�-para
onsistent logi
 pHL provides us with the �rst property everylogi
 for general statements that might have ex
eptions should have: theo

urren
e of an ex
eption does not 
ause triviality. In HL, the adaptivelogi
 based on pHL, A(�) will be derivable from (8�)A(�) whenever :A(�)is not derivable. The following theorems show that usual CL-
onsequen
esare derivable in pHL in disjun
tion with a �-in
onsisten
y.Theorem 1 If � `pHL�:A, then � `pHL ℄:A _A.Proof. As :A _A is a pHL-theorem, �:A `pHL ℄:A _A. 2.Theorem 2 If � `pHL A � B and � `pHL�:A, then � `pHL ℄:A _B.Proof. The proof follows immediately from Theorem 1 and A � B, C _A`pHL C _B. 2.2.1.2 Semanti
s of pHL.Let S be the set of sentential letters, Pn the set of predi
ative letters ofrank n, C and V the set of letters for individual 
onstants and variablesrespe
tively, F the set of (open and 
losed) formulas, W the set of wellformed formulas (w�s), and N = f�A j A 2 Fg. Let the members of C aswell as the members of V be given in a 
ertain order denoted by \<". Thefollowing w�s will be 
alled primitive: members of S, formulas of the form� = �, and primitive predi
ative formulas.A model is a 
oupleM = hD; vi in whi
h D is a set and v is an assignment-fun
tion de�ned by:S1.1 v: S �! f0; 1gS1.2 v: C [ V �! D su
h that D = fv(�) j � 2 C [ VgS1.3 v: Pn �! P(Dn) (the power set of the n-th Cartesian produ
t of D)S1.4 v: N �! f0; 1g 6



The valuation-fun
tion vM determined by the model M is de�ned asfollows:S2.1 vM : F �! f0; 1gS2.2 where A 2 S, vM(A) = v(A)S2.3 vM(�n�1:::�n) = 1 i� hv(�1); :::v(�n)i 2 v(�n)S2.4 vM(� = �) = 1 i� v(�) = v(�)S2.5 vM(:A) = 1 i� vM(A) = 0S2.6 vM(�A) = 1 i� vM(A) = 0 or v(�A) = 1S2.7 vM(A � B) = 1 i� vM(A) = 0 or vM(B) = 1S2.8 vM(A&B) = 1 i� vM(A) = 1 and vM(B) = 1S2.9 vM(A _B) = 1 i� vM(A) = 1 or vM(B) = 1S2.10 vM(A � B) = 1 i� vM(A) = vM(B)S2.11 vM((8�)A(�)) = 1 i� vM(�:A(�)) = 1 for all � 2 C [ VS2.12 vM((9�)A(�)) = 1 i� vM(A(�)) = 1 for at least one � 2 C [ VDefinition: � j=pHL A i�, for any pHL-model M, vM(B) = 0, for someB 2 � or vM(A) = 1.Definition: A pHL-model is N -normal i� v(�A) = 0 for all A 2 F .Definition: Two models (even from di�erent types of semanti
s) are equiv-alent i� they verify and falsify the same formulas.The CL-models are these pHL-models that ful�l:(1) vM(�A) = 1 i� vM(A) = 0.(2) vM((8�)A(�)) = 1 i� vM(A(�)) = 1 for all � 2 C [ V.In view of (1), vM(�A) = vM(:A) in all CL-models M.Theorem 3 Any pHL-model that is equivalent to a N -normal model, isequivalent to a CL-model, and any CL-model is equivalent to a N -normalmodel.Proof. If M is N -normal, then v(�A) = 0, and hen
e, in view of S2.6,(1) is ful�lled. Hen
e � is exa
tly the same as :, and 
an be repla
ed byit. Therefore, in view of S2.11 and vM(::A) = vM(A), (2) is ful�lled too.All other CL-
lauses are the same as the 
orresponding pHL-
lauses. Thisshows that any N -normal model is equivalent to a CL-model. Conversely,any CL-model is transformed into an equivalent N -normal model by adding
lause S1.4 and stipulating that v(�A) = 0 for all A 2 F , and by adding
lause S2.6. 2
7



2.1.3 Metatheory of pHL.In view of Theorem 3, CL is modelled by the set of pHL-models thatare equivalent to N -normal -models, in other words, by �-
onsistent pHL-models (those in whi
h vM(�A) = vM(:A) for any A 2 F).Theorem 4 If � `pHL A, then � j=pHL A.(Proof left to reader.)Theorem 5 If � j=pHL A, then � `pHL A.Proof. Let � j=pHL A and suppose � 6`pHL A. We de�ne a maximallynon-trivial, dedu
tively 
losed superset � (� W) of � su
h that A 62 �, andshow that � de�nes a pHL-model of �. Let B1; B2; ::: be an enumerationof the members of W in whi
h every w� of the form (9�)C(�) is followedimmediately by C(�i), where �i does not o

ur in �, A, or in any previousw� of the enumeration. The way to obtain su
h enumeration is standard.We de�ne�0 = CnpHL(�)�i+1 = CnpHL(�1 [ fBi+1g) if A 62 CnpHL(�1 [ fBi+1g)�i+1 = �i otherwise� = �0 [�1 [ :::It is easily seen that � � �, that A 62 �, and that � is dedu
tively 
losed.� is maximally non-trivial. To see this, remark �rst that A � C 2 � for allC. Indeed, if A � C 62 �, there is a �i su
h that � [ fA � Cg `pHL A;hen
e �i `pHL (A � C) � A by the dedu
tion theorem; hen
e in view ofthe axiom ((A � B) � A) � A, �i `pHL A, whi
h is impossible. If E 62 �,then there is a �i su
h that �i [ fEg `pHL A; as A � C 2 � for all C,� [ fEg is trivial.We de�ne a pHL-model M = hD; vi as follows:(1) D = f� j � 2 C (and there is no � 2 C su
h that � < � and � = � 2 �g,(2) for all C 2 S, v(C) = 1 i� C 2 �,(3) for all � 2 C, if � 2 D, v(�) = �, if � 2 C � D, v(�) is the � 2 D su
hthat � = � 2 � (there is a unique su
h � by the de�nition of D),(4) for all � 2 Pn, v(�) = fh�1; :::; �ni j ��1:::�n 2 �g,(5) for all �C 2 N , v(�C) = 1 i� C;�C 2 �,(6) ea
h � 2 V is arbitrarily asso
iated with a 
onstant � to the e�e
t thatv(�) = v(�) and, for any A, v(�A(�)) = v(�A(�)).8



