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1 Introduction

We present proof-theoretical and semantical characterizations of two multi-agent
deontic logics for dealing with normative conflicts. The resulting logics PMDLr

and PMDLm are non-standard in at least two respects. First, they are non-
classical in the sense that they invalidate some inferences of the propositional
fragment of Classical Logic (CL). Consequently, they also invalidate certain
inferences of so-called Standard Deontic Logic (cfr. infra). The upshot of this
non-classicality is that these logics consistently accommodate normative con-
flicts. Second, PMDLr and PMDLm are non-monotonic: previously derived
conclusions may be withdrawn in the light of new premises. As such, these
systems closely mirror actual normative and agentive reasoning.

Next to the usual connectives ¬,∨,∧,⊃, and ≡, we make use of a set of modal
operators for bringing about collective actions, and of two deontic operators
for mandatory and permitted states of affairs. We work within a simplified
a-temporal framework from which we exclude e.g. authorities and utilities of
obligations, knowledge and beliefs of agents and groups, etc.

The presentation of PMDLr and PMDLm proceeds in various steps. First,
we define the monotonic, supraclassical multi-agent logic of action ML (Section
2). We illustrate how this logic deals with collective actions and discuss some
further properties of our agentive modal operators. In Section 3 we extend ML
with deontic modalities. The resulting logic is called MDL. We discuss some
interesting properties of MDL related to collective obligations and (chains of)
commands.

Next, we weaken MDL in order to consistently model less idealized set-
tings in which intra- and interpersonal normative conflicts occur. In Section
4 we define the logic PMDL, a paraconsistent (yet monotonic) weakening of
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MDL that avoids explosion when faced with agents and groups with conflicting
directives.

Although PMDL consistently deals with normative conflicts, it is too weak
to account for many intuitive everyday normative inferences. That is why we
non-monotonically strengthen PMDL in Section 5. This strengthening takes
place within the adaptive logics framework for non-monotonic reasoning. The
strengthening results in the adaptive logics PMDLr and PMDLm, two logics
that are intermediate in inferential power between the systems PMDL and
MDL. PMDLr and PMDLm approximate the classical setting in the sense
that they take normative conflicts to be false whenever the premises allow for
it. In doing so, PMDLm is slightly more powerful than PMDLr.

This paper fits within the larger project of adaptive deontic logics devised
for consistently accommodating normative conflicts (see e.g. [7, 29, 39, 41]). It
improves on earlier work presented in [6]. We compare the logics PMDLr and
PMDLm to both logics of action and adaptive deontic logics in Section 6.

2 ML, a simple multi-agent logic of action

2.1 Definition

2.1.1 Language and conventions

We use a denumerable set P of propositional constants (atoms) p, q, r, . . ., and
a finite non-empty set I = {i1, . . . , in} of agents. Since we will in the remainder
often refer to groups of agents J in I, i.e. non-empty subsets of I, the following
notation is useful for this: J ⊆∅ I iff J ≠ ∅ and J ⊆ I. We also introduce the
notation J ⊂∅ I for denoting proper non-empty subsets J of I: J ⊂∅ I iff J ≠ ∅
and J ⊂ I. Where J ⊆∅ I, the language LML of ML is defined recursively as
follows:

LML ∶= ⟨P⟩ ∣ � ∣ ¬⟨LML⟩ ∣ ⟨LML⟩ ∨ ⟨LML⟩ ∣ ⟨LML⟩ ∧ ⟨LML⟩ ∣ ◻J⟨LML⟩ ∣
◇J⟨LML⟩

Note that we do not define the ◇J -operators in terms of their dual ◻J -
operators. Instead, the diamond operators are primitive in our language. The
reason for this will become clear in Section 4. Where A,B ∈ LML, we define
the implication by A ⊃ B =df ¬A ∨B and the equivalence relation by A ≡ B =df

(A ⊃ B) ∧ (B ⊃ A). A formula ◻JA is interpreted as “group or agent J brings
about A by a joint effort”. A formula ◇JA is interpreted (rather weakly) as “A
is consistent with the (joint) actions of group or agent J” (cfr. Section 2.2).

Where i ∈ J , we abbreviate ◻{i} as ◻i, and ◇{i} as ◇i. Unless stated
differently, we presuppose throughout this section that A,B ∈ LML, Γ ⊆ LML,
and J,K ⊆∅ I.
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2.1.2 Axiomatization

ML is axiomatized by adding the following axiom schemata and rules to the
propositional fragment of classical logic (CL):

◻J(A ⊃ B) ⊃ (◻JA ⊃ ◻JB) (AK◻J)

◻JA ⊃ ◻J ◻J A (A4◻J)

◻JA ⊃ A (AT◻J)

◇JA ≡ ¬ ◻J ¬A (ADf◇J)

If ⊢ A, then ⊢ ◻JA (NEC◻J)

We write Γ ⊢ML A iff there are B1, . . . ,Bn where Bn = A and for each i < n,
Bi ∈ Γ or Bi is an instance of an axiom of ML, or Bi is the result of applying a
rule of ML to some Bj1 , . . . ,Bjm where j1, . . . , jm < i.

The modal operators of ML are S4-operators. In agreement with the char-
acterization of the ◇J -operators as separate modal operators not defined in
terms of their duals (cfr. supra), we also need (ADf◇J) in order to obtain the
usual properties for the diamond operators.

2.1.3 Semantics

An ML-model is a tuple ⟨W, ⟨RJ⟩J⊆∅I , v,@⟩, where W is a set of points referred
to as ‘worlds’, where each RJ ⊆W ×W is a transitive and reflexive accessibility
relation1, where v ∶ P → ℘(W ) is an assignment function, and where @ ∈ W is
the ‘home’ or ‘actual’ world.

Truth at a world w is defined as follows:

(CP) where A ∈ P, M,w ⊧ A iff A ∈ v(w)
(C∧) M,w ⊧ A ∧B iff M,w ⊧ A and M,w ⊧ B
(C∨) M,w ⊧ A ∨B iff M,w ⊧ A or M,w ⊧ B
(C¬) M,w ⊧ ¬A iff M,w /⊧ A
(C�) M,w /⊧ �

(C◻J) M,w ⊧ ◻JA iff for all w′ such that RJww
′, M,w′ ⊧ A

(C◇J) M,w ⊧◇JA iff there is a w′ such that RJww
′ and M,w′ ⊧ A

An ML-model M verifies A (M ⊧ML A) iff M,@ ⊧ A. M is an ML-model
of Γ iff M is an ML-model and M ⊧ML A for all A ∈ Γ. Moreover, ⊩ML A iff
all ML-models verify A, and Γ ⊩ML A iff all ML-models of Γ verify A.

2.2 Further discussion

As mentioned above, we read ◻JA as “group or agent J brings about A by
a joint effort”. ◇JA is read as “A is consistent with J ’s actions”, instead of

1R is transitive iff, for each w,w′, and w′′, whenever Rww′ and Rw′w′′, also Rww′′; R is
reflexive iff, for each w, Rww.
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the stronger “J has the ability to bring about A”.2 The reason for this weaker
reading has to do with the following inferences:

◇J(A ∨B) ⊢ML ◇JA ∨◇JB (1)

A ⊢ML ◇JA (2)

Of (1) and (2), Kenny noted in [25] that these are too strong for formalizing
the ‘can’ of ability. (1) is violated by anyone who has the ability to pick a
card from a pack of cards without having the ability to pick a red card or the
ability to pick a black one. (2) is violated by any hopeless darts player who –
by accident – hits the bull’s eye but lacks the ability to repeat his deed [25, 36].
For this reason, we prefer our weaker reading of the ◇J -operators. We refer to
[22, Sec. 2.3] for a more detailed treatment of (individual) ability.

As the modal operators of ML are S4-modalities, we can aggregate over
actions:

◻JA ∧ ◻JB ⊢ML ◻J(A ∧B) (3)

The opposite direction of (3) also holds:

◻J(A ∧B) ⊢ML ◻JA ∧ ◻JB (4)

ML invalidates the stronger axiom schemata (A5◻J) and (AB◻J):

◇JA ⊃ ◻J ◇J A (A5◻J)

A ⊃ ◻J ◇J A (AB◻J)

A’s being consistent with J ’s actions need not imply that J brings it about that
A is consistent with his/her/its actions. Moreover, A’s being the case need not
imply that – for all agents and groups J – J takes care (or brings it about) that
A is consistent with J ’s actions.

As indicated in Section 2.1.1, group actions are joint actions in ML. A
formula ◻JA is true only if all members of J bring about A together. In the
ML-semantics, the actions of individuals and groups are represented by a set of
accessibility relations all of which are structurally independent of one another.
As a result, where J ⊆∅ K:

◻JA ⊬ML ◻KA (5)

◇JA ⊬ML ◇KA (6)

◻KA ⊬ML ◻JA (7)

◇KA ⊬ML ◇JA (8)

(5) and (6) illustrate that ML’s agency operators do not allow for the inclusion
of ‘free riders’ in their actions: for each action ◻JA, each member of the group
J is essential to J ’s bringing about A.3

2Note that due to (NECJ ) we have ◻JA for all ML-theorems A, for every J ⊆∅ I. This
adds a non-deliberative flavor to our ◻J operator similar to the non-deliberative character of
the Chellas-stit (see e.g., [22]). In view of this a more refined reading of ◻JA is “group or
agent J brings about A (by a joint effort) or A is logically necessary”.

3The concept of free riders is borrowed from [8].
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(7) and (8) illustrate that in ML a group’s actions are not carried over to
its members, or to smaller subgroups. If members of a group were to inherit the
actions of the groups to which they belong, then if they would realize something
as a team, it would follow that each of them realizes it separately. This is clearly
unwanted, since, for instance, none of the agents might to be capable of realizing
the action by herself.

The only constraints present on the actions of individuals and groups in ML
is that they need to be consistent with the actions of other agents and groups,
and with the facts. For all J,K:

A ⊢ML ◇JA (9)

A ⊢ML ¬ ◻J ¬A (10)

◻JA ⊢ML ◇KA (11)

◻JA ⊢ML ¬ ◻K ¬A (12)

Following [22, Sec. 2.3.3], we define an agent or group’s refraining from A as
◻J¬ ◻J A. Refrainment is stronger than simple non-action:

◻J¬ ◻J A ⊢ML ¬ ◻J A (13)

(13) follows immediately by (AT◻J). Its converse, however, does not hold in
ML:

¬ ◻J A ⊬ML ◻J¬ ◻J A (14)

This is as it should be: in not bringing about a state of affairs, we need not
‘actively’ do so. Von Wright notes that this is especially true in situations in
which acting so-and-so is beyond our capacity. For example, while it may be
true that an agent does not alter the course of a tornado, it seems incorrect to
say that she refrains from doing so [42].

The ◻J -operator is not a ‘deliberative’ action operator in the sense of [24],
since for instance the following not so intuitive formulas are ML-theorems:

⊢ML ◻J(A ∨ ¬A) (15)

⊢ML ◻J(◻JA ∨ ¬ ◻J A) (16)

If we were to add to ML a modal operator “◻” for representing (physical)
necessity and call the resulting logic ML′, then, in line with the literature on
deliberative agency, a deliberative agency-operator △J can be defined in ML′

by △JA =df (◻JA ∧ ¬ ◻A). The analogues to (15) and (16) are invalid for this
new operator:

⊬ML′ △J(A ∨ ¬A) (17)

⊬ML′ △J(△JA ∨ ¬△J A) (18)

For convenience, we will in the remainder continue to use the ◻J -operators
instead of the more involving △J -operators.

5



3 Adding deontic modalities: the logic MDL

3.1 Definition

3.1.1 Language

The language LMDL of MDL is obtained by adding the deontic operators O
and P to the language of ML:

LMDL ∶= ⟨LML⟩ ∣ ¬⟨LMDL⟩ ∣ ⟨LMDL⟩ ∨ ⟨LMDL⟩ ∣ ⟨LMDL⟩ ∧ ⟨LMDL⟩ ∣
◻J⟨LMDL⟩ ∣◇J⟨LMDL⟩ ∣ O⟨LMDL⟩ ∣ P⟨LMDL⟩

As for ML, we do not define the P-operator as the dual of the O-operator,
but add it separately to the language of MDL. The reason for doing so will
become clear in Section 4.

