
HL2, an Inonsisteny-adaptive andInonsisteny-resolving Logi for GeneralStatements that might have Exeptions.Guido Vanakere�Center for Logi and Philosophy of SieneUniversity of GhentGuido.Vanakere�rug.a.beAbstratThe present paper o�ers a new approah to non-monotoni log-is and their reonstrution in terms of inonsisteny-adaptive logis.By applying a speial tehnique, universally quanti�ed formulas areassigned instanes that, given the paraonsistent framework, do notause triviality even if they onit with knowledge deriving from othersoures. From the speial instanes, the usual instanes may be derivedonditionally, viz. provided they are not ontradited by statementsderived with a higher preferene ranking.1 IntrodutionIn this paper I present a new approah to non-monotoni reasoning. Theunderlying idea is that universally quanti�ed formulas (heneforth UQF) areformulated unrestritedly, even if they have exeptions, but the derivation ofinstanes is restrited, and derived instanes are not �nally derivable (i.e. donot belong to the onsequene set), when the instane is known to onernan exeption to the UQF.The e�et is realized by reurring to an inonsisteny-adaptive logiHL2that is based on a spei� paraonsistent logi pHL2. Aording to pHL2,�I am indebted to the two referees; their remarks enabled me to improve the expositionat several points. I thank Kristof De Clerq; his experiene with problems onerningdefault-reasoning and irumsription, has been very useful for me (see his [6℄). I amespeially obliged to Diderik Batens; his work on adaptive logis and his assistane in thewriting of this paper were indispensable. 1



a UQF (8�)A(�) unonditionally entails �:A(�) in whih \�" is a paraon-sistent negation and \:" lassial negation. Aording to HL2, �:A(�) en-tails A(�), provided :A(�) `behaves onsistently' (in a sense spei�ed later)on the premises. I shall �rst larify the role and the e�ets of paraonsistentand inonsisteny-adaptive logis, and then motivate the transition to thelogis presented below.Paraonsistent logis avoid that inonsistent theories are turned intotrivial ones. A straightforward strategy to obtain a paraonsistent logionsists in weakening lassial logi (CL) by dropping one half of the mean-ing of negation, reduing it to \If A is false, then �A is true". In [4℄ thisparaonsistent logi is alled CLuN.1 CLuN indeed allows for non-trivialinonsistent theories. It does so however by eliminating too many inferenes:we want the intuitivily orret onsequenes to be derivable when no inon-sisteny is involved; e.g. we want to apply Disjuntive Syllogism (A_B, �A/ B) whenever A does not behave inonsistently. The inonsisteny-adaptivelogis ACLuN1 and ACLuN2, based on CLuN, enable us to do so { see[2℄, [3℄ and [4℄.2 In these logis some onsequenes whih are CL-derivablebut not CLuN-derivable, are ACLuN-derivable, provided ertain formulasare reliable | that is: do not behave inonsistently in view of the premises.Although inonsisteny-adaptive logis isolate inonsistenies and deliverall lassial onsequenes whenever the spei� inonsistenies do not pre-vent this, they are not fully adequate with respet to everyday reasoning.Indeed, in many situations we want to eliminate the inonsistenies as theyour. If an inonsisteny turns up, for instane within our most reliableknowledge, we often wish to rejet one half of the inonsisteny and to retainthe other. The two kinds of inonsistenies onsidered in the present paperare aused by the fat that we have di�erent ways to obtain informationabout the same statement. The information may stem from observation,possibly ombined with logial dedution. It may also be derived from gen-eral knowledge, for example from UQFs { and remark that a ombination1In [2℄ and [3℄ this paraonsistent logi was alled PIL. It was renamed in view of thereation of analogous logis dealing with other abnormalities. The N stands for Negation,the u stands for gluts. CLaN, for instane, is a paraomplete logi; here the a stands forgaps.CLuN is obtained from CL by dropping the axiom (A � B) � ((A ��B) ��A).Classial negation, :, is introdued by :A =df A �?. Remark that neither Replaementof Identials nor Replaement of Equivalents hold in the sope of a \�". Also, CLuNmaximally isolates inonsistenies; from A&�A, no other inonsisteny is derivable, noteven about subw�s or superw�s of A.2In [2℄ and [3℄, these logis were alled APIL1 and APIL2.2



of UQFs may lead to oniting information. In view of the elegane andpower of our most reliable knowledge, we are interested in general state-ments without exeptions. If onits arise, we want to rejet the instaneof the general statement and to retain the more spei� information (i.e.the observational information or the information derived from more spei�UQFs).In the seond part of this paper I introdue Hypothesis Logi HL. Thisadaptive logi is based on pHL, whih is obtained from CL by modifying itsinstantiation rule: from (8�)A(�), �:A(�) is derived instead of A(�). Theurl is the paraonsistent negation as de�ned in CLuN. As an immediateresult, the inonsisteny arising if :A(�) is provided by information derivingfrom a di�erent soure, does not ause explosion. Aording to HL, A(�)is only derivable from �:A(�) provided :A(�) is not derivable from theavailable premises. The modi�ation has a further and most interestinge�et: if an exeption turns out to be derivable after the instane A(�)was onditionally derived, the onditionally derived instane will not beonsidered as �nally derivable beause the line in whih it ours is markedin view of a stritly logial marking rule. The advantage of suh a markingrule is lear: when inonsistenies are weeded out within a proof, we obtaina riher (but not trivial) and (in as far as we eshew inonsistenies) moreinteresting onsequene set, and we do so by stritly formal means.In the third part of the paper I introdue HL1, a logi pertaining tolanguages that ombine the universal quanti�er of HL with the one of CL.Unlike HL, HL1 enables us also to resolve inonsistenies deriving fromUQFs. The idea is that `lassial' UQFs an be instantiated unonditionally,while the others an only be onditionally instantiated. In order to applyHL1, we need to lassify (from the very outset) UQFs in lassial and`exeptional' ones | this elimination of inonsistenies is not stritly logialbut relies on non-logial onsiderations.In the �nal part I introdue HL2, whih generalizes the idea of sortedquanti�ers. Where HL1 ontains one kind of exeptional universal quan-ti�er, HL2 ontains a preferentially ordered (inde�nitely large) amount ofthem. For simpliity's sake, I shall only onsider linear orderings. Thepreferene of a UQF will be indiated by a number supersripted to theuniversal quanti�er, lower numbers indiating the higher preferenes (forthe sake of generality, lassial UQFs will reeive the supersript 0). Therelation between a HL2-UQF of preferene i and a HL2-UQF of preferenei+ j (j � 1), is the same as the relation between a lassial HL1-UQF andan exeptional HL1-UQF. Where a ontradition arises between (a formula3