Obviously (1)-(5) agree with the 
lauses S1.1-4 that de�ne v in the pHL-semanti
s.In order to prove that M veri�es � and falsi�es A, we show that, for allC 2 W:(*) if C 2 �, then vM(C) = 1.This pro
eeds by indu
tion on the 
omplexity of C. For the basis, we showthat (*) holds for all primitive w�s. This is obvious for members of S inview of (2) and S2.2.Consider the primitive predi
ative w� ��1:::�n. If ��1:::�n 2 �, thenvM(��1:::�n) = 1 in view of (3), (4) and S2.3. Hen
e (*) holds for primitivepredi
ative expressions.Consider, �nally, w�s of the form � = �. If � = � 2 �, then by thede�nition of D, there is a 
 2 D su
h that � = 
; � = 
 2 �; hen
ev(�) = v(�) = 
 and vM(� = �) = 1.We now pro
eed to the indu
tion step. All steps are standard ex
eptfor negation and the universal quanti�er. If �C 2 �, then either C 2 � orC 62 �. If C 2 � then v(�C) = 1 (by (5)); if C 62 �, then vM(C) = 0 by theindu
tion hypothesis. In view of S2.6, either 
ase implies that vM(�C) = 1.If (8�)C(�) 2 �, then �:C(�) 2 � for all � 2 C and hen
e vM(�:C(�)) =1 for all � 2 C; in view of (6), vM(�) = 1 for all � 2 V. Hen
e, by S2.11,vM((8�)C(�)) = 1.As � is maximally non-trivial and vM(C) = 1 for all C 2 �, it followsimmediately that � = fC j vM(C) = 1g and hen
e that vM(A) = 0. butvM(B) = 1 for all B 2 �. Hen
e � 6j=pHL A. 2.2.2 HL.HL has two purposes. (i) Whenever �:A is pHL-derivable and :A is notpHL-derivable from �, then A is HL-derivable. (ii) If both �:A and :Aare pHL-derivable, then :A is HL-derivable but A is not.82.2.1 Proof Theory of HL.Where ℄A is a formula in whi
h the variables �1; :::; �m (m � 0) o

ur free,let 9℄A be (9�1):::(9�m)℄A. Let DEKfA1; :::; Ang refer to 9℄A1 _ :::_ 9℄An,a disjun
tion of (where ne
essary) existentially quanti�ed 
ontradi
tions.A1; :::; An are the fa
tors of DEKfA1; :::; Ang.8There are di�erent strategies to 
onstru
t an adaptive logi
. The strategy followedhere is the same as the strategy on whi
h ACLuN1 is based, namely reliability. See [4℄.9



Remark that DEK(�[ fPxg) is pHL-equivalent to DEK(�[fPyg) andpHL-derivable from DEK(� [ fPag).Obviously, for any N -normal model M, vM(9℄A) = 0.Theorem 6 If there are C1; :::; Cn 2 F (0 � n) su
h that � j=pHLDEKfC1; :::; Cng _A, then � j=CL A.Proof. It follows from the ante
edent that any pHL-modelM veri�es 9℄C1or ... or 9℄Cn or A. Any CL-model is equivalent to a N -normal model. Butthese models all falsify any 9℄Ci. Hen
e any CL-model veri�es A. 2De�ne the set bsf(A) of (open and 
losed) basi
 subformulas of A asfollows:(i) if A is a primitive (open or 
losed) formula, then bsf(A) = fAg,(ii) bsf(:B) = bsf(B),(iii) bsf(�B) = f�Bg [ bsf(B),(iv) bsf(B _ C) = bsf(B � C) = bsf(B&C) = bsf(B � C) = bsf(B) [ bsf(C),(v) bsf((8�)A(�)) = bsf(�:A(�)),(vi) bsf((9�)A(�)) = bsf(A(�)).bsf(A) is �nite for any A.Lemma 1 For any pHL-model M, if there is no B su
h that �B 2 bsf(A)and vM(9℄B) = 1, then there is a N -normal model M' su
h that vM(A) =vM0(A).Proof. Suppose the ante
edent is true for some M. Let M0 be obtainedfrom M by putting v(�B) = 0 for all B (m). We pro
eed by an indu
tionon the 
omplexity of A (the number of quanti�ers and 
onne
tives thato

ur in A). If the 
omplexity of A is 0, then vM0(A) = vM(A). Supposingthat vM0(A) = vM(A) for all A with 
omplexity less than n, I show thatvM0(A) = vM(A) for all A with 
omplexity n. Of the eight 
ases to be
onsidered, �ve are obvious, viz. the ones where A is either :B or B � Cor B&C or B _ C or B � C.Case 6: A is �B. If vM0(B) = vM(B) = 0, then vM0(�B) = vM(�B) = 1by S2.6. Suppose that vM0(B) = vM(B) = 1. Then vM0(�B) = 0 (as M0 isa N -normal model). But also vM(�B) = 0, for otherwise, in view of S2.6,v(�B) = vM(℄B) = vM(9℄B) = 1, whi
h 
ontradi
ts the main supposition.Case 7: A is (9�)B(�). Suppose �rst that vM(A) = 1. Then vM(B(�)) =1 for at least one � 2 C[V. Hen
e, by the indu
tion hypothesis, vM0(B(�)) =1 for at least one � 2 C[V. But then vM0((9�)B(�)) = 1. Suppose next that10