Note that, unlike e.g. Horty’s treatment in [22], only one obligation opera-
tor is introduced in MDL. Obligations are made agent-relative by suffixing a
deontic operator with an agentive modality.

Where A ∈ LMDL, a formula OA is read as “it is obligatory that A”. PA is
read as “it is permitted that A”.

Unless stated differently, we presuppose throughout this section that A,B ∈
LMDL, Γ ⊆ LMDL, and J,K ⊆∅ I.

3.1.2 Axiomatization

MDL is axiomatized by adding to ML the axiom schemata (AKO), (ADO),
(ADfP), and the rule (NECO):

O(A ⊃ B) ⊃ (OA ⊃ OB) (AKO)

OA ⊃ PA (ADO)

PA ≡ ¬O¬A (ADfP)

If ⊢ A, then ⊢ OA (NECO)

We write Γ ⊢MDL A iff there are B1, . . . ,Bn where Bn = A and for each i < n,
Bi ∈ Γ or Bi is an instance of an axiom of MDL, or Bi is the result of applying
a rule of MDL to some Bj1 , . . . ,Bjm where j1, . . . , jm < i.

(AKO), (ADO), (ADfP), and (NECO) give us full ‘Standard Deontic Logic’
(SDL) for the deontic operators.4

3.1.3 Semantics

An MDL-model is a tuple ⟨W, ⟨RJ⟩J⊆∅I ,RO, v,@⟩, where W , ⟨RJ⟩J⊆∅I , v and
@ are as before, and where RO ⊆W ×W is a serial accessibility relation.5 Truth
at a world w is defined by adding to clauses (CP)-(C◇J) from Section 2.1.3 the
clauses (CO) and (CP):

4SDL is sometimes also called D or KD since it extends the basic normal modal logic K
by the axiom schema (ADO), which is often simply called (D).

5R is serial iff for each world w there is some w′ such that Rww′.
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(CO) M,w ⊧ OA iff for all w′ such that ROww
′, M,w′ ⊧ A

(CP) M,w ⊧ PA iff for some w′ such that ROww
′, M,w′ ⊧ A

An MDL-model M verifies A (M ⊧MDL A) iff M,@ ⊧ A. M is an MDL-
model of Γ iff M is an MDL-model and M ⊧MDL A for all A ∈ Γ. Moreover,
⊩MDL A iff all MDL-models verify A, and Γ ⊩MDL A iff all MDL-models of
Γ verify A.

3.2 Discussion

As the O-operator too is a normal modal operator, we can aggregate over obli-
gations:

OA ∧OB ⊢MDL O(A ∧B) (19)

O ◻J A ∧O ◻K B ⊢MDL O(◻JA ∧ ◻KB) (20)

O ◻J A ∧O ◻J B ⊢MDL O ◻J (A ∧B) (21)

Where J ⊆∅ K, the deontic analogues of (5)-(8) remain invalid in MDL:

O ◻J A ⊬ML O ◻K A (22)

O◇J A ⊬ML O◇K A (23)

O ◻K A ⊬ML O ◻J A (24)

O◇K A ⊬ML O◇J A (25)

And similarly for permissions. Thus, obligations and permissions too are not
closed under weakening or strengthening via the addition or subtraction of
agents to the group. Collective obligations of the kind interpreted by MDL
are called strict collective obligations by Dignum & Royakkers [12]. A strict col-
lective obligation to bring about A is satisfied only if all agents in the collective
bring about A together.6

Next to strict collective obligations, Dignum & Royakkers also define weak
collective obligations. A weak collective obligation to bring about A is satisfied
as soon as any subset of the collective brings about A. Given the language
LMDL, we can define an operator Ow for expressing weak collective obligations
as follows:

Ow ◻J A =df O(⋁K⊆∅J ◻KA)
The weak collective obligation operator Ow captures the intended meaning

that if it is obligatory for a group of agents to bring about a certain state of
affairs, then this state of affairs ought to be brought about by some subset of
the group.

6Strict collective obligations should be distinguished from so-called general obligations:
obligations pertaining to each individual in a group. An obligation to drive on the righthand
side of the road, for instance, is a general, but not a (strict) collective obligation: it holds of
each individual in a group, but not of the group itself. See [1, 19] for discussions on general
obligations.
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Where K ⊂∅ J , an obligation O◻JA is MDL-compatible with O◻KA. Thus,
even if group J has the strict collective obligation to bring about A, it might
still be the case that some proper subset K of J (also) ought to bring about A.
In [8], Belnap & Perloff introduce an operator for strict joint agency by defining
what it is for an agent to be essential for a (collective) action. Translated to our
framework, we say that – where J ⊆∅ I – an agent i ∈ J is essential for ◻JA iff
(◻JA and there is no K ⊂∅ J such that i /∈K and ◻KA).

Where J,K ⊆∅ I, we can define an operator Oe for exclusive strict obliga-
tions:

Oe ◻J A =df O ◻J A ∧ (⋀K⊂∅J ¬O ◻K A)
Alternatively, we could say that a group J has the exclusive strict obligation

to bring about A if all agents in J are essential for A.
Where J ⊂∅ K, the following weakening and strengthening properties hold

for operators Owand Oe in MDL:

Ow ◻J A ⊢MDL Ow ◻K A (26)

Ow ◻K A /⊢MDL Ow ◻J A (27)

Oe ◻J A /⊢MDL Oe ◻K A (28)

Oe ◻K A /⊢MDL Oe ◻J A (29)

Another form of interaction between agents occurs when actions get nested or
iterated. In line with the (literal) reading of ◻JA and OA, we read a formula
◻JO◻KA as “J brings it about that it is obligatory that K brings it about that
A”. Alternatively, we can interpret this formula as “J issues the obligation for
K to bring about A”.

O ◻J O ◻K A ⊬MDL O ◻J A (30)

(30) expresses that if it is obligatory for J to issue the obligation for K to bring
about A, then it need not be obligatory for J to realize A. This is as it should be,
since J might realize his/her/their duty and issue the obligation to K, without
K realizing his/her/their duty to actually bring about A. Hence it is not up to
J to bring about A. Thus, we cannot derive O ◻J A from O ◻J O ◻K A.

So far, the treatment of actions, obligations, and action-obligation com-
pounds by MDL seems fine. Things change, however, when we turn to more
‘messy’ settings in which the requirements on agents can conflict.

4 Dealing with normative conflicts

4.1 MDL and normative conflicts

In Sophocles’ Antigone, Creon declares the burial of Antigone’s brother Polyne-
ices illegal on the grounds that he was a traitor to the city, and that his burial
would mock the loyalists who defended the city. At the same time however,
Antigone faces a religious and familial obligation to bury her brother [17, p. 4].
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The conflicting obligations of Antigone and Creon to bury and not to bury
Polyneices can be formalized as O◻aB and O◻c ¬B respectively (where ‘a’ ab-
breviates ‘Antigone’, ‘c’ abbreviates Creon, and ‘B’ abbreviates the statement
“Polyneices is buried”). Conflicts between obligations for different agents or
groups to bring about some state of affairs are called interpersonal conflicts in
[28, 38].

Interpersonal obligation-obligation conflicts or OO-conflicts of the kind dis-
played above cannot be consistently formalized in MDL, due to the validity of
(31). Where J ≠K:

O ◻J A ∧O ◻K ¬A ⊢MDL � (31)

Similarly for interpersonal obligation-permission conflicts or OP-conflicts:

O ◻J A ∧ P ◻K ¬A ⊢MDL � (32)

As has been argued extensively by moral philosophers and deontic logicians,
single agents and groups too can face (intra-personal) OO- or OP-conflicts (see
e.g. [13, 16, 27, 43]). An adult muslim living in Western Europe might for
instance be permitted to drink alcohol (by law) and forbidden to drink alcohol
(by his or her religion). However, such situations too cause explosion when
formalized in MDL, due to the validity of:

O ◻J A ∧O ◻J ¬A ⊢MDL � (33)

O ◻J A ∧ P ◻J ¬A ⊢MDL � (34)

The same story applies to the slightly weaker inferences (35) and (36), and to
‘nested’ OO- or OP-conflicts:

O ◻J A ∧O¬ ◻J A ⊢MDL � (35)

O ◻J A ∧ P¬ ◻J A ⊢MDL � (36)

O ◻J O ◻K A ∧O ◻J O ◻K ¬A ⊢MDL � (37)

O ◻J O ◻K A ∧O ◻J P ◻K ¬A ⊢MDL � (38)

In general, the following explosion principles are MDL-valid:

OA ∧O¬A ⊢MDL � (39)

OA ∧ P¬A ⊢MDL � (40)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧O ◻Jn An ⊢MDL � (41)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧ P ◻Jn An ⊢MDL � (42)

Unfortunately, real life is abundant with (inter- and intra-personal) OO- and
OP-conflicts between (groups of) agents [26]. Hence we should be able to con-
sistently accommodate such conflicts within our logic. In Section 4.2, we weaken
MDL to a logic that invalidates the explosion principles (39)-(42).
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4.2 Enters paraconsistency: the logic PMDL

The solution adopted here for the problem of consistently accommodating nor-
mative conflicts, is to weaken the negation connective of MDL to a paracon-
sistent negation connective. A negation connective “¬” is paraconsistent if it
invalidates the Ex Contradictione Quodlibet (ECQ) principle:

A,¬A ⊢ B (ECQ)

Below we introduce a logic that weakens “¬” to a paraconsistent negation con-
nective, namely the logic PMDL. PMDL no longer strengthens CL. Rather,
it is built on top of the propositional fragment of the much weaker paraconsistent
logic LP.7

For reasons of transparency, we first characterize PMDL semantically. The
PMDL-semantics differs from that of MDL in that (i) we broaden the range
of the assignment function v so that it includes the set of literals P¬ = {A∪¬A ∣
A ∈ P}, i.e. we define v ∶ P¬ → ℘(W ), (ii) we replace clause (C¬) by (C¬′)
and add de Morgan’s laws to the semantics (clauses (C¬¬)-(C-¬∨)), and (iii)
we add clauses (C¬◻J), (C¬◇J), (C¬O), and (C¬P) which give us the usual
interrelations between dual operators. Thus, we keep clauses (CP), (C∧), (C∨),
(C�), (C◻J), (C◇J), (CO), and (CP) and add the following:

(C¬′) Where A ∈ P, M,w ⊧ ¬A iff M,w /⊧ A or ¬A ∈ v(w)
(C¬¬) M,w ⊧ ¬¬A iff M,w ⊧ A
(C¬∧) M,w ⊧ ¬(A ∧B) iff M,w ⊧ ¬A ∨ ¬B
(C¬∨) M,w ⊧ ¬(A ∨B) iff M,w ⊧ ¬A ∧ ¬B

(C¬◻J) M,w ⊧ ¬ ◻J A iff M,w ⊧◇J¬A
(C¬◇J) M,w ⊧ ¬◇J A iff M,w ⊧ ◻J¬A

(C¬O) M,w ⊧ ¬OA iff M,w ⊧ P¬A
(C¬P) M,w ⊧ ¬PA iff M,w ⊧ O¬A

As before, a PMDL-model M verifies A (M ⊧PMDL A) iff M,@ ⊧ A. M is
a PMDL-model of Γ iff M is a PMDL-model and M ⊧PMDL A for all A ∈ Γ.
Moreover, ⊩PMDL A iff all PMDL-models verify A, and Γ ⊩PMDL A iff all
PMDL-models of Γ verify A.

The addition of clauses (C¬◻J), (C¬◇J), (C¬O), and (C¬P) is necessary
in order to guarantee the interdefinability of these modal operators. If, for
instance, the P-operator were simply defined as the dual of the O-operator (i.e.
PA =df ¬O¬A), then, due to the paraconsistency of “¬” we would no longer be
able to derive P¬A from ¬OA. Similarly for the ◻J - and ◇J -operators. This
is why all modalities are primitive in our language, and why extra semantic
clauses are added in order to guarantee their usual interrelations.