derived from) an instane of a UQF of preferene i and (a formula derivedfrom) an instane of a UQF of preferene i+ j, it will follow from the our-rene of the former that the line in whih the latter ours is marked, andhene the latter will not be �nally derivable.2 HL.In HL all UQFs may have exeptions. This implies that the CL-instanesare derivable onditionally. Where no exeption ours, the onditions arenot overruled and the HL-instanes are the CL-instanes.All negations ourring in natural languages are formalized by meansof \:", the lassial negation, but the language sheme of HL ontains aseond, paraonsistent negation \�". The universal instantiation rule ofHLis:3 ui: (8�)A(�) / �:A(�)The instane an be read as: there is no reason to aept (= \�") thatA(�) is not the ase (= \:"). An immediate advantage of this instan-tiantion rule is that no (lassial) inonsisteny ours when :A(�) is alsoderivable from the premises. In the underlying paraonsistent logi pHLit is impossible to derive A from �:A; in HL, the adaptive logi based onit, A an be derived from �:A onditionally. All pHL-onsequenes areHL-onsequenes. Some CL-onsequenes whih are not pHL-derivable,are HL-derivable. An example of a HL-proof:(1) (8x)(Ax � (Px&:Qx)) - prem -(2) Ba � Qa - prem -(3) Aa - prem -(4) Ba - prem -(5) �:(Aa � (Pa&:Qa)) 1 ui -(6) Aa � (Pa&:Qa) 5 dn4 :(Aa � (Pa&:Qa))(7) Pa&:Qa 3, 6 mp :(Aa � (Pa&:Qa))(8) :Qa 7 sim :(Aa � (Pa&:Qa))(9) Qa 2, 4 mp -3In this paper the proof theory is formulated axiomatially. In atual proofs howeverit is handier to make use of Fith-style rules. I skip the proofs of the derivation of theFith-style rules from the axioms. (These proofs are standard.) Where neessary theapplied Fith-style rules are explained in a footnote.4dn stands for onditional double negation. This rule is explained in Setion 2.2.1.4



The formula in line (6) is derived on ondition of the �-onsistent be-haviour of the formula in the �fth element of line (6). Every formula derivedfrom a onditionally derived formula takes over the ondition(s). If we stopthe proof at line (9), we have derived both Qa and :Qa, whih is not exatlywhat we want; as Qa is derived from more spei� information than :Qa,we want only Qa to be �nally derivable. If we ontinue the proof, we �ndout that the ondition mentioned in lines (6)-(8) is overruled.(10) ::Qa 9 dn -(11) :Pa _ ::Qa 10 add -(12) :(Pa&:Qa) 11 nd -(13) :(Aa � (Pa&:Qa)) 3, 12 ni5 -As both :(Aa � (Pa&:Qa)) (line (13)) and its negation (line (5)) arederived unonditionally, the ondition in lines (6)-(8) is overruled, and there-fore the formulas in these lines will not be onsidered as �nally derivable, i.e.Qa belongs to the onsequene set of the premises (CnHL(fpremisesg))6,while :Qa does not. The inonsisteny is resolved. I will introdue a de-rived marking rule by whih line (8) an be marked without extending theproof with lines (9)-(13). In what follows lines of a proof that ontain anoverruled ondition in their �fth element, will be marked with y, e.g. lines(6)-(8) in the proof above. Marked lines do not belong to the proof anymore.Formulas in the seond element of marked lines are not HL-onsequenes.The notation \℄A" will be the short for \A&�A".2.1 The underlying paraonsistent logi pHL.2.1.1 Proof Theory of pHL.The axiom sheme of pHL is omposed of a suitable set of axioms for �,&, _, �, ?, :, 9 and =7 (as for CL), together with:5ni stands for negation of the impliation. In view of the fat that A � B is true i� Ais not true (or :A is true) or B is true, :(A � B) is true i� A is true and B is not true(or :B is true).6Where XL is a logi, and � is a set of well formed formulas, CnXL(�) = fA j � `XLAg.7Replaement of identials is restrited as follows:(A=2) � = � � (A � B) where B is obtained by replaing in A an ourrene of �that ours outside the sope of a � by �.
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A8: (8�)A(�) ��:A(�)R8: To derive ` A � (8�)B(�) from ` A ��:B(�),provided � does not our in either A or B(�)A�: A_ �AReplaement of equivalents and replaement of identials is restrited tosubformulas outside the sope of �. As A `pHL�:A, the usual R8 rule ofCL is derivable. Remark that (A& �A) � B is not a pHL-theorem. Inview of the axiom sheme, A is not pHL-derivable from �:A, and A(�) isnot derivable from (8�)A(�). All CL-theorems onerning �, &, _, �, ?,and : are valid in pHL.The�-paraonsistent logi pHL provides us with the �rst property everylogi for general statements that might have exeptions should have: theourrene of an exeption does not ause triviality. In HL, the adaptivelogi based on pHL, A(�) will be derivable from (8�)A(�) whenever :A(�)is not derivable. The following theorems show that usual CL-onsequenesare derivable in pHL in disjuntion with a �-inonsisteny.Theorem 1 If � `pHL�:A, then � `pHL ℄:A _A.Proof. As :A _A is a pHL-theorem, �:A `pHL ℄:A _A. 2.Theorem 2 If � `pHL A � B and � `pHL�:A, then � `pHL ℄:A _B.Proof. The proof follows immediately from Theorem 1 and A � B, C _A`pHL C _B. 2.2.1.2 Semantis of pHL.Let S be the set of sentential letters, Pn the set of prediative letters ofrank n, C and V the set of letters for individual onstants and variablesrespetively, F the set of (open and losed) formulas, W the set of wellformed formulas (w�s), and N = f�A j A 2 Fg. Let the members of C aswell as the members of V be given in a ertain order denoted by \<". Thefollowing w�s will be alled primitive: members of S, formulas of the form� = �, and primitive prediative formulas.A model is a oupleM = hD; vi in whih D is a set and v is an assignment-funtion de�ned by:S1.1 v: S �! f0; 1gS1.2 v: C [ V �! D suh that D = fv(�) j � 2 C [ VgS1.3 v: Pn �! P(Dn) (the power set of the n-th Cartesian produt of D)S1.4 v: N �! f0; 1g 6