vM(A) = 0. Then vM(B(�)) = 0 for all � 2 C [ V. Hen
e, by the indu
tionhypothesis, vM0(B(�)) = 0 for all � 2 C [ V. But then vM0((9�)B(�)) = 0.Case 8: A is (8�)B(�). Suppose �rst that vM(A)= 1. Then vM(�:B(�))= 1 for all � 2 C [ V (k). As bsf(�:B(�)) = bsf(A) (by (v)), �:B(�) 2bsf(A). But then vM(9℄:B(�)) = 0 and hen
e vM(:B(�)) = 0 for all � 2C[V (in view of (k)). But then, by the indu
tion hypothesis, vM0(:B(�)) =0 for all � 2 O, and hen
e vM0(�:B(�)) = 1 for all � 2 C [ V. Butthen vM0((8�)B(�)) = 1. Suppose next that vM(A) = 0. Then there is a� 2 C [V su
h that vM(�:B(�)) = 0. Then vM(:B(�)) = 1 for at least one� 2 C [ V, and hen
e, by the indu
tion hypothesis, vM0(:B(�)) = 1 for thesame � 2 C [V. But then in view of (m) and S2.6, vM0(�:B(�)) = 0 for atleast one � 2 C [ V, and hen
e vM0((8�)B(�)) = 0. 2.Theorem 7 If j=CL A, then for some C1; :::; Cn 2 F (0 � n), j=pHLDEKfC1; :::; Cng _A.Proof. Let j=CL A. Hen
e vM(A) = 1 for all N -normal models M of �.As bsf(A) is �nite, DEKfB j�B 2 bsf(A)g _ A is a w�, whi
h is easilyshown to be pHL-valid. Consider indeed a pHL-model M. If, for some�B 2 bsf(A)vM(9℄B) = 1, then vM(DEKfB j�B 2 bsf(A)g) = 1. If, for no�B 2 bsf(A), vM(9℄B) = 1, then vM(A) = 1 by Lemma 1. 2.Some formulas in the se
ond 
olumnHL-proofs are derived 
onditionally,and the lines in whi
h they o

ur, have to be marked when a 
ondition isoverruled. Formulas in the se
ond element of marked lines do not belong tothe 
onsequen
e set. Conditions are all of one kind: some C1; :::; Cn have tobehave �-
onsistently.The idea of the proof theory of HL is that we apply all rules derivablein pHL un
onditionally, whereas other rules derivable in CL are applied on
ondition that 
ertain formulas are reliable with respe
t to their 
onsistentbehaviour. To keep the matter algorithmi
, the 
onsistent behaviour ofa formula will be determined by the stage of the proof instead of by theabstra
t notion of derivability. As a result, formulas derived at some stageof proof, will not be �nally derivable, be
ause the line in whi
h they o

urwill be marked at a later stage. Of 
ourse ea
h set of premises must (andwill) have a unique set of �nal HL-
onsequen
es.As shown in the example above, HL-proofs are written in a spe
ialformat a

ording to whi
h ea
h line of a proof 
onsist of �ve elements:(i) a line number,(ii) a premise, a theorem or a derived formula,(iii) the line numbers of the w�s from whi
h (ii) is derived,11



(iv) the rule of inferen
e that justi�es the derivation, and(v) the formulas on the 
onsistent behaviour of whi
h we rely in orderfor (ii) to be derivable by (iv) from the formulas of the lines enumeratedin (iii).Definition. A o

urs un
onditionally at some line of a proof i� the �fthelement of that line is empty.Definition. A behaves 
onsistently at a stage of a proof i� ℄A does noto

ur un
onditionally in the proof at that stage.Definition. The 
onsistent behaviour of A1 is 
onne
ted to the 
onsistentbehaviour of A2; :::; An at a stage of a proof i� DEKfA1; :::; Ang o

ursun
onditionally in the proof at that stage whereas DEKfA2; :::; Ang doesnot o

ur un
onditionally in it.Definition. A is reliable at a stage of a proof i� A behaves 
onsistentlyat that stage and its 
onsistent behaviour is not 
onne
ted to the 
onsistentbehaviour of other formulas.Given these de�nitions, proofs in HL are governed by an un
onditionalrule, a 
onditional rule and a marking rule. The appli
ation of a rule to aproof at a stage produ
es the next stage.RU If `pHL (A1&:::&An) � B, and A1; :::; An o

ur in the proof,then add B to it. The �fth element of the new line is theunion of the �fth elements of the lines mentioned in its thirdelement.RC If `pHL DEKfC1; :::; Cmg _ ((A1&:::&An) � B), and A1; :::;An o

ur in the proof, then add B to it, provided that ea
hfa
tor of DEKfC1; :::; Cmg is reliable at that stage. The �fthelement of the new line is the union of fC1; :::; Cmg and ofthe �fth elements of the lines mentioned in its third element.RM If C is not (any more) reliable, then mark all lines the �fthelement of whi
h 
ontains C, by writing \y" before the linenumber. A marked line does not belong to the proof at thatstage.9At any stage of the proof, it is obligatory to apply RM and permittedto apply RU and RC. If the �fth element of a line is empty, the formulain its se
ond element is pHL-derivable from the premises and 
annot bemarked later. If the �fth element is not empty, its formula is provisionallyderived. Unless it 
an also be derived at a line the �fth element of whi
h9At every stage of a proof, previously introdu
ed marks are omitted, and marks areintrodu
ed a