Syntactically, the negation connective of LP is defined by de Morgan’s laws
and Excluded Middle (EM):

⊢ A ∨ ¬A (EM)

7LP was devised by Priest [32] and abbreviates ‘Logic of Paradox’. See [34] for more
information.
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Since LP no longer validates (ECQ), it can consistently allow for contradictions
A∧¬A. A consequence of this weakening is that LP invalidates Modus Ponens,
due to the definition of the implication connective in terms of the negation and
disjunction connectives, cfr. Section 2.1.1. A full syntactical characterization of
LP is contained in Section A of the Appendix.

Where ⟨⊡,⟐⟩ ∈ {⟨O,P⟩, ⟨◻J ,◇J⟩ ∣ J ⊆∅ I}, the logic PMDL is defined by
adding to LP the rules (4◻J)–(T◇J) for every J ⊆∅ I, (DO), and (AND⊡)–
(INH⟐):

◻JA ⊢ ◻J ◻J A (4◻J)

◇J ◇J A ⊢ ◇JA (4◇J)

◻JA ⊢ A (T◻J)

A ⊢ ◇JA (T◇J)

OA ⊢ PA (DO)

⊡A,⊡B ⊢ ⊡(A ∧B) (AND⊡)

⊡A,⟐B ⊢ ⟐(A ∧B) (AND′⊡)

⟐(A ∨B) ⊢ ⟐A ∨⟐B (OR⟐)

⊡(A ∨B) ⊢ ⊡A ∨⟐B (OR⊡)

¬ ⊡A ⊢ ⟐¬A (R¬⊡)

⟐¬A ⊢ ¬ ⊡A (R⟐¬)

⊡¬A ⊢ ¬⟐A (R⊡¬)

¬⟐A ⊢ ⊡¬A (R¬⟐)

If A ⊢ B, then ⊡A ⊢ ⊡B. (INH⊡)

If A ⊢ B, then ⟐A ⊢⟐B. (INH⟐)

In the case of (INH⊡) and (INH⟐) we also allow for the case that A is the
empty string, in which case we stipulate that also ⊡A resp. ⟐A is the empty
string. We write Γ ⊢PMDL A iff there are B1, . . . ,Bn where Bn = A and for each
i < n, Bi ∈ Γ or Bi is an instance of an axiom of PMDL, or Bi is the result of
applying a rule of PMDL to some Bj1 , . . . ,Bjm where j1, . . . , jm < i.

Note that all of the rules of PMDL are MDL-valid. As we will illustrate
below, PMDL is strictly weaker than MDL. The reason why the properties
of PMDL are introduced as rules – and not as axiom schemata – is that the
implication connective of PMDL is not detachable: Modus Ponens is invalid
in PMDL. For instance, if instead of (T◻J) only its weaker variant ◻JA ⊃ A
were to hold, then A would not be PMDL-derivable from ◻JA and ◻JA ⊃ A.

Theorem 1. Γ ⊢PMDL A iff Γ ⊧PMDL A.

A proof of Theorem 1 is contained in Section B of the Appendix.
In accordance with the goal set out for this logic, PMDL consistently tol-

erates all types of normative conflicts mentioned in Section 4.1; in other words,
PMDL invalidates the explosion principles (39)-(42):

OA ∧O¬A ⊬PMDL � (43)

OA ∧ P¬A ⊬PMDL � (44)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧O ◻Jn An ⊬PMDL � (45)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧ P ◻Jn An ⊬PMDL � (46)

4.3 A price to pay?

Unfortunately, our story does not end here. Although PMDL provides a con-
sistent treatment of normative conflicts, this treatment comes at a high price.
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Not only does PMDL invalidate inferences (43)-(46) (as was desired); alas it
also invalidates many other – less unwanted – MDL-valid inferences, e.g.:

O ◻J ¬A,O ◻J (A ∨B) ⊬PMDL O ◻J B (47)

O¬A,O(A ∨B) ⊬PMDL OB (48)

◻JA,◻J(¬A ∨B) ⊬PMDL ◻JB (49)

In general, the Disjunctive Syllogism and Modus Ponens rules fail in PMDL:

A,¬A ∨B ⊬PMDL B (50)

A,A ⊃ B ⊬PMDL B (51)

This is a very high price to pay for the conflict-tolerance of PMDL. PMDL
is way too poor to account for our everyday normative and non-normative,
agentive and non-agentive reasoning.

Thus PMDL suffers from a trade-off. In Section 5 we propose to over-
come this trade-off by non-monotonically strengthening PMDL within the stan-
dard format for adaptive logics [3]. The resulting adaptive logics PMDLr and
PMDLm interpret a given premise set ‘as consistently as possible’. On the one
hand, these logics allow us to defeasibly apply all MDL-valid inference steps
on the condition that the formulas to which we apply them behave consistently.
On the other hand, PMDLr and PMDLm remain fully conflict-tolerant.

5 Adaptive multi-agent deontic logic

5.1 Proof-theoretical characterization of the logics PMDLr

and PMDLm

5.1.1 Three generic rules of inference

An adaptive logic is characterized by three elements: a so-called lower limit
logic (LLL), a set of abnormalities and an adaptive strategy. The LLL must be
reflexive, compact and transitive.8 In our case the lower limit logic is PMDL.
The idea is that the resulting adaptive logics strengthen PMDL by considering
abnormalities as false ‘as much as possible’, where the latter phrase is disam-
biguated by the adaptive strategy. Proof-theoretically, we realize this idea by
(a) allowing all PMDL-inferences to remain valid in an adaptive proof and (b)
allowing for some extra inferences by means of a (PMDL-invalid) conditional
rule.

Let us explicate point (b) by means of some examples. Reconsider (47)-(49).
Although these inferences are PMDL-invalid, the following do hold in PMDL:

O ◻J (¬A ∨B),O ◻J A ⊢PMDL O ◻J B ∨ P◇J (A ∧ ¬A) (52)

8In the literature on adaptive logics it is often required that the classical connectives are
superimposed on the language of the lower limit logic in order to guarantee some meta-
theoretic properties. PMDL can be easily adjusted in that way. However, for the sake of
presentation we omit this technical complication here.
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O¬A,O(A ∨B) ⊢PMDL OB ∨ P(A ∧ ¬A) (53)

◻JA,◻J(¬A ∨B) ⊢PMDL ◻JB ∨◇J(A ∧ ¬A) (54)

Moreover, PMDL allows for the following ‘weak’ variants of Modus Ponens and
Disjunctive Syllogism:

A,¬A ∨B ⊢PMDL B ∨ (A ∧ ¬A) (55)

A,A ⊃ B ⊢PMDL B ∨ (A ∧ ¬A) (56)

Whereas (47)-(51) all fail for PMDL, their weaker versions (52)-(56) are PMDL-
valid. In all of these ‘weakened’ cases, the discussed inferences hold in PMDL
in disjunction with a formula that expresses some counterintuitive consequence.
For (52), this is the formula P ◇J (A ∧ ¬A), expressing that it is permitted
that the inconsistency A ∧ ¬A is consistent with J ’s actions. For (53), it is the
formula P(A ∧ ¬A), expressing that the inconsistency A ∧ ¬A is permitted. For
(54), the counterintuitive alternative is the formula ◇J(A∧¬A), expressing that
the inconsistency A ∧ ¬A is consistent with J ’s actions. For (55) and (56), it is
the plain contradiction A ∧ ¬A. What all these counterintuitive disjuncts have
in common, is that, semantically, they entail that a contradiction is verified at
some PMDL-accessible world.

The idea behind the conditional inference rule mentioned above in point
(b) will be that we allow for the derivation of the left-hand disjuncts of the
formulas derived in (52)-(56) on the assumption that the ‘unwanted’ right-hand
disjuncts are not the case. In order to represent this assumption, each line l
in an adaptive proof is equipped with a column that features a set of formulas
∆ that represent the assumptions that are made in order to derive the formula
on line l. This set ∆ is the condition of line l. Conditions are subsets of a
specific set of formulas: so-called abnormalities. For all adaptive logics, the
set Ω of abnormalities is a set of LLL-contingent formulas characterized by
one or more logical forms F . For the adaptive logics PMDLr and PMDLm,
Ω = {⟐1 . . .⟐n (A ∧ ¬A) ∣ A ∈ P,⟐i ∈ {P} ∪ {◇J ∣ J ⊆∅ I}}. Intuitively, Ω is the
set each member of which verifies an inconsistency in some accessible world in
the PMDL-semantics.9,10

9It is allowed that i = 0. Hence A ∧ ¬A ∈ Ω whenever A ∈ P.
10In fact, members of Ω even cause contradictions to be verified at the actual world, since e.g.

P(p∧¬p) ⊢PMDL O(p∨¬p)∧¬O(p∨¬p), P◇J (p∧¬p) ⊢PMDL O◻J (p∨¬p)∧¬O◻J (p∨¬p), etc.
Since every normative conflict gives rise to a member of Ω, this is at odds with Priest’s analysis
of conflicting norms [34, Ch. 13]. Although Priest accepts the possibility of contradicting
norms, he does not accept that OO-conflicts entail outright contradictions.

Readers dissatisfied with this analysis may safely drop the rules (RO¬) and (RP¬) in the
syntactic characterization of PMDL. This blocks the derivation of contradictions from OO-
and OP-conflicts (of course, the PMDL-semantics can be adjusted accordingly).

Call the resulting logic PMDL∗. Then OA∧O¬A ⊢PMDL PA∧¬PA and OA∧P¬A ⊢PMDL

OA ∧ ¬OA, whereas OA ∧O¬A ⊬PMDL∗ PA ∧ ¬PA and OA ∧ P¬A ⊬PMDL∗ OA ∧ ¬OA.
Analogously to PMDL, PMDL∗ can be extended adaptively (with Ω defined as before).

In the resulting extensions PMDLr
∗

and PMDLm
∗

, the rules (RO¬) and (RP¬) are applicable
‘as much as possible’, since e.g. O¬A ⊢PMDL∗ ¬PA ∨ P(A ∧ ¬A) and P¬A ⊢PMDL∗ ¬OA ∨
P(A ∧ ¬A).
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Since our aim is to interpret a given set of premises as consistently as possible
the set Ω is defined in such a way that each normative conflict gives rise to a
(disjunction of) abnormalities in PMDL. This is illustrated in the following
table. Let A ∈ P:

O ◻J A ∧O ◻K ¬A ⊢PMDL P(A ∧ ¬A) (57)

O ◻J A ∧ P ◻K ¬A ⊢PMDL P(A ∧ ¬A) (58)

O ◻J A ∧O ◻J ¬A ⊢PMDL P◇J (A ∧ ¬A) (59)

O ◻J A ∧ P ◻J ¬A ⊢PMDL P◇J (A ∧ ¬A) (60)

O ◻J A ∧O¬ ◻J A ⊢PMDL P◇J (A ∧ ¬A) (61)

O ◻J A ∧ P¬ ◻J A ⊢PMDL P◇J (A ∧ ¬A) (62)

OA ∧O¬A ⊢PMDL P(A ∧ ¬A) (63)

OA ∧ P¬A ⊢PMDL P(A ∧ ¬A) (64)

Where A /∈ P, it is easy to see that due to the validity of de Morgan’s laws the
inferences in this table can be generalized to conflicts between more complex
formulas. These will give rise to disjunctions of abnormalities. Let for instance
A = A1 ∨A2. Then, for example:

O ◻J A,O ◻K ¬A ⊢PMDL P(A1 ∧ ¬A1) ∨ P(A2 ∧ ¬A2) (65)

If A1,A2 ∈ P, then P(A1 ∧ ¬A1),P(A2 ∧ ¬A2) ∈ Ω. Otherwise, P(A1 ∧ ¬A1) ∨
P(A2∧¬A2) can be further analyzed into a (longer) disjunction of abnormalities.