The valuation-funtion vM determined by the model M is de�ned asfollows:S2.1 vM : F �! f0; 1gS2.2 where A 2 S, vM(A) = v(A)S2.3 vM(�n�1:::�n) = 1 i� hv(�1); :::v(�n)i 2 v(�n)S2.4 vM(� = �) = 1 i� v(�) = v(�)S2.5 vM(:A) = 1 i� vM(A) = 0S2.6 vM(�A) = 1 i� vM(A) = 0 or v(�A) = 1S2.7 vM(A � B) = 1 i� vM(A) = 0 or vM(B) = 1S2.8 vM(A&B) = 1 i� vM(A) = 1 and vM(B) = 1S2.9 vM(A _B) = 1 i� vM(A) = 1 or vM(B) = 1S2.10 vM(A � B) = 1 i� vM(A) = vM(B)S2.11 vM((8�)A(�)) = 1 i� vM(�:A(�)) = 1 for all � 2 C [ VS2.12 vM((9�)A(�)) = 1 i� vM(A(�)) = 1 for at least one � 2 C [ VDefinition: � j=pHL A i�, for any pHL-model M, vM(B) = 0, for someB 2 � or vM(A) = 1.Definition: A pHL-model is N -normal i� v(�A) = 0 for all A 2 F .Definition: Two models (even from di�erent types of semantis) are equiv-alent i� they verify and falsify the same formulas.The CL-models are these pHL-models that ful�l:(1) vM(�A) = 1 i� vM(A) = 0.(2) vM((8�)A(�)) = 1 i� vM(A(�)) = 1 for all � 2 C [ V.In view of (1), vM(�A) = vM(:A) in all CL-models M.Theorem 3 Any pHL-model that is equivalent to a N -normal model, isequivalent to a CL-model, and any CL-model is equivalent to a N -normalmodel.Proof. If M is N -normal, then v(�A) = 0, and hene, in view of S2.6,(1) is ful�lled. Hene � is exatly the same as :, and an be replaed byit. Therefore, in view of S2.11 and vM(::A) = vM(A), (2) is ful�lled too.All other CL-lauses are the same as the orresponding pHL-lauses. Thisshows that any N -normal model is equivalent to a CL-model. Conversely,any CL-model is transformed into an equivalent N -normal model by addinglause S1.4 and stipulating that v(�A) = 0 for all A 2 F , and by addinglause S2.6. 2
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2.1.3 Metatheory of pHL.In view of Theorem 3, CL is modelled by the set of pHL-models thatare equivalent to N -normal -models, in other words, by �-onsistent pHL-models (those in whih vM(�A) = vM(:A) for any A 2 F).Theorem 4 If � `pHL A, then � j=pHL A.(Proof left to reader.)Theorem 5 If � j=pHL A, then � `pHL A.Proof. Let � j=pHL A and suppose � 6`pHL A. We de�ne a maximallynon-trivial, dedutively losed superset � (� W) of � suh that A 62 �, andshow that � de�nes a pHL-model of �. Let B1; B2; ::: be an enumerationof the members of W in whih every w� of the form (9�)C(�) is followedimmediately by C(�i), where �i does not our in �, A, or in any previousw� of the enumeration. The way to obtain suh enumeration is standard.We de�ne�0 = CnpHL(�)�i+1 = CnpHL(�1 [ fBi+1g) if A 62 CnpHL(�1 [ fBi+1g)�i+1 = �i otherwise� = �0 [�1 [ :::It is easily seen that � � �, that A 62 �, and that � is dedutively losed.� is maximally non-trivial. To see this, remark �rst that A � C 2 � for allC. Indeed, if A � C 62 �, there is a �i suh that � [ fA � Cg `pHL A;hene �i `pHL (A � C) � A by the dedution theorem; hene in view ofthe axiom ((A � B) � A) � A, �i `pHL A, whih is impossible. If E 62 �,then there is a �i suh that �i [ fEg `pHL A; as A � C 2 � for all C,� [ fEg is trivial.We de�ne a pHL-model M = hD; vi as follows:(1) D = f� j � 2 C (and there is no � 2 C suh that � < � and � = � 2 �g,(2) for all C 2 S, v(C) = 1 i� C 2 �,(3) for all � 2 C, if � 2 D, v(�) = �, if � 2 C � D, v(�) is the � 2 D suhthat � = � 2 � (there is a unique suh � by the de�nition of D),(4) for all � 2 Pn, v(�) = fh�1; :::; �ni j ��1:::�n 2 �g,(5) for all �C 2 N , v(�C) = 1 i� C;�C 2 �,(6) eah � 2 V is arbitrarily assoiated with a onstant � to the e�et thatv(�) = v(�) and, for any A, v(�A(�)) = v(�A(�)).8



Obviously (1)-(5) agree with the lauses S1.1-4 that de�ne v in the pHL-semantis.In order to prove that M veri�es � and falsi�es A, we show that, for allC 2 W:(*) if C 2 �, then vM(C) = 1.This proeeds by indution on the omplexity of C. For the basis, we showthat (*) holds for all primitive w�s. This is obvious for members of S inview of (2) and S2.2.Consider the primitive prediative w� ��1:::�n. If ��1:::�n 2 �, thenvM(��1:::�n) = 1 in view of (3), (4) and S2.3. Hene (*) holds for primitiveprediative expressions.Consider, �nally, w�s of the form � = �. If � = � 2 �, then by thede�nition of D, there is a  2 D suh that � = ; � =  2 �; henev(�) = v(�) =  and vM(� = �) = 1.We now proeed to the indution step. All steps are standard exeptfor negation and the universal quanti�er. If �C 2 �, then either C 2 � orC 62 �. If C 2 � then v(�C) = 1 (by (5)); if C 62 �, then vM(C) = 0 by theindution hypothesis. In view of S2.6, either ase implies that vM(�C) = 1.If (8�)C(�) 2 �, then �:C(�) 2 � for all � 2 C and hene vM(�:C(�)) =1 for all � 2 C; in view of (6), vM(�) = 1 for all � 2 V. Hene, by S2.11,vM((8�)C(�)) = 1.As � is maximally non-trivial and vM(C) = 1 for all C 2 �, it followsimmediately that � = fC j vM(C) = 1g and hene that vM(A) = 0. butvM(B) = 1 for all B 2 �. Hene � 6j=pHL A. 2.2.2 HL.HL has two purposes. (i) Whenever �:A is pHL-derivable and :A is notpHL-derivable from �, then A is HL-derivable. (ii) If both �:A and :Aare pHL-derivable, then :A is HL-derivable but A is not.82.2.1 Proof Theory of HL.Where ℄A is a formula in whih the variables �1; :::; �m (m � 0) our free,let 9℄A be (9�1):::(9�m)℄A. Let DEKfA1; :::; Ang refer to 9℄A1 _ :::_ 9℄An,a disjuntion of (where neessary) existentially quanti�ed ontraditions.A1; :::; An are the fators of DEKfA1; :::; Ang.8There are di�erent strategies to onstrut an adaptive logi. The strategy followedhere is the same as the strategy on whih ACLuN1 is based, namely reliability. See [4℄.9