ording to the reliability at the new stage.12



is empty, it is not a pHL-
onsequen
e. The un
onditional o

urren
e ofDEK-formulas in the proof determines whether some formulas are reliable,and hen
e whi
h appli
ations of RC are permitted in view of pHL-formulasof the form DEKfC1; :::; Cmg _ ((A1&:::&An) � B). As usual proofs maybe sped up by derived rules. Of 
ourse all positive rules of CL are validun
onditionally. Raa, Redu
tio ad absurdum in the 
ase of \:", (A � B,A � :B / :A) 
annot be applied if the �fth element of the premise lines isnot empty.10 ObviouslyR8 (to derive ` A � (8�)B(�) from ` A ��:B(�),provided � does not o

ur in either A or B(�)) 
annot be applied if � :B(�)is the se
ond element of a line the �fth element of whi
h 
ontains a formulain whi
h � o

urs. I list some spe
i�
 HL-rules. The mentioned sets referto the �fth element of the line.- Negation Rules:nr: :A, � / �A, �
nr: �A, � / :A, � [ fAgui: Instan
e of a Universal Quanti�
ation:(8�)A(�), �/ �:A(�), �dn: Double Negation:A, � / �:A, �:�A, � / A, �
dn: Conditional Double Negation:�:A, �/A, � [ f:Ag��A, �/A, � [ f�AgA, �/:�A, � [ fAgHL has a dynami
 proof pro
edure: a w� may be derived at some stageof a proof, while the line in whi
h it o

urs may be marked at a later stageof the proof; and a formula that is not reliable at some stage (whi
h resultsin the marking of all lines with this formula in their �fth element), maybe
ome reliable at a later stage. Therefore we need to distinguish betweenprovisional and �nal 
onsequen
es.Definition. A is �nally derived at some line in an HL-proof i� (i) it isthe se
ond element of that line and (ii) where fC1; :::; Cng (n � 0) is the�fth element of the line, any extension of the proof 
an be further extendedin su
h way that it 
ontains a line that has A as its se
ond element andfC1; :::; Cng as its �fth element.10The reason is obvious. Suppose A � B is derived in a line of whi
h the �fth elementis C. This means that ℄C _ (A � B) (and not A � B) is pHL-derived (see Lemma 2,below); it is 
lear that the simultanous o

urren
e of ℄C _ (A � B) and A � :B does notmean that the o

urren
e of A leads to triviality.13



Sometimes a Ci is unreliable in an extension of the proof (in that its 
on-sistent behaviour be
omes 
onne
ted to that of other formulas). However, ifany extension 
an be further extended in su
h way that all Ci are reliable,then A is derived from � on the 
ondition fC1; :::; Cng in an absolute sense(whi
h is studied further below).Definition. � `HL A (A is �nally HL-derivable from �), i� A is �nallyderived at some line in a HL-proof from �.Definition. (The HL-
onsequen
e set of �) CnHL(�) = fA j � `HL Ag.pHL is not de
idable. We la
k a positive test for HL-derivability. Of
ourse, some fragments of HL are de
idable.Yet, it is possible to prove that CnHL(�) may be 
hara
terized withoutreferring to the dynami
s of the proofs. The 
hara
terization refers to pHLonly. The 
entral point is that it depends only on pHL-derivability (whi
h ismonotoni
) whether a w� is reliable in an intelligent extension of the proof.Lemma 2 If in an HL-proof from �, A o

urs as the se
ond element andfC1; :::; Cmg (0 � m) o

urs as the �fth element of a line, then � `pHLA _ DEKfC1; :::; Cmg.11In view of this lemma, we 
an introdu
e the following derivation rule.Dek: A, � / A _DEK(�)Definition. A DEK-
onsequen
e of � is a DEK-formula whi
h is pHL-derivable from �.Definition. DEK(�) is a minimal DEK-
onsequen
e of � i� it is a DEK-
onsequen
e of �, and for no � � �, DEK(�) is a DEK-
onsequen
e of�.Theorem 8 � `HL A, i� there are C1; :::; Cm 2 F (0 � m) su
h that� `pHL A_DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fa
tor of a minimalDEK-
onsequen
e of �.12It follows from Theorem 8 that whenever A o

urs as the se
ond element ofa line of a HL-proof in whi
h C1; :::; Cm is the �fth element, a new line 
anbe added with A _ DEKfC1; :::; Cmg as se
ond element and an empty �fthelement, and vi
e versa.The following Theorem expresses an important feature of HL:11The proof of Lemma 2 is 
ompletely analogous to the proof of Lemma 1 in [1℄ andLemma 4.2 in [4℄.12The proof of Theorem 8 is 
ompletely analogous to the proof of Theorem 4.3 in [4℄.14



Theorem 9 If � `HL A, then it is possible to extend any proof from � intoa proof in whi
h A is �nally derived from �.13I now give a derivable marking rule in HL.mr1: If A (resp. :A) is 
onditionally derived at line i of a HL-proof from �, while :A (resp. A) is derived un
onditionallyat any line of the proof, then mark line i.Theorem 10 The marking rule mr1 is derivable in HL.Proof. By assumption, A o

urs in a HL-proof from � as the se
ondelement of a line (i) the �fth element of whi
h is C1; :::; Cn (1 � n). ByLemma 2, DEKfC1; :::; Cng _ A is a pHL-
onsequen
e of �, and hen
e 
anbe derived un
onditionally in the HL-proof. Suppose :A o