Adaptive logics take abnormalities to be false as long as there is no good
reason to assume otherwise. This idea is made technically precise by means
of two mechanisms: (i) a generic conditional rule RC that makes it possible to
derive formulas conditionally and (ii) an adaptive strategy with a corresponding
marking definition which determines when the assumption specified in the con-
dition of a line is violated. If such a violation occurs, the condition is ‘marked’
and the derivation is disabled in the proof.

Let Γ be a set of premises, and let

A ∆

abbreviate that A occurs in the proof on the condition ∆. Where Θ ⊆ Ω, the
generic conditional rule RC is defined as follows:

RC If A1, . . . ,An ⊢PMDL B ∨⋁Θ A1 ∆1

⋮ ⋮
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

Applied to (52)-(56), RC allows us to derive from the premises the left-
hand disjunct on the assumption that the right-hand disjunct is false. E.g. for
(52), we can derive O ◻J B from O ◻J (¬A ∨B) and O ◻J A on the condition
{P◇ (A ∧ ¬A)}. The same reasoning applies to (53)-(56).
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Next to RC, adaptive proofs make use of two other – less complicated –
generic rules: the premise introduction rule PREM, and the unconditional rule
RU:

PREM If A ∈ Γ: ⋮ ⋮
A ∅

RU If A1, . . . ,An ⊢PMDL B: A1 ∆1

⋮ ⋮
An ∆n

B ∆1 ∪ . . . ∪∆n

PREM allows to introduce premises on the empty condition. RU gives the
adaptive logic all the power of its LLL: whenever B is PMDL-derivable from
A1, . . . ,An it is also derivable in the adaptive logic. As for the conditional rule
RC, the conditions on which the Ai’s are derived are carried forward to the line
on which B is derived. Note, however, that – just like PREM – RU does not
allow us to introduce new conditions in an adaptive proof.

Let us take a look at a concrete example. Suppose that we have the premises
O ◻J ¬p and O ◻J (p ∨ q). We enter the premises via the premise introduction
rule:

1 O ◻J ¬p PREM ∅
2 O ◻J (p ∨ q) PREM ∅

Given (52), we can apply RC to the premises at lines 1 and 2 and derive
O ◻J q on the condition {P◇J (p ∧ ¬p)}:

3 O ◻J q 1,2;RC {P◇J (p ∧ ¬p)}

Now suppose that we introduce a new premise P ◻J p at line 4:

1 O ◻J ¬p PREM ∅
2 O ◻J (p ∨ q) PREM ∅
3 O ◻J q 1,2;RC {P◇J (p ∧ ¬p)}✓5

4 P ◻J p PREM ∅
5 P◇J (p ∧ ¬p) 1,4;RU ∅

In view of (60), we can use RU in order to derive P◇J (p ∧ ¬p) from the
formulas at lines 1 and 4. Since the conditions of these lines are empty, the
condition of line 5 is empty too. At line 5 we have derived the condition of
line 3. Thus, the assumption made at line 3 that P◇J (p ∧ ¬p) is false can no
longer be upheld at stage 5 of the proof. Therefore we mark line 3 with a “✓”
sign to denote that the formula at this line is no longer considered derived. This
marking mechanism is governed by a marking definition, which differs depending
on the adaptive strategy used. Before we can introduce the marking definitions
for the different strategies however, some more terminology is required.
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5.1.2 Two strategies

At the beginning of Section 5.1.1 we mentioned that adaptive logics are charac-
terized by a LLL, a set of abnormalities, and an adaptive strategy. The logics
PMDLr and PMDLm both have PMDL as their LLL and Ω as their set of
abnormalities. They differ only in the adaptive strategy they employ. Whereas
PMDLr uses the reliability strategy, PMDLm uses the minimal abnormality
strategy. Proof-theoretically, the strategy is governed by a marking mechanism
as mentioned above. Each strategy makes use of a different marking definition
which takes care of the markings in adaptive proofs. We first define the marking
definition for the reliability strategy. Next, we turn to the marking definition
for minimal abnormality. We illustrate the difference between both definitions
by means of an example.

Where ∆ is a non-empty finite set of abnormalities we write Dab(∆) instead
of ⋁∆. Dab(∆) is called a disjunction of abnormalities, or Dab-formula. In
case Dab(∆) is derived at some stage s of the proof on the condition ∅ and
for no ∆′ ⊂ ∆, Dab(∆′) has been derived at stage s on the condition ∅, then
Dab(∆) is a minimal Dab-formula at stage s. Where ∆1,∆2, . . . are the minimal
Dab-formulas at stage s derived from Γ, we define the set of unreliable formulas
at stage s by Us(Γ) = ∆1 ∪ ∆2 ∪ . . .. The idea behind the marking definition
for the reliability strategy is to mark lines whose condition contains unreliable
formulas.

Definition 1 (Marking for reliability). Line i with condition ∆ is marked at
stage s iff Us(Γ) ∩∆ ≠ ∅.

Let Γ = {O ◻J (p ∨ r),O ◻J (q ∨ r),O ◻J (¬p ∧ ¬q),P ◻J (p ∨ q)}. We start a
PMDLr-proof from Γ by entering the premises:

1 O ◻J (p ∨ r) PREM ∅
2 O ◻J (q ∨ r) PREM ∅
3 O ◻J (¬p ∧ ¬q) PREM ∅
4 P ◻J (p ∨ q) PREM ∅

Since O◻J (p∨r),O◻J (¬p∧¬q) ⊢PMDL O◻J r∨P◇J (p∧¬p), we can apply
RC to lines 1 and 3 and conditionally derive O ◻J r at line 5:

5 O ◻J r 1,3;RC {P◇J (p ∧ ¬p)}✓6

6 P◇J (p ∧ ¬p) ∨ P◇J (q ∧ ¬q) 3,4;RU ∅

At stage 6 of the proof, U6(Γ) = {P◇J (p ∧ ¬p),P◇J (q ∧ ¬q)} in view of
the Dab-formula derived at line 6. Since the condition of line 5 intersects with
U6(Γ), line 5 is marked at stage 6 in view of Definition 1.

Reliability is a very cautious strategy. As soon as an abnormality occurs in
some minimal Dab-formula derived in a proof, all inferences that rely on the
falsity of this abnormality are marked. In the example above, J ’s duty to bring
about r is not PMDLr-derivable since it cannot be guaranteed that p behaves
consistently in all accessible worlds. However, in this example J can consistently
satisfy all of his/her/its duties by bringing about ¬p,¬q, and r. Hence, we might
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want to apply a different strategy – the minimal abnormality strategy – that
allows for some slightly ‘bolder’ inferences.

Suppose that the proof from Γ is a PMDLm-proof, and that we continue it
as follows (we repeat the proof from line 5 onwards):

5 O ◻J r 1,3;RC {P◇J (p ∧ ¬p)}
6 P◇J (p ∧ ¬p) ∨ P◇J (q ∧ ¬q) 3,4;RU ∅
7 O ◻J r 2,3;RC {P◇J (q ∧ ¬q)}

Note that, if this were a PMDLr-proof, lines 5 and 7 would be marked at
stage 7 of the proof. Not so for PMDLm however. The minimal abnormality
strategy is ‘bolder’ than reliability in that it assumes that, when a minimal
Dab-formula has been derived, only one of the disjuncts of this formula need be
true. Since in the example O◻J r is derivable on the condition {P◇J (p∧¬p)}
and on the condition {P◇J (p∧¬p)}, and since only one of these abnormalities
needs to be true in order to verify the Dab-formula derived at line 6, we can
still safely assume that the other abnormality is false.

Technically, this is realized as follows. A choice set of Σ = {∆1,∆2, . . .} is a
set that contains one element out of each member of Σ. A minimal choice set
of Σ is a choice set of Σ of which no proper subset is a choice set of Σ. Where
Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas that are derived at stage
s, Φs(Γ) is the set of minimal choice sets of {∆1,∆2, . . .}.

Definition 2 (Marking for minimal abnormality). Where A ∈ LMDL is derived
at line i of a proof from Γ on a condition ∆, line i is marked at stage s iff
(i) there is no ∆′ ∈ Φs(Γ) such that ∆′ ∩∆ = ∅, or
(ii) for some ∆′ ∈ Φs(Γ), there is no line at which A is derived on a condition Θ
for which ∆′ ∩Θ = ∅.

The reader can easily verify that – in view of Definition 2 – lines 5 and 7 of
the proof remain unmarked at stage 7.

Note that – whichever strategy is used – markings may come and go in adap-
tive proofs. A line may be marked at some stage s of the proof, and unmarked
again at a later stage s′. Before we can define a consequence relation for the
logics PMDLr and PMDLm, we need a stable criterion for derivability:11

Definition 3. A is finally derived from Γ at line i of a proof at finite stage s iff
(i) line i is not marked at stage s, and (ii) every extension of the proof in which
line i is marked may be further extended in such a way that line i is unmarked.

Where a PMDLr-proof makes use of Definition 1 and a PMDLm-proof
makes use of Definition 2, consequence relations for PMDLr and PMDLm are
defined as follows:

Definition 4. Γ ⊢PMDLr A (A is finally PMDLr-derivable from Γ) iff there
is a PMDLr-proof in which A is finally derived from Γ at some line of a proof
from Γ.

11In [4], this Definition 3 is interpreted as a two-player game in which the proponent has a
winning strategy in case she has a reply to every counterargument by her opponent.
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Definition 5. Γ ⊢PMDLm A (A is finally PMDLm-derivable from Γ) iff there
is a PMDLm-proof in which A is finally derived from Γ at some line of a proof
from Γ.

Thus, where Γ = {O ◻J (p ∨ r),O ◻J (q ∨ r),O ◻J (¬p ∧ ¬q),P ◻J (p ∨ q)},
Γ ⊬PMDLr O ◻J r, yet Γ ⊢PMDLm O ◻J r.

Here are some more illustrations of the proof theory for PMDLr and PMDLm.
In the remainder, we write PMDLx as a generic name for both logics (x ∈
{r,m}).

Example 1. Let Γ1 = {O ◻J O ◻K p,O ◻J O ◻K (¬p ∨ q),O ◻J r,P ◻K ¬r}. We
start a PMDLx-proof from Γ1 by entering the premises:

1 O ◻J O ◻K p PREM ∅
2 O ◻J O ◻K (¬p ∨ q) PREM ∅
3 O ◻J r PREM ∅
4 P ◻K ¬r PREM ∅
5 P(r ∧ ¬r) 3,4; RU ∅
6 O ◻J O ◻K q 1,2; RC {P◇J P◇K (p ∧ ¬p)}

In view of Definitions 4 and 5, Γ1 ⊢PMDLx O ◻J O ◻K q.

Example 2. Let Γ2 = {O(¬◻K p ⊃ ◻Jp),O◻K¬◻K p}. We start a PMDLx-proof
from Γ2 by entering the premises:

1 O(¬ ◻K p ⊃ ◻Jp) PREM ∅
2 O ◻K ¬ ◻K p PREM ∅
3 O ◻J p 1,2; RC {P◇K (p ∧ ¬p)}

In view of Definitions 4 and 5, Γ2 ⊢PMDLx O ◻J p.

5.2 Semantics and meta-theory for PMDLr and PMDLm

Where x ∈ {r,m}, the PMDLx-semantics proceeds in the style of Shoham (see
[37, ?]) by selecting a certain subset of the PMDL-models. Let Ab(M), the
abnormal part of the model M , abbreviate the set of abnormalities verified by
M , i.e. Ab(M) = {A ∈ Ω ∣ M⊩PMDLA}. The minimal abnormality strategy
selects all PMDL-models of a premise set Γ which have a minimal abnormal
part (with respect to set-inclusion):

Definition 6. A PMDL-model M of Γ is minimally abnormal iff there is no
PMDL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The semantic consequence relation for PMDLm is defined by selecting all
minimally abnormal PMDL-models:

Definition 7. Γ ⊩PMDLm A iff A is verified by all minimally abnormal PMDL-
models.