Remark that DEK(�[ fPxg) is pHL-equivalent to DEK(�[fPyg) andpHL-derivable from DEK(� [ fPag).Obviously, for any N -normal model M, vM(9℄A) = 0.Theorem 6 If there are C1; :::; Cn 2 F (0 � n) suh that � j=pHLDEKfC1; :::; Cng _A, then � j=CL A.Proof. It follows from the anteedent that any pHL-modelM veri�es 9℄C1or ... or 9℄Cn or A. Any CL-model is equivalent to a N -normal model. Butthese models all falsify any 9℄Ci. Hene any CL-model veri�es A. 2De�ne the set bsf(A) of (open and losed) basi subformulas of A asfollows:(i) if A is a primitive (open or losed) formula, then bsf(A) = fAg,(ii) bsf(:B) = bsf(B),(iii) bsf(�B) = f�Bg [ bsf(B),(iv) bsf(B _ C) = bsf(B � C) = bsf(B&C) = bsf(B � C) = bsf(B) [ bsf(C),(v) bsf((8�)A(�)) = bsf(�:A(�)),(vi) bsf((9�)A(�)) = bsf(A(�)).bsf(A) is �nite for any A.Lemma 1 For any pHL-model M, if there is no B suh that �B 2 bsf(A)and vM(9℄B) = 1, then there is a N -normal model M' suh that vM(A) =vM0(A).Proof. Suppose the anteedent is true for some M. Let M0 be obtainedfrom M by putting v(�B) = 0 for all B (m). We proeed by an indutionon the omplexity of A (the number of quanti�ers and onnetives thatour in A). If the omplexity of A is 0, then vM0(A) = vM(A). Supposingthat vM0(A) = vM(A) for all A with omplexity less than n, I show thatvM0(A) = vM(A) for all A with omplexity n. Of the eight ases to beonsidered, �ve are obvious, viz. the ones where A is either :B or B � Cor B&C or B _ C or B � C.Case 6: A is �B. If vM0(B) = vM(B) = 0, then vM0(�B) = vM(�B) = 1by S2.6. Suppose that vM0(B) = vM(B) = 1. Then vM0(�B) = 0 (as M0 isa N -normal model). But also vM(�B) = 0, for otherwise, in view of S2.6,v(�B) = vM(℄B) = vM(9℄B) = 1, whih ontradits the main supposition.Case 7: A is (9�)B(�). Suppose �rst that vM(A) = 1. Then vM(B(�)) =1 for at least one � 2 C[V. Hene, by the indution hypothesis, vM0(B(�)) =1 for at least one � 2 C[V. But then vM0((9�)B(�)) = 1. Suppose next that10



vM(A) = 0. Then vM(B(�)) = 0 for all � 2 C [ V. Hene, by the indutionhypothesis, vM0(B(�)) = 0 for all � 2 C [ V. But then vM0((9�)B(�)) = 0.Case 8: A is (8�)B(�). Suppose �rst that vM(A)= 1. Then vM(�:B(�))= 1 for all � 2 C [ V (k). As bsf(�:B(�)) = bsf(A) (by (v)), �:B(�) 2bsf(A). But then vM(9℄:B(�)) = 0 and hene vM(:B(�)) = 0 for all � 2C[V (in view of (k)). But then, by the indution hypothesis, vM0(:B(�)) =0 for all � 2 O, and hene vM0(�:B(�)) = 1 for all � 2 C [ V. Butthen vM0((8�)B(�)) = 1. Suppose next that vM(A) = 0. Then there is a� 2 C [V suh that vM(�:B(�)) = 0. Then vM(:B(�)) = 1 for at least one� 2 C [ V, and hene, by the indution hypothesis, vM0(:B(�)) = 1 for thesame � 2 C [V. But then in view of (m) and S2.6, vM0(�:B(�)) = 0 for atleast one � 2 C [ V, and hene vM0((8�)B(�)) = 0. 2.Theorem 7 If j=CL A, then for some C1; :::; Cn 2 F (0 � n), j=pHLDEKfC1; :::; Cng _A.Proof. Let j=CL A. Hene vM(A) = 1 for all N -normal models M of �.As bsf(A) is �nite, DEKfB j�B 2 bsf(A)g _ A is a w�, whih is easilyshown to be pHL-valid. Consider indeed a pHL-model M. If, for some�B 2 bsf(A)vM(9℄B) = 1, then vM(DEKfB j�B 2 bsf(A)g) = 1. If, for no�B 2 bsf(A), vM(9℄B) = 1, then vM(A) = 1 by Lemma 1. 2.Some formulas in the seond olumnHL-proofs are derived onditionally,and the lines in whih they our, have to be marked when a ondition isoverruled. Formulas in the seond element of marked lines do not belong tothe onsequene set. Conditions are all of one kind: some C1; :::; Cn have tobehave �-onsistently.The idea of the proof theory of HL is that we apply all rules derivablein pHL unonditionally, whereas other rules derivable in CL are applied onondition that ertain formulas are reliable with respet to their onsistentbehaviour. To keep the matter algorithmi, the onsistent behaviour ofa formula will be determined by the stage of the proof instead of by theabstrat notion of derivability. As a result, formulas derived at some stageof proof, will not be �nally derivable, beause the line in whih they ourwill be marked at a later stage. Of ourse eah set of premises must (andwill) have a unique set of �nal HL-onsequenes.As shown in the example above, HL-proofs are written in a speialformat aording to whih eah line of a proof onsist of �ve elements:(i) a line number,(ii) a premise, a theorem or a derived formula,(iii) the line numbers of the w�s from whih (ii) is derived,11



(iv) the rule of inferene that justi�es the derivation, and(v) the formulas on the onsistent behaviour of whih we rely in orderfor (ii) to be derivable by (iv) from the formulas of the lines enumeratedin (iii).Definition. A ours unonditionally at some line of a proof i� the �fthelement of that line is empty.Definition. A behaves onsistently at a stage of a proof i� ℄A does notour unonditionally in the proof at that stage.Definition. The onsistent behaviour of A1 is onneted to the onsistentbehaviour of A2; :::; An at a stage of a proof i� DEKfA1; :::; Ang oursunonditionally in the proof at that stage whereas DEKfA2; :::; Ang doesnot our unonditionally in it.Definition. A is reliable at a stage of a proof i� A behaves onsistentlyat that stage and its onsistent behaviour is not onneted to the onsistentbehaviour of other formulas.Given these de�nitions, proofs in HL are governed by an unonditionalrule, a onditional rule and a marking rule. The appliation of a rule to aproof at a stage produes the next stage.RU If `pHL (A1&:::&An) � B, and A1; :::; An our in the proof,then add B to it. The �fth element of the new line is theunion of the �fth elements of the lines mentioned in its thirdelement.RC If `pHL DEKfC1; :::; Cmg _ ((A1&:::&An) � B), and A1; :::;An our in the proof, then add B to it, provided that eahfator of DEKfC1; :::; Cmg is reliable at that stage. The �fthelement of the new line is the union of fC1; :::; Cmg and ofthe �fth elements of the lines mentioned in its third element.RM If C is not (any more) reliable, then mark all lines the �fthelement of whih ontains C, by writing \y" before the linenumber. A marked line does not belong to the proof at thatstage.9At any stage of the proof, it is obligatory to apply RM and permittedto apply RU and RC. If the �fth element of a line is empty, the formulain its seond element is pHL-derivable from the premises and annot bemarked later. If the �fth element is not empty, its formula is provisionallyderived. Unless it an also be derived at a line the �fth element of whih9At every stage of a proof, previously introdued marks are omitted, and marks areintrodued aording to the reliability at the new stage.12