urs at line (j)with an empty �fth element. In view of the pHL-theorem A _ :A, alsoDEKfC1; :::; Cng is un
onditionally derivable. But then at least one of itsfa
tors is unreliable and hen
e all lines with ea
h of the formulas C1; ::: orCn in their �fth element have to be marked, in view of RM. The proof is
ompletely analogous if we repla
e A by :A and vi
e versa. 2.2.2.2 Semanti
s of HLTheHL-semanti
s is obtained from the pHL-semanti
s by de�ning, for ea
h�, a subset of the pHL-models of �. The idea is that any � de�nes a set of(semanti
ally) unreliable formulas, and that the HL-models of � are thosepHL-models of � in whi
h only unreliable formulas behave in
onsistently.Definition. A is HL-unreliable with respe
t to � i� A is a fa
tor of aminimal DEK-
onsequen
e of �. U(�) is the set of all w�s that are HL-unreliable with respe
t to �.Definition: Where M is a pHL-model, ab(M) = fA j vM(℄A) = 1g.Definition: M is a HL-model of � i� it is a pHL-model of � and ab(M) �U(�).Definition: � j=HL A i� A is true in all HL-models of �.2.2.3 Metatheory of HL.Theorem 11 If � `HL A, then � j=HL A.Proof. Let � `HL A. By Theorem 8, there are C1; :::; Cm (m � 0) su
h that� `pHL A _ DEKfC1; :::; Cmg, and C1; :::; Cm 62 U(�). If � j=pHL A, then13The proof of Theorem 9 is 
ompletely analogous to the proof of Theorem 4.4 in [4℄.15



� j=HL A (all HL-models are pHL-models). If there are C1; :::; Cm (m � 1)su
h that � `pHL A_DEKfC1; :::; Cmg, and C1; :::; Cm 62 U(�), then, for allHL-modelsM of �, vM(A_DEKfC1; :::; Cmg) = 1, and vM(DEKfC1; :::; Cmg)= 0, and hen
e vM(A) = 1. 2.Theorem 12 If � j=HL A, then � `HL A.Proof. Suppose that � j=HL A and � 6`HL A. Let the sequen
e B1; B2; :::be de�ned as in the proof of Theorem 5. We de�ne�0 = CnpHL(� [ fDEKfBg � A j B 2 W � U(�)g).14�i+1 = CnpHL(�1 [ fBi+1g) if A 62 CnpHL(�1 [ fBi+1g), and�i+1 = �i otherwise� = �0 [�1 [ :::Ea
h of the following is provable:(i) � � �(ii) A 62 �. By the de�nition of �, if A 2 �, then A 2 �0. Thelatter however is impossible. Indeed, if A 2 �0, then there are C1; :::; Cm 2F �U(�) (m � 1) su
h that �[ fDEKfC1; :::; Cmg � Ag `pHL A.15 Hen
e,by the dedu
tion theorem, � `pHL (DEKfC1; :::; Cmg � A) � A; hen
e� `pHL DEKfC1; :::; Cmg _ A. But as C1; :::; Cm 2 F � U(�), it follows byTheorem8 that � `HL A, whi
h 
ontradi
ts (the main supposition.(iii) If C 62 U(�), then 9℄C 62 �. Indeed, if C 62 U(�), then ℄C � A 2�0; so if ℄C 2 �, then A 2 �, whi
h 
ontradi
ts (ii).(iv) � is dedu
tively 
losed (by the de�nition of �).(v) � is maximally non-trivial (as in the proof of Theorem 5.As in the proof of Theorem 5, a pHL-model M is a HL-model is de�nedfrom �. In view of (i) and (ii), all members of � are true in M and A is falsein M. In view of (iii), M is a HL-model of �. Hen
e � 6`HL A. 2.3 HL1.The proof theory and the semanti
s of HL1 are obtained by adding theCL-
lauses 
on
erning the universal quanti�er to the proof theory and the14It is in view of the fa
t that U(�) is de�nied by means of the semanti
al notion minimalDEK-
onsequen
es, that the 
onstru
tion of � 
aptures the dynami
 proof pro
edure.Remember that in Theorem 8 � `HL A is de�ned without referring to the dynami
s ofHL-proofs.15In view of the fa
t that any pHL-proof is �nite, and of fA � B;C � Bg `pHL(A _ C) � B. 16



semanti
s ofHL. We write theCL-quanti�er as \80", and theHL-quanti�eras \8". The metatheory of pHL1 andHL1 is 
ompletely analogous to thoseof pHL and HL. An example of a HL1-proof will show the usefulness ofHL1.16(1) (8x)(Bx � Fx) - prem-(2) (80x)(Px � Bx) - prem-(3) (80x)(Px � :Fx) - prem-(4) Pa - prem-(5) Bb - prem-(6) �:(Ba � Fa) 1 ui -(7) Ba � Fa 6 
dn :(Ba � Fa)(8) Pa � Ba 2 ui0 -(9) Ba 4, 8 mp -y(10) Fa 7, 9 mp :(Ba � Fa)(11) Pa � :Fa 3 ui0 -(12) :Fa 4, 11 mp -(13) �:(Bb � Fb) 1 ui -(14) Bb � Fb 13 
dn :(Bb � Fb)(15) Fb 5, 14 mp :(Bb � Fb)In view of mr1 line (10) has to be marked, and hen
e :Fa is �nallyderived while Fa is not.17 As the 
ondition in line (15) is not overruled (itis not possible to derive ℄:(Bb � Fb)), Fb is �nally derived.If we 
onstru
t now a proof from the premises (8x)(Px � :Fx),(80x)(Mx � Px), (80x)(Mx � Fx), M
 and Pa, we 
an derive F
 and:Fa (in a 
ompletely analogous way as in the former proof).Suppose now we want to make one proof from these two proofs. Thenwe meet a problem in that we have both (80x)(Px � :Fx) and (8x)(Px �:Fx). A UQF 
annot be 
lassi
al and ex
eptional at on
e. If we make ita 
lassi
al UQF, then we 
an derive an in
onsisten
y that 
auses trivialityfrom the premises: both F
 and :F
 are derivable un
onditionally. Hen
e,it has to be 
onsidered as a UQF that might have ex
eptions; but if we makeit an ex
eptional UQF, :Fa is only derivable on unreliable 
onditions, andhen
e neither :Fa nor Fa are �nally derivable.16In the proofs given as example in Se
tions 3 and 4, you 
an read \B" as \is a bird",\P" as \is a penguin", \M" as \is a motorized penguin", and \F" as \
an 
y".17It is easily seen that ℄:(Ba � Fa) 
an be derived un
onditionally. On
e this is done,line (7) has to be marked, in view of RM. 17