Before we can define the semantic consequence relation for PMDLr, we
need some more terminology. We say that a Dab-formula Dab(∆) is a Dab-
consequence of Γ if it is PMDL-derivable from Γ; it is a minimal Dab-consequence
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of Γ if there is no ∆′ ⊂ ∆ such that Dab(∆′) is a Dab-consequence of Γ. The set
of formulas that are unreliable with respect to Γ, denoted by U(Γ), is defined
by:

Definition 8. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences
of Γ, U(Γ) = ∆1 ∪∆2 ∪ . . . is the set of formulas that are unreliable with respect
to Γ.

Definition 9. A PMDL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

The semantic consequence relation for PMDLr is defined by selecting all
reliable PMDL-models:

Definition 10. Γ ⊩PMDLr A iff A is verified by all reliable models of Γ.

For any adaptive logic in standard format which has a LLL that is sound
and complete with respect to its semantics, there is a generic proof that the
adaptive logic is sound and complete with respect to its semantics:

Theorem 2. Γ ⊢PMDLr A iff Γ ⊩PMDLr A.
Γ ⊢PMDLm A iff Γ ⊩PMDLm A.

For PMDLr, the proof of Theorem 2 follows immediately from Theorem
1 from Section 4.2 and Corollary 2 from [3]. For PMDLm, the proof follows
immediately from Theorem 1 from Section 4.2 and Theorem 9 from [3].

The fact that the set of PMDLx-models of Γ is a subset of the set of
PMDL-models of Γ immediately ensures that PMDLx strengthens PMDL.

Theorem 3. If Γ ⊩PMDL A, then Γ ⊩PMDLx A.

WhereMPMDL
Γ ,Mm

Γ , andMr
Γ denote the set of PMDL-models, minimally

abnormal PMDL-models, resp. reliable PMDL-models of Γ, we also know that:

Theorem 4. (Strong Reassurance.) If M ∈ MPMDL
Γ −Mm

Γ , then there is a
M ′ ∈Mm

Γ such that Ab(M ′) ⊂ Ab(M). If M ∈MPMDL
Γ −Mr

Γ, then there is a
M ′ ∈Mr

Γ such that Ab(M ′) ⊂ Ab(M).

Theorem 4 is shown generically for adaptive logics in standard format as
Corollary 1 in [3].

In case no Dab-formulas are derivable from a premise set by means of the
LLL, it is safe to consider all abnormalities as false. As a consequence, the adap-
tive logic will then yield the same consequence set as the logic that interprets
all abnormalities as false (or equivalently, as the logic that fully validates the
inference rules whose application the adaptive logic only allows conditionally).
This logic is called the upper limit logic of an adaptive logic. The upper limit
logic of an adaptive logic is obtained by adding to its LLL one or more axioms
and/or rules that trivialize exactly those formulas that are members of Ω. The
upper limit logic ULL of PMDLx is defined by adding to PMDL the rule
(ECQ). ULL is related to PMDL as set out by the Derivability Adjustment
Theorem:
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Theorem 5. Γ ⊢ULL A iff (there is a ∆ ⊆ Ω for which Γ ⊢PMDL A ∨Dab(∆)
or Γ ⊢PMDL A).

The set of Dab-consequences derivable from the premise set determines
the amount to which the consequence set of PMDLx resembles the ULL-
consequence set. This is why adaptive logicians say that PMDLx adapts itself
to a premise set. PMDLx is always at least as strong as PMDL and maximally
as strong as ULL:

Theorem 6. CnPMDL(Γ) ⊆ CnPMDLx(Γ) ⊆ CnULL(Γ).

In view of Theorem 11 from [3], it follows immediately that:

Corollary 1. CnPMDL(Γ) ⊆ CnPMDLr(Γ) ⊆ CnPMDLm(Γ) ⊆ CnULL(Γ).

If Γ is normal, i.e. if U(Γ) = ∅, then we can even prove a stronger result:

Theorem 7. If Γ is normal, then CnPMDLx(Γ) = CnULL(Γ).

For the proofs of Theorems 5-7, and for an overview of further meta-theoretic
properties of adaptive logics, we refer to [3].

The reader may have noticed that ULL trivializes contradictions at acces-
sible worlds, thus promoting “¬” to a fully classical negation connective. It
should come as no surprise then, that ULL is just MDL in disguise:

Theorem 8. Γ ⊢ULL A iff Γ ⊢MDL A.

A proof outline for Theorem 8 is contained in Section C of the Appendix.

Corollary 2. (i) CnPMDL(Γ) ⊆ CnPMDLr(Γ) ⊆ CnPMDLm(Γ) ⊆ CnMDL(Γ).
(ii) If Γ is normal, then CnPMDLx(Γ) = CnMDL(Γ).

(i) follows by Corollary 1 and Theorem 8, (ii) follows by Theorems 7 and 8.

6 Related work

6.1 Logics of action and stit-logic

The logics presented in this paper are not defined within either of the two ‘main’
paradigms for representing actions in (deontic) logic, i.e. stit-logic [8, 9, 22, 26]
and dynamic logic [10, 31]. Nonetheless, our ◻J operators resemble in some
respects the Chellas stit or cstit operators used in stit logic. In our framework,
a formula ◻JA is interpreted as “J brings about A”. In stit-logic, a formula
[J stit ∶ A] is interpreted as “J sees to it that A”. On both accounts, A is
a state of affairs, and not an action nominal as is the case in e.g. dynamic
logic. Moreover, the notions of refrainment and deliberative agency as defined
in Section 2.2 are analogous to those of stit logic.

A first major difference between the logics defined here and stit-logics is
that the stit-framework is temporal/prospective, while we work in an atemporal
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setting. It is a question for future research to extend the framework given here
with the ability to reason about future (and maybe past) states.

A second difference between both approaches is that the ◻J operators defined
here are S4-modalities, while cstit operators – their analogues in stit logic – are
S5-modalities. Thus, in MDL the (5J) schema is invalid:

◇JA ⊃ ◻J ◇J A (5J)

Note that if (5J) were valid, then the ‘Brouwerian’ schema (BJ) too would hold
for our agentive operators:

A ⊃ ◻J ◇J A (BJ)

Intuitively, (BJ) requires that if A is the case, then all agents guarantee that
A is consistent with their actions. This is a very strong requirement. If A is
indeed the case, then normally we try to act on this fact as much as possible.
But there are exceptions. We might, for instance, not know that A is the case,
we might not be aware of it etc. In such cases, A need not be consistent with
our actions. Therefore we opted to leave (BJ) (and, consequently, (5J)) out of
our axiomatization.12

A third difference worth pointing out is that our systems differ from stit
logics in their treatment of collective actions and obligations. In stit logic,
operators for agency are closed under ‘weakening’ by the addition of further
agents: If J ⊂ K ⊆∅ I, then if J sees to it that A, then K sees to it that
A. As illustrated in (5) and (6), this kind of weakening is invalid in the logics
defined here. Consequently, a statement like (66) is ML-,MDL-,PMDL-, and
PMDLx-consistent, while its stit analogue would cause explosion:13

◻iA ∧ ◻jA ∧ ¬ ◻{i,j} A (66)

Let us further illustrate this property by generalizing it to the deontic setting.
Suppose that two agents i and j are divorced and that they work for the same
company. Then we can imagine that, when faced with a certain task A, it makes
sense for the boss k to issue the following obligations:

◻k(O(◻iA ∨ ◻jA) ∧ ¬P ◻{i,j} A) (67)

Thus, one of i and j should bring about A, but they should not do it together
(because since the divorce they are no longer on speaking terms).

Finally, the logics presented in this paper allow for the consistent formal-
ization of other-agent nested agentive formulas of the form “J brings it about
that K brings it about that A” (i.e. ◻J ◻K A). In the stit-framework, this is

12A very welcome consequence of not having (5J ) is that – as opposed to refrainment for
the cstit-operator – refrainment for the ◻J -operator does not collapse into simple non-action:
◻J¬ ◻J A ⊢MDL ¬ ◻J A, but ¬ ◻J A ⊬MDL ◻J¬ ◻J A. In stit theory, refraining is for this
reason modelled in terms of the deliberative stit-operator (see [22, Sec. 2.3.3]).

13A notable exception here is the sstit or ‘strictly sees to it that’ operator for joint agency
as defined in [8]. See also [9, pp. 284-287].
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impossible (see [9, Sec. 10B.1] for a proof of the impossibility of other-agent
nested stits).

Altogether, these differences motivate our approach as a pursuit-worthy al-
ternative for existing logics of action.

6.2 Conflict-tolerant deontic logic

SDL can be made more conflict-tolerant either by enriching its language, or
by weakening its axioms and/or rules. In [26], Kooi and Tamminga deal with
conflicting norms by enriching SDL so as to be capable of distinguishing between
various sources and interest groups in view of which norms arise. Moreover,
following [22] they equip their system with modal stit-operators for dealing
with the difficult notion of (moral) agency. Similarly, we could try to deal
with conflicting norms by imposing a preference ordering on our obligations
and permissions, e.g. [20].

Such extensions are very successful in increasing the expressive power of
SDL, but they are unable to consistently accommodate all normative conflicts.
Conflicts may arise between norms promulgated at the same time, by the same
authority. It is not difficult to see how we could extend this type of reasoning to
norms of the same footing, addressed at the same group of people etc. so that
in the end we need a logic that invalidates at least some SDL-theorems if we
want to deal with all instances of normative conflicts.

PMDLr and PMDLm weaken SDL by dropping (ECQ). In a non-agentive
setting, paraconsistent deontic logics were presented in [6, 7, 11, 34]. Notwith-
standing their representation of agents, the logics presented here are closely
related to the system DPr from [7]. However, whereas DPr uses the para-
consistent logic CLuNs as its LLL, PMDLr and PMDLm use an agentive
extension of Priest’s LP.

Next to the paraconsistent approach adopted here, other strategies can be
adopted for weakening SDL. A popular strategy is to weaken the aggregation
principle (ANDO). In a non-monotonic, non-agentive setting, this strategy was
adopted in e.g. [18, 21, 23, 29, 30]. Another strategy open for accommodat-
ing normative conflicts is to weaken the inheritance principle (INHO). This
approach was adopted in e.g. [14, 15, 39, 41].

6.3 Adaptive deontic logic

As mentioned in the introduction, this paper builds on earlier work on agentive
adaptive deontic logics. More specifically, it continues the task set out in [6] of
constructing a multi-agent adaptive deontic logic capable of tolerating normative
conflicts. The system PMDLx improves on the semantics defined in [6] in
various ways.

First, PMDLx is built ‘on top’ of the paraconsistent logic LP, whereas
the logic MDPm from [6] is built ‘on top’ of the paraconsistent logic CLuNs
from e.g. [2, 5]. The advantage of LP is that its implication is non-detachable
and hence provides a better isolation of normative conflicts. For instance, from
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OA,O¬A, and O(A ⊃ B) we cannot derive OB by means of PMDLx, but we
can derive OB by means of MDPm.

Second, the language of PMDLx has no restrictions whatsoever on nested
modal operators. This flexibility makes it easier to extend the language in
various ways by adding extra modalities for representing e.g. knowledge, beliefs,
commitments of agents and groups.

Third, as opposed to MDPm, PMDLx does not allow for distribution over
disjunctive actions:

◻J(A ∨B) ⊬PMDLx ◻JA ∨ ◻JB (68)

Suppose, for instance, that an agent flips a coin. In doing so she guarantees
that either heads or tails will be the outcome, but she cannot determine the
exact outcome of the flip. Hence she does not bring it about that heads is the
outcome or bring it about that tails is the outcome.

Fourth, PMDLx is equipped with an adaptive proof theory, as illustrated
in Section 5.1, whereas MDPm was only characterized semantically. More-
over, unlike MDPm, PMDLx has a regular Kripke-semantics. Altogether,
this makes PMDLx the first sound and complete Kripke-style agentive adap-
tive (deontic) logic.