is empty, it is not a pHL-onsequene. The unonditional ourrene ofDEK-formulas in the proof determines whether some formulas are reliable,and hene whih appliations of RC are permitted in view of pHL-formulasof the form DEKfC1; :::; Cmg _ ((A1&:::&An) � B). As usual proofs maybe sped up by derived rules. Of ourse all positive rules of CL are validunonditionally. Raa, Redutio ad absurdum in the ase of \:", (A � B,A � :B / :A) annot be applied if the �fth element of the premise lines isnot empty.10 ObviouslyR8 (to derive ` A � (8�)B(�) from ` A ��:B(�),provided � does not our in either A or B(�)) annot be applied if � :B(�)is the seond element of a line the �fth element of whih ontains a formulain whih � ours. I list some spei� HL-rules. The mentioned sets referto the �fth element of the line.- Negation Rules:nr: :A, � / �A, �nr: �A, � / :A, � [ fAgui: Instane of a Universal Quanti�ation:(8�)A(�), �/ �:A(�), �dn: Double Negation:A, � / �:A, �:�A, � / A, �dn: Conditional Double Negation:�:A, �/A, � [ f:Ag��A, �/A, � [ f�AgA, �/:�A, � [ fAgHL has a dynami proof proedure: a w� may be derived at some stageof a proof, while the line in whih it ours may be marked at a later stageof the proof; and a formula that is not reliable at some stage (whih resultsin the marking of all lines with this formula in their �fth element), maybeome reliable at a later stage. Therefore we need to distinguish betweenprovisional and �nal onsequenes.Definition. A is �nally derived at some line in an HL-proof i� (i) it isthe seond element of that line and (ii) where fC1; :::; Cng (n � 0) is the�fth element of the line, any extension of the proof an be further extendedin suh way that it ontains a line that has A as its seond element andfC1; :::; Cng as its �fth element.10The reason is obvious. Suppose A � B is derived in a line of whih the �fth elementis C. This means that ℄C _ (A � B) (and not A � B) is pHL-derived (see Lemma 2,below); it is lear that the simultanous ourrene of ℄C _ (A � B) and A � :B does notmean that the ourrene of A leads to triviality.13



Sometimes a Ci is unreliable in an extension of the proof (in that its on-sistent behaviour beomes onneted to that of other formulas). However, ifany extension an be further extended in suh way that all Ci are reliable,then A is derived from � on the ondition fC1; :::; Cng in an absolute sense(whih is studied further below).Definition. � `HL A (A is �nally HL-derivable from �), i� A is �nallyderived at some line in a HL-proof from �.Definition. (The HL-onsequene set of �) CnHL(�) = fA j � `HL Ag.pHL is not deidable. We lak a positive test for HL-derivability. Ofourse, some fragments of HL are deidable.Yet, it is possible to prove that CnHL(�) may be haraterized withoutreferring to the dynamis of the proofs. The haraterization refers to pHLonly. The entral point is that it depends only on pHL-derivability (whih ismonotoni) whether a w� is reliable in an intelligent extension of the proof.Lemma 2 If in an HL-proof from �, A ours as the seond element andfC1; :::; Cmg (0 � m) ours as the �fth element of a line, then � `pHLA _ DEKfC1; :::; Cmg.11In view of this lemma, we an introdue the following derivation rule.Dek: A, � / A _DEK(�)Definition. A DEK-onsequene of � is a DEK-formula whih is pHL-derivable from �.Definition. DEK(�) is a minimal DEK-onsequene of � i� it is a DEK-onsequene of �, and for no � � �, DEK(�) is a DEK-onsequene of�.Theorem 8 � `HL A, i� there are C1; :::; Cm 2 F (0 � m) suh that� `pHL A_DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fator of a minimalDEK-onsequene of �.12It follows from Theorem 8 that whenever A ours as the seond element ofa line of a HL-proof in whih C1; :::; Cm is the �fth element, a new line anbe added with A _ DEKfC1; :::; Cmg as seond element and an empty �fthelement, and vie versa.The following Theorem expresses an important feature of HL:11The proof of Lemma 2 is ompletely analogous to the proof of Lemma 1 in [1℄ andLemma 4.2 in [4℄.12The proof of Theorem 8 is ompletely analogous to the proof of Theorem 4.3 in [4℄.14



Theorem 9 If � `HL A, then it is possible to extend any proof from � intoa proof in whih A is �nally derived from �.13I now give a derivable marking rule in HL.mr1: If A (resp. :A) is onditionally derived at line i of a HL-proof from �, while :A (resp. A) is derived unonditionallyat any line of the proof, then mark line i.Theorem 10 The marking rule mr1 is derivable in HL.Proof. By assumption, A ours in a HL-proof from � as the seondelement of a line (i) the �fth element of whih is C1; :::; Cn (1 � n). ByLemma 2, DEKfC1; :::; Cng _ A is a pHL-onsequene of �, and hene anbe derived unonditionally in the HL-proof. Suppose :A ours at line (j)with an empty �fth element. In view of the pHL-theorem A _ :A, alsoDEKfC1; :::; Cng is unonditionally derivable. But then at least one of itsfators is unreliable and hene all lines with eah of the formulas C1; ::: orCn in their �fth element have to be marked, in view of RM. The proof isompletely analogous if we replae A by :A and vie versa. 2.2.2.2 Semantis of HLTheHL-semantis is obtained from the pHL-semantis by de�ning, for eah�, a subset of the pHL-models of �. The idea is that any � de�nes a set of(semantially) unreliable formulas, and that the HL-models of � are thosepHL-models of � in whih only unreliable formulas behave inonsistently.Definition. A is HL-unreliable with respet to � i� A is a fator of aminimal DEK-onsequene of �. U(�) is the set of all w�s that are HL-unreliable with respet to �.Definition: Where M is a pHL-model, ab(M) = fA j vM(℄A) = 1g.Definition: M is a HL-model of � i� it is a pHL-model of � and ab(M) �U(�).Definition: � j=HL A i� A is true in all HL-models of �.2.2.3 Metatheory of HL.Theorem 11 If � `HL A, then � j=HL A.Proof. Let � `HL A. By Theorem 8, there are C1; :::; Cm (m � 0) suh that� `pHL A _ DEKfC1; :::; Cmg, and C1; :::; Cm 62 U(�). If � j=pHL A, then13The proof of Theorem 9 is ompletely analogous to the proof of Theorem 4.4 in [4℄.15