This example shows that the HL1-formalization of rules allows us toderive �nally more wanted 
onsequen
es than the HL-formalization. Butsome wanted 
onsequen
es are not �nally derivable, espe
ially if the 
on-text of appli
ation extends in su
h a way that general statements withoutex
eptions be
ome general statements that might have ex
eptions. In HL2however only the unwanted 
onsequen
es will not be �nally derivable.4 HL2.HL2 is obtained by introdu
ing a preferen
e ordering on the ex
eptionalUQFs of HL1. Instead of one set of ex
eptional UQFs, there is a set ofUQFs of preferen
e 1 (the highest preferen
e), ..., and a set UQFs of pref-eren
e n (the lowest preferen
e). With UQFs of preferen
e n 
orrespondinstan
es of preferen
e n (notation: �n:A).18 If i < j, the relation betweena HL2-UQF of preferen
e i and a HL2-UQF of preferen
e j, is the same asthe relation between the 
orresponding 
lassi
al HL1-UQF and the 
orre-sponding ex
eptional HL1-UQF. An immediate result is that, in 
ase of a
ontradi
tion between (a formula derived from) an instan
e of preferen
e iand (a formula derived from) an instan
e of preferen
e j, it will follow fromthe o

urren
e of the former that the latter is not �nally derivable.I am not dealing here with the question whi
h UQFs have to be relatedto a higher or lower preferen
e.19 In spe
i�
 
ontexts however, preferen
es
an often be as
ribed without problems. In the example of Se
tion 3, forinstan
e, the premises will 
ontain the following UQFs: (80x)(Px � Bx)and (80x)(Mx � Px), (81x)(Mx � Fx), (82x)(Px � :Fx) and (83x)(Bx �Fx). In this se
tion it will be
ome 
lear that F
, :Fa and Fb are �nallyderivable from these premises.4.1 The Underlying Para
onsistent Logi
 pHL2.4.1.1 Proof Theory of pHL2.The underlying para
onsistent logi
 of HL2, is pHL2, whi
h is obtainedfrom pHL1 by introdu
ing preferen
es in the language s
heme: there are nex
eptional universal quanti�ers: 81; :::;8n, and n para
onsistent negations:�1; :::;�n. The axiom s
heme is obtained by repla
ing in pHL1 A8, R8and A� by: (for all n � 1)18�n:A 
an be read as \we give preferen
e n to the fa
t that there is no reason to reje
tA.19For an extended study on preferen
es, I refer to, e.g., [7℄.18



A8n: (8n�)A(�) ��n :A(�)R8n: To derive ` A � (8n�)B(�) from A ��n :B(�),provided � does not o

ur in either A or B(�)A�n: A_�n AThe Fit
h-style rule Universal Instantiation from a UQF with preferen
en (� 1) is indi
ated as \uin".Obviously, the pHL2-
onsequen
es are the pHL1-
onsequen
es to whi
hthe preferen
es are added where ne
essary.4.1.2 Semanti
s of pHL2.The semanti
s of pHL2 is obtained from the pHL1-semanti
s by repla
ingN by n sets N n = f�n A j A 2 Fg. In the de�nition of the assignmentfun
tion S1.4 is repla
ed by:S1.4. v : N n ! f0; 1g, for ea
h n � 1.The valuation fun
tion is de�ned by repla
ing in the pHL1-
lauses S2.6and S2.11 � and 8 by �n and 8n for ea
h n � 1.4.1.3 Metatheory of pHL2.If we take in a

ount the above mentioned di�eren
es between pHL1 andpHL2, the metatheory of pHL2 is 
ompletely analogous to the metatheoryof pHL1.4.2 HL2.HL2 has three purposes. (i) Whenever �n :A is pHL2-derivable and :Ais not pHL2-derivable from �, then A is HL2-derivable from �. (ii) If both�n :A and :A are pHL2-derivable, then :A is HL2-derivable, but A isnot. (iii) If both DEK(�) _A and DEK(�) _ :A are pHL2-derivable, thenthe 
onditional preferen
es of the fa
tors of DEK(�) and DEK(�) de
idewhether A or :A is �nally derivable.4.2.1 Proof Theory of HL2.Let 9℄nA stand for 9(A& �n A). Let DEKfAi1; :::; Ajng refer to 9℄iAi _ ::: _9℄jAn (i; j � 1), a disjun
tion of (where ne
essary) existentially quanti�ed
ontradi
tions (
onfer Se
tion 2.2.1). The format of HL2-proofs is the sameas for HL and HL1. 19



Definition: The �i-
onsistent behaviour of a formula B is a 
ondition ofpreferen
e i i� �i B is an instan
e of a ex
eptional UQF of preferen
e i. Thenumber i is the 
onditional preferen
e of B. (Noti
e that a higher number
orresponds to a lower 
onditional preferen
e.)20Definition: A is not reliable at a stage of a proof i� it does not behave
onsistently at that stage of the proof or its 
onsistent behaviour is 
on-ne
ted to the 
onsistent behaviour of other formulas none of whi
h has alower 
onditional preferen
e than A.Given theseHL2-de�nitions, the un
onditional ruleRU, the 
onditionalruleRC, and the marking ruleRM are 
ompletely analogous as forHL andHL1. The following example illustrates the di�eren
e between the ruleRMin HL1 and HL2. Suppose lines (i)-(k) o