Most adaptive deontic logics interpret the given premises as non-conflicting
as possible. However, they can also be applied in order to render defeasible
other inferences and apply these “as much as possible”. This has been realized
for instance in the context of conditional obligations such as O(A ∣ B): A is
obligatory if B is the case. In [40] factual detachment is defeasibly applied to
O(A ∣ B) and B in order to derive the non-conditional obligation OA. Similarly,
in [39] strengthening the antecedent is applied to O(A ∣ B) defeasibly in order
to derive O(A ∣ B ∧C).

For some other adaptive deontic logics that can consistently accommodate
instances of normative conflicts, see [7, 29, 39, 41]. For an introduction to the
framework of adaptive logics, see [3].

7 Conclusion and outlook

We presented the logics PMDLr and PMDLm, two non-classical, non-monotonic
logics for reasoning about conflicting collective actions and norms in a multi-
agent setting. These logics consistently allow for a broad variety of conflicts
thanks to their paraconsistent negation connective. Due to their characteri-
zation within the adaptive logics framework for non-monotonic reasoning, the
systems are sufficiently powerful to account for intuitive instances of rules like
Modus Ponens, Disjunctive Syllogism and Contraposition – rules that are in-
valid in many monotonic paraconsistent logics. The adaptive proof theory of
PMDLr and PMDLm explicates defeasible inference steps in a natural way
and closely mirrors actual reasoning.

PMDLr and PMDLm are the first agentive adaptive logics characterizable
within a regular Kripke-style semantics. For this reason, they are well-suited for
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adding more expressivity to their language. We could, for instance, relativize
the deontic operators in order to express by which authority various norms are
issued. Moreover, it would be interesting to add epistemic modalities to the
framework in order to express e.g. which agents and groups know each other’s
obligations. Future work also includes making the framework temporal, and per-
haps adding to the language the power to express such notions as commitment
or trust.
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APPENDIX

A The axiomatization of LP

LP is axiomatized as follows:

A,B ⊢ A ∧B (AND)

A ∧B ⊢ A (AN1)

A ∧B ⊢ B (AN2)

A ⊢ A ∨B (OR1)

B ⊢ A ∨B (OR2)

¬(A ∧B) ⊢ ¬A ∨ ¬B (DM1)

¬A ∨ ¬B ⊢ ¬(A ∧B) (DM2)

¬A ∧ ¬B ⊢ ¬(A ∨B) (DM3)

¬(A ∨B) ⊢ ¬A ∧ ¬B (DM4)

A ⊢ ¬¬A (DN1)

¬¬A ⊢ A (DN2)

⊢ A ∨ ¬A (EM)
and

If A,B ⊢D and A,C ⊢D, then A,B ∨C ⊢D. (RBC)

Moreover, the bottom constant (�) is characterized by the following rule:

� ⊢ A (BOT)

Fact 1. (i) If ∆∪{A} ⊢PMDL C and ∆∪{B} ⊢PMDL C then ∆∪{A∨B} ⊢PMDL C.

(ii) The following rule holds in PMDL for each J ⊆∅ I:

◻JA ⊢ ◇JA (D◻J)

It is easy to see that (i) follows by means of (RBC) and (ii) by means of (T◻J)
and (T◇J).
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B Soundness and completeness for PMDL

As ML and MDL are fairly standard normal modal logics, we do not prove sound-
ness and completeness theorems for these logics. Instead, we prove soundness and
completeness for the more complex system PMDL.

Where R ⊆W ×W we use in the remainder the notation Rw = {w′ ∈W ∣ Rww′}.

Lemma 1. Where M = ⟨W, ⟨RJ⟩J⊆∅I ,RO, v,@⟩ is a PMDL-model, we have: for all
w ∈W , if M,w /⊧ A then M,w ⊧ ¬A.

Proof. We show this by an induction over the length of A. Let A ∈ P. Suppose
M,w /⊧ A. By (C¬), M,w ⊧ ¬A.

For the induction step let first A = B ∧ C. Suppose M,w /⊧ B ∧ C. By (C∧),
M,w /⊧ B or M,w /⊧ C. By the induction hypothesis, M,w ⊧ ¬B or M,w ⊧ ¬C. By
(C∨), M,w ⊧ ¬B∨¬C. By (C¬∧), M,w ⊧ ¬(B∧C). The cases A = B∨C, and A = ¬B
are similar and left to the reader.

Let A = OB. Suppose M,w /⊧ ¬OB. By (C¬O) M,w /⊧ P¬B. By (CP) there is
no w′ ∈ ROw for which M,w′ ⊧ ¬B. By the induction hypothesis, for all w′ ∈ ROw,
M,w′ ⊧ ¬¬B and hence by (C¬¬), M,w′ ⊧ B. Thus, by (CO), M,w ⊧ OB.

The case A = ◻JB is analogous and left to the reader.
Let A = PB. Suppose M,w /⊧ PB. Hence, by (CP) there is no w′ ∈ ROw for which

M,w′ ⊧ B. By the induction hypothesis, for all w′ ∈ ROw, M,w′ ⊧ ¬B. Hence, by
(CO), M,w ⊧ O¬B. By (C¬P), M,w ⊧ ¬PB.

The case A =◇JB is analogous and left to the reader.

Theorem 9 (Soundness of PMDL). If Γ ⊢PMDL A then Γ⊩PMDLA.

Proof. Let in the following M = ⟨W, ⟨RJ⟩J⊆∅I ,RO, v,w⟩ be a PMDL-model, and J ⊆∅
I. It is sufficient to show that each PMDL-rule holds at the actual world w.

Ad (AND): Suppose M,w ⊧ A,B, then by (C∧), M,w ⊧ A ∧B.
The cases for (AN1), (AN2), (OR1), (OR2), (DM1), (DM2), (DM3), (DM3),

(DN1), and (DN2) are similar and left to the reader.
Ad (EM): This holds by (C∨) and Lemma 1 for all w′ ∈W .
Ad (4◻J): Suppose M,w ⊧ ◻JA. Hence by (C◻J), for all w′ ∈ RJw, M,w′ ⊧ A.

Let for some w′ ∈ RJw, RJw
′w′′. Then by the transitivity of RJ also RJww′′ and

hence M,w′′ ⊧ A. Hence, M,w ⊧ ◻J ◻J A.
The proof for (4◇J) is similar and left to the reader.
Ad (AND◻J): Suppose M,w ⊧ ◻JA and M,w ⊧ ◻JB. Hence, by (C◻J) and (C∧),

for all w′ ∈ RJw, M,w′ ⊧ A ∧B. Hence, again by (C◻J), M,w ⊧ ◻J(A ∧B).
The proofs for (AND′◻J), (OR◇J), (OR◻J), (ANDO), (AND’O), (ORP), (ORO)

are analogous and left to the reader.
Ad (DO): Suppose M,w ⊧ OA. Hence for all w′ ∈ ROw, M,w′ ⊧ A. By the seriality

of RO there is such a w′ ∈ ROw and hence by (CP), M,w ⊧ PA.
Ad (T◻J): Suppose M,w ⊧ ◻JA. By (C◻J) for all w′ ∈ RJw, M,w′ ⊧ A. Since

RJ is reflexive, RJww and hence M,w ⊧ A.
Ad (T◇J): Suppose M,w ⊧ A. By the reflexivity of RJ , also RJww. Hence, by

(C◇J), M,w ⊧◇JA.
Ad (R¬O) and (RP¬): Note that by (C¬O), M,w ⊧ ¬OA iff M,w ⊧ P¬A.
Ad (R¬P) and (RO¬): Note that by (C¬P) M,w ⊧ O¬A iff M,w ⊧ ¬PA.
The proofs for (R¬◻), (R◇¬), (R¬P), (RO¬) are analogous and left to the reader.
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Ad (RBC): Suppose A,B⊩PMDLD and A,C⊩PMDLD. Suppose further M,w ⊧ A
and M,w ⊧ B ∨C. Hence, by (C∨) either M,w ⊧ A,B or M,w ⊧ A,C. Hence, by the
first supposition, M,w ⊧D.

Ad (INH◻J): Suppose A⊩PMDLB and M,w ⊧ ◻JA. Hence, by (C◻J), for all
w′ ∈ RJw, M,w′ ⊧ A. Let M ′ = ⟨W, ⟨RJ⟩J⊆∅I ,RO, v,w

′⟩. By the definition of M ′,
M ′,w′′ ⊧ C iff M,w′′ ⊧ C for all w′′ ∈ W . Hence M ′,w′ ⊧ A. Thus, also M ′ ⊧ A. By
the first supposition M ′ ⊧ B and hence M ′,w′ ⊧ B. Thus, M,w′ ⊧ B. Altogether this
shows that M,w ⊧ ◻JB.

The arguments for the rules (INH◇J), (INHO) and (INHP) are analogous and left
to the reader.

Definition 11. A set Γ of formulas is prime iff for all A ∨B ∈ Γ, Γ ∩ {A,B} ≠ ∅.
Where L is a logic, Γ is L-deductively closed iff, if Γ ⊢L A then A ∈ Γ.

Definition 12. Let ΨPMDL be the set of all prime and PMDL-deductively closed
subsets of LMDL.

Definition 13. We define RJ ⊆ ΨPMDL ×ΨPMDL as follows: RJΓ∆ iff (a) whenever
◻JA ∈ Γ then A ∈ ∆, and (b) whenever A ∈ ∆ then ◇JA ∈ Γ.

Definition 14. We define RO ⊆ ΨPMDL ×ΨPMDL as follows: ROΓ∆ iff (a) whenever
OA ∈ Γ then A ∈ ∆, and (b) whenever A ∈ ∆ then PA ∈ Γ.

Lemma 2. For all Γ ⊆ LMDL,B ∈ LMDL we have:

(i) If Γ ⊢PMDL B, then {OA ∣ A ∈ Γ} ⊢PMDL OB.

(ii) Where Γ is finite, if Γ ⊢PMDL B, then P⋀Γ ⊢PMDL PB.

(iii) If Γ ⊢PMDL B, then {◻JA ∣ A ∈ Γ} ⊢PMDL ◻JB.

(iv) Where Γ is finite, if Γ ⊢PMDL B, then ◇J ⋀Γ ⊢PMDL ◇JB.

Proof. Ad (i): We prove the statement by means of an induction on the number of
inference steps n needed to derive B from Γ in PMDL.

“n = 1”: In case B is derived by a rule R ∉ {(AND), (ANDO), (AND′O), (AND◻J),
(AND′◻J) ∣ J ⊆∅ I} from some A ∈ Γ, then A ⊢PMDL B and hence by (INHO) also
OA ⊢PMDL OB.

Suppose R = (AND) and B is derived from A1,A2 ∈ Γ. Note that OA1,OA2

⊢PMDL O(A1 ∧A2) by (ANDO).
Suppose R = (ANDO) and B = O(A1 ∧A2) is derived from OA1,OA2 ∈ Γ. Then by

(ANDO), OOA1,OOA2 ⊢PDML O(OA1 ∧OA2). By (INHO), O(OA1 ∧OA2) ⊢PMDL

OO(A1 ∧A2). Altogether, OOA1,OOA2 ⊢PMDL OO(A1 ∧A2).
Suppose R = (AND′O) and B = P(A1 ∧ A2) is derived from OA1,PA2 ∈ Γ. By

(ANDO), OOA1,OPA2 ⊢PMDL O(OA1 ∧ PA2). By (INHO), O(OA1 ∧ PA2) ⊢PMDL

OP(A1 ∧A2). Hence, altogether, OOA1,OPA2 ⊢PMDL OP(A1 ∧A2).
The arguments for R ∈ {(AND◻J), (AND′◻J)∣ J ⊆∅ I} are analogous and left to

the reader.
“n⇒ n+1”: Suppose B is derived from Γ in n+1 inference steps from A1, . . . ,Am

by means of rule R. By the induction hypothesis {OA ∣ A ∈ Γ} ⊢PMDL OAi for all
i ≤m. If R ∉ {(AND), (ANDO), (AND′O), (AND◻J), (AND′◻J) ∣ J ⊆∅ I}, then m = 1
and A1 ⊢PMDL B and hence by (INHO) also OA1 ⊢PMDL OB. In case R ∈ {(AND),
(ANDO), (AND′O), (AND◻J), (AND′◻J) ∣ J ⊆∅ I} the argument is analogous to the
one given above and is left to the reader.