� j=HL A (all HL-models are pHL-models). If there are C1; :::; Cm (m � 1)suh that � `pHL A_DEKfC1; :::; Cmg, and C1; :::; Cm 62 U(�), then, for allHL-modelsM of �, vM(A_DEKfC1; :::; Cmg) = 1, and vM(DEKfC1; :::; Cmg)= 0, and hene vM(A) = 1. 2.Theorem 12 If � j=HL A, then � `HL A.Proof. Suppose that � j=HL A and � 6`HL A. Let the sequene B1; B2; :::be de�ned as in the proof of Theorem 5. We de�ne�0 = CnpHL(� [ fDEKfBg � A j B 2 W � U(�)g).14�i+1 = CnpHL(�1 [ fBi+1g) if A 62 CnpHL(�1 [ fBi+1g), and�i+1 = �i otherwise� = �0 [�1 [ :::Eah of the following is provable:(i) � � �(ii) A 62 �. By the de�nition of �, if A 2 �, then A 2 �0. Thelatter however is impossible. Indeed, if A 2 �0, then there are C1; :::; Cm 2F �U(�) (m � 1) suh that �[ fDEKfC1; :::; Cmg � Ag `pHL A.15 Hene,by the dedution theorem, � `pHL (DEKfC1; :::; Cmg � A) � A; hene� `pHL DEKfC1; :::; Cmg _ A. But as C1; :::; Cm 2 F � U(�), it follows byTheorem8 that � `HL A, whih ontradits (the main supposition.(iii) If C 62 U(�), then 9℄C 62 �. Indeed, if C 62 U(�), then ℄C � A 2�0; so if ℄C 2 �, then A 2 �, whih ontradits (ii).(iv) � is dedutively losed (by the de�nition of �).(v) � is maximally non-trivial (as in the proof of Theorem 5.As in the proof of Theorem 5, a pHL-model M is a HL-model is de�nedfrom �. In view of (i) and (ii), all members of � are true in M and A is falsein M. In view of (iii), M is a HL-model of �. Hene � 6`HL A. 2.3 HL1.The proof theory and the semantis of HL1 are obtained by adding theCL-lauses onerning the universal quanti�er to the proof theory and the14It is in view of the fat that U(�) is de�nied by means of the semantial notion minimalDEK-onsequenes, that the onstrution of � aptures the dynami proof proedure.Remember that in Theorem 8 � `HL A is de�ned without referring to the dynamis ofHL-proofs.15In view of the fat that any pHL-proof is �nite, and of fA � B;C � Bg `pHL(A _ C) � B. 16



semantis ofHL. We write theCL-quanti�er as \80", and theHL-quanti�eras \8". The metatheory of pHL1 andHL1 is ompletely analogous to thoseof pHL and HL. An example of a HL1-proof will show the usefulness ofHL1.16(1) (8x)(Bx � Fx) - prem-(2) (80x)(Px � Bx) - prem-(3) (80x)(Px � :Fx) - prem-(4) Pa - prem-(5) Bb - prem-(6) �:(Ba � Fa) 1 ui -(7) Ba � Fa 6 dn :(Ba � Fa)(8) Pa � Ba 2 ui0 -(9) Ba 4, 8 mp -y(10) Fa 7, 9 mp :(Ba � Fa)(11) Pa � :Fa 3 ui0 -(12) :Fa 4, 11 mp -(13) �:(Bb � Fb) 1 ui -(14) Bb � Fb 13 dn :(Bb � Fb)(15) Fb 5, 14 mp :(Bb � Fb)In view of mr1 line (10) has to be marked, and hene :Fa is �nallyderived while Fa is not.17 As the ondition in line (15) is not overruled (itis not possible to derive ℄:(Bb � Fb)), Fb is �nally derived.If we onstrut now a proof from the premises (8x)(Px � :Fx),(80x)(Mx � Px), (80x)(Mx � Fx), M and Pa, we an derive F and:Fa (in a ompletely analogous way as in the former proof).Suppose now we want to make one proof from these two proofs. Thenwe meet a problem in that we have both (80x)(Px � :Fx) and (8x)(Px �:Fx). A UQF annot be lassial and exeptional at one. If we make ita lassial UQF, then we an derive an inonsisteny that auses trivialityfrom the premises: both F and :F are derivable unonditionally. Hene,it has to be onsidered as a UQF that might have exeptions; but if we makeit an exeptional UQF, :Fa is only derivable on unreliable onditions, andhene neither :Fa nor Fa are �nally derivable.16In the proofs given as example in Setions 3 and 4, you an read \B" as \is a bird",\P" as \is a penguin", \M" as \is a motorized penguin", and \F" as \an y".17It is easily seen that ℄:(Ba � Fa) an be derived unonditionally. One this is done,line (7) has to be marked, in view of RM. 17



This example shows that the HL1-formalization of rules allows us toderive �nally more wanted onsequenes than the HL-formalization. Butsome wanted onsequenes are not �nally derivable, espeially if the on-text of appliation extends in suh a way that general statements withoutexeptions beome general statements that might have exeptions. In HL2however only the unwanted onsequenes will not be �nally derivable.4 HL2.HL2 is obtained by introduing a preferene ordering on the exeptionalUQFs of HL1. Instead of one set of exeptional UQFs, there is a set ofUQFs of preferene 1 (the highest preferene), ..., and a set UQFs of pref-erene n (the lowest preferene). With UQFs of preferene n orrespondinstanes of preferene n (notation: �n:A).18 If i < j, the relation betweena HL2-UQF of preferene i and a HL2-UQF of preferene j, is the same asthe relation between the orresponding lassial HL1-UQF and the orre-sponding exeptional HL1-UQF. An immediate result is that, in ase of aontradition between (a formula derived from) an instane of preferene iand (a formula derived from) an instane of preferene j, it will follow fromthe ourrene of the former that the latter is not �nally derivable.I am not dealing here with the question whih UQFs have to be relatedto a higher or lower preferene.19 In spei� ontexts however, preferenesan often be asribed without problems. In the example of Setion 3, forinstane, the premises will ontain the following UQFs: (80x)(Px � Bx)and (80x)(Mx � Px), (81x)(Mx � Fx), (82x)(Px � :Fx) and (83x)(Bx �Fx). In this setion it will beome lear that F, :Fa and Fb are �nallyderivable from these premises.4.1 The Underlying Paraonsistent Logi pHL2.4.1.1 Proof Theory of pHL2.The underlying paraonsistent logi of HL2, is pHL2, whih is obtainedfrom pHL1 by introduing preferenes in the language sheme: there are nexeptional universal quanti�ers: 81; :::;8n, and n paraonsistent negations:�1; :::;�n. The axiom sheme is obtained by replaing in pHL1 A8, R8and A� by: (for all n � 1)18�n:A an be read as \we give preferene n to the fat that there is no reason to rejetA.19For an extended study on preferenes, I refer to, e.g., [7℄.18