ur in a proof:21(i) A x X B[3℄(j) :A y Y C[2℄(k) ℄3B _ ℄2C z Z -If we drop the preferen
es, both B and C would be unreliable, and hen
eneither A nor :A would be �nally derivable from these lines (this is thesituation in HL1). But in view of the fa
t that the 
onditional preferen
eof C (2) is higher than the 
onditional preferen
e of B (3), C is reliable inHL2 and hen
e :A is HL2-derivable from these lines.Lemma 3 If in an HL2-proof from �, A o

urs as the se
ond elementand fC1; :::; Cmg (0 � m) as the �fth element of a line, then � `pHL2A _ DEKfC1; :::; Cmg.22The de�nition of \intelligent extension", \A is �nally derived", \�nal deriv-ability", \
onsequen
e set" and \minimal DEK-
onsequen
e" remain thesame as for HL1 and HL. Also the derivation rule Dek is valid in HL2.Theorem 13 � `HL2 A i� there are C1; :::; Cm (0 � m) su
h that � `pHL2A _ DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fa
tor of a minimal DEK-
onsequen
e of � unless some other fa
tor of the minimal DEK-
onsequen
ehas a lower 
onditional preferen
e than the 
onsidered Ci.Proof. For the �rst dire
tion, let � `HL2 A. Hen
e A is �nally derived atsome line (j) of a proof from �. Let the �fth element of this line be C1; :::; Cm.20One and the same UQF never gets two di�erent preferen
es. Therefore we 
an a

eptthat every formula has (at maximum) one 
onditional preferen
e.21It is handy to indi
ate the 
onditional preferen
e of the formulas in the �fth 
olumnof a proof.22The proof of Lemma 3 is 
ompletely analogous to the proofs of Lemma 1 in [1℄ andLemma 4.2 in [4℄. 20



Hen
e � `pHL2 A_DEKfC1; :::; Cmg. � `pHL2 A _ DEKfC1; :::; Cmg (0 �m). Suppose now that Ci is a fa
tor of a minimal DEK-
onsequen
e D of �and there is no other fa
tor of D with a lower 
onditional preferen
e than C;then there is an extension of the proof in whi
h D o

urs un
onditionally;but then line (j) is marked by RM, whi
h 
ontradi
ts the fa
t that A is�nally derived at line (j).For the other dire
tion, suppose that there are C1; :::; Cm (0 � m) su
hthat � `pHL2 A _ DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fa
tor of aminimal DEK-
onsequen
e of � unless some other fa
tor has a lower 
ondi-tional preferen
e. Then there is a an HL2-proof from � in whi
h A o

ursas the se
ond element of a line the �fth element of whi
h is fC1; :::; Cmg.Moreover, every extension of the proof in whi
h line (j) would be marked(be
ause some Ci is not reliable, 
an be further extended in su
h way thatCi be
omes reliable again (in view of the supposition). It follows that A is�nally derived at that line. When
e � `HL2 A. 2.In HL and HL1 no fa
tor of a minimal DEK-
onsequen
e is reliable. InHL2 however, those fa
tors of a minimal DEK-
onsequen
e are reliable the
onditional preferen
e of whi
h is higher than the 
onditional preferen
e ofsome other fa
tor of that minimal DEK-
onsequen
e.The marking rule mr1 of HL and HL1 is valid in HL2. I now give thetypi
al HL2-rule 
on
erning marking of instan
es.Definition: If A o

urs as the se
ond element of a line of a proof, the linepreferen
e of A is the lowest 
onditional preferen
e (i.e. the highest number)of the formulas in the �fth element of that line. If the �fth element is empty,the line preferen
e of A is 0.mr2: If the line preferen
e of A (resp. :A) is lower than the linepreferen
e of :A (resp. A) at any line of the proof, thenmark line (i).Theorem 14 mr2 is a derivable rule of HL2.Proof. Suppose � = fB1; :::; Bng (n � 1), and � = fC1; :::; Cmg (m � 1),and there is a B 2 � su
h that the 
onditional preferen
e of B is lowerthan the 
onditional preferen
e of any C 2 �. Suppose A o

urs as these
ond element of a line the �fth element of whi
h is �, and :A o

urs asthe se
ond element of a line the �fth element of whi
h is �. In view ofLemma 3, both A _ DEK(�) and :A _ DEK(�) are pHL2-derivable fromthe premises. Hen
e also DEK(� [ �) is derivable from the premises. Inview of the supposition and the de�nition B is not reliable at that stage ofthe proof. Hen
e the line in whi
h A was derived has to be marked in view21



of RM. The proof is 
ompletely analogous if A is repla
ed by :A and vi
eversa. 2.Here is an example of a HL2-proof that illustrates the me
hanism:(1) (83x)(Bx � Fx) - prem -(2) (82x)(Px � :Fx) - prem -(3) (81x)(Mx � Fx) - prem -(4) (80x)(Mx � Px) - prem -(5) (80x)(Px � Bx) - prem -(6) Bb - prem -(7) Pa - prem -(8) �3 :(Ba � Fa) 1 ui3 -(9) Ba � Fa 8 
dn :(Ba � Fa)[3℄(10) �3 :(Bb � Fb) 1 ui3 -(11) Bb � Fb 10 
dn :(Bb � Fb)[3℄(12) �2 :(Pa � :Fa) 2 ui2 -(13) Pa � :Fa 12 
dn :(Pa � :Fa)[2℄(14) Pa � Ba 5 ui0 -(15) Fb 6, 11 mp :(Bb � Fb)[3℄(16) Ba 7, 14 mp -y(17) Fa 16, 9 mp :(Ba � Fa)[3℄(18) :Fa 7, 13 mp :(Pa � :Fa)[2℄Fb at line (15) is �nally derived. Line (17) is marked in view of mr2and line (18). :Fa at line (18) is �nally derived. If we 
ontinue the proof,we 
an derive ℄3:(Ba � Fa) with :(Pa � :Fa)[2℄ as �fth element; hen
ein view of RM line (9) has to be marked. The reader 
an verify that fromthese premises (80x)(℄1:(Mx � Fx) _ ℄2(Px � :Fx) _ :Mx) is derivable,and hen
e also :Ma and :Mb, whereas F
 is derivable when we add thepremise M
.4.3 Semanti
s of HL2.The HL2-semanti
s is obtained from the pHL2-semanti
s by de�ning, forea
h �, a subset of the pHL2-models of �. Any � de�nes a set of seman-ti
ally unreliable formulas. The HL2-models of � are those pHL2-modelsof � in whi
h only unreliable formulas behave in
onsistently. The set of un-reliable formulas with respe
t to � is a subset of the fa
tors of the minimalDEK-
onsequen
es of �.Definition: If � j=pHL2�n B (whereas � 6j=pHL2�m B (1 � m < n)), then22