Ad (ii), (iii) and (iv): This can be shown by an induction similar as in (i) and is
left to the reader.
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Definition 15. Where Γ ∈ ΨPMDL and A ∈ LMDL, let

ΓO = {B ∣ OB ∈ Γ}, ΓJ
◻ = {B ∣ ◻JB ∈ Γ},

ΓA
O = ΓO ∪ {A}, ΓJ,A

◻
= ΓJ

◻ ∪ {A},

ΓP = {B ∣ PB ∉ Γ}, ΓJ
◇ = {B ∣◇JB ∉ Γ},

∨ΓP = {⋁I Bi ∣ Bi ∈ ΓP},
∨ΓJ

◇ = {⋁I Bi ∣ Bi ∈ ΓJ
◇},

∨ΓA
P = {⋁I Bi ∣ Bi ∈ ΓP ∪ {A}},

∨ΓJ,A
◇

= {⋁I Bi ∣ Bi ∈ ΓJ
◇ ∪ {A}}.

Lemma 3. Let Γ ∈ ΨPMDL. (i) If ΓO ⊢PMDL C, then OC ∈ Γ. (ii) Where PA ∈ Γ, if
ΓA
O ⊢PMDL C then PC ∈ Γ.

Proof. Ad (i): Suppose that ΓO ⊢PMDL C. By Lemma 2i, Γ ⊢PMDL OC. Since Γ is
PMDL-deductively closed, OC ∈ Γ.

Ad (ii): Suppose ΓA
O ⊢PMDL C. Then there is a finite Θ ⊆ ΓO for which (�)

Θ ∪ {A} ⊢PMDL C. Since Θ ⊆ ΓO, O⋀Θ ∈ Γ by (ANDO) and the deductive closure of
Γ. Since also PA ∈ Γ, also P(⋀Θ∧A) ∈ Γ by (AND′O) and the deductive closure of Γ.
Hence, by Lemma 2ii, (�), and the deductive closure of Γ, PC ∈ Γ.

Lemma 4. Let Γ ∈ ΨPMDL. (i) If ΓJ
◻ ⊢PMDL C, then ◻JC ∈ Γ. (ii) Where ◇JA ∈ Γ,

if ΓJ,A
◻
⊢PMDL C then ◇JC ∈ Γ.

Proof. Analogous to Lemma 3. We use (AND◻J), (AND′◻J), Lemma 2iii, and Lemma
2iv instead of (ANDO), (AND′O), Lemma 2i, and Lemma 2ii respectively.

Lemma 5. Let Γ ∈ ΨPMDL. (i) Where PA ∈ Γ, ∨ΓP ∩CnPMDL(Γ
A
O ) = ∅. (ii) Where

B ∉ ΓO, ∨ΓB
P ∩CnPMDL(ΓO) = ∅.

Proof. Ad (i): Let C = ⋁I Ci where Ci ∈ ΓP for all i ∈ I. Assume C ∈ CnPMDL(Γ
A
O )

then by Lemma 3ii, P⋁I Ci ∈ Γ. Hence, by (ORP) and the deductive closure of Γ, also

⋁I PCi ∈ Γ. Since Γ is prime, there is an i ∈ I such that PCi ∈ Γ and hence Ci ∉ ΓP,—a
contradiction.

Ad (ii): Let C = ⋁I Ci where Ci ∈ ΓP∪{B} for all i ∈ I. Assume C ∈ CnPMDL(ΓO).
By Lemma 3i and the deductive closure of Γ, (⋆) O⋁I Ci ∈ Γ. Assume that all Ci ∈ ΓP.
By (DO), P⋁I Ci ∈ Γ. By (ORP), ⋁I PCi ∈ Γ. Since Γ is prime there is a i ∈ I for
which PCi ∈ Γ and hence Ci ∉ ΓP,—a contradiction. Thus, there is a non-empty J ⊆ I
such that for each j ∈ J , Cj = B, and for each j ∈ I ∖ J,Cj ≠ B. By (⋆), (ORO) and
the deductive closure of Γ, OB ∨P⋁I∖J Ci ∈ Γ. Hence, by (ORP), OB ∨⋁I∖J PCi ∈ Γ.
Since B ∉ ΓO and since Γ is prime, there is an i ∈ I ∖ J such that PCi ∈ Γ and hence
Ci ∉ ΓP,—a contradiction.

Lemma 6. Let Γ ∈ ΨPMDL. (i) Where ◇JA ∈ Γ, ∨Γ◇ ∩ CnPMDL(Γ
J,A
◻
) = ∅. (ii)

Where B ∉ ΓJ
◻, ∨ΓJ,B

◇
∩CnPMDL(Γ

J
◻) = ∅.

Proof. The proof is analogous to the proof of Lemma 5. We use Lemma 4, (OR◇J),
(D◻J), and (OR◻J) instead of Lemma 3, (ORP), (DO), and (ORO) respectively.

Lemma 7. Let Γ ∈ ΨPMDL.

(i) Where PA ∈ Γ, there is a ∆ ⊆ LMDL for which (1) ΓA
O ⊆ ∆, (2) ∨ΓP ∩∆ = ∅, and

(3) ∆ ∈ ΨPMDL.

(ii) Where B ∉ ΓO, there is a ∆ ⊆ LMDL for which (1) ΓO ⊆ ∆, (2) ∨ΓB
P ∩∆ = ∅, and

(3) ∆ ∈ ΨPMDL.
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Proof. Let ⟨ΓO,ΓP⟩ ∈ {⟨Γ
A
O ,

∨ΓP⟩, ⟨ΓO,
∨ΓB

P ⟩}. Where ⟨B1,B2, . . .⟩ is a list of all the
members of LMDL, define ∆0 = CnPMDL(ΓO) and ∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 = {
CnPMDL(∆i ∪ {Bi+1}) if ΓP ∩CnPMDL(∆i ∪ {Bi+1}) = ∅
∆i else

Ad (1): This holds by the definition of ∆0 and since ∆0 ⊆ ∆.
Ad (2): By Lemma 5, ∆0 ∩ΓP = ∅. The rest follows by the construction of ∆.
Ad (3): We first show that ∆ is PMDL-deductively closed. Assume there is a

Bi ∉ ∆ for which (�) ∆ ⊢PMDL Bi. Then, by the construction, there is a D ∈ ΓP for
which ∆ ∪ {Bi} ⊢PMDL D. Hence, by (�), ∆ ⊢PMDL D. Hence, there is a j ∈ N such
that ∆j ⊢PMDL D. By the construction ∆j = CnPMDL(∆j) and thus, D ∈ ∆j . Hence,
D ∈ ∆,—a contradiction with (2).

We now show that ∆ is prime. Suppose A1 ∨A2 ∈ ∆. Assume that A1,A2 ∉ ∆. By
the construction, ∆∪{A1} ⊢PMDL D1 and ∆∪{A2} ⊢PMDL D2 for some D1,D2 ∈ ΓP.
Hence, by (OR1), ∆∪{A1} ⊢PMDL D1 ∨D2 and by (OR2) ∆∪{A2} ⊢PMDL D1 ∨D2.
Hence, by Fact 1, ∆ ∪ {A1 ∨A2} ⊢PMDL D1 ∨D2 and since A1 ∨A2 ∈ ∆, ∆ ⊢PMDL

D1∨D2 and hence D1∨D2 ∈ ∆ by the deductive closure of ∆. However, D1∨D2 ∈ ΓP,—
a contradiction with (2).

Lemma 8. Let Γ ∈ ΨPMDL.

(i) Where ◇JA ∈ Γ, there is a ∆ ⊆ LMDL for which (1) ΓJ,A
◻

⊆ ∆, (2) ∨ΓJ
◇ ∩∆ = ∅,

and (3) ∆ ∈ ΨPMDL.

(ii) Where B ∉ ΓJ
◻, there is a ∆ ⊆ LMDL for which (1) ΓJ

◻ ⊆ ∆, (2) ∨ΓJ,B
◇

∩∆ = ∅,
and (3) ∆ ∈ ΨPMDL.

Proof. The proof is analogous to the proof of Lemma 7. Instead of making use of
Lemma 5 we now use Lemma 6.

Lemma 9. Where Γ ∈ ΨPMDL, PA ∈ Γ iff there is a ∆ ∈ ΨPMDL such that ROΓ∆
and A ∈ ∆.

Proof. Left-Right : Suppose PA ∈ Γ. By Lemma 7i there is a ∆ ⊆ LMDL for which (1)
ΓA
O ⊆ ∆, (2) for all C ∈ ΓP, C ∉ ∆, and (3) ∆ ∈ ΨPMDL. We now show that ROΓ∆. Ad

(a): if, for some D, OD ∈ Γ, then D ∈ ΓA
O and hence D ∈ ∆ by (1). Ad (b): suppose

PE ∉ Γ for some E ∈ LMDL. Then E ∈ ΓP and thus E ∉ ∆ by (2).
Right-Left : follows directly by the definition of RO.

Lemma 10. Where Γ ∈ ΨPMDL, ◇JA ∈ Γ iff there is a ∆ ∈ ΨPMDL such that RJΓ∆
and A ∈ ∆.

Proof. The proof is analogous to the proof of Lemma 9, except that we use Lemma 8i
instead of Lemma 7i.

Lemma 11. For every Γ ∈ ΨPMDL there is a ∆ ∈ ΨPMDL such that ROΓ∆. (RO is
serial.)

Proof. By (EM) and (INHP), ⊢PDML P(A ∨ ¬A). Hence, P(A ∨ ¬A) ∈ Γ by the
deductive closure of Γ. By Lemma 9, there is a ∆ ∈ ΨPMDL such that ROΓ∆ and
A ∨ ¬A ∈ ∆.

Lemma 12. Where Γ ∈ ΨPMDL, OA ∈ Γ iff, for all ∆ ∈ ΨPMDL such that ROΓ∆,
A ∈ ∆.
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Proof. Left-Right : This is an immediate consequence of the definition of RO.
Right-Left : Suppose OA ∉ Γ. Hence A ∉ ΓO. By Lemma 7ii, there is a ∆ ⊆ LMDL

for which (1) ΓO ⊆ ∆, (2) (ΓP ∪{A})∩∆ = ∅, and (3) ∆ ∈ ΨPMDL. We now show that
ROΓ∆. Ad (a): if, for some D ∈ LMDL, OD ∈ Γ, then D ∈ ΓO and thus D ∈ ∆ by (1).
Ad (b): Suppose PE ∉ Γ and hence E ∈ ΓP. Thus, E ∉ ∆ by (2).

Lemma 13. Where Γ ∈ ΨPMDL, ◻JA ∈ Γ iff, for all ∆ ∈ ΨPMDL such that RJΓ∆,
A ∈ ∆.

Proof. The proof is analogous to the proof of Lemma 12, except that instead of Lemma
7ii we make use of Lemma 8ii.

Lemma 14. Where Γ ∈ ΨPMDL, RJΓΓ. (RJ is reflexive.)

Proof. Assume there is a Γ ∈ ΨPMDL for which RJΓΓ is not the case. Then, either
(1) there is a ◻JA ∈ Γ such that A ∉ Γ, or (2) there is a A ∈ Γ such that ◇JA ∉ Γ. Ad
(1): Since Γ is PMDL-deductively closed, and by (T◻J), ◻JA ⊢ A, also A ∈ Γ. Ad
(2): Since Γ is PMDL-deductively closed, and by (T◇J), A ⊢ ◇JA, also ◇JA ∈ Γ.
Since neither (1) nor (2) we reached a contradiction.

Lemma 15. If RJΓ∆ and RJ∆∆′ then RJΓ∆′. (RJ is transitive.)