A8n: (8n�)A(�) ��n :A(�)R8n: To derive ` A � (8n�)B(�) from A ��n :B(�),provided � does not our in either A or B(�)A�n: A_�n AThe Fith-style rule Universal Instantiation from a UQF with preferenen (� 1) is indiated as \uin".Obviously, the pHL2-onsequenes are the pHL1-onsequenes to whihthe preferenes are added where neessary.4.1.2 Semantis of pHL2.The semantis of pHL2 is obtained from the pHL1-semantis by replaingN by n sets N n = f�n A j A 2 Fg. In the de�nition of the assignmentfuntion S1.4 is replaed by:S1.4. v : N n ! f0; 1g, for eah n � 1.The valuation funtion is de�ned by replaing in the pHL1-lauses S2.6and S2.11 � and 8 by �n and 8n for eah n � 1.4.1.3 Metatheory of pHL2.If we take in aount the above mentioned di�erenes between pHL1 andpHL2, the metatheory of pHL2 is ompletely analogous to the metatheoryof pHL1.4.2 HL2.HL2 has three purposes. (i) Whenever �n :A is pHL2-derivable and :Ais not pHL2-derivable from �, then A is HL2-derivable from �. (ii) If both�n :A and :A are pHL2-derivable, then :A is HL2-derivable, but A isnot. (iii) If both DEK(�) _A and DEK(�) _ :A are pHL2-derivable, thenthe onditional preferenes of the fators of DEK(�) and DEK(�) deidewhether A or :A is �nally derivable.4.2.1 Proof Theory of HL2.Let 9℄nA stand for 9(A& �n A). Let DEKfAi1; :::; Ajng refer to 9℄iAi _ ::: _9℄jAn (i; j � 1), a disjuntion of (where neessary) existentially quanti�edontraditions (onfer Setion 2.2.1). The format of HL2-proofs is the sameas for HL and HL1. 19



Definition: The �i-onsistent behaviour of a formula B is a ondition ofpreferene i i� �i B is an instane of a exeptional UQF of preferene i. Thenumber i is the onditional preferene of B. (Notie that a higher numberorresponds to a lower onditional preferene.)20Definition: A is not reliable at a stage of a proof i� it does not behaveonsistently at that stage of the proof or its onsistent behaviour is on-neted to the onsistent behaviour of other formulas none of whih has alower onditional preferene than A.Given theseHL2-de�nitions, the unonditional ruleRU, the onditionalruleRC, and the marking ruleRM are ompletely analogous as forHL andHL1. The following example illustrates the di�erene between the ruleRMin HL1 and HL2. Suppose lines (i)-(k) our in a proof:21(i) A x X B[3℄(j) :A y Y C[2℄(k) ℄3B _ ℄2C z Z -If we drop the preferenes, both B and C would be unreliable, and heneneither A nor :A would be �nally derivable from these lines (this is thesituation in HL1). But in view of the fat that the onditional prefereneof C (2) is higher than the onditional preferene of B (3), C is reliable inHL2 and hene :A is HL2-derivable from these lines.Lemma 3 If in an HL2-proof from �, A ours as the seond elementand fC1; :::; Cmg (0 � m) as the �fth element of a line, then � `pHL2A _ DEKfC1; :::; Cmg.22The de�nition of \intelligent extension", \A is �nally derived", \�nal deriv-ability", \onsequene set" and \minimal DEK-onsequene" remain thesame as for HL1 and HL. Also the derivation rule Dek is valid in HL2.Theorem 13 � `HL2 A i� there are C1; :::; Cm (0 � m) suh that � `pHL2A _ DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fator of a minimal DEK-onsequene of � unless some other fator of the minimal DEK-onsequenehas a lower onditional preferene than the onsidered Ci.Proof. For the �rst diretion, let � `HL2 A. Hene A is �nally derived atsome line (j) of a proof from �. Let the �fth element of this line be C1; :::; Cm.20One and the same UQF never gets two di�erent preferenes. Therefore we an aeptthat every formula has (at maximum) one onditional preferene.21It is handy to indiate the onditional preferene of the formulas in the �fth olumnof a proof.22The proof of Lemma 3 is ompletely analogous to the proofs of Lemma 1 in [1℄ andLemma 4.2 in [4℄. 20



Hene � `pHL2 A_DEKfC1; :::; Cmg. � `pHL2 A _ DEKfC1; :::; Cmg (0 �m). Suppose now that Ci is a fator of a minimal DEK-onsequene D of �and there is no other fator of D with a lower onditional preferene than C;then there is an extension of the proof in whih D ours unonditionally;but then line (j) is marked by RM, whih ontradits the fat that A is�nally derived at line (j).For the other diretion, suppose that there are C1; :::; Cm (0 � m) suhthat � `pHL2 A _ DEKfC1; :::; Cmg, and none of C1; :::; Cm is a fator of aminimal DEK-onsequene of � unless some other fator has a lower ondi-tional preferene. Then there is a an HL2-proof from � in whih A oursas the seond element of a line the �fth element of whih is fC1; :::; Cmg.Moreover, every extension of the proof in whih line (j) would be marked(beause some Ci is not reliable, an be further extended in suh way thatCi beomes reliable again (in view of the supposition). It follows that A is�nally derived at that line. Whene � `HL2 A. 2.In HL and HL1 no fator of a minimal DEK-onsequene is reliable. InHL2 however, those fators of a minimal DEK-onsequene are reliable theonditional preferene of whih is higher than the onditional preferene ofsome other fator of that minimal DEK-onsequene.The marking rule mr1 of HL and HL1 is valid in HL2. I now give thetypial HL2-rule onerning marking of instanes.Definition: If A ours as the seond element of a line of a proof, the linepreferene of A is the lowest onditional preferene (i.e. the highest number)of the formulas in the �fth element of that line. If the �fth element is empty,the line preferene of A is 0.mr2: If the line preferene of A (resp. :A) is lower than the linepreferene of :A (resp. A) at any line of the proof, thenmark line (i).Theorem 14 mr2 is a derivable rule of HL2.Proof. Suppose � = fB1; :::; Bng (n � 1), and � = fC1; :::; Cmg (m � 1),and there is a B 2 � suh that the onditional preferene of B is lowerthan the onditional preferene of any C 2 �. Suppose A ours as theseond element of a line the �fth element of whih is �, and :A ours asthe seond element of a line the �fth element of whih is �. In view ofLemma 3, both A _ DEK(�) and :A _ DEK(�) are pHL2-derivable fromthe premises. Hene also DEK(� [ �) is derivable from the premises. Inview of the supposition and the de�nition B is not reliable at that stage ofthe proof. Hene the line in whih A was derived has to be marked in view21