CP�(B) = n. If � = fB1; :::; Bng (n � 1), then CP�(�) is the maximum ofCP�(B1):::;CP�(Bn).Definition: IfB 2 �, � is a minimalDEK-
onsequen
e of �, and CP�(B) =CP�(�), then B is HL2-unreliable with respe
t to �. U(�) is the set of allw�s that are HL2-unreliable with respe
t to �.Definition: Where M is a pHL2-model, ab(M) = fA j vM(℄A) = 1g.Definition: M is a HL2-model of � i� it is a pHL2-model of � andab(M) � U(�).Definition: � j=HL2 A i� A is true in all HL2-models of �.4.4 Metatheory of HL2.The Soundness and Strong Completeness Theorems of HL2 are analogousto those of HL1.4.5 Con
luding Remarks.(i) HL2 is a logi
 in whi
h most wanted 
onsequen
es are �nally deriv-able from a set of premises some of whi
h are UQFs with (predi
table orunpredi
table) ex
eptions, whereas most unwanted are not.23 Of the twohalves of an in
onsisten
y, the one derived from the least preferred infor-mation is not �nally derivable. The power of HL2 lies in its strategy. In
omparison to Consisten
y-Based Logi
s, su
h as Default Logi
, that try toresolve these kinds of in
onsisten
ies by anti
ipating the ex
eptions (in adefault),24 HL2 allows for �n-in
onsisten
ies and 
onditionally derived :-in
onsisten
ies within the pro
ess (i.e. within theHL2-proofs), and resolvesthe :-in
onsisten
ies when they o

ur. In my opnion, the most interestingproperty of HL2 is that ex
eptions need not te be known beforehand. Itsdynami
 proof pro
edure allows for the introdu
tion of new premises at any23From the premises fTweety is a penguin, birds 
y, penguins do not 
y, and penguinsare birdsg, HL2 derives that Tweety 
ies, and all other individuals in the domain do not
y. This is a result that is worth being 
ompared with the results of Cir
ums
ription(Parallel Predi
ate Cir
ums
ription, Abnormality Theories, Prioritized Cir
ums
ription(
onfer the proof in Se
tion 4.2.1); see, e.g., [5℄ pp. 12-21. HL2 however, is not able to
on
lude from \All sailors are male and have a beard" and \Sailor Popeye has no beard",that \Popeye is a man". In su
h 
ases, the easiest solution is to write two UQFs instead ofone UQF 
ontaining a 
onjun
tion. (For instan
e: \All sailors are male" and \All sailorshave a beard".)24See, e.g., [5℄ pp. 39-64. Note that HL2 derives that Paul likes wine, from fPaul isItalian or Fren
h, Italians like wine, Fren
h like wineg. Also HL2 does not derive thatone has a usable left and a usable right arm when one has a broken left or broken rightarm. 23



stage of the proof, whereas the introdu
tion of new premises possibily leadsto a di�erent 
onsequen
e set.(ii) It is easily seen that (a) is a pHL2-theorem:(a) (8n�)A � (8�)(℄n:A _A)It is indeed possible to write every ex
eptional UQF as a 
lassi
al UQF. Inview of this theorem, it 
an easily be proven that pHL2 (and hen
e alsoHL2) has an interesting transitivity rule:(8n�)(A(�) � B(�))(8m�)(B(�) � C(�))|||||||||||||||||||||||||||-pHL2(8�)(℄n:(A(�) � B(�)) _ ℄m:(B(�) � C(�)) _ (A(�) � C(�)))This property of pHL2 
an be very useful in the re
onstru
tion of othernon-monotoni
 systems.25Referen
es[1℄ Batens, Diderik: \Dynami
 Diale
ti
al Logi
s", in G. Priest, P. Routley& J. Norman (eds.) Para
onsistent Logi
. Essays on the In
onsistent.M�un
hen, pp. 187{217.[2℄ Batens, Diderik: \In
onsisten
y-adaptive Logi
s and Non-monotoni
Logi
s", Logique et Analyse 145, Mar
h 1994.[3℄ Batens, Diderik: \Fun
tioning and Tea
hing of Adaptive Logi
s." invan Benthem, Grootendorst, van Eemeren and Veltman (eds.) Logi
 andArgumentation. North-Holland 1996.[4℄ Batens, Diderik: \In
onsisten
y-Adaptive Logi
s." in Ewa Orlowska(ed.) Essays Dedi
ated to the Memory of Helena Rasiowa. Heidelberg,New-York, Physi
a Verlag, Springer, 1998, pp. 445-472.[5℄ Brewka, G., Dix, J. and Konolige, K., \Nonmonotoni
 Reasoning. AnOverview. CSLI Publi
ations, Stanford California, 1997.[6℄ De Cler
q, Kristof: \Two New Strategies for In
onsisten
y-adaptive log-i
s." (to appear).[7℄ Moutafakis, Ni
holas, J. \The Logi
s of Preferen
e", Episteme 14, D.Reidel Publishing Company, Dordre
ht, Boston, Lan
aster, Tokyo, 1987.25I hope to establish this in forth
oming papers.24