Proof. Suppose RJΓ∆ and RJ∆∆′. Assume not RJΓ∆′. Thus, either (1) there is a
◻JA ∈ Γ for which A ∉ ∆′, or (2) there is a A ∈ ∆′ for which ◇JA ∉ Γ. Ad (1): Suppose
◻JA ∈ Γ. By (4◻J) and the PMDL-deductive closure of Γ, also ◻J ◻J A ∈ Γ. Hence,
by (a) in the definition of RJ , ◻JA ∈ ∆. Hence, again by (a) in the definition of RJ

and since RJ∆∆′, A ∈ ∆′. Ad (2): Suppose A ∈ ∆′. Hence ◇JA ∈ ∆ by (b) in the
definition of RJ and since RJ∆∆′. Hence, ◇J ◇J A ∈ Γ by (b) in the definition of RJ

and since RJΓ∆. Since (4◇J) is valid in Γ, also ◇JA ∈ Γ.
Since neither (1) nor (2) is the case we reached a contradiction.

Lemma 16. Where ∆ ∈ ΨPMDL, there is a PMDL-model M such that M ⊧ A for
all A ∈ ∆ and M /⊧ A for all A ∈ LMDL ∖∆.

Proof. Let ∆ ∈ ΨPMDL. We construct a PMDL-model

M = ⟨ΨPMDL, ⟨RJ⟩J⊆∅I ,RO, v,∆⟩

such that (�) for all A ∈ P¬, w ∈ v(A) iff A ∈ w. By Lemmas 11, 14, 15, RO and RJ

(for all J ⊆∅ I) have the needed properties for M to be a PMDL-model.
We now show by an induction that for all w ∈ ΨPMDL and for all A ∈ LMDL,

M,w ⊧ A iff A ∈ w. The induction is in terms of the length of the formulas A ∈ LMDL

in question.
Let A ∈ P. By (�), A ∈ w iff w ∈ v(A) iff [by (CP)] M,w ⊧ A.
For the induction step let first A be of the form ¬B.
Let first B ∈ P. By (�), ¬B ∈ w iff w ∈ v(¬B). By (C¬′), if ¬B ∈ w and hence

w ∈ v(¬B), then M,w ⊧ ¬B. Suppose now that M,w ⊧ ¬B. By (C¬′) either w ∈ v(¬B)
and hence ¬B ∈ w, or M,w /⊧ B. In the second case, by the induction hypothesis, B ∉ w.
Since w is prime and since B∨¬B ∈ w (since w is PMDL-deductively closed), ¬B ∈ w.

Now let B = ¬B′. M,w ⊧ ¬¬B′ iff [by (C¬¬)] M,w ⊧ B′ iff [by the induction
hypothesis] B′ ∈ w iff [since w is DPML-deductively closed, (DN1) and (DN2)] ¬¬B′ ∈
w.

The cases B ∈ {B1 ∧B2,B1 ∨B2} are similar and left to the reader.
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Let now B = OB′. M,w ⊧ ¬OB′ iff [by (C¬O)] M,w ⊧ P¬B′ iff [by (CP)] there is
a w′ ∈ ROw for which M,w′ ⊧ ¬B′ iff [by the induction hypothesis] ¬B′ ∈ w′ iff [by the
definition of RO] P¬B′ ∈ w iff [by (R¬O) and (RP¬)] ¬OB′ ∈ w.

The case B = ◻JB
′ is analogous.

Let now B = PB′. M,w ⊧ ¬PB′ iff [by (C¬P)] M,w ⊧ O¬B′ iff [by (CO)] for all
w′ ∈ ROw, M,w′ ⊧ ¬B′ iff [by the induction hypothesis] for all w′ ∈ ROw, ¬B′ ∈ w′ iff
[by Lemma 12] O¬B′ ∈ w iff [by (R¬P) and (RO¬)] ¬PB′ ∈ w.

The case B =◇JB
′ is analogous (except that we use Lemma 13 instead of Lemma

12).
Let now A = B ∧ C. M,w ⊧ B ∧ C iff [by (C∧)] M,w ⊧ B and M,w ⊧ C iff [by

the induction hypothesis] B,C ∈ w iff [by (AND), (AN1), (AN2) and the fact that w
is PMDL-deductively closed] B ∧C ∈ w.

The case A = B ∨C is similar and left to the reader.
Let A = OB. M,w ⊧ OB iff [by (CO)] for all w′ ∈ ROw, M,w′ ⊧ B iff [by the

induction hypothesis] for all w′ ∈ ROw, B ∈ w′ iff [by Lemma 12] OB ∈ w.
The case A = ◻JB is analogous and left to the reader (just we use Lemma 13

instead of Lemma 12).
Let A = PB. M,w ⊧ PB iff [by (CP)] there is a w′ ∈ ROw for which M,w′ ⊧ B iff

[by the induction hypothesis] B ∈ w′ iff [by Lemma 9] PB ∈ w.
The case A =◇JB is analogous (just we use Lemma 10 instead of Lemma 9).

Lemma 17. Let Γ ⊆ LMDL and Γ ⊬PMDL A. There is a ∆ ⊆ LMDL such that (i)
Γ ⊆ ∆, (ii) A ∉ ∆, and (iii) ∆ ∈ ΨPMDL.

Proof. Where ⟨B1,B2, . . .⟩ is a list of the members of LMDL, define ∆0 = CnPMDL(Γ)
and ∆ = ∆0 ∪∆1 ∪ . . ., where

∆i+1 = {
CnPMDL(∆i ∪ {Bi+1}) if A ∉ CnPMDL(∆i ∪ {Bi+1})
∆i else

Ad (i): This holds by the definition of ∆0 and since ∆0 ⊆ ∆.
Ad (ii): This holds since A ∉ CnPMDL(Γ) and by the construction of ∆.
Ad (iii): Assume that some Bi ∉ ∆ but ∆ ⊢PMDL Bi. Hence, by the construction of
∆, ∆i−1 ∪ {Bi} ⊢PMDL A and hence ∆ ∪ {Bi} ⊢PMDL A. Since also ∆ ⊢PMDL Bi,
∆ ⊢PDML A,—a contradiction with (ii). Hence ∆ is PMDL-deductively closed.

Suppose B ∨ C ∈ ∆. Assume B,C ∉ ∆. Hence, ∆ ∪ {B} ⊢PMDL A and ∆ ∪
{C} ⊢PMDL A. Hence, by Fact 1, ∆ ∪ {B ∨ C} ⊢PMDL A and since B ∨ C ∈ ∆ also
∆ ⊢PMDL A,—a contradiction with (ii). Hence, ∆ is prime.

Theorem 10 (Strong Completeness of PMDL.). If Γ⊩PMDLA then Γ ⊢PMDL A.

Proof. Suppose Γ ⊬PMDL A. By Lemma 17 there is a ∆ ⊇ Γ such that A ∉ ∆ and
∆ ∈ ΨPMDL. By Lemma 16, there is a PMDL-model M for which M ⊧ B for all
B ∈ ∆ and M /⊧ A.

C Proof of Theorem 8

The following fact holds since MDL strengthens classical propositional logic.

Fact 2. Γ ⊢MDL ¬A ∨B iff Γ ∪ {A} ⊢MDL B.

Lemma 18. The following is valid in ULL:
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(i) A,A ⊃ B ⊢ULL B
(ii) If A ⊢ULL B then ⊢ULL A ⊃ B.

(iii) If ⊢ULL A ⊃ B then A ⊢ULL B.
(iv) If A ⊢ULL B then ¬B ⊢ULL ¬A.

Proof. Ad (i): Suppose A and ¬A ∨B. (1) Suppose ¬A. By A and ¬A we get B by
means of (ECQ). (2) Suppose now B, then by (AND) and (AN1), B. By (1), (2),
(RBC), and the supposition, B. Ad (ii): Suppose A ⊢ULL B. (1) Hence, by (OR2)
and the supposition, A ⊢ULL ¬A ∨B. (2) By (OR1) ¬A ⊢ULL ¬A ∨B. (3) By (EM),
A ∨ ¬A. By (1), (2), (3) and (RBC), ⊢ULL ¬A ∨B. Ad (iii): Suppose ⊢ULL ¬A ∨B.
Suppose A. By (i), B. Hence A ⊢ULL B. Ad (iv): Suppose A ⊢ULL B. By (ii),
⊢ULL ¬A∨B. By (RBC) and (DN1), ⊢ULL ¬A∨¬¬B. By (OR1), (OR2), and (RBC),
⊢ULL ¬¬B ∨ ¬A. By (iii), ¬B ⊢ULL ¬A.

Proof of Theorem 8. We first show that all the MDL axioms are valid in ULL.
By Lemma 18.i and the fact that all classical theorems are theorems of LP (see

e.g., [33]), ULL strengthens CL. Let in the following ⊡ ∈ {O,◻J ∣ J ⊆∅ I} and
⟐ ∈ {P,◇J ∣ J ⊆∅ I}.

Ad (AK⊡): By simple propositional manipulations (henceforth, SPM), ⊡(¬A ∨
B) ⊢ULL ⊡(B ∨ ¬A). By (OR⊡), ⊡(¬A ∨B) ⊢ULL ⊡B ∨ ⟐¬A. By (R⟐¬) and some
SPM, ⊡(¬A∨B) ⊢ULL ¬⊡A∨⊡B. By Lemma 18.ii, ⊢ULL ⊡(¬A∨B) ⊃ (¬⊡A∨⊡B). Ad
(A4◻J): This follows by Lemma 18.ii and (4◻J). Ad (AT◻J): This follows by Lemma
18.ii and (AT◻J). Ad (ADf⟐): By (R⊡¬) and Lemma 18.iv, ¬¬ ⟐ A ⊢ULL ¬ ⊡ ¬A.
By (DN1), ⟐A ⊢ULL ¬¬⟐A. Hence, ⟐A ⊢ULL ¬⊡¬A. By Lemma 18.ii, ⊢ULL ⟐A ⊃
¬ ⊡ ¬A. In a similar way we get ⊢ULL ¬ ⊡ ¬A ⊃ ⟐A. By (AND), ⊢ULL ⟐A ≡ ¬ ⊡ ¬A.
Ad (NEC⊡): This follows by (INH⊡). Ad (ADO): This follows by (DO) and Lemma
18.ii.

We now show that all the ULL axioms are valid in MDL.
All the rules and axioms of LP hold trivially in MDL due to the fact that MDL

strengthens CL.
Ad (4◻J), (4◇J), (T◻J), (T◇J), (DO): This follows by Fact 2 and (A4◻J),

(A4◇J), (AT◻J), and (ADO). Ad (INH⊡): This follows by (NEC⊡), (AK⊡) and SPM.
Ad (INH⟐): This follows by (INH⊡), (ADf⟐) and SPM. Ad (AND⊡): This follows
by (NEC⊡), (AK⊡) and by Fact 2. Ad (AND′⊡): By (ADfP), (AND⊡), by Fact 2 and
SPM, ⊡A,¬ ⟐ (A ∧ B) ⊢MDL ⊡(A ∧ ¬B). By (INH⊡), ⊡(A ∧ ¬B) ⊢MDL ⊡¬B. By
(ADf⟐) and SPM, ⊡(A∧¬B) ⊢MDL ¬⟐B. Altogether, ⊡A,¬⟐(A∧B) ⊢MDL ¬⟐B.
By SPM, ⊡A,⟐B ⊢MDL ⟐(A ∧B). Ad (R¬⊡), (R⟐¬), (R⊡¬), (R¬⟐): This follows
by (ADf⟐) and SPM. Ad (OR⟐): By (AND⊡), ⊡¬A ∧ ⊡¬B ⊢MDL ⊡(¬A ∧ ¬B). By
Contraposition, (ADf⟐), and SPM, ⟐(A∨B) ⊢MDL ⟐A∨⟐B. Ad (OR⊡): By SPM,
⊡(A∨B) ⊢MDL ⊡(¬B ⊃ A). By (AK⊡) and by Fact 2, ⊡(¬B ⊃ A) ⊢MDL ¬⊡¬B ∨⊡A.
By SPM and (ADf⟐), ¬ ⊡ ¬B ∨ ⊡A ⊢MDL ⊡A ∨ ⟐B. Altogether, ⊡(A ∨ B) ⊢MDL

⊡A ∨⟐B.
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