of RM. The proof is ompletely analogous if A is replaed by :A and vieversa. 2.Here is an example of a HL2-proof that illustrates the mehanism:(1) (83x)(Bx � Fx) - prem -(2) (82x)(Px � :Fx) - prem -(3) (81x)(Mx � Fx) - prem -(4) (80x)(Mx � Px) - prem -(5) (80x)(Px � Bx) - prem -(6) Bb - prem -(7) Pa - prem -(8) �3 :(Ba � Fa) 1 ui3 -(9) Ba � Fa 8 dn :(Ba � Fa)[3℄(10) �3 :(Bb � Fb) 1 ui3 -(11) Bb � Fb 10 dn :(Bb � Fb)[3℄(12) �2 :(Pa � :Fa) 2 ui2 -(13) Pa � :Fa 12 dn :(Pa � :Fa)[2℄(14) Pa � Ba 5 ui0 -(15) Fb 6, 11 mp :(Bb � Fb)[3℄(16) Ba 7, 14 mp -y(17) Fa 16, 9 mp :(Ba � Fa)[3℄(18) :Fa 7, 13 mp :(Pa � :Fa)[2℄Fb at line (15) is �nally derived. Line (17) is marked in view of mr2and line (18). :Fa at line (18) is �nally derived. If we ontinue the proof,we an derive ℄3:(Ba � Fa) with :(Pa � :Fa)[2℄ as �fth element; henein view of RM line (9) has to be marked. The reader an verify that fromthese premises (80x)(℄1:(Mx � Fx) _ ℄2(Px � :Fx) _ :Mx) is derivable,and hene also :Ma and :Mb, whereas F is derivable when we add thepremise M.4.3 Semantis of HL2.The HL2-semantis is obtained from the pHL2-semantis by de�ning, foreah �, a subset of the pHL2-models of �. Any � de�nes a set of seman-tially unreliable formulas. The HL2-models of � are those pHL2-modelsof � in whih only unreliable formulas behave inonsistently. The set of un-reliable formulas with respet to � is a subset of the fators of the minimalDEK-onsequenes of �.Definition: If � j=pHL2�n B (whereas � 6j=pHL2�m B (1 � m < n)), then22



CP�(B) = n. If � = fB1; :::; Bng (n � 1), then CP�(�) is the maximum ofCP�(B1):::;CP�(Bn).Definition: IfB 2 �, � is a minimalDEK-onsequene of �, and CP�(B) =CP�(�), then B is HL2-unreliable with respet to �. U(�) is the set of allw�s that are HL2-unreliable with respet to �.Definition: Where M is a pHL2-model, ab(M) = fA j vM(℄A) = 1g.Definition: M is a HL2-model of � i� it is a pHL2-model of � andab(M) � U(�).Definition: � j=HL2 A i� A is true in all HL2-models of �.4.4 Metatheory of HL2.The Soundness and Strong Completeness Theorems of HL2 are analogousto those of HL1.4.5 Conluding Remarks.(i) HL2 is a logi in whih most wanted onsequenes are �nally deriv-able from a set of premises some of whih are UQFs with (preditable orunpreditable) exeptions, whereas most unwanted are not.23 Of the twohalves of an inonsisteny, the one derived from the least preferred infor-mation is not �nally derivable. The power of HL2 lies in its strategy. Inomparison to Consisteny-Based Logis, suh as Default Logi, that try toresolve these kinds of inonsistenies by antiipating the exeptions (in adefault),24 HL2 allows for �n-inonsistenies and onditionally derived :-inonsistenies within the proess (i.e. within theHL2-proofs), and resolvesthe :-inonsistenies when they our. In my opnion, the most interestingproperty of HL2 is that exeptions need not te be known beforehand. Itsdynami proof proedure allows for the introdution of new premises at any23From the premises fTweety is a penguin, birds y, penguins do not y, and penguinsare birdsg, HL2 derives that Tweety ies, and all other individuals in the domain do noty. This is a result that is worth being ompared with the results of Cirumsription(Parallel Prediate Cirumsription, Abnormality Theories, Prioritized Cirumsription(onfer the proof in Setion 4.2.1); see, e.g., [5℄ pp. 12-21. HL2 however, is not able toonlude from \All sailors are male and have a beard" and \Sailor Popeye has no beard",that \Popeye is a man". In suh ases, the easiest solution is to write two UQFs instead ofone UQF ontaining a onjuntion. (For instane: \All sailors are male" and \All sailorshave a beard".)24See, e.g., [5℄ pp. 39-64. Note that HL2 derives that Paul likes wine, from fPaul isItalian or Frenh, Italians like wine, Frenh like wineg. Also HL2 does not derive thatone has a usable left and a usable right arm when one has a broken left or broken rightarm. 23



stage of the proof, whereas the introdution of new premises possibily leadsto a di�erent onsequene set.(ii) It is easily seen that (a) is a pHL2-theorem:(a) (8n�)A � (8�)(℄n:A _A)It is indeed possible to write every exeptional UQF as a lassial UQF. Inview of this theorem, it an easily be proven that pHL2 (and hene alsoHL2) has an interesting transitivity rule:(8n�)(A(�) � B(�))(8m�)(B(�) � C(�))|||||||||||||||||||||||||||-pHL2(8�)(℄n:(A(�) � B(�)) _ ℄m:(B(�) � C(�)) _ (A(�) � C(�)))This property of pHL2 an be very useful in the reonstrution of othernon-monotoni systems.25Referenes[1℄ Batens, Diderik: \Dynami Dialetial Logis", in G. Priest, P. Routley& J. Norman (eds.) Paraonsistent Logi. Essays on the Inonsistent.M�unhen, pp. 187{217.[2℄ Batens, Diderik: \Inonsisteny-adaptive Logis and Non-monotoniLogis", Logique et Analyse 145, Marh 1994.[3℄ Batens, Diderik: \Funtioning and Teahing of Adaptive Logis." invan Benthem, Grootendorst, van Eemeren and Veltman (eds.) Logi andArgumentation. North-Holland 1996.[4℄ Batens, Diderik: \Inonsisteny-Adaptive Logis." in Ewa Orlowska(ed.) Essays Dediated to the Memory of Helena Rasiowa. Heidelberg,New-York, Physia Verlag, Springer, 1998, pp. 445-472.[5℄ Brewka, G., Dix, J. and Konolige, K., \Nonmonotoni Reasoning. AnOverview. CSLI Publiations, Stanford California, 1997.[6℄ De Clerq, Kristof: \Two New Strategies for Inonsisteny-adaptive log-is." (to appear).[7℄ Moutafakis, Niholas, J. \The Logis of Preferene", Episteme 14, D.Reidel Publishing Company, Dordreht, Boston, Lanaster, Tokyo, 1987.25I hope to establish this in forthoming papers.24